CE: The Vision for the Future Generation in Research and Applications, R. Jardim-Gongalves et al. (eds)
© 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 622 X

Task-oriented engineering of coordinated software systems

Enrico Denti*, Andrea Omicini, Alessandro Ricci
Dept. of Electronics, Computer Science and Systems (DEIS), University of Bologna, Italy

ABSTRACT: In the context of Internet-based applications where heterogeneous, legacy entities should inte-
grate and cooperate, the efficiency of the software production process is a key problem: yet, the classical devel-
opment cycle and methodologies fall short, calling for ad hoc abstractions, methodologies and tools.

In this work, we claim that a task-oriented approach can effectively support the design of highly-interactive
applications, enabling even small development teams to afford complex software projects. By explicitly con-
ceiving system engineering in terms of concurrent tasks plus task coordination, this approach promotes the
application of innovative management techniques to improve the overall product development process, such as
concurrent software engineering.

Coordination models and infrastructures for agent-based systems will then be discussed as suitable means to
deliver the full potential of this approach, sketching their support to concurrent software engineering techniques

and to the development of a collaborative environment for concurrent engineering.

1 SOFTWARE DESIGN AND DEVELOPMENT
IN THE INTERNET ERA

Today, the limited amount of human resources often
makes it necessary to charge a project upon few people,
causing the traditional roles to overlap: the same per-
sons can be at the same time designers, developers,
and testers of their own creations. Also, the same
designer can be asked to develop and implement dif-
ferent parts of the same project at the same time: so,
following a clean development process (e.g., based on
explicit contracts) may just be a dream.

Moreover, in today’s Internet-based world even the
smallest organisation cannot help but dealing with new
kinds of applications, causing a sort of “silent revolu-
tion” to software developers, who are asked to operate
on highly interactive, inherently-distributed applica-
tions, where their experience and known methodolo-
gies may fall short.

This is why, apart from new languages and evolving
standards, properly handling interaction is probably
among the most critical issues. In legacy applications,
interaction typically assumes well-known, predictable,
forms: user interfaces, peripheral I/O, inter-component
messages, signals, etc. There, applications are typically

* Corresponding author. Viale Risorgimento 2, 1-40136
Bologna, Italy. Voice +39 051 2093015, Fax +39 051
2093073.

designed according to the classical input/compute/out-
put scheme, which is focused on computation: inter-
action is assumed to occur in pre-defined, selected
points — both in terms of specific code points and of
time sequence with respect to computation. Switching
to a world of dynamically interacting entities (compo-
nents, objects, agents) spread over the Internet implies
several changes to many key issues of system design.
Here are some of the questions to be answered:

e How should a single, interactive component be
designed? In particular, how should its interaction
protocol(s) be defined and tested?

e How can we ensure that the whole system behaves
as desired? In particular, how can we get the vari-
ous interaction protocols to cooperate smoothly
towards the application goals?

o How can we enforce the rules coordinating the var-
ious components so as to govern the overall system
behaviour and achieve the desired global system
properties?

e How should we deal with the openness and dynam-
ics of Internet applications? In particular, how can
incremental system design and development be
enabled and supported, so as to follow the require-
ment evolution over time?

While the current software development method-
ologies do offer an effective support to the design of
components and to their interoperability via middle-
ware services, just defining and implementing a set of

199



computational components (on the one side) and of
interaction protocols (on the other side) — whatever
the mechanisms — is not enough: we need abstractions,
models, design methodologies, development technolo-
gies, support tools and deployment infrastructures
enabling any software development team — including
small ones — to afford the design of interactive appli-
cations in the “globally distributed computing sys-
tem” that the Internet is becoming to the world scale.

Moreover, the choice of a given software engineer-
ing methodology, and its related models and technol-
ogy, can have a deep impact on the kind of techniques
adopted to manage the software development process.
For the systems considered here, the inadequacy of
the classic water-fall approach and of object-oriented
approaches leads to consider Concurrent Software
Engineering (CSE) as an appropriate management tech-
nique to overcome the intrinsic limitations of the classi-
cal development approaches.

CSE aims to reduce time-to-market and improve
productivity in product development through simulta-
neous performance of activities and processing of
information (Blackburn, Scudder, and Van Wassenhove
2000). Activity concurrency refers to the tasks that
are performed simultaneously by different groups, such
as software design, coding, and testing; information
concurrency refers to the flow of shared information
that supports a team approach to development. So, a
key issues of CSE is the coordination of concurrency
across all the stages of a project, and even across pro-
jects: state-of-the-art approaches in CSE account for
providing management frameworks to coordinate the
application of concurrency principles throughout the
software development process (Blackburn, Scudder,
and Van Wassenhove 2000).

Summing up, we would need methodologies, mod-
els and technologies that are able both to support the
engineering of applications as globally-distributed
computing systems, and to promote the adoption of
concurrent software engineering management tech-
niques. For this to be possible, we claim that the adopted
methodology/model/technology should be based on
abstractions providing a high uncoupling degree, so
as to promote a software development approach where
design, development and testing can be performed as
independently from each other as possible, enabling
the concurrent application of all the engineering
stages. This includes the fundamental ability to deal
with interaction as a first-class issue, so that the engi-
neering stages can be concurrently applied to the sys-
tem glue, too.

2 TASK-ORIENTED SOFTWARE DESIGN

When building multi-component, distributed systems,
a fundamental requirement is to separate control

among the system components. From the software
engineering viewpoint, this requirement cannot be
fulfilled by just acting at the mechanism level: suitable
abstraction are needed to model the control flows and
provide a natural way to decouple control.

Thinking in terms of fasks to be pursued, instead of
control flows to be achieved, provides precisely the
above property, since tasks can be seen as the higher-
level abstractions that drive the development of control
flows, intended as lower-level mechanisms. Moreover,
since each component charged of a task is an inde-
pendent /ocus of control, identifying the tasks that are
relevant for a given goal implies separating the control
between the corresponding components. This approach
reduces the degree of coupling between components,
for the control logic for achieving a task is embedded
within a single entity: so, each agents interacts with
the others only as far as its own task needs to interact
with the other tasks.

Since what needs to be coordinated is the mutual
dependencies among tasks, the above view naturally
reduces the need to coordinate control between com-
ponents; by doing so, it also inherently decouples
software designers from each other. Therefore, a
software engineering methodology providing encap-
sulation of control, so as to identify independent and
autonomous components, promotes the concurrent
application of the different engineering stages, as
required by CSE, task by task.

From the viewpoint of teamwork organisation, the
task metaphor allows a software design team to
design an interactive system by first identifying the
required tasks, and then introducing as many compo-
nents as needed to ensure that these tasks are carried
out. Interestingly, this is well adequate to the cases
where the same person is in charge of designing and
implementing several components: thinking of tasks
instead of control flows (such as which object meth-
ods to call, which signals to send, etc.) not only helps
reducing the design and development complexity, but
also provides the design flexibility that is fundamen-
tal for an effective project management (Huhns
2000). If, for instance, a new member joins the team,
the task metaphor provides the adequate granularity
to re-arrange the development process quickly: a new
member can be given one or more tasks, while the
tasks of a leaving member can be re-assigned to the
other people in the team — all in much a simpler way
than sharing and understanding other people’s code
libraries, objects, etc. Once again, this situation pro-
motes CSE approaches, too, since the same task can
be subject of the concurrent and coordinated work of
multiple designers, developers and testers.

However, defining and assigning the single tasks
to components is only a part of the job: the key issue
is how to design the “glue” so that they actually behave
as an ensemble. This is where engineering issues come

200



out. If tasks and components were the only relevant
entities, the system would be nothing more than the
mere sum of its parts — a multitude of individuals —and
interaction, merely rhyming communication, would
be just the result of the random interleaving of the
observable component behaviour.

But in complex systems, some tasks inevitably need
to access distributed and shared resources, involving
several components: that is, they naturally endorse a
social nature. Such social tasks cannot, by definition,
be assigned to the responsibility of an individual
component: instead, their accomplishment requires a
novel approach to system analysis, design, and devel-
opment, that recognises interaction as a fundamental
dimension, to be accounted for since the earliest
design phases. Thus, suitably engineering interaction
becomes a crucial ability to be able to engineer the
collective system behaviour. This is perhaps why the
design of complex, interactive applications has been
considered, sometimes, out-of-reach for small design
teams, while this is only the superficial effect of
neglecting the true role of the interaction dimension:
governing the social tasks & rules.

As a result, our task-oriented approach aims to
support CSE not only from the viewpoint of the indi-
vidual tasks, but also from the viewpoint of the glue —
that is, of the social tasks explicitly identified and
encapsulated inside such a glue —, making it easier to
concurrently apply the design, development and testing
activities on them.

3 COORDINATION AS THE SOCIAL
DIMENSION OF INTERACTION

The above approach, which concerns all the engineer-
ing stages (though in this work we focus on design),
accounts for explicitly dealing with individual tasks
on the one side, and their coordination as a separate
social task on the other side. What we aim to is adopt-
ing the same conceptual framework at two different
levels: the system engineering level and the software
development process management level. At the system
engineering level, tasks are the activities that charac-
terise the system being engineered, while at the other
level the same tasks are software engineering activities,
which can act concurrently on the same (individual or
social) task.

3.1 Coordination for system engineering

From the first viewpoint, in a context where engineer-
ing the glue is at least as relevant as engineering the
single agents, interaction cannot be just “added on”
an already-designed system: the social behaviour
must become the subject of a separate, ad-hoc design
phase, which is totally independent from the single

201

agents’ design (Ciancarini, Omicini, and Zambonelli
2000). The resulting design process cannot be focused
on developing individual agents and making them
interact “somehow”, but must lead to analyse the sys-
tem so as to (7) identify the individual tasks to be carried
out by single agents and the social tasks to be achieved
by the mutual agent interaction, and (ii) exploit the
first ones to drive the development of the single
agents, and the second ones to drive the design and
development of the agent interaction space — that is,
agent interaction protocols and rules.

Managing interaction is precisely the purpose of
coordination (Gelernter and Carriero 1992), which is
orthogonal to the computation dimension: while com-
putation focuses on algorithmic aspects (computabil-
ity, correctness, efficiency, ...), coordination models
and languages are aimed to shape the interaction space.
In particular, while computation languages express
the inner algorithm of an agent, coordination languages
express the agent’s observable behaviour — what is
needed to design its interaction protocol.

Unfortunately, the separation between computa-
tion and coordination is not usually turned into a new
approach to system design and engineering, as it
should, thus failing to turn the conceptual separation
into an effective separation at the analysis, design,
and development levels: so, the potential benefits of
orthogonality often remain unexploited. Peer-to-peer
interaction, for instance, requires that all interacting
entities voluntarily agree upon, and respect, some pre-
defined interaction protocols: if an ill-behaved agent
does not respect the agreement, the resulting interac-
tion can easily go out of control, because interaction
can not be prescriptive.

Moreover, peer-to-peer interaction implies that
each agent handles its own interaction, thus charging
the agent not only of its own task, as it should, but
also of some “coordination burden”. So, incremental
changes over time, possibly to face new requirements
or apply bug corrections, are not guaranteed to be
restricted to some known boundaries, but may poten-
tially concern many/all agents and several interaction
protocols. In particular, changing a coordination law
has a potential impact on all involved agents, making
the change (unnecessarily) costly and complex.

Mediated interaction models, instead, assume that
agents never interact directly, but via some kind of
coordination medium — a blackboard, a message
repository, a tuple space, or a special middle agent
acting as a “coordinator”, charged of the tasks that do
not actually belong to any specific agent. In particu-
lar, mediated interaction based on explicit coordina-
tion media enables — at least in principle — interaction
protocols to be engineered separately from each
other, since no agent is ever involved in other agents’s
protocols. So, each protocol can evolve — or even be
changed at all — with no impact on the others and,



therefore, on the corresponding agents. Protocol design
and development can then proceed in parallel (differ-
ent agents and interaction protocols assigned to dif-
ferent people in the development team) or in cascade
(different agents and interaction protocols built by the
same person, one after the other), naturally fitting
both large and small groups, while the bounded impact
of evolutionary changes helps to keep the maintenance
cost low.

Moreover, since all interaction occurs via the coor-
dination media (whatever they are), mediated interac-
tion can be prescriptive, since the coordination medium
can be designed so as to enforce the desired interaction
rules, preventing agents from violating the agreed
protocols and therefore improving the system reliability
and robustness. The engineering process, too, can
proceed seamlessly from the the analysis and design
stage, where the coordination medium is just a design
abstraction, to the development and deployment stage,
where it becomes a run-time abstraction.

As an aside, mediated interaction also brings some
notable agent uncoupling properties — namely, space
uncoupling (agents not necessarily need to be in the
same place in order to communicate), name uncou-
pling (agents not necessarily need to know each other
in order to communicate), and time uncoupling (agents
may not even need to coexist in time in order to be
able to interact) — which are all welcome in an open,
unpredictable environment.

As a result, inside a mediated interaction frame-
work, while the individual tasks are naturally mapped
onto single agents, the social tasks can be mapped onto
the coordination media, provided that these embed
enough elaboration capabilities (Omicini and Denti
2001). Coordination rules are then no longer spread
among agents, but stored in the place where they con-
ceptually belong. From the software development
process, this approach strongly not only reduces the
design and development effort, as well as the devel-
opment time, of an interactive system: it also provides
engineers with a precise intervention point to control
and tune the system behaviour. Moreover, the single
agents and their interaction protocols can now be
designed, developed and tested singly, separately
from the design, development and test of the social
tasks, enforcing design and development locality on a
task basis.

3.2 Coordination for concurrent engineering

Most of the above-discussed properties for coordina-
tion issues apply to software engineering, too, as well
as to the management of the software development
process. In fact, conceptual frameworks based on
mediated interaction can be devised in theories about
the management of cooperative work such as Activity
Theory and Distributed Cognition (Nardi 1996; Ricci,

Omicini, and Denti 2002a) — mainly deployed in
CSCW contexts — and about coordination in general
(Malone and Crowstone 1994). In particular, according
to Activity Theory, the social activities in any complex-
enough cooperative context are always mediated by
shared artifacts, whose role is fundamental to achieve
the objectives of the system (society) as a whole.
Therefore, the engineering of a (social) system must
account for the explicit design, development and test-
ing/maintenance of these coordination artifacts: the
previously-discussed coordination media are precisely
the coordination artifacts for agent-based societies.

So, our challenge is to apply this conceptual frame-
work to the CSE context, and more generally to the
context of Concurrent Engineering (CE) (Reddy,
Sriniva, Jagannathan, and Karinthi 1993), which is
heavily characterised by the need of coordinating sev-
eral concurrent heterogeneous activities. Of course,
this would require the engineering of suitable coordi-
nation artifacts supporting the social activities of
Concurrent Engineering.

Since a well-known software engineering principle
suggests the use of methodologies, models and tech-
nologies whose abstractions are as close as possible to
the application domain objects in order to minimise the
conceptual gaps, the engineering of effective coordina-
tion artifacts supporting CSE and CE environment could
benefit from the application of methodologies, models
and technologies that are explicitly based on the
notions of agent and coordination medium — which is
as to say, individual tasks and their coordination.

3.3 Properties of the coordination artifacts

In the context of software engineering, which kind of
coordination media are best suited to dynamic, open
environments? Coordination media designed and
developed as middle agents, or as the coordination
artifacts that characterise the blackboard-based (tuple
space-based) approach?

Assuming the coordination medium to be an agent
would bring the advantage of a conceptual and practi-
cal uniformity, since all the system entities would
share the same nature. But would that really be a
benefit? Since an agent is intrinsically pro-active and
autonomous, the middle-agent approach brings maxi-
mum generality, but also maximum capabilities —
indeed, an agent could in principle perform any
action. This would call for general, possibly complex
tools to manage the wider space of possible agent
actions, which also means longer training times for
developers, making the approach probably not very
adequate to small groups, who cannot afford increas-
ing their work just for the purpose of adopting a big,
full-featured (and probably hypertrophic) tool. In one
word, this approach could simply be too much for
coordination purposes. Not so much paradoxically, a

202



less general (and less powerful) coordination medium —
something providing not the full power, but the required
power — would likely be more adequate to these pur-
poses. However, a typical blackboard or Linda-like
tuple space, which might be a good candidate, does not
provide the essential feature of letting designers express
and embed the desired coordination laws, since inter-
action always occurs in a fixed, hard-coded way.

So, the coordination medium that is actually needed
should be less general, and therefore thinner, than a pro-
active agent, so as to be more manageable; yet, it should
provide enough expressive power to let designers
embed any desired social law in terms of suitable
coordination laws. For such purposes, pro-activity is
not necessary: what is needed is re-activity, embedded
inside a minimal, specialised entity requiring just
simple, easy-to-use (yet expressive) support tools,
which can be easily learnt and used by even small
development teams.

The last step is to make such coordination rules not
hard-coded somehow, but explicitly represented inside
that entity in some easy-to-handle form. By guaran-
teeing this property, the coordination medium becomes
also inspectable, bringing another fundamental engi-
neering property: the chance to incrementally refine/
specialise the system behaviour by suitably changing
(only) the rules that express the social tasks of inter-
est, without affecting the individual agents nor the
other social tasks — in the same way as any change to
an individual task naturally leads to modifying only
the corresponding agent.

4 DESIGNING UPON A COORDINATION
INFRASTRUCTURE

In order to discuss the benefits of a task-oriented
approach to application analysis, design, and devel-
opment, we will refer henceforth to coordination
infrastructures explicitly built around a mediated
coordination model — the fuple centre model (Omicini
and Denti 2001) — which can effectively support a
task-oriented design and development methodology.
The LuCe and TuCSoN coordination infrastructures are
both enabling technologies based on tuple centres:
where they differ is in the topological abstractions
adopted to map the network topology. Indeed, while
LuCe hides the physical location of coordination
media, providing for network transparency, TuCSoN is
network-aware, letting the physical network structure
be perceived and exploited at the agent level — as
appropriate to mobile agents'.

'For Further discussion on this difference, readers are
referred to (Omicini and Zambonelli 1999). LuCe and TuCSoN
are open source technologies, available at lia.deis.unibo.it/
research/

4.1 Tuple centres: model and tools

The tuple centre model is an instance of tuple-based
coordination models (Ciancarini, Omicini, and
Zambonelli 1999), characterised fundamentally by
generative communication — communication data that
survive communication acts (Gelernter 1985). As
stated above, the consequent agent uncoupling prop-
erty makes these models particularly suited for unpre-
dictable environments like the Internet, where coupled
interaction is hardly feasible.

Here, agents interact by writing, reading, and con-
suming tuples — ordered collections of heterogeneous
information chunks — to/from tuple centres by means
of simple communication operations (out, rd, in)
which access tuples associatively. These operations
allow agents to operate in a information-driven fash-
ion (Papadopoulos and Arbab 1998), based on the
availability of selected information represented in the
form of tuples in the shared communication space.

Inspired to Linda tuple spaces (Gelernter 1985)
with logic tuples, a tuple centre is perceived by agents
as a standard tuple space, but may behave differently,
thanks to the notion of behaviour specification. While
the behaviour a tuple space in response to communi-
cation events is fixed and pre-defined by the model,
the behaviour of a tuple centre can be tailored to the
application needs by defining a suitable set of specifi-
cation tuples, which define how a tuple centre should
react to incoming/outgoing communication events.
In particular, LuCe and TuCSoN adopt ReSpecT tuple
centres, where specification tuples are expressed in
the logic-based ReSpecT language (Omicini and Denti
2001). The effect of a communication primitive is
then no longer limited to adding, reading, or removing
a single tuple, but can be made as complex as desired,
decoupling the agent view of the tuple space from its
actual state, and relating them so as obtain a new
observable tuple centre behaviour that embeds (and
enforces) the required coordination laws. So, tuple
centres can be used to rule inter-agent communica-
tion towards the accomplishment of social tasks.
Adopting the conceptual framework of activity theory,
tuple centres can be framed as general purpose
customisable coordination artifacts, whose behaviour
can be dynamically specified and adapted to support
and automate the co-ordination stage among agents
using them ().

In order for tuple centres to be effectively
exploitable, however, suitable development tools,
specifically modelled after the tuple centre’s metaphor
and related abstractions, are needed, so that the
transition from the design phase to the development
and implementation phases can be smooth and
straightforward. Infrastructures based on tuple cen-
tres provide a complete set of support tools (Denti,
Omicini, and Ricci 2002): among these, the /nspector

203



enables developers to view, edit and control each
tuple centre from its three fundamental viewpoints —
the set of tuples, the set of pending queries waiting to
be served, and the set of behaviour specifications —
thus providing the abstraction levels of communication
in a data-oriented fashion, communication in a control-
oriented fashion, and coordination, respectively.
Further features include logging the evolution of
tuple and pending query sets, saving/restoring a (pos-
sibly filtered) view of the tuple set, as well as step-by-
step tracing the tuple centre virtual machine (Denti,
Omicini, and Ricci 2002).

4.2 The design process

The first step consists of analysing the system so as to
identify (i) the individual tasks to be carried out by
single agents, and (i) the social tasks to be achieved
by the mutual agent interaction. Individual tasks are
then used to drive the development of the single
agents, while social tasks drive the design of the agent
interaction protocols and coordination rules.

Thanks to the decoupling levels provided by tuple
centre coordination, the designer can freely define
each agent’s interaction protocol as best suited to the
agent’s specific task, regardless of the interaction pro-
tocols used by other agents and of the information
representation adopted in the tuple centre: it is up to
the coordination laws — defined separately in the
development process — to “bridge the gap” between the
different agent perceptions and required protocols.
On the other hand, the coordination rules can be
defined in an information-oriented fashion, too, inde-
pendently of the single agents’ working cycle, based
on which information should be produced and when.

In our experience, this feature simplifies both the
single agents’ development and the test phase of their
observable behaviour, since developers can exploit
the Inspector to mimic the effect of the missing agents
and of the designed (but still unimplemented) tuple
centre behaviour. The development of the coordination
rules can proceed in parallel, again using the Inspector
to mimic missing agents and test the behaviour spec-
ification. This approach is well suited to small devel-
opment teams, too, where the chance to separate the
development and test of the single agents, their inter-
action protocols, the coordination tasks, and knowledge
representation should be particularly appreciated. In
principle, even one single person could do the job,
splitting the project according to the above dimen-
sions and then “putting it all together” later in a natural
way — with the Inspector’s views over interaction pro-
viding support in the case that problems, wrong inter-
actions, or bugs occur. Developers and debuggers
geographically separated can use tools such as
Inspectors to develop and test concurrently coordina-
tion rules of the same running system, embedded in a

specific tuple centre or in the set of tuple centres
deployed by the distributed application.

5 CONCURRENT ENGINEERING
ENVIRONMENTS UPON A
COORDINATION INFRASTRUCTURE

Coordination models and infrastructures like TuCSoN
can be suitable for engineering collaborative environ-
ments supporting concurrent engineering, given their
natural support for the coordination of autonomous
activities. The ability of dynamically balancing the
coordination burden between agents and coordination
artifacts makes TuCSoN suitable for designing and devel-
oping environments where the traditional automatism
of workflow management systems (WfMSs) and the
flexibility of computer supported cooperative work
(CSCW) need to be dynamically balanced (Ricci,
Omicini, and Denti 2002b; Ricci, Omicini, and Denti
2002a), bridging the gap that characterises the single
approaches (Schmidt and Simone 2000).

Since task coordination is one of the main activities
of any concurrent engineering approach, it is natural
to think of environments where suitably-programmed
tuple centres act as coordination artifacts to coordi-
nate the activities of designers, developers and testers.
The coordination laws embedded in (and enacted by)
tuple centres allow interaction to be constrained and
dependencies among activities to be managed, accord-
ing to objectives that belong not to a specific individ-
ual task or engineering stage, but to the software
development process as a whole. Moreover, a model/
infrastructure like TuCSoN also accounts for the coordi-
nation of heterogeneous agents, humans — with suitable
tool allowing them to act on tuple centres — as well as
artificial: these could be, for instance, artificial tester
agents, responsible for validating the other agents’
observable behaviour or possibly even the coordina-
tion rules of the system itself.

6 CONCLUSIONS AND FURTHER WORK

In this paper, we discussed how a task-oriented
methodology can impact the analysis, design and devel-
opment of complex interactive applications, provided
that suitable technologies and infrastructures enable
the methodology’s metaphors and issues — individual
tasks, global tasks, coordination laws — to be straight-
forwardly mapped onto the application components.
Moreover, we discussed the suitability of these mod-
els and infrastructures for both CSE techniques — to
manage the software development process — and the
engineering of cooperative environment supporting
CSE and CE. Accordingly, future work will include

204



(i) empowering the tools provided by our coordination
infrastructure so as to improve CSE support, in par-
ticular in the case of concurrent development and
debugging/testing; (i) extending our exploration in
the field of WIMS (Ricci, Omicini, and Denti 2002b)
towards the deployment of TuCSoN for the design and
development of a collaborative environment that can
be suitable for concurrent engineering

REFERENCES

Blackburn, J.,, G. Scudder, and L. N. Van Wassenhove
(2000, November). Concurrent software development.
Communication of ACM 43(11es), 200-214.

Ciancarini, P., A. Omicini, and F. Zambonelli (1999, Fall).
Coordination technologies for Internet agents. Nordic
Journal of Computing 6(3), 215-240.

Ciancarini, P, A. Omicini, and F. Zambonelli (2000,
February). Multiagent system engineering: the coordina-
tion viewpoint. In N. R. Jennings and Y. Lespérance (Eds.),
Intelligent Agents VI — Agent Theories, Architectures, and
Languages, Volume 1767 of LNAI, pp. 250-259.
Springer-Verlag.

Denti, E., A. Omicini, and A. Ricci (2002). Coordination
tools for mas development and deployment. Applied
Artificial Intelligence, 277-294. To appear.

Gelernter, D. (1985, January). Generative communication in
Linda. ACM Trans. Prog. Languages and Systems 7(1),
80-112.

Gelernter, D. and N. Carriero (1992, February). Coordination
languages and their significance. Communication of
ACM 35(2), 97-107.

Huhns, M. N. (2000). Agent teams: Building and imple-
menting software. IEEE Internet Computing 4(1).

Malone, T. and K. Crowstone (1994). The interdisciplinary
study of coordination. ACM Computing Surveys 26(1),
87-119.

Nardi, B. A. (1996). Context and Consciousness: Activity
Theory and Human-Computer Interaction. MIT Press.
Omicini, A. and E. Denti (2001, November). From tuple
spaces to tuple centres. Science of Computer Programming

41(3), 277-294.

Omicini, A. and F. Zambonelli (1999, September). Coordi-
nation for Internet application development. Autonomous
Agents and Multi-Agent Systems 2(3), 251-269. Special
Issue: Coordination Mechanisms for Web Agents.

Papadopoulos, G. A. and F. Arbab (1998, August). Coordi-
nation models and languages. Advances in Computers 46
(The Engineering of Large Systems), 329—400.

Reddy, R., K. Sriniva, V. Jagannathan, and R. Karinthi (1993,
January). Concurrent software engineering: Prospects
and pitfall. JEEE Computer 43(1), 12-16.

Ricci, A., A. Omicini, and E. Denti (2002a, December).
Activity theory as a framework for mas coordination. In
P. Petta, R. Tolksdorf, and F. Zambonelli (Eds.), Engi-
neering Societies in the Agents World I1II, LNAIL
Springer-Verlag.

Ricci, A., A. Omicini, and E. Denti (2002b,
September/December). Virtual enterprises and workflow
management as agent coordination issues. International
Journal of Cooperative Information Systems 11(3/4),
355-380. Cooperative Information Agents: Best Papers
of CIA 2001.

Schmidt, K. and C. Simone (2000, May). Mind the gap!
towards a unified view of CSCW. In The Fourth Inter-
national Conference on the Design of Cooperative
Systems COOP 2000.

205





