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Abstract. Recently, a collective effort from multiple research areas has
been made to understand biological systems at the system level. On the
one hand, researchers working on Systems Biology aim at understand-
ing how living systems perform routinely complex tasks. On the other,
people involved in Pharmacogenomics strive to study how an individ-
ual’s genetic inheritance affects the body’s response to drugs. Research
in all the above disciplines requires the ability to simulate particular bio-
logical processes (i.e. metabolic pathways) which characterize biological
systems as cells, organs, organisms and communities. Biological processes
are complex systems, i.e. a set of components that interacts with each
other and with an external dynamic environment.
In this work, we aim at providing an alternative way to specify complex
systems based on behavioral modelling. We consider a biological process
as an activity-based application performed by actors in a dynamic and
sometime unpredictable environment; each actor plays his role in rela-
tion to the process it is involved, but in general they are part of a more
complex system. We propose a conceptual framework to engineering an
agent society which simulate the behavior of a biological process. The
agents society and its social rules are described through a coordination
model specified for a biological process with semiformal languages based
on System Biology Modelling Languages for the static-structural and
functional views and on UML-like diagrams for the dynamic (control
flow) behavior.

1 Introduction

In the last years, biology has made many steps to establish a strong relation
with computer science. Several new research fields arose, sometimes covered by
the term “Bioinformatics”, which has been defined by the National Institutes of
Health Committee as: “Research, development, or application of computational
tools and approaches for expanding the use of biological, medical, behavioral
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or health data, including those to acquire, store, organize, archive, analyze, or
visualize such data” 4. Therefore the term Bioinformatics includes research fields
from biological data management to biological processes simulation.

In this work we will consider that part of modern biology regarding mod-
elling and simulation of biological processes indicated as Systems Biology, which
aims at system-level understanding of biological systems [1]. The rapidly growing
huge amount of knowledge recently acquired at molecular level (i.e. Genomes,
Transcriptomes, Proteomes, Metabolomes, Interactomes) now is giving for the
first time the opportunity to constitute the solid ground upon which to create an
understanding at the system level of the living organisms (the Systeome project
suggested in [1]). This effort is intended not only to describe in detail the system
structure and behavior but also to comprehend its reaction in response to exter-
nal stimuli or disruptions. Examples of molecular networks already well studied
comprise gene regulation networks (how genes and their products, proteins, are
regulating gene expression), metabolic pathways (the chains of reaction connect-
ing metabolites) and signal transduction cascades (the molecular interactions
activating a genetic answer to a signal received from the cell).

Because of the scale, nature and structure of the data, this new scientific chal-
lenge is much more demanding than ever and is intended to involve computer
scientist, mathematicians, physicists, biochemists, engineers and automatic con-
trol systems experts working in close partnership with life scientist. Fundamen-
tal, in this optics, are the information management framework and the model
construction, analysis and validation phases [2]. Efforts are being made to pro-
vide a common and versatile software platform for Systems Biology research and
in the Systems Biology Workbench 5 project critical issues regard the exchange
of data and the interface between software modules; SBML 6 and CELLML 7

description languages are emerging standard for simulation in system biology.
Although Systems Biology has no clear end point, the prize to be attained is

immense. From in silico drug design and testing to individualized medicine, which
will take into account physiological and genetic profiles, there is the potential to
profoundly affect health care and medical science generally [2].

Our intention is to provide a general framework for biological processes mod-
elling, to support life scientist in the building and verification of their hypothe-
ses. We believe that use of an agent coordination infrastructure [3] will allow
dominating the complexity of the biological domain by delegating to intelligent
software agents learning of behavior of the bio-entities they are expected to
emulate.

2 Biological Systems Understanding

A biological system is an assembly of biological components; to understand a
system it is not sufficient to describe its components in details, it is necessary to

4 http://www.nih.gov
5 http://sbw.sourceforge.net
6 http://www.sbml.org
7 http://www.cellml.org
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describe the behavior of molecules in relation to the characteristics of the system
and also to comprehend what happens when certain stimuli or disruptions occur.
In order to understand biological systems as a system, Kitano in [1] suggests
to accomplish four steps: 1. System structure identification, 2. System behavior
analysis, 3. System control, 4. System design.

System structure identification leads to the specification of the topological
relationship of the network of components as well as parameters for each relation.
For example to identify a metabolic pathway, one must identify all components
of the pathway, the function of each component, interactions and all associated
parameters by also using experimental data to infer new results as prediction of
new gene and interactions. This process, (we have experimented on modelling
malaria process and cell behavior in previous works [4, 5], is divided into two
tasks: 1) network structure identification, and 2) parameter identification.

System behavior analysis means to understand the mechanisms that are
behind the robustness and stability of the system, and functionalities of the in-
teractions among components. Simulation is an essential tool both to understand
the behavior and to design the biological process. There is a necessity to develop
a simulator system tool that is user-friendly, highly functional, accurate and
modular. The simulator need to be coupled with parameter optimization tools,
an hypothesis generator and a group of analysis tools.
We need to develop a common platform that integrates many modules useful to
assist systems biology research as database for storing experimental data, a cell
and tissues simulator, parameter optimization software, etc.

System control in the simulation of a complex system, usually allows to in-
crease the stability of the system. In particular, in biological systems we can
frequently identify the two most used control schemas, the feedforward and the
feedback control. In fact the feedforward control represents the an open-loop
control where a set a predefined reaction sequences is triggered when a certain
stimulus is present. The feedback control is a close-loop control which allows
to process the signal in output as one of the input of the system and therefore
to control the desired behavior of the system. Many examples can be found for
demonstrating the utility of feedback control. For the purpose of this work we
choose the simulation of the growing process of human cells. We know that the
protein P53, each time a cell is undergone by environmental stress, is activated
and it sends a signal to P66 which in turns produces oxidant substances that if
they are in excess will induce the cell to kill itself (apopthosis); the close-loop
will control the cell behavior.
Beyond the stability, a system must be robust, therefore redundancy (i.e. dupli-
cation of components and clustering of components with similar functions) is a
widely used method to ensure the correct functioning of the system.

System design The last, but non least important aspect, is the design of
biological system for instance to support the pharmacogenomics (the study of
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how an individual’s genetic inheritance affects the body’s response to drugs) 8

Pharmacogenomics holds the promise that drugs might one day be tailor-made
for individuals and adapted to each person’s own genetic makeup. Environment,
diet, age, lifestyle, and state of health all can influence a person’s response to
medicines, but understanding an individual’s genetic makeup is thought to be
the key to creating, through a biological system design, personalized drugs with
greater efficacy and safety. Since biological systems are so complex and the bio-
logical knowledge is still so poor, we need a technology which supports the design
of small and modular systems and then their composition and integration.

The system structure identification and the system behavior analysis are
activities concerning the biologist work, whereas the system simulation and con-
trol are activities that can be supported by a suitable conceptual framework.
The system design phase would benefit from the experience matured in the soft-
ware engineering research environment, for instance by using reverse engineering
methodologies and considering the biological system as a black box.

In general a conceptual framework should allow biologists, given the systems
structure and system behavior of a biological system as input, to create the
corresponding model and to simulate the system by studying its behavior and
by verifying the properties of each component. Of course, a more sophisticated
scenario is that in which a biologist does not know the system structure and
behavior, (he/she only can access the huge amount of data) but aims at inferring
a new model by mining biological data and knowledge dispersed all over the
world.

3 Related Works

In the literature we can find different approaches to biological processes simula-
tion with some, more or less limited, successful modelling examples.

ODE based. This is the classical approach arising from the biochemical point of
view. A network of interactions (chemical reactions) between molecules (metabo-
lites, proteins, genes) is established and Ordinary Differential Equations describe
numerically the continuous variations in the concentration of substances. The
GEPASI program [6], even with a limited number of metabolites and reactions
is for sure a milestone in this area. The group of Mendes at Virginia Bioin-
formatics Institute, in collaboration with the Kummer group at EML is now
accomplishing the development of COPASI, the successor of GEPASI, capable
of carrying out more sophisticated analysis (stochastic integration, non linear dy-
namic analysis such as bifurcation). Another ODE-based software environment
is E-CELL [7], in which the user can define protein functions, protein-protein
and protein-DNA interactions and regulation of gene expression and observe the
dynamic changes in the concentrations of proteins, protein complexes and other
chemical compound in the cell. The authors simulated also a hypothetical cell
8 The term comes from the words pharmacology and genomics and is thus the inter-

section of pharmaceuticals and genetics.
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with a 127 genes genome sufficient for the processes of transcription, translation,
energy production and phospholipids synthesis.

LISP based. QSIM [8] represents a Qualitative Reasoning LISP-based ap-
proach to the problem.

PI-Calculus based. Bio-Calculus [9] tries to bridge the gap between the bio-
chemical approach and the formal and symbolic handling capacity requested
from the Computer Science. A syntax similar to conventional expressions in
Biology is provided to describe the system structure but at the same time is
giving the information needed for simulation and a mathematical background.
The authors introduced a biosyntax and multisemantic system. In their opinion
is almost impossible to define a unique absolute simulation model valid at all the
level and for all the processes. They showed the practicality of Bio-Calculus by
describing and simulating some molecular interactions. In [10, 11] is remarked the
necessity of describing biomolecular processes using a formal computer language.
The chosen formalism is PI-Calculus, the process algebra originally introduced
for describing computer processes and a simulation system (PiFPC) for execu-
tion and analysis of PI-Calculus program was developed and experimented with
a model for the RTK-MAPK signal transduction pathway. Another example of
PI-Calculus application is the VICE virtual cell [12]. The authors observe that
cell’s mechanism and global computing applications are closely related and that
biological components can be thought as processes while organisms as networks.
The interactions between biological components are then represented by the
communications between processes. They also proposed a very basic cell with a
180 genes genomes and the essentials metabolic pathways.

Petri-nets based. In [13], it is observed that all the existing approaches have
some disadvantages, lacking for example of valid GUI interfaces (bio-pathway
editors) or with some implicit weakness in the architecture itself. To overcame
this situation they suggest to use an architecture based on Petri nets because
of their intuitive graphical representation and their capabilities for mathemat-
ical analysis. Several enhanced Petri nets (for example colored Petri nets and
stochastic Petri nets) have been used to model biological phenomena but a more
suitable approach is constituted by hybrid Petri nets that take in account both
the discrete and continuous dynamics aspects.

MAS based. Cellulat [14] and Stem-Cell [15] are two examples of MAS appli-
cation to modelling and simulation of cell behavior. Cellulat is an intracellular
signalling model based on the fusion of agent-based approach and the blackboard
architecture. In Stem-Cell the authors propose new formal models and simula-
tions of new theories of stem cell behaviors by using functional programming
language
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4 Motivation

From the analysis of the literature, the need for formal frameworks for the mod-
elling and simulation of a Biological System clearly emerge, in order to get the
chance of applying the wide range of existing methods and tools provided by
Computer Science (property design and verification, automated reasoning, . . . ).
Another important remark regards the importance of the intuitive graphical rep-
resentation of systems, along with the network of all the interactions among the
entities, and the possibility to define it in an easy way (user friendly GUI). The
choice of the computational paradigm affects the possibility to perform more
complicated tasks like stochastic integration or non-linear dynamic analysis like
bifurcation, and to describe discrete and continuous hybrid systems.

What we found illuminating was the molecular-as-computation abstraction
presented in [16], in which a system of interacting molecular entities is described
and modelled by a system of interacting computational entities. Abstract com-
puter languages, originally developed for the specification and study of systems
of interacting computations are now actively used to represent biomolecular
systems, including regulatory, metabolic and signalling pathways as well as mul-
ticellular processes. Processes, the basic interacting computational entities of
these languages have an internal state and interaction capabilities. Process be-
havior is governed by reaction rules specifying the response to an input message
based on its content and on the state of the process. The response can include
state change, a change in interaction capabilities and/or sending messages. Com-
plex entities are described hierarchically. Using this abstraction opens up new
possibilities for understanding molecular systems. Computers and biomolecular
systems both start from a small set of elementary components from which, layer
by layer, more complex entities are constructed with evermore sophisticated
functions. While computers are networked to perform larger and larger com-
putations, cells form multicellular organs and organisms and organisms build
societies.

As we cannot and need not to recreate the world as an isomorphic in silico
image of itself [2] it has no sense to start the modelling from the atomic level. At
the molecular level we can consider the cell chemical components: water, inor-
ganic ions, sugars, aminoacids, nucleotides, fatty acid and other small molecules.
They can interact with each others and be used to build up more complex
macromolecules, like polysaccharides, composed of sugars, nucleic acids (DNA
and RNA), composed of nucleotides, and proteins, composed of aminoacids.
Macromolecules can then generate macromolecular aggregates, for example the
ribosome is made out of proteins and RNAs. Molecules can have an internal
state, for example proteins can have different conformational states, they can be
phosphorilated, the DNA can be methylated and the RNA can form secondary
structure. Another level of modularity can be found in proteins domains (au-
tonomous functional subunit of the proteins) and in nucleic acids signals, for
example transcription factor binding sites in the DNA, protein binding sites in
the RNA, which usually are involved in the molecular interactions. The interac-
tions at the various levels are often modelled by chemical covalent bonds, either
very strong and stable (for example the peptidic bond between aminoacids) or
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weak and temporary (for example the binding of proteins to DNA or between
proteins). The composition of a lot of simpler interactions makes up the cellular
processes that are fundamental for the physiology of the cell, for example the
DNA replication (to propagate the genetic inheritance to the following gener-
ations) and the “gene” expression, that is composed of more phases, the most
important being the RNA transcription and the protein translation (to produce
all the perturbed life of the cell and the molecular machinery necessary for the
normal). For each of these processes soon would be possible to exactly individu-
ate which are the actors involved, which is their role, which are the interactions
between them, which is the result of the interactions, which new entity are pro-
duced by the composition of simpler entities.

5 An Agent-oriented Framework for Systems Biology

Generally speaking, multiagent systems (MASs) are considered the right level
of abstraction for modelling and engineering complex systems, characterized by
organization structures and coordination processes that are more and more ar-
ticulated and dynamic [17, 18]. Also, they are considered a promising approach
for engineering simulations of complex systems, as one can see from the series
of the Multi-Agent Based Simulation (MABS) workshops – held since 1998 – or
from the Journal of Artificial Societies and Social Simulation (JASSS).

In particular, MAS-based models are often used for the simulation of sys-
temic and social phenomena [19, 20]. Recently, however, their effectiveness has
been remarked also beyond social simulation in domains where traditional tech-
niques are typically adopted [21], such as parallel and distributed discrete event
system simulation, object oriented simulation, and dynamic micro simulation.
In general, simulations based on the agent paradigm integrate aspects that can
be found both in micro and macro techniques to simulation.

On the one side, in the same way as micro techniques, agent-based approaches
model specific behaviour of individual entities or components. This can be con-
trasted to macro simulation techniques which are typically based on mathemat-
ical models where the characteristics of a population are averaged together and
the model attempts to simulate changes in the averaged characteristics of the
whole population. Thus, in macro simulation the set of individuals is viewed
as a structure that can be characterized by a number of variables, whereas in
micro simulations the structure is viewed as emergent from the interactions be-
tween the individuals. Parunak et al. [22] recently compared the approaches and
pointed-out that “. . . agent-based modelling is most appropriate for domains
characterized by a high degree of localization and distribution and dominated
by discrete decision. Equation-based modelling is most naturally applied in sys-
tems that can be modelled centrally, and in which the dynamics are dominated
by physic laws rather that information processing. . . ”. Here, we promote a con-
ceptual framework for simulating biological systems heavily based on localiza-
tion, distribution and interaction (communication) of the system components,
where an agent-based approach seems to be more effective. On the other side,
in the same way as in macro techniques, agent-based approaches promote the
investigation of systemic properties that cannot be understood at the individual
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component level, but require the introduction of new categories for their de-
scription. In other words, agent-based approaches make it possible to simulate
and analyze emergent properties, which can be understood as properties of the
ensemble of the components in the overall.

The rest of the section first recalls the basic properties of the agent and MAS
paradigm and how do they fit within the biological system simulation domain.

5.1 Agents, Societies and Mediating Artifacts for Modelling
Biological Systems

The notion of agent has been described in several ways in literature [23–25], with
different acceptation according to the research field where it has been consid-
ered – from distributed artificial intelligence (DAI) to software engineering and
concurrent/distributed systems, from social/psychological/economic sciences to
computer supported cooperative work (CSCW). In this context we stick to a
weak definition of agency, where agents feature two basic foundational proper-
ties: autonomy and situatedness.

As an autonomous entity, an agent encapsulates the execution of indepen-
dent activities or tasks within the overall system/environment. In the software
engineering context, autonomy is characterized by the encapsulation of behavior
control: as for the object abstraction, agents encapsulate a state and a behavior;
differently from objects, agents have full control of both (objects only of their
state). So agents work by autonomously executing their tasks, concurrently to
the work of the other agents.

As a situated entity, an agent is a persistent entity immersed within and
interacting with an environment, which is typically open and dynamic. Interac-
tion – in its most wide characterization [26] – is a fundamental dimension of the
agent paradigm: generally speaking, an agent interacts with its environment by
means of actions and perceptions, which enable the agent to partially observe
and control the environment.

In the literature, further characterizations have been attributed to the agent
abstraction: examples are pro-activity (as the capability of taking initiative) and
social ability (the adoption of high level languages for inter-agent communica-
tion). Heterogeneous computational/behavioural models have led to different
forms of agent classification: examples are intelligent agents – when the agent
behavior is defined in terms of high level cognitive/mentalistic structures and
processes, with an explicit symbolic representation of knowledge, interaction and
related reasoning processes –, and reactive agents – typically characterized by
sub-symbolic (such as neural networks) or imperative computational models.

So, how can the agent abstraction be exploited for modelling biological sys-
tems? As a first, obvious point, biological systems are typically characterized by
a number of complex and concurrent activities. So, in biological system simu-
lation agents can be suitably adopted for modelling at the appropriate level of
abstractions such activities (tasks), or better the biological components that are
responsible of them.

Also, MASs are adopted to model (non trivial) systems composed by an en-
semble of autonomous entities and of the resources involved in their interaction.
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Here we focus in particular on approaches that explicitly model the space of agent
interaction through mediating artifacts, that is, those first-class entities used by
agents to engage different forms of interaction (including inter-agent communi-
cation). A mediating artifact can range from a simple communication channel
to a shared data structure, from a shared blackboard to a scheduler, useful for
agents to synchronize their tasks. The latter ones, in particular, are examples
of coordination artifacts, i.e. mediating artifacts providing specific coordination
functionalities [27].

Thus, MASs provide the appropriate abstraction level to model a biological
system in the overall: if an agent represents an individual component of the
systems, the overall MAS including the mediating artifacts captures the overall
set of the biological components including also the structures involved in their
interaction. Mediating and coordination artifacts in particular can be adopted
to model the various patterns of interaction that can be found in biological
processes, many examples can be found in the KEGG Pathway database 9.

It is worth noting that the model of mediating artifacts can be crucial for
creating a simulation where the overall emergent and stable behavior can be
reproduced. For instance, recent works on complex system simulation [28, 29]
described a case study where the correct behaviour of the simulated system
could be obtained only by properly modelling knowledge structures shared by
agents, which here can be framed as sorts of mediating artifacts. In particular,
that research pointed out the benefits of such structures in simulations in terms
of the dramatic enhancement of the probability of reproducing stable and acyclic
overall behaviours. Generalising this case, we expect to have analogous benefits
in adopting first class abstraction to model and control interaction in biological
systems.

Finally, the agent society notion can be used here for defining an ensemble
of agents and the mediating/coordination artifacts involved in the social task
characterizing the society: a social task accounts for the coordinated execution
and interaction of agent individual tasks, toward the achievement of an over-
all (society) objective. The notion of agent society can be suitable adopted for
scaling with complexity, identifying different levels of descriptions of the same
system: what can be described at one level as an individual agent, at a more de-
tailed level can be described as a society of agents (zooming in) – so an ensemble
of agents plus their mediating artifacts – and vice-versa (zooming out). These
modelling features can be exploited then for simulation of biological systems
involving different description levels, each one characterized by different kind of
emerging phenomena.

5.2 Engineering Biological System Simulations

MAS paradigm can be effective not only for technologies to build simulations,
but first of all for devising a methodology for covering the whole simulation engi-
neering spectrum, from design to development, execution and runtime (dynamic)
control. Critical points of biological systems – concerning structures, activities,

9 http://www.genome.jp/kegg/pathway.html
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interactions – can be captured directly by abstractions that are kept alive from
design to runtime, supported by suitable infrastructures.

The simulation then can be framed as an online experiment, where the scien-
tist can observe and interact dynamically with the system and its environment,
both by changing its structure – by introducing for instance new agents repre-
senting biological components or removing existing ones – and global biological
processes – by acting on the mediating/coordination artifacts. In particular, the
control of mediating artifacts at runtime is the key for supporting the analytical
and synthetical processes, promoting system behavior analysis and system con-
trol as defined by Kitano in [1]. In this case controlling the mediating artifacts
means the possibility of (a) inspecting the dynamic state of the artifact; (b)
adapting the artifacts, by changing the state and – more radically – changing
its mediating behavior. On the one side, inspecting the dynamic state of system
interactions is fundamental for supporting the analysis of system behavior, en-
abling the identification, observation and monitoring of (emerging) patterns of
interaction. On the other side, the possibility of dynamically adapting the state
and behaviour of the mediating artifacts can be useful, for instance, to observe
system reaction – in term of stability and robustness – to unexpected events con-
cerning the component interactions; but also to enact some forms of feedback,
analogously to feedbacks in control system theory: coordination processes gluing
the components can be adapted dynamically according to (unexpected) events
occurring in the system or in its environment.

The capability of controlling mediating and coordination artifacts is meant
to be provided both to humans (scientists and simulation engineers) and artifi-
cial cognitive agents – the latter typically provided with reasoning capabilities
capable to support automatic forms of system behavior analysis.

In this overall scenario MAS infrastructures, and agent coordination infras-
tructures in particular, play a fundamental role. Agent infrastructures provide
basic services to sustain the agent life-cycle, supporting dynamic agent spawning,
death, (possibly) mobility and also some form of native communication services.
Well-known examples are JADE [30], a FIPA-compliant platform, and RETSINA
[31]. Coordination infrastructures provide instead specific services to support
agent interaction and coordination [32]. These services are typically concerned
with the access and management of different kind of mediating/coordination
artifacts, in order to be shared and used concurrently by agents. In particular,
they can provide support (tools, interfaces) for artifacts control [33].

TuCSoN is an example of MAS coordination infrastructure [34]. TuCSoN co-
ordination artifacts are tuple centres, i.e. programmable tuple spaces [35]: agents
interact by inserting, retrieving and reading logic tuples – information chunks
structured as Prolog terms – to and from shared information spaces (tuple cen-
tres). Tuple centres can be dynamically programmed in order to react to inter-
action events and enact a specific coordinating behavior, described in a logic
based language called ReSpecT. Finally, tuple centres are distributed among the
nodes of the infrastructure, and they can be accessed and controlled both from
agents (and humans) residing on the same nodes and remotely, from different
Internet nodes. Recently the infrastructure has been extended to support also
organization and security [36].
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So, generally speaking adopting TuCSoN as infrastructure for engineering
simulations (and following an agent and coordination oriented methodology like
SODA [37]) involves: the identification of biological subsystems, which can be
mapped into agent societies; for each society, agents – which can be developed
in heterogeneous computational languages – represent biological system compo-
nents and tuple centres the coordination artifacts embedding and enacting the
coordination laws gluing the components. Tuple centres are exploited also for
enabling weaker interaction among different societies (biological subsystems).
According to the specific simulation, logic tuples can represent different kind of
signals or chemical materials exchanged by the components, carrying both qual-
itative and quantitative information. Finally, from a topological point of view,
multiple nodes can be used to distributed agents and tuple centres according to
the topology of the simulated biological system.

5.3 Formal and Semiformal Language for Agent-based Systems
Specification and Verification

To design systems for simulating, we need suitable models (i) to represent pe-
culiar aspects of the biological system itself and (ii) to analyze the system from
different view points, for instances: static/structural, dynamic and functional.
The introduction of models to describe a biological system helps to understand
of biological system itself (by identifying the system structure, critical roles and
responsibilities, functions and interactions, not well identified). Of course, to
create models we need languages and/or suitable notations. In the literature,
we can find a wide range of formal and semi-formal languages and notations
depending on the considered level, on the properties we are interested in, and
on tools available to make analysis and properties verification.

Following the views classification in [38], consider three different views of a
biological system:

1. the static-structural view of a bio-molecular knowledge as complexes,
chemical, and biopolymers that participate in the system, their properties
and their relationships. Several languages are already available; SBML [39]
and references therein;

2. the dynamic view shows how the system’s components behave, react to
the environment and how their activities are distributed over time (control
flow). The languages used to represent dynamic modelling should support
sequential, parallel, conditional and iterative behaviors; Petri Nets [38, 13],
UML-AD [4], SB-UML [40] and process algebra [10, 11, 41] are suitable tools
for such a purpose.

3. the functional view that shows the functions performed by the different
actors (e.g enzyme, ...) involved in the system; the substrates (input) of each
function, and the product of the functions (output).

Furthermore a model should include a biological ontology that will define
biological concepts and arrange them in classification hierarchies [42]. Ontolo-
gies provide consistent definitions and interpretations of biological concepts and
enable software application (agents) to reuse knowledge consistently.
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A possible scenario, taken into account in a previous work [4, 43], uses a
semi-formal notation based on UML Activity Diagrams to describe the activi-
ties workflow describing a biological process (malaria parasites invading human
host erythrocytes). The resulting description, on the one hand can be translated
in a formal notation (process algebra like) to verify suitable properties as those
functional and structural of the resulting system [4], and on the other hand,
can be translated in a low level description (implementation) to simulate the
biological process. The implementation part of the process itself makes use of
agent-oriented technologies [43], to support composition, amalgamation, dynam-
icity and mobility.

6 Conclusion and Future Directions

In this paper, we have presented preliminary results of our investigation of how a
general formal framework could be defined for biological process modelling and
to support life scientists in the building and verification of their hypotheses. In
the future, we will investigate the use of the proposed conceptual framework to
perform modelling of real cases in systems biology.
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