
FOCLASA 2004 Preliminary Version

ReSpecT Nets: Towards an Analysis
Methodology for ReSpecT Specifications

Mirko Viroli Andrea Omicini

DEIS, Alma Mater Studiorum, Università di Bologna
via Venezia 52, 47023 Cesena, Italy

e-mail: {mviroli,aomicini}@deis.unibo.it

Abstract

A key feature for infrastructures providing coordination services is the ability
to define the behaviour of coordination abstractions according to the requirements
identified at design-time. We take as a representative for this scenario the logic-
based language ReSpecT (REaction SPECification Tuples) to program the reactive
behaviour of tuple centres. ReSpecT specifications are at the core of the engineering
methodology underlying the TuCSoN infrastructure, and are therefore the “concep-
tual place” where formal methods can be fruitfully applied to guarantee relevant
system properties.

In this paper we introduce ReSpecT nets, a formalism that can be used to describe
reactive behaviours that can succeed and fail, and that allows for an encoding to
Petri nets with inhibitor arcs. ReSpecT nets are introduced to give a core model
to a fragment of the ReSpecT language, and to pave the way for devising an anal-
ysis methodology including formal verification of safety and liveness properties. In
particular, we provide a semantics to ReSpecT specifications through a mapping to
ReSpecT nets. The potential of this approach for the analysis of ReSpecT specifica-
tions is discussed, presenting initial results for the analysis of safety properties.

1 Introduction

There is an apparent dichotomy in the engineering of today software systems.
On the one hand, the growing social impact of software systems on many
critical aspects of human life makes the request of predictability of systems
almost inescapable. On the other hand, many factors such as their complex-
ity (encompassing not only their articulation as runtime systems, but also the
intricacies of their design and development) make them mostly unpredictable
in nature [25]. However, this does not prevent systems to be designed so as to
exhibit some predictable behaviour – such as achieving some goals, or prevent-
ing some dangerous paths. In particular, when components of a system are

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Viroli & Omicini

adequately uncoupled from the design down to deployment stages, and suit-
ably expressive abstractions are exploited to embody and encapsulate critical
system behaviours, then the analysis and verification of partial properties of
systems come to be not only feasible, but even central to system engineering.

This is typically the case of coordination abstractions such as blackboards,
channels, or tuple spaces, that in today software systems are likely to be pro-
vided by distributed software infrastructures as services to system components
[24]. By governing interaction among components, coordination abstractions
(as both design and runtime abstractions) are typically in charge of critical
system behaviours, such as composing individual components’ activities to
achieve global system goals, or preventing erroneous or malicious operations
from components.

On the one hand, coordination abstractions are required to be expressive
enough to capture the widest range of coordination problems possible. On the
other hand, formal tools typically fall short when expressiveness grows, and
tend to limit expressiveness as a pre-condition to provide meaningful results.

A subtle and refined work is then required. The main issue in the engi-
neering of software systems is no longer to simply find out the most expressive
coordination abstractions to be exploited in the design and development of
complex software systems. Instead, the problem is now to devise the best
compromise between the ability of an abstraction to capture the most com-
plex coordination problems, and the availability of formal frameworks and
tools enabling some forms of prediction over its behaviour – which typically a
priori limits the abstraction’s expressiveness.

In this paper we start from the ReSpecT logic-based language for the speci-
fication of the behaviour of coordination abstractions [16], that was conceived
and designed mainly according to expressiveness criteria [8]. In particular,
ReSpecT is used to program tuple centres [17] in the TuCSoN coordination in-
frastructure [18]. Tuple centres are basically Linda tuple spaces [13] enhanced
with reactive programmable behaviours, and which extend their ability to
capture the widest range of coordination problems possible. Then, we try to
couple ReSpecT with Petri nets [19], which is one of the most fruitful model
in the field of analysis and verification of properties in distributed systems.
There, most of the well-known results mandate for limits to expressiveness, so
that, for instance, extending Petri nets with inhibitor arcs increases the class
of systems that can be modelled, but also reduces the number and quality of
properties that can be tested and verified.

Paper Outline

Reconciliation between expressiveness of ReSpecT and the foundation provided
by Petri nets is achieved as follows.

In Section 2, we define ReSpecT nets, a graphic and operational formal-
ism resembling Petri nets that can be used to represent reactive behaviours

2

Viroli & Omicini

affecting a dataspace and featuring a success/failure semantics. We show that
ReSpecT nets can be encoded in terms of Petri nets with inhibitor arcs [3], thus
enabling exploitation of the well-known properties and tools for the analysis
of Petri nets [14,5].

Then, in Section 3 we survey the ReSpecT language to program tuple
centres, describing its syntax, operational semantics, and a basic application
example to grasp its peculiar programming style.

Section 4 bridges the gap between ReSpecT specifications and ReSpecT
nets, paving the way toward an analysis methodology for ReSpecT specifica-
tions. In particular, we identify a fragment of the ReSpecT language, denoted
ReSpecT1t

g , where (i) only ground specifications are allowed – that is, neglect-
ing logic variables and unification – and (ii) reactions feature the one-testing
property – they are structured so as not to test for the presence of exactly
n occurrences of a tuple, with n > 1. Then, specifications in this fragment
are shown to allow for an automatic encoding into a ReSpecT net modelling
precisely the same set of possible computations.

Section 5 provides some results and sketches some research directions to-
wards the analysis of ReSpecT nets, focusing on the safety properties that
can be expressed in terms of control state reachability, also known as covering
[12,23]. Most notably, we show that ReSpecT specifications that do not exploit
the no r (test for absence) primitive are encoded into Petri nets where transi-
tions featuring inhibitor arcs can be simply removed without altering covering
properties. Petri nets without inhibitor arcs are intrinsically easier to anal-
yse – other than covering also termination, boundedness and inevitability are
decidable and can be effectively verified [12].

Section 6 presents an example application of our methodology, and finally,
Section 7 concludes by providing final remarks.

2 ReSpecT nets

We introduce a core, abstract model of ReSpecT specifications called ReSpecT
nets: a formalism – equivalent in expressiveness to Petri nets with inhibitor
arcs – which is shown to be able to model the computations of tuple centres
programmed with a fragment of ReSpecT specifications.

2.1 Formal Model

In the following, given a set X we let it be ranged over by meta-variable x and
its decorations x′, x0, and so on. Symbol X is used for the set of multisets
over X, ranged over by x: its elements are of the kind x||x′||..||x(n) (possibly
with repetitions), and � is used for the void multiset.

Resembling Petri nets, a ReSpecT net is a structure 〈D, F, In,Out , Inh〉.
D is the set of data-places and F is the set of firing-places (disjoint from
D). Differently from Petri nets, transitions are not defined by a set of their

3

Viroli & Omicini

••

•

fo

do

f

di

•
dn

dr

Fig. 1. Notation for ReSpecT nets

own, but rather, there is exactly one transition for each firing-place – hence
we sometime refer to a firing place as a transition and vice-versa. Then,
In ⊆ F 7→ D represents the incoming arcs, associating to each transition
f ∈ F the multiset of data-places d ∈ D which are sources of the arcs;
Out ⊆ F 7→ (D∪F) represents the outgoing arcs, associating to each transition
the multiset of data- and firing-places which are targets of the arcs; and Inh ⊆
F 7→ D represents the inhibitor arcs, from data-places to transitions. Given
an element f ∈ F , we assume no data-place is both source for an incoming and
an inhibitor arc, that is, In(f) ∩ Inh(f) = �, and that no place is source for
more than one inhibitor arc towards the same transition, that is, d||d * Inh(f)
for each d.

Similarly to Petri nets, the state of a ReSpecT net at a given time is a
marking over data- and firing-places that describes how many tokens reside in
each such place, namely, a function mapping data- and firing-places to natural
numbers. Equivalently, this is described as an element 〈d, f〉 ∈ D×F , so that
e.g. the number of firing-places f occurring in multiset f coincides with the
marking in the firing-place f – for instance marking f1||d1||d1||d2 means one
token in f1 and d2, and two tokens in d1.

Pictorially, a ReSpecT net can be represented in the style of Petri nets:
data-places are round nodes, firing-places are square nodes, transitions, in-
coming arcs, outgoing arcs and inhibitor arcs are denoted as in Petri nets,
and firing-places are linked in a one-to-one way to transitions. An example
of ReSpecT net is depicted in Figure 1, where f and fo are firing-places, the
transition is linked to f , di and dr are sources of an incoming arc, dn of an
inhibitor arc, do, dr and fo are targets of outgoing arcs, f has two tokens, f0

and dn one, and the other places none.

The semantics of a ReSpecT net is defined as usual by sequences of transi-
tions of markings. Formally, this can be expressed through a transition system
(D × F ,−→RST), where notation 〈d, f〉 −→RST 〈d

′
, f

′〉 is used to state that

in marking 〈d, f〉 a transition can fire which leads to the marking 〈d′, f ′〉.
The details of such transitions can be expressed using the following SOS-like

4

Viroli & Omicini

(Structural Operational Semantics [20]) rules:

Inh(f) ∩ d = � Out(f) = d
′||f ′

〈In(f)||d, f ||f〉 −→RST 〈d
′||d, f

′||f〉
[SUCC]

d ∈ Inh(f)

〈d||d, f ||f〉 −→RST 〈d||d, f〉
[FAIL-ABS]

In(f) 6⊆ d

〈d, f ||f〉 −→RST 〈d, f〉
[FAIL-PRES]

A transition is enabled when its firing-place, say it is f , has (at least) one
token, in which case at least one of the three rules applies:

• If (i) all the sources of incoming arcs In(f) have one token and (ii) no
source of inhibitor arcs Inh(f) has tokens, then rule [SUCC] applies. As a
result, one token from f and from each data-place in In(f) is removed, and
one token from each data- and firing-place in Out(f) is added.

• If one of the sources of inhibitor arcs have a token (d ∈ Inh(f)), rule [FAIL-
ABS] applies, which simply causes one token from f to be removed.

• If one of the sources of incoming arcs have no tokens (In(f) 6⊆ d), rule
[FAIL-PRES] applies, which simply causes one token from f to be removed
– and similarly if d has more arcs toward f .

A ReSpecT net behaviour can be described in terms of pending reactive com-
putations (also called reactions), represented by tokens in firing-places. Each
such computation can execute with success ([SUCC]), in which case it removes
tokens from sources of incoming arcs In(f) and adds tokens to targets of out-
going arcs Out(f). Vice versa, it can also fail due to the presence of a token
in Inh(f) ([FAIL-ABS]) or the absence of a required token in In(f) ([FAIL-
PRES]). In all these three cases, a token from f is removed, modelling the
fact that the reactive computation has occurred.

2.2 Rule-based Notation

Since a firing-place f is associated to a transition, it also identifies (i) the
sources of inhibitor arcs dn = Inh(f), (ii) the sources of incoming arcs
di = Inh(f), (iii) the data-places that are target of outgoing arcs do, and
(iv) the firing-places that are target of outgoing arcs f o (do||f o = Out(f)).
Correspondingly, dually to the graphic notation, a ReSpecT net can be given
by a set of rules – resembling rewrite rules for the dataspace. For each firing-
place f ∈ F , we write

(¬dn)[f]di −→RST do[f o]

5

Viroli & Omicini

There, dn can be thought of as the multiset of dataspace elements that should
be absent for the reaction to be successfully executed, di as the multiset of
dataspace elements that should be present for the reaction to be successfully
executed, do as the multiset of dataspace elements inserted when the reaction
is executed, f is the firing-elements that should occur – and which enable
the reaction –, and f o are the firing-elements inserted after the reaction has
been executed ([SUCC]). If at a given time a firing-element occurs but the
above conditions on dn and di are not satisfied, that firing-element disappears
modelling the reaction failure ([FAIL-ABS],[FAIL-PRES]). For instance, the
ReSpecT net of Figure 1, which is composed by one transition only, is expressed
by the rule:

(¬do)[f]di||dr −→RST do||dr[fo]

We often use the rule-based notation instead of the graphical one – even
though they are equivalent – to simplify the discussion of properties.

2.3 Mapping ReSpecT nets to Petri nets

Petri nets with inhibitor arcs are sufficiently expressive to model the behaviour
of ReSpecT nets, that is, any ReSpecT net can be mapped over a Petri net
with same semantics.

Recall that a Petri net (with inhibitor arcs) is a structure
〈P, T, InPT ,OutPT , InhPT 〉, where P is a set of places, T is a set of transitions,
InPT ⊆ T 7→ P maps transitions to sources of incoming arcs, InhPT ⊆ T 7→ P
maps transitions to sources of inhibitor arcs, OutPT ⊆ T 7→ P maps tran-
sitions to targets of outgoing arcs. Semantics is expressed by the SOS-like
rule:

p ∩ InhPT (t) = �

InPT (t)||p −→P OutPT (t)||p

Then, given a ReSpecT net 〈D, F, In,Out , Inh〉, the corresponding Petri net
〈P, T, InPT ,OutPT , InhPT 〉 is obtained as shown in Figure 2. First, we have
one place for each data- and firing-place (and the number of tokens in them is
unchanged by the mapping). Then, each firing-place f (i.e., each transition in
the ReSpecT net) generates three different kinds of transitions: (i) a success
(S) transition (labelled with

√
); (ii) one presence-failure (AF) transition (la-

belled with ¬) for each incoming arc to f , modelling failure when checking the
presence of tokens in its source; and (iii) one absence-failure (AF) transition
(labelled with ×) for each inhibitor arc to f , modelling failure when checking
the absence of tokens in its source. Each of these three kinds of transitions
respectively realises the behaviour resulting from operational rules [SUCC],
[ABS], and [PRES] described above.

As an example, the ReSpecT net shown in Figure 1 turns into the Petri
net in Figure 3.

This mapping preserves operational semantics, in that any transition of

6

Viroli & Omicini

P , D ∪ F Data- and firing-places

T , {(f,
√

)} Success (S) transitions

∪ {(f,¬, d) : d ∈ In(f)} Presence-failure (PF) transitions

∪ {(f,×, d) : d ∈ Inhf} Absence-failure (AF) transitions

InPT , {(f,
√

) 7→ f ||In(f)} Incoming arcs to S transitions

∪ {(f,¬, d) 7→ f} Incoming arcs to PF transitions

∪ {(f,×, d) 7→ f ||d} Incoming arcs to AF transitions

InhPT , {(f,
√

) 7→ Inh(f)} Inhibitor arcs to S transitions

∪ {(f,¬, d) 7→ d} Inhibitor arcs to PF transitions

OutPT , {(f,
√

) 7→ Out(f)} Outgoing arcs to S transitions

∪ {(f,×, d) 7→ d} Outgoing arcs to AF transitions

Fig. 2. Mapping from the ReSpecT net 〈D,F, In,Out , Inh〉 to the Petri net
〈P, T, InPT ,OutPT , InhPT 〉

di

•
dn

dr

do

fo

•

••
f

f√

f¬di

f×dn

f¬dr

Fig. 3. Petri net for the ReSpecT net of Figure 1

a ReSpecT net corresponds to exactly one transition in the Petri net, and
vice versa. More precisely, let |.|P ⊆ (D × F) 7→ P be the mapping from
ReSpecT nets markings to Petri nets markings, and −→P⊆ P × P the Petri
net transition relation shown above, we have:

〈d, f〉 −→RST 〈d
′
, f

′〉 ⇔ |〈d, f〉|P −→P |〈d
′
, f

′〉|P

This result allows us to analyse the properties of ReSpecT nets reusing results
and tools used for Petri nets with inhibitor arcs.

7

Viroli & Omicini

σ ::= {reaction(p(t),(body)).} Specification

p ::= cp | rp ReSpecT primitives

cp ::= out | in | rd Communication primitives

rp ::= in r | rd r | out r | no r Reaction primitives

body ::= [goal{,goal}] Specification body

ph ::= pre | post Direction predicates

goal ::= ph | rp(t) Goals

Fig. 4. The syntax of a ReSpecT specification

3 The ReSpecT specification language

3.1 ReSpecT in a nutshell

ReSpecT [16] is a logic-based language to program the reactive behaviour of
tuple centres [17].

Tuple centres are coordination media extending the basic model of Linda

tuple spaces [13]. Similarly to Linda, they accept and serve requests for insert-
ing a tuple t (by primitive out(t)), removing a tuple matching template tt

(by primitive in(tt)), and reading a tuple matching template tt (by prim-
itive rd(t)) 1 . With respect to Linda, ReSpecT tuple centres specialise the
tuple space model with logic tuples (Prolog-like terms with variables) and
unification as the matching criterion; differently from Linda tuple spaces, tu-
ple centres can be programmed so that whenever an external communication
event occurs a computation reactively starts which may affect the state of the
inner tuple space. External communication events can either be (i) a listen-
ing, reception of a request from a coordinated process (either a in, rd, out),
or (ii) a speaking, the production of a reply towards a coordinated process
(either the reply to a in or rd).

The ReSpecT language can be used to declare a set σ of reaction specifi-
cation tuples (RSTs), using the syntax of Figure 4. We suppose that t ∈ T

ranges over tuples, θ over substitutions of variable to terms, and denote θt
the tuple obtained by applying θ to t.

Each RST has a head and a body. When a communication event p(t)
occurs, all the RSTs with a matching head are activated, that is, their body
– each specifying an atomic computation over the tuple centre – is used to
spawn a pending reaction waiting to be executed. Being specified by a body,
reactions are composed by a sequence of reaction primitives rp resembling
Linda primitives, which are used to remove a tuple (in r), read a tuple (rd r),

1 Tuple centres can also deal with usual predicative primitives inp(tt) and rdp(tt) of
Linda, but these are not considered here for the sake of simplicity and without loss of
generality.

8

Viroli & Omicini

insert a tuple (out r), and check for the absence of a tuple (no r). This
sequence can actually contain a direction predicate ph, pre or post, which is
used to filter between reactions to a listening or a speaking.

Reactions are non-deterministically picked and executed, by atomically
executing all its reaction primitives. Their effect is to change the state of the
tuple centre, and to fire new reactions, as long as they match some other RST
– whose head can specify a reaction primitive (internal communication events)
other than a communication primitive (external communication events). This
recursive creation of reactions is the mechanism by which ReSpecT achieves
expressiveness up to reaching Turing-completeness [8].

Primitives in r, rd r, and no r might fail (the former two when the tuple
is absent, the latter when it is present), in which case the reaction execution
fails, and its effect on the tuple centre is rolled back. The computation fired by
the external communication event stops when (if) no more pending reactions
occur: when this happens the tuple centre waits until the next communication
event occurs.

3.2 An example

A classical example of a ReSpecT specification, taken from [16], is used to
deal with the dining philosophers problem [9] – also referred to as hurried
philosophers. In its general setting, this example provides a fixed number n of
resources, each accessible when two different locks have been acquired, with
each of the n locks being shared by two (adjacent) resources. A figurative
description of the problem is obtained by considering n (eastern) philosophers
willing to eat from n spaghetti dishes in a circular table, but with only one
chopstick in between each couple of dishes: a philosopher has to wait for both
chopsticks to be available in order to eat.

A Linda tuple space could be exploited to share resources and control
accesses, modelling each chopstick as a tuple chop(C) to be removed from
and reinserted in the tuple space. However, in this case a deadlock situa-
tion can occur, as all the philosophers might have one chopstick (e.g., their
left one) and indefinitely wait for the other (e.g., their right one). So, the
idea is to exploit a tuple centre to allow agents to request a couple of chop-
sticks atomically: so, while chopsticks are represented through individual tu-
ples of the form chop(C), philosophers first require and then return pairs of
tuples (in r(chops(C1,C2)) and out r(chops(C1,C2)), respectively). The
different philosophers’ and the tuple centre’s representation are bridged by
the behaviour of the tuple centre, that reacts to in r(chops(C1,C2)) and
out r(chops(C1,C2)) invocations according to the ReSpecT specification re-
ported in Figure 5.

Generally speaking, each specification tuple reaction(e,(g1,..,gn)) de-
notes reaction (g1,..,gn) to be executed when a given communication event
e occurs, expressed as a sequence of goals ĝ = g1, .., gn – the void sequence

9

Viroli & Omicini

reaction(out(chops(C1, C2)),
(in r(chops(C1, C2)), out r(chop(C1)), out r(chop(C2)))).

reaction(in(chops(C1, C2)),
(pre, out r(required(C1, C2)))).

reaction(out r(required(C1, C2)),
(in r(chop(C1)), in r(chop(C2)), out r(chops(C1, C2)))).

reaction(in(chops(C1, C2)),
(post, in r(required(C1, C2)))).

reaction(out r(chop(C1)),
(rd r(required(C1, C), in r(chop(C1)),
in r(chop(C)), out r(chops(C1, C2)))).

reaction(out r(chop(C2)),
(rd r(required(C, C2), in r(chop(C)),
in r(chop(C2)), out r(chops(C, C2)))).

Fig. 5. ReSpecT specification for the dining philosophers

denoted with �. Communication events can either be caused by external
events (listening or speaking events), or be raised when a reaction primitive is
executed. The execution of a reaction is to be considered atomic, in the sense
that if any of its goals cannot be executed the whole reaction fails and do not
affect the tuple space state in any way.

Considering the above specification, the first rule is used to convert the re-
lease of a couple of chopsticks (out(chops(C1,C2))) into two separate releases
(out r(chop(C1)) and out r(chop(C2))). When a request for two chopsticks
is received, a tuple required(C1,C2) is reified in the space by the second rule,
which causes, by third rule, the attempt to consume the two chopsticks, and
join them together to make the previous request in r(chops(C1,C2)) sat-
isfiable. If this is the case, in the fourth rule the tuple required(C1,C2) is
dropped. Finally, the fifth and sixth rule are used to look for pending requests
each time a new single chopstick is released.

3.3 Operational Semantics

We provide the operational semantics of the ReSpecT language by characteris-
ing the possible computations fired as an external communication event e ∈ E
occurs. To simplify our treatment without loss of generality, we abstract away
from the fact that computations can be fired by either a listening or a speak-
ing: the computations fired by the two kinds of event rely on the same model
and could be seen as generated by two disjoint sets of RSTs. As a result, we
can avoid considering direction predicates (a goal g is then only of the kind
rp(t)), and e can be considered simply of the kind cp(t).

10

Viroli & Omicini

Then, operational semantics can be formalised in terms of the transition
system R = 〈T,−→R, E〉, where t

e−→R t
′ means that the tuple-multiset t (in

the tuple centre) moves to t
′ due to the computation fired by communication

event e.

Reactions are associated to events by a function ρ, which is assumed to
take the operation p(t) executed and to yield the reactions that should be
correspondingly fired. A reaction r is a sequence of goals ĝ = g1; ..; gn each
of the kind rp(t), hence we write ρσ(p(t)) = r to say that in the ReSpecT
specification σ, the execution of operation p(t) causes the multiset of pending
reactions r to be created.

The transition relation in R is now modelled in terms of a completed and
(possibly) finite sequence of reaction executions

〈t, ρσ(e)〉 −→∗
E 〈t

′,�〉

t
e−→R t

′

Notice that the sequence of reaction executions might not complete – which
can happen because of the Turing-completeness of ReSpecT [8].

The semantics of reaction execution is itself modelled by a transition re-
lation −→E⊆ (T×R)× (T×R). In each transition −→E , a pending reaction
is selected, and its goals sequentially executed until completion (the sequence
of goals r becomes the void sequence of goals �) – in which case the effects
to tuples and pending reactions are applied – or until some goal cannot be
executed (9G)– in which case such effects are discarded:

〈t,�, r〉 −→∗
G 〈t

′, r′,�〉

〈t, r||r〉 −→E 〈t′, r||r′〉
[SUCCESS]

〈t,�, r〉 −→∗
G 〈t

′, r′, g; ĝ〉 9G

〈t, r||r〉 −→E 〈t, r〉
[FAILURE]

Finally, the transition relation −→G described by the following rules defines
the semantics of goal execution.

〈t, r, out r(t); ĝ〉 −→G 〈t||t, r||ρ(out r(t)), ĝ〉

〈t||θt, r, rd r(t); ĝ〉 −→G 〈t||θt, r||ρ(rd r(t)), θĝ〉

〈t||θt, r, in r(t); ĝ〉 −→G 〈t, r||ρ(in r(t)), θĝ〉

〈t, r, no r(t); ĝ〉 −→G 〈t, r||ρ(no r(t), ĝ〉 if θt /∈ t

Executing a reaction primitive causes new pending reactions to be fired (e.g.

11

Viroli & Omicini

ρ(no r(t))), as well as the state of the tuple centre to be affected: out r

inserting the tuple, rd r checking for the presence of a matching tuple, in r

removing a matching tuple, and no r checking for the absence of a matching
tuple. Notice also that in the case primitives rd r and in r involve a substitu-
tion, namely tuple θt occurs when t is required, the substitution θ is applied
on the body continuation ĝ.

4 From ReSpecT specifications to ReSpecT nets

As far as analysis is concerned, in this paper we address only ReSpecT spec-
ifications that do not provide variables, that is, we focus on ground ReSpecT
specifications. This simplification apparently seems to remove a consider-
able amount of expressiveness, but it is still able to model several interesting
scenarios. On the one hand, these kinds of specification are still useful to
model coordination laws in control-oriented scenarios where the “content” of
interaction messages can be abstracted away, such as e.g. in most workflow ap-
plications [22]. On the other hand, it allows us to describe those applications
where the set of tuples utilised range over a finite set D, so that executing e.g.
in(tt) means to execute either of in(t d) where t d ranges in D. Moreover,
we should also notice that most of the work developed so far in the context
of analysis of coordination models – see e.g. Busi et al.’s [4] and subsequent
works – makes the same assumption. We recognise the need for overcoming
this difficulty, but we also believe that the work presented here is a necessary
intermediate step to evaluate the applicability of standard models such as
Petri nets to the context of the ReSpecT language. The non-trivial extension
to full ReSpecT specifications is left as future work.

A further condition on the structuring of RSTs is actually necessary which
is called one-testing – described in Section 4.3.4 – and which leads to the
fragment of ReSpecT we analyse here, called ReSpecT1t

g . Any specification in
this fragment can be turned into a ReSpecT net modelling the same set of
computations. The basic idea of mapping ReSpecT specifications to ReSpecT
nets is that any RST would correspond to a firing-place (and to its corre-
sponding transition), any pending reaction waiting to be executed to a token
in a firing-place, any tuple occurring in the tuple centre to a token inside a
data-place. To show the details of this mapping we proceed in two steps: we
first study the mapping for a particular kind of ReSpecT specifications, which
we call flow-oriented, and then study how any ReSpecT1t

g specification can be
turned into a flow-oriented one.

4.1 Flow-oriented specifications

We introduce the concept of flow-oriented ReSpecT specification. This is a
specification structured so that operations affecting data are clearly separated
from operations dealing with flow control: in particular, this allows us to

12

Viroli & Omicini

emphasise the computation flow that is fired as an external communication
event occurs.

A ReSpecT specification is called flow-oriented if its RSTs are of any of
the two kinds

reaction(cp(t e)), (handling a communication primitive (c-RST)

rd r(t fe)

)).

reaction(rd r(t f),(handling a reaction primitive (r-RST)

no r(t d1n), no r(t d2n), .., checking the absence of some data

rd r(t d1r), rd r(t d2r), .., checking the presence of some data

in r(t d1i), in r(t d2i), .., removing some data

out r(t d1o), out r(t d2o), .., inserting some data

rd r(t f1), rd r(t f2), .. firing other reactions

)).

where tuples of the kind t f bijects with firing-places f ∈ F , and tuples t d

(disjoint from tuples t f) bijects with data-places d ∈ D. We call RSTs of
the first kind c-RST (RST for communications), and those of the second kind
r-RST (RST for reactions). Moreover, we suppose that c-RST have different
tuples t fe, and similarly, that r-RST have different tuples t f.

4.2 Mapping flow-oriented specifications

To obtain a ReSpecT net from a flow-oriented specification, other than sets D
and F seen above, we should specify structures In,Out , Inh, which are easily
described in terms of rules −→RST . On the one hand, for each c-RST seen
above, we add to the ReSpecT net one rule which accounts for the effect of
primitive cp(t e), and that invokes the reaction corresponding to rd r(t fe).
Depending on the communication event we have the followings:

Communication event Phase ReSpecT net rule

rd r(t fe) pre (¬�)[�]f ′e −→RST �[fe]

rd r(t fe) post (¬�)[de]f
′
e −→RST de[fe]

in r(t fe) pre (¬�)[�]f ′e −→RST �[fe]

in r(t fe) post (¬�)[de]f
′
e −→RST �[fe]

out r(t fe) pre (¬�)[�]f ′e −→RST de[fe]

13

Viroli & Omicini

On the other hand, for each of the r-RST above we add to the ReSpecT net
the rule:

(¬d1
n||d2

n||..)[f](d1
r||d2

r||..||d1
i ||d2

i ||..) −→RST (d1
r||d2

r||..||d1
o||d2

o||..)[g1||g2||..]

Due to the semantics of primitive no r (checking for absence), rd r (checking
for presence), in r (removing), and out r (inserting), one easily recognises
the correspondence between specification and net.

We are interested in simulating the computation resulting from the occur-
rence of a single event cp(t e), denoting by t d0 the tuples occurring in the
tuple centre at that time. As initial state for the tuple centre, we consider
the one obtained by including one copy of the tuple t f for each RST for
reactions: notice that such tuples are never removed nor added during com-
putation. Therefore we consider as initial marking of the ReSpecT net the
configuration 〈d0, fe〉, where tuples correspond to tokens in data-places, and
only one token occurs in the firing-place fe. The following result holds:

t d0
e−→R t d ⇔ 〈d0, fe〉 −→∗

RST 〈d,�〉

That is, any ReSpecT computation fired as the communication event e occurs
is mimicked by a corresponding completed evolution 〈d0, fe〉 −→∗

RST 〈d,�〉 of
the ReSpecT net, and vice versa.

Notice that this structuring of ReSpecT specifications amounts at making
them “more imperative” in a sense, stressing the difference between primi-
tives computing over data and primitives affecting flow control. This is why
we sometime refer to “invoking a RST” when a rd r(t f) is executed, as it
actually causes the reaction with head rd r(t f) to be created, and then wait
for execution. Whereas the structuring imposed to flow-oriented specifica-
tions might not be a good idiom for ReSpecT programming, it is useful to fill
the gap between the logic-based language ReSpecT and the control-oriented
formalism of ReSpecT nets and Petri nets. In fact, we show here that any
ReSpecT1t

g specification can be automatically turned into a flow-oriented Re-
SpecT specification – e.g. by a verifier – from which an equivalent Petri net
can then be derived.

4.3 Making a ReSpecT specification flow-oriented

To make a ground ReSpecT specification flow-oriented, we proceed in the
following steps: (i) translate c-RSTs, (ii) translate r-RSTs and their calls,
(iii) resolve head clashing in different r-RSTs, and (iv) reorder the body
of r-RSTs. These four steps are described in detail in the following.
For shortness, we name here specification tuples re(head,body) instead of
reaction(head,body).

14

Viroli & Omicini

4.3.1 Translating c-RSTs

Consider a general RST intercepting a communication primitive e (which is
of the kind cp(t)), and then executing a sequence of goals. This is translated
into two RSTs: the former is a r-RST used to execute that sequence of goals,
the latter is a c-RST that intercepts e and invokes the former. In the case
where more RSTs exist that intercept e, only one c-RST has to be generated,
which should actually invoke all the r-RSTs created. Formally:

re(e, (ĝ)). 7→ re(e, (rd r(t f1e), .., rd r(t fne))).
.. re(rd r(t f1e), (ĝ)).
re(e, (ĝn)). ..

re(rd r(t fne), (ĝn)).

where t f1e, .., t fne are new (and different) tuples. By this initial step, all c-
RSTs have been created, and only r-RSTs have then to be considered from
here on.

4.3.2 Translating r-RSTs

As a second step we deal with interception of reaction primitives. First, the
head of each r-RST is translated into the form rd r(t f), and any invocation
to it is correspondingly accommodated. Formally:

re(rp(t d), (ĝ)). 7→ re(rd r(t f
rp
d), (ĝ)).

re(p(t), (ĝ; rp(t d); ĝ′)). 7→ re(p(t), (ĝ; rp(t d); rd r(t f
rp
d); ĝ′)).

4.3.3 Resolving head clashing

In the translation executed so far, it may still happen that two r-RSTs have
the same head. To prevent this, we rename clashing heads and accommo-
date invocations so that all the matching r-RSTs are concurrently invoked.
Formally:

re(rd r(t f
rp
d), (ĝ)). 7→ re(rd r(t f

rp
d,1), (ĝ)).

.. ..
re(rd r(t f

rp
d), (ĝn)). re(rd r(t f

rp
d,n), (ĝn)).

re(.., (ĝ; rd r(t f
rp
d); ĝ′)). 7→ re(.., (ĝ; rd r(t f

rp
d,1); ..; rd r(t f

rp
d,n); ĝ

′)).

4.3.4 Reordering bodies

Bodies of r-RSTs are now formed by reactive primitives applied to tuples t d,
along with goals of the kind rd r(t f). In order to obtain a sequence of
goals adhering to the final structure of r-RSTs, a local translation is to be
performed.

15

Viroli & Omicini

first \ second no r rd r in r out r

no r no r fail fail unchanged

rd r fail rd r in r unchanged

in r unchanged unchanged unchanged rd r

out r fail out r drop unchanged

Fig. 6. Local translation of reaction bodies

If for no tuple t there are different primitives working on it, then primitives
never interfere with each other, hence suffices it to reorder goals so that their
primitives follow the order no r, rd r, in r, out r.

In the opposite case, any subsequence of operations working on the same
tuples have to be ordered first, and then all the subsequences can be simply
merged – without risk of semantic interference. For instance, from the body

out r(t d1), rd r(t d2), out r(t d1), in r(t d2)

the two subsequences out r(t d1), out r(t d1) and rd r(t d2), in r(t d2) can
be extracted: the former is correctly ordered, the second is equivalent to
the single primitive in r(t d2). Hence, the whole body can be rewritten by
merging the two obtaining:

in r(t d2), out r(t d1), out r(t d1)

In particular, to order one subsequence formed by reaction primitives over the
same tuple t, one should take any subsequent couple of goals in it, translate
such a couple as depicted in Figure 6, and iterate this process until reaching
a fixpoint.

Rows range over the first element of the couple, and columns over the
second. Cells content is as follows: fail refers to couples that surely make the
reaction fail, hence the whole body can be simply left void; unchanged means
that the couple is to be left as it is; drop that the couple is to be dropped
from the body; rp for the single reaction primitive rp should substitute the
couple. It is easy to recognise that any change to a couple never alter the
semantics of the whole body.

The couple in r(t),no r(t) is the only unchanged one that is out of order
according to the flow-oriented structuring. This implies that by applying the
translation of couples until reaching the fixpoint we obtain sequences which
either satisfy the r-RST ordering or begin with a structure of the kind below:

in r(t), in r(t), .., in r(t), no r(t)

The occurrence of one such sequence amounts to test whether exactly n copies
of t reside in the space – where n is the number of in r(t) operations.

16

Viroli & Omicini

To the best of our knowledge, no extension of Petri nets studied so far deals
with this case: e.g. Petri nets with weighted inhibitor arcs, allows for testing
whether at most n tuples occur, and Contextual Nets [15] whether at least n
tuples occur – which are significantly different behaviours. Therefore, we opt
for leaving this case out of our analysis methodology – studying properties of
these kinds of net is interesting and could be subject of our future research.

A specification is called one-testing if this case never happens, so that it
can be turned into a flow-oriented specification allowing for an encoding into
a Petri net with inhibitory arcs.

5 On the Analysis of ReSpecT nets

The methodology studied in this paper makes it possible to automatically de-
rive a Petri net with inhibitor arcs modelling computations of a given ReSpecT
specification. The encoding is also rather direct: the occurrence of tuples and
pending reactions is modelled by tokens in specific places, and success/failure
of executions of RSTs by specific transitions. This means that all the exiting
tools for Petri nets (with inhibitor arcs) can be directly exploited to verify
properties – such as safety and liveness – of ReSpecT specifications [14,5]. A
particularly relevant safety property in the context of coordination is covering
[23], stating that a given sub-marking will never be reached, which translates
into the fact that a given (unsafe) configuration of tuples will never occur in
the tuple centre.

The presence of inhibitor arcs makes the formalism of Petri nets Turing-
complete [3], thus most interesting properties – including covering – become
undecidable: the only viable approach in this case is to model check a finite
portion of the system. This problem can be seen in connection with the
framework of well-structured transitions systems [12]: inhibitor arcs make
the Petri nets formalism loose its well-structure – in a sense, its monotonic
behaviour with respect to operational semantics and inclusion of markings.
As common in these situations, sufficient conditions for decidability are still
worth investigating [23,3,2]. In particular, the ReSpecT programming practice
[8] shows that a number of interesting and useful specifications do conserve an
intrinsic well-structure, and might then in principle be analysed by a formal
tool for effectively proving properties of interest.

Hence, in this section we provide some results concerning elimination of
inhibitor arcs in ReSpecT nets – similarly in aim to [3,4] – which may be the
basis for a full-featured analysis methodology for ReSpecT specifications.

5.1 Weakening the net

We first assume that the ReSpecT specification makes no use of primitive
no r(t). This means that relation Inh is empty and, according to the map-
ping in Figure 2, no transition 〈f,×, d〉 occurs in the net and no transition

17

Viroli & Omicini

〈f,
√
〉 has inhibitor arcs. The remaining inhibitor arcs are then of the kind

{(f,¬, d) 7→ d}, such as e.g. the inhibitor arc from places di and dr in Figure 3.
Their role is to make a reaction fail when it includes goals rd r(t) or in r(t)

and the tuple t is absent.

To tackle the intricacies introduced in the analysis of such inhibitor arcs,
in this section we describe two techniques to simplify the Petri net so that
such arcs are dropped without altering the safety properties of the modelled
system.

A first, simple approach consists in the trivial withdrawal of all inhibitor
arcs to transitions (f,¬, d): after that the behaviour of that transitions is
to simply remove tokens from f as they occur – see Figure 3. The net we
obtain describes the semantics of the original ReSpecT specification under the
assumption that as a reaction is pending and waiting for one or more tuples
to occur, it can simply disappear – as it would have failed, or as it were never
fired at all. That is, a reaction including a rd r(t) or in r(t) could fail even
though t is present.

It is easy to recognise that the net obtained by this approach, which has
same set of places and transitions, allows for a strictly greater set of (com-
pleted) computations – those featuring such new dummy failings. In partic-
ular, denoted by −→A the operational semantics of the original net and by
−→B the one without inhibitor arcs, we have:

〈d, f〉 −→∗
A 〈d ′,�〉 ⇒ 〈d, f〉 −→∗

B 〈d ′,�〉

This result is not generally entailed when trivially removing inhibitor arcs
from Petri nets [4,3], but holds here for inhibitor arcs are used to simply drop
tokens from firing-places, that is, to prevent some reactions to be executed.
The importance of this result lies in the fact that if system B is proved safe –
e.g. it does not cover an unsafe marking – then system A is safe as well. Still,
one can argue that B might include a significantly greater set of behaviours,
so that many safety properties of A are never reflected in B.

A more refined approximation to system A than system B can be ob-
tained by dropping from system A all transitions 〈f,¬, d〉 along with their
inhibitor and incoming arcs. The resulting system, denoted by C, corresponds
to the idea that pending reactions never fail, but simply reside in the system
until they can successfully execute or until deadlock. In other words, this
approximation amounts to interpret the ReSpecT net as a simple Petri net,
considering firing-places as standard Petri net places. The system C obtained
has a smaller set of completed computations than A – hence, in a sense, it
does not lead to many behaviours. Still, C and A have precisely the same set
of (possibly) uncompleted computations over tokens in data-places d:

〈d, f〉 −→∗
A 〈d ′, f

′〉 ⇔ 〈d, f〉 −→∗
C 〈d ′, f

′′〉

That is, starting from the same marking they are able to reach the same

18

Viroli & Omicini

markings d ′ over data-places. As an example consider the ReSpecT net rules:

(¬�)[f1]� −→RST d1[�]

(¬�)[f2]d1 −→RST d2[�]

Starting from marking 〈�, f1||f2〉, system A can feature the two completed
computations

〈�, f1||f2〉 −→A 〈�, f1〉 −→A 〈d1,�〉

〈�, f1||f2〉 −→A 〈d1, f2〉 −→A 〈d2,�〉
while system C only features the latter:

〈�, f1||f2〉 −→C 〈d1, f2〉 −→C 〈d2,�〉

However both systems can reach the same set of two markings {d1} and {d2}.
Hence, analogously to the former approach, covering-based safety of system C
– which can be proved by an automatic tool – entails safety of A. Still, this
second approach provides a rather refined approximation, and is then a better
candidate for an analysis methodology for ReSpecT specifications.

5.2 Accelerations

Inhibitor arcs not only model failures, but are also used to model the semantics
of primitive no r(t). In a number of interesting cases, ReSpecT specifications
do use this primitive, which is in fact necessary to make the ground version
of ReSpecT language Turing-complete.

Often, primitive no r(t) is used to check whether a transformation process
over set of tuples is over, though the overall process is still a monotonic one
preserving the well-structure. A simple example is the case where all the
tuples t a occurring in the tuple space have to be substituted by tuples t b.
This interaction pattern resembles broadcast protocols [10], which are shown
to retain the well-structure property [12]. Such a tuple transformation can
e.g. be realised by the flow-oriented ReSpecT specification:

reaction(rd r(t fgo), out(t d), rd r(t fnext), rd r(t flast)).

reaction(rd r(t fnext), (in r(t a), out r(t b), rd r(t fnext), rd r(t flast))).

reaction(rd r(t flast), (no r(t a), in r(t d), rd r(t fout))).

As the process is started by firing-tuple t fgo, tuple t d is inserted and the
two reactions rd r(t fnext) and rd r(t flast) are fired: the former substitutes
one occurrence of t a with t b and proceeds recursively, the latter (i) checks
the absence of t a, (ii) fires the escaping tuple t fout, and (iii) drops t d

to avoid multiple firing of t fout. These kinds of idiom are quite common in
ReSpecT programming, and are the main exploitation of primitive no r(t).

19

Viroli & Omicini

db

fgo

da

fout

Fig. 7. Petri net with transfer arcs

In the context of analysis of programs a technique called acceleration has
been introduced to simplify the treatment of these situations [21,11,1]. Trans-
lated to our setting, it amounts to substitute the Petri net for the above spec-
ification to the very simple Petri net of Figure 7, featuring so-called transfer
arcs. Transfer arcs are used to make a transition affect all the tokens in a
place. In this Petri net, when a token appears in fgo the transition can occur,
which causes the token to be moved to place fout as well as all tokens in da to
be transferred to db.

Petri nets with transfer arcs and without inhibitor arcs are well-structured
systems, hence for instance covering is decidable [12]. Therefore, it would
be interesting to study analysis methodologies identifying fragments of Re-
SpecT specifications which allow for accelerations, resulting in the removal of
some/all inhibitor arc.

6 Example

In this section we provide details about a simple application of our method-
ology, based on the philosophers example reported in Section 3.2. As a first
step, we consider the ground version of the program, sticking to the case where
3 philosophers coordinate for the acquisition of chops denoted by tuples c1,
c2, and c3, through requests specifying tuples c12, c23, and c31 – modelling
tuples of the kind chop(C) and chops(C1,C2) respectively, as shown in the
code of Figure 5. Such requests are reified in the tuple centre through tuples
r12, r23, and r31 – modelling tuples request(C1,C2).

By applying the mapping described in this paper, we obtain the ReSpecT
net described by the rules below – each rule should actually appear in the
three versions concerning the three resources, the one for the first resource is

20

Viroli & Omicini

only reported here for brevity.

(¬�)[f ′o12]� −→RST c12[fo12] c-RST for out(c12)

(¬�)[f ′i12pre]� −→RST �[fi12pre] c-RST for in(c12):pre

(¬�)[f ′i12post]c12 −→RST �[fi12post] c-RST for in(c12):post

(¬�)[fo12]c12 −→RST c1||c2[f l
c1||f r

c1||f l
c2||f r

c2] 1st r-RST

(¬�)[fi12pre]� −→RST r12[fr12] 2nd r-RST

(¬�)[fr12]c1||c2 −→RST c12[�] 3rd r-RST

(¬�)[fi12post]r12 −→RST �[�] 4th r-RST

(¬�)[f l
c1]r12||c1||c3 −→RST r12||c31[�] 5th r-RST

(¬�)[f r
c1]r12||c1||c2 −→RST r12||c12[�] 6th r-RST

By applying the mapping described in Figure 2, one can automatically ob-
tain a Petri net describing the behaviour of the specification. Moreover, as
the primitive no r is never exploited in the specification, no inhibitory arcs
appear in success transitions. Therefore the net can be translated into a sim-
plified Petri net without inhibitory arcs, over which control state reachability
properties can be studied.

As a possible tool one can rely on MSR(C) described in [7], where the
ReSpecT net can be encoded straightforwardly in the model:

go12 −→ c12 | fo12

gi12pre −→ fi12pre

gi12post | c12 −→ gi12post

fo12 | c12 −→ c1 | c2 | flc1 | frc1 | flc2 | frc2

f12pre −→ r12 | fr12

fr12c1 | c2 −→ c12

fi12post | r12 −→ 0

flc1 | r12 | c1 | c3 −→ r12 | c31

frc1 | r12 | c1 | c2 −→ r12 | c12

By using for instance the prototype system described in [6] one can verify
whether unsafe configurations are never reached from a given initial state
[23]. For instance, consider the initial state go12 | c3, meaning that a client is
releasing locks 1 and 2. Then, it can be proved that the following unsafe con-
figurations are never reached: (i) c1 | c1, two copies of a single lock are never

21

Viroli & Omicini

concurrently created; (ii) c12 | c12, two copies of an atomic lock are never
concurrently created; (iii) c1 | c12, two copies of a lock are never concurrently
created; and (iv) r12, no new request is created.

7 Conclusions and Open Issues

Generally speaking, this article is meant to provide a meaningful example
of how formal techniques can be applied to advanced models and infrastruc-
tures for the coordination of complex software systems, finding out a suitable
compromise between the needs for a high expressiveness of the coordination
abstractions, and the limitations imposed by formal frameworks to make rel-
evant properties verifiable. Along this line, ReSpecT nets were introduced to
suitably bridge between the ReSpecT logic-based language for the specifica-
tion of the behaviour of tuple centres, and Petri nets. According to the first
relevant results presented here, ReSpecT nets provide the conceptual and tech-
nical grounding of a methodology for the analysis of ReSpecT tuple centre’s
behaviour specifications.

The main limit of the approach presented in this paper is the lack of treat-
ment for logic variables and unification. On the one hand, this a typical
problem due to the intrinsic dichotomy between operational and declarative,
logic-based formal frameworks. On the other hand, a possible solution to
this problem is to exploit techniques of groundisation of general, non-ground
ReSpecT specifications: under simple hypotheses like a finite alphabet and
finite data structures (such as non-recursive functors), the number of possi-
ble ground versions of any general ReSpecT specification is finite, and the
automatic translation techniques introduced in this paper become applicable
again. Future work is likely to follow such research line soon.

References

[1] Bardin, S., A. Finkel, J. Leroux and L. Petrucci, FAST: Fast Acceleration of
Symbolic Transition systems, in: Computer Aided Verification, LNCS 2725,
Springer-Verlag, 2003 pp. 118–121.

[2] Bozzano, M. and G. Delzanno, Beyond parameterized verification, in: Tools
and Algorithms for the Construction and Analysis of Systems, LNCS 2280,
Springer-Verlag, 2002 pp. 221–235.

[3] Busi, N., Analysis issues in Petri nets with inhibitor arcs, Theoretical Computer
Science 275 (2002), pp. 127–177.

[4] Busi, N., R. Gorrieri and G. Zavattaro, On the expressiveness of Linda
coordination primitives, Information and Computation 156 (2000), pp. 90–121.

[5] Petri nets tools and software (2003).
URL http://www.daimi.au.dk/PetriNets/tools/

22

Viroli & Omicini

[6] Delzanno, G., A constraint-based framework for the automated verification of
infinite-state concurrent systems (2002), prototype.
URL http://www.disi.unige.it/person/DelzannoG/MSR/

[7] Delzanno, G., An overview of MSR(C): A CLP-based framework for the
symbolic verification of parameterized concurrent systems, Electronic Notes in
Theoretical Computer Science 76 (2002).

[8] Denti, E., A. Natali and A. Omicini, On the expressive power of a language
for programming coordination media, in: 1998 ACM Symposium on Applied
Computing (SAC’98), Atlanta, GA, USA, 1998, pp. 169–177.

[9] Dijkstra, E., “Co-operating Sequential Processes,” Academic Press, London,
1965.

[10] Esparza, J., A. Finkel and R. Mayr, On the verification of broadcast protocols,
in: 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999)
(1999), pp. 352–359.

[11] Finkel, A. and J. Leroux, How to compose Presburger-accelerations:
Applications to broadcast protocols, in: Foundations of Software Technology and
Theoretical Computer Science, LNCS 2556, Springer-Verlag, 2002 pp. 145–156.

[12] Finkel, A. and P. Schnoebelen, Well-structured transition systems everywhere!,
Theoretical Computer Science 256 (2001), pp. 63–92.

[13] Gelernter, D., Generative communication in Linda, ACM Transactions on
Programming Languages and Systems 7 (1985), pp. 80–112.

[14] Karp, R. and R. Miller, Parallel programming schemata, Journal on Computer
and System Sciences 3 (1969), pp. 147–195.

[15] Montanari, U. and F. Rossi, Contextual nets, Acta Informatica 32 (1995),
pp. 545–596.

[16] Omicini, A. and E. Denti, Formal ReSpecT, Electronic Notes in Theoretical
Computer Science 48 (2001), pp. 179–196.

[17] Omicini, A. and E. Denti, From tuple spaces to tuple centres, Science of
Computer Programming 41 (2001), pp. 277–294.

[18] Omicini, A. and F. Zambonelli, Coordination for Internet application
development, Autonomous Agents and Multi-Agent Systems 2 (1999), pp. 251–
269.

[19] Petri, C. A., “Kommunikation mit Automaten,” Ph.D. thesis, Institut für
Instrumentelle Mathematik, University of Bonn, Bonn, Germany (1962).

[20] Plotkin, G., A structural approach to operational semantics, Technical Report
DAIMI FN-19, Department of Computer Science, Aarhus University, Denmark
(1991).

23

Viroli & Omicini

[21] Pnueli, A. and E. Shahar, Liveness and acceleration in parameterized
verification, in: Computer Aided Verification, LNCS 1855, Springer-Verlag,
2000 pp. 328–343.

[22] Ricci, A., A. Omicini and E. Denti, Virtual enterprises and workflow
management as agent coordination issues, International Journal of Cooperative
Information Systems 11 (2002), pp. 355–379.

[23] Viroli, M., Verifying properties of coordination by well-structured transition
systems, Electronic Notes in Theoretical Computer Science 97 (2004), pp. 67–
96.

[24] Viroli, M. and A. Omicini, Coordination as a service: Ontological and formal
foundation, Electronic Notes in Theoretical Computer Science 68 (2003).

[25] Wegner, P., Why interaction is more powerful than computing, Communications
of the ACM 40 (1997), pp. 80–91.

24

