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Abstract

By adopting a structured knowledge-level approach, coordination knowledge can be ascribed to groups
(societies) of system components (agents) as a whole, rather than to individuals, in order to effectively
rationalise complex patterns of interaction within intelligent (multi-agent) systems. Be it either
explicitly represented at the symbol-level or hard-coded within specific coordination algorithms,
coordination knowledge is instrumented by a wide and heterogeneous variety of coordination models,
abstractions and technologies. Coordination knowledge engineering is then about eliciting, modelling
and instrumenting coordination knowledge in a principled and effective manner.

In this introductory article, we briefly review two well-known frameworks to conceptualise
coordination, then we discuss different dimensions along which coordination models can be classified,
and analyse their impact on the design of coordination mechanisms and their supporting coordination
knowledge. Finally, we sketch our view on coordination knowledge engineering and introduce the
different contributions to this special issue along this line.

1 Introduction

The problem of building intelligent systems is rapidly crossing the narrow boundaries of academia to
become an industrial issue. Widespread access to information technology by millions of typically low-
skilled newcomers has first summoned much attention and work on system usability, then made the
request for intelligence almost inescapable. In this context, acceptance of the term “intelligence” is
usually quite pragmatic, and basically relates to the human user’s perception: a system is intelligent
when it behaves in an intelligent way from the viewpoint of the observer/user, independently of the
system’s inner structure (Omicini & Papadopoulus, 2001).

A similar stance was taken by Newell (1982, 1993) when he introduced the notion of the knowledge
level almost 20 years ago: from a knowledge-level perspective, “knowledge” is actually ascribed to a
system by an external observer. Generally speaking, the design of a system aimed at (re)producing
intelligent behaviour is conceived in essence as a modelling activity. In this respect, it is obvious that
a “what” model of the behaviour itself is mandatory, e.g. in terms of a series of episodes of its
(inter)action with the environment. A symbol-level model is a “how” model of that behaviour, which
aims at its mechanisation in terms of symbols and representation. A knowledge-level model, instead,
is a “why” model that aims at rationalising the behaviour in terms of goals and knowledge. From a
knowledge-level perspective, a system is treated as a black box that acts “as if” it possessed certain
knowledge about the world and used this knowledge in a perfectly rational way towards reaching its
goals (van de Velde, 1993). Again, Newell’s original concept of the knowledge level makes no
assumptions about the structure of knowledge in a system.

Still, in recent years there has been a growing awareness that a constructionist (bottom-up) approach
to the construction of intelligent systems may help to reduce the complexity of the engineering process
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(Jennings & Campos, 1997). Intelligent systems are built by “glueing together” different sources of
behaviour which, when conceived as a whole, are perceived as intelligent by the user. The encapsulated
computational entities that support these behaviours may come at different levels of complexity, e.g.
simple software modules, objects, components or genuine knowledge-based systems. They are often
distributed and heterogeneous in nature, and show a certain level of autonomy – but maybe their
defining features are the complex patterns of interaction that emerge among them. Systems of this sort
are often labelled multi-agent systems, and the task of governing their interactions is termed
coordination.

When approaching the design of such systems from a knowledge engineering perspective, we can
apply van de Velde’s (1993) structured knowledge-level approach to ascribe different types of
knowledge to the system, in line with its a-priori structure. On the one hand, local knowledge needs
to be attributed to the encapsulated computational entities, or agents, so as to explain their individual
behaviour in relation to a supposed local goal. On the other hand, global goals and coordination
knowledge must be ascribed to groups (societies) of agents, or to the multi-agent system as a whole,
if the complex patterns of interaction are to be rationalised convincingly.

A large variety of coordination models, abstractions and technologies have come up in order to
support the (symbol-level) instrumentation of such (knowledge-level) coordination knowledge. Often,
there is no explicit declarative representation of that knowledge in the system, as its functionality is
hard-coded and hidden in specific coordination algorithms. Still, coordination knowledge is sometimes
explicitly represented at the symbol level, be it as part of a coordination infrastructure (Omicini &
Denti, 2001), as a knowledge base of a dedicated coordinator agent (Martial, 1992), or as common
knowledge of the interacting agents (Ossowski, 1999). Coordination knowledge engineering is all
about eliciting, modelling and instrumenting coordination knowledge in a principled and effective
manner.

In what follows, we give a brief review of two well-known frameworks for conceptualising
coordination and relate them to the knowledge � and the symbol-level perspectives respectively. Then
we discuss different dimensions along which coordination models can be classified and analyse their
impact on the design of coordination mechanisms and their supporting coordination knowledge.
Finally, we sketch our view on coordination knowledge engineering and introduce the different
contributions to this special issue along this line.

2 Models of coordination

Maybe the most widely accepted conceptualisation of coordination in AI originates from
organisational science. It defines coordination as the management of dependencies between
organisational activities (Malone & Crowston, 1994). One of the many workflows in an organisation,
for instance, may involve a secretary writing a letter, an official signing it and another employee
sending it to its final destination. The interrelation of these activities is modelled as a producer/
consumer dependency, which can be managed by inserting additional notification and transport actions
into the workflow.

It is straightforward to generalise this approach to coordination problems in AI. The subjects whose
activities need to be coordinated are sometimes called coordinables, but in the context of AI they are
commonly conceived of as agents. The entities between which dependencies arise (or objects of
coordination) are often termed quite differently, but usually come down to things like goals, actions
and plans. Depending on the characteristics of the problem at hand, a taxonomy of dependencies can
established, and a set of potential coordination actions assigned to each of them (e.g. Martial, 1992).
Within this model, the process of coordination is to accomplish two major tasks: first, a detection of
dependencies needs to be performed and, second, a decision respecting which coordination action to
apply must be taken. A coordination mechanism shapes the way that agents perform these tasks
(Ossowski, 1999).

The result of coordination, and its quality, are conceived differently at different levels of granularity.
Von Martial’s stance on coordination as a way of adapting to the environment (Martial, 1992), is quite
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well suited to understanding this question from a micro-level perspective, in particular if we are
concerned with multi-agent settings. If new acquaintances enter an agent’s environment, coordination
amounts to reassessing its former goals, plans and actions, so as to account for the new (potential)
dependencies between itself and other agents. If a STRIPS-like planning agent, for instance, is put into
a multi-agent environment, it will definitely have to accommodate its individual plans to the new
dependencies between its own prospective actions and potential actions of others, trying to exploit
possible synergies (others may free certain relevant blocks for it), and avoiding harmful dependencies
(making sure that others do not unstack intentionally constructed stacks and so on). At this level, the
result of coordination, the agent’s adapted individual plan, is the better the closer it takes the agent to
the achievement of its goals in the multi-agent environment.

From a macro-level perspective, the outcome of coordination can be conceived of as a “global” plan
(or decision, action and so on). This may be a “joint plan” (Rosenschein & Zlotkin, 1994), if the agents
reach an explicit agreement on it during the coordination process, or just the sum of the agents’
individual plans (or decisions, actions and so on – sometimes called “multi-plan” (Ossowski, 1999))
as perceived by an external observer. Roughly speaking, the quality of the outcome of coordination at
the macro level can be evaluated with respect to the system’s goal or the desired functionality. If no
such notion can be ascribed to the system, other, more basic features can be used instead. A good result
of coordination, for instance, is often supposed to be efficiency (Rosenschein & Zlotkin, 1994), which
frequently comes down to the notion of pareto-optimality: no agent could have increased the degree
of achievements of its goals without any other being worse off in that sense. The amount of resources
required for coordination (e.g. the number of messages necessary) is also sometimes used as a measure
of efficiency.

The dependency model of coordination appears to be particularly well suited to rationalising
observed coordination behaviour in line with Newell’s knowledge-level perspective (Newell, 1982;
Newell, 1993). Still, when designing coordination processes for real-world applications, things are not
as simple as the dependency model may suggest. Dependency detection requires an efficient
elicitation, representation and enactment of considerable amounts of knowledge (Ossowski et al.,
2002). Moreover, incomplete and potentially inconsistent local views of the agents will further
complicate this task. In all, making timely decisions that lead to efficient coordination actions is
anything but trivial (Lesser, 1998). The problem becomes even more difficult when agents pursuing
partially conflicting goals come into play (Ossowski, 1999). In all but the most simple systems, the
instrumentation of these tasks gives rise to complex patterns of interaction among agents. The set of
possible interactions is often called the interaction space of coordination.

At the symbol level, i.e. from the engineering perspective of an actual instrumentation of the model,
coordination is probably best conceived of as the effort of governing the space of interaction (Busi et
al., 2001) of a system. When approaching coordination from a design stance, the basic challenge
amounts to how to make agents converge on an interaction pattern that adequately (i.e. instrumentally
with respect to desired system features) solves the dependency detection and decision tasks. A variety
of approaches to tackle this problem can be found in literature. Multi-agent planning, negotiation,
organisational structures, conventions, norms, reputation management, mechanism design and so on
are just some of them. These approaches aim at shaping the interaction space either directly, by making
assumptions on agent behaviours and/or knowledge, or indirectly, by modifying the context of the
agents in their environment. The applicability of these mechanisms depends largely on the
characteristics of the coordination problem at hand, as we will outline in the next section.

3 Dimensions of coordination models

It is a commonplace that, the more open an environment in which a multi-agent system has to act, the
more difficult it is to instil a sufficient quality of coordination. For instance, in a closed environment,
as assumed traditionally by distributed problem-solving systems, agent behaviour is controlled at
design time. As the agent designer has full control over the agents, she can implement a coordination
mechanism of her choice: if certain assumptions on the agents’ behaviours are necessary, these can
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simply be “hard-coded” into the agent programs. A popular example is the original Contract-Net
Protocol (CNP) (Smith, 1980): volunteering services to a contractor relies on the assumption of
benevolence from the side of the bidders, which can be easily achieved when agents are designed to
follow CNP. Thus the space of interactions is completely determined at the time the system is built.
In closed environments, design choices are usually driven by efficiency issues.

At the other extreme, in large-scale open networks like the Internet, agent behaviour is uncontrolled,
so that very few assumptions can be made about agents’ behaviours and their frequencies. In particular,
it is almost impossible to globally foresee and influence the space of potential agent interactions. Most
probably, agents will behave in a self-interested fashion, which may help to anticipate some of their
actions, and may provide some clues on how to design coordination strategies at the micro level. Also,
in certain “parts” of the open system it may be possible to influence the frequencies of behaviours by
spawning new agents with desired characteristics, so as to improve the quality of coordination at the
macro level (e.g. Park et al., 2000). Still, very few things can be done in the general case, so that the
main design focus comes to low-level issues such as security and so on.

A promising approach to efficiently instil coordination in open systems is inspired by the notion of
agent as a situated entity, and falls in between the two extremes (fully controlled versus uncontrolled),
by providing for a sort of partially controlled agent behaviour. Since the environment where agents live
is partially under human control, agent interaction can be influenced by engineering the agent
environment; in particular, agent infrastructures are typically exploited to shape the agent environment
according to the engineers’ needs. For instance, coordination infrastructures provide agents with
coordination (run-time) abstractions, embodying coordination as a service (Viroli & Omicini, 2002),
which exert a form of partial run-time control over agent behaviour. Coordination infrastructures are
not meant to influence agent behaviour directly, but can affect agent actions. As a trivial example, a
security infrastructure enforces a set of behavioural restrictions for potential users that implicitly
bounds the admissible agent interaction histories; the agent deliberation capability is thus not limited
anyhow, but the effects of the agents’ actions on the environment are constrained indeed. Given a range
of different coordination services made available by an infrastructure, agents can freely choose a
service based on their self-interest: once they register to a coordination service, however, the
infrastructure will enforce their compliance with the behavioural restrictions. This may be achieved by
executing mobile agents on specific virtual machines, or by making them interact through “intelligent”
communication channels that govern the interaction space by filtering, modifying or generating certain
messages. Future agent-based auctions may become an example of such coordination services.

This form of coordination is often termed mediated coordination – which in general could rely on
either a distinguished middle agent (Klusch & Sycara, 2001) or a coordination abstraction provided by
an infrastructure. In the literature, mediated coordination is often confused with centralised
coordination. In fact, another important dimension of coordination models amounts to whether they
can be designed in a centralised fashion, or need a decentralised instrumentation. While centralised
mechanisms fit closed environments with design-time coordination well, decentralised mechanisms
(like peer-to-peer models) better satisfy the needs of open environments with run-time coordination.
However, mediated coordination is often multicentric – so neither centralised nor fully decentralised
– thus achieving a sort of welcome compromise between the engineering urges (pushing towards
controlled and predictable systems) and the typical features of the systems of today (emphasising
openness, dynamics and unpredictability).

Closely related to the above discussion is a concept recently introduced by Tolksdorf (2000): a
coordination mechanism is said to be coupled if the effectiveness of an agent’s coordination behaviour
is based on assumptions about some (other) agent’s behaviour. This is the case, for instance, for
coordination mechanisms that rely on distributed constraint satisfaction (Ossowski, 2001). By contrast,
uncoupled mechanisms impose no assumptions on agent behaviour. A truly decentralised coordination
can only be achieved by a coupled mechanism, so it bears the additional burden of ensuring that all
involved agents will behave as expected.

When shifting our attention to the micro level, the distinction between quantitative and qualitative
models of coordination comes into play (Ossowski, 1999). Qualitative approaches basically follow the

S . O S S O W S K I A N D A . O M I C I N I312



dependency model outlined in the previous sections, by directly representing the different “reasons”
for preferring or not certain objects of coordination to others. An agent’s coordination behaviour is
guided by whether a certain local action (plan, goal and so on) depends positively or negatively on the
actions of others: it will choose its local and communicative actions based on the “structure” of
dependencies that it shares with its acquaintances. So in cooperative environments it is straightforward
to conceive of coordination as a kind of constraint satisfaction problem (Ossowski, 1999). In
quantitative models, by contrast, the structure of the coordination problem is hidden in the shape of a
multi-attribute utility function. An agent has control over only some of the function’s attributes (i.e.
some of the objects of coordination), and its utility may increase (or decrease) in cases where there is
a positive (or negative) dependency with an attribute governed by another agent, but these
dependencies are not explicitly modelled. Its local coordination decision problem then corresponds to
a special type of optimisation problem: to determine a local action (plan, goal and so on), and to induce
others to choose local actions (plans, goals and so on), so as to maximise its local utility. The
quantitative approach may draw upon a well-founded theoretical framework for both cooperative
settings (operations research) and non-cooperative settings (game theory), but suffers from the fact
that, due to the uncertainties intrinsic to many AI domains, the utility function is only an
approximation, so that its optimum need not coincide with an agent’s best choice in the real
environment. On the other hand, a coordination mechanism based on qualitative dependencies is less
prone to such modelling inaccuracies, but its foundations go back to theories from social sciences (e.g.
social psychology), that do not provide a sound formal framework to guide local decision-making.

Finally, the distinction between subjective and objective coordination, introduced by Schumacher
(2001), is closely related to the micro/macro duality discussed in the previous section. Subjective
coordination looks at interactions from the agent’s own point of view, so it roughly amounts to (i)
monitoring all interactions that are perceivable and relevant to the agent, as well as their evolution over
time, and (ii) devising which actions the agent could perform that could bring the overall state of the
system (or, more generally, of the world) to coincide with one of the agent’s goals. Objective
coordination conceives of interaction within a multi-agent system from outside the interacting agents,
as an external observer; coordination means affecting agent interactions so as to make the resulting
evolution of the system accomplish one or more of the designer’s goals. It is important to note that
affecting agent interactions does not mean totally determining their behaviour, just biasing it in a
desired direction, or modifying the “shape” of the interaction space. That is why objective coordination
by no means contrasts with the fundamental notion of agent autonomy (Wooldridge & Jennings, 1995).
Both approaches play a fundamental role in the engineering of agent systems, and any methodology
for the design and development of agent systems has to exploit both objective and subjective
coordination models and technologies (Omicini & Ossowski, 2003).

4 Coordination and knowledge engineering: the contributions

Coordination is a key aspect in the design of distributed intelligent (multi-agent) systems and, in turn,
the capability of coordinating with others is essential to ensure globally coherent reasoning processes
within the system: from a multi-agent point of view, it constitutes a centrepiece of agenthood. Roughly
speaking, coordination knowledge shapes the mechanisms through which coordination is achieved in
a particular domain, be it by characterising and structuring the coordination task at the knowledge level
(e.g. in terms of the dependency model), or as an actual symbolic representation upon which inference
is performed (e.g. within coordination media that govern interaction). On the other hand, as we have
seen in the many dimensions of coordination models, different characteristics of a system’s
environment may have a deep impact on the type of mechanism that coordination knowledge is to
support.

So it is no surprise that many important questions arise, and at quite different levels of abstraction,
when the question of coordination knowledge engineering comes into play. What is an adequate
terminological (and formal) framework to express coordination knowledge and its structure? How far
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can such a framework be general, or should it be sensitive to the characteristics of a particular class
of application? If coordination knowledge is explicitly modelled, what are adequate formalisms, not
just for the representation but also for the instrumentation of that knowledge? How far can and should
the properties of coordination infrastructures influence the whole design process? The contributions to
this special issue individually focus on quite specific parts of the general problem. Still, altogether they
may provide the reader with some clues respecting the lines along which a principled solution to the
above questions might develop.

From a (structured) knowledge-level perspective, organisations can be seen as a means to rationalise
system behaviour. Typically, the concept of role is used to characterise observed individual behaviour
within a multi-agent system by relating the individuals’ interaction with their environment and their
acquaintances to the goals that they pursue (or tasks that they are to perform) (Zambonelli et al., 2000).
Usually, additional characteristics such as authorisations and permissions (or even communicative
competence (Serrano & Ossowski, 2003)) are ascribed to roles. These characteristics can then be used
to define the organisation’s coordination knowledge – specific rules that shape the space of interaction
among roles. In their article “RAMASD: a semi-automatic method for designing agent organisations”,
Karageorgos, Mehandjiev and Thompson are concerned with principled design methods for multi-
agent systems that are driven by the notion of organisation. Roles are proposed as first-class constructs,
and a role algebra is outlined that allows the representation of the interdependencies between roles
which, among other characteristics, will shape the space of interaction once agents actually play these
roles in a concrete implementation. In turn, Davidsson and Wernstedt set out from a particular class of
problem, supply-chain management, and discuss the impact of their requirements on the structure of
the multi-agent systems in general and the coordination model together with its interaction space in
particular. In their article “A multi-agent system architecture for coordination of just-in-time
production and distribution”, they evaluate their findings in the real-world domain of district heating
management.

The contribution by Ciancarini, Tolksdorf and Zambonelli focuses on different types of middleware
to support the instrumentation of XML-based representations of coordination knowledge for active
documents. Their article, “A survey of coordination middleware for XML-centric applications”, first
describes how active documents can be conceived of as mobile agents (document agents), and sketch
the structural requirements that call for the use of coordination models as first-class entities. An
extensive review of coordination middleware architectures, which support the instrumentation of
coordination knowledge in societies of document agents, is presented, and their strengths and
weaknesses are evaluated. Finally, Fiege, Mühl and Gärtner report on advances on event-based systems
that serve as the basis for many coordination middleware implementations (besides rule-based systems,
active databases and so on). Their article, “Modular event-based systems”, puts forward the idea of
adding scopes to this kind of system, so as to cope with the complexities of engineering distributed
systems and platforms to enact coordination knowledge.

5 Conclusions

The notion of coordination is today relevant in several different research and application areas – AI,
among many others – where it has been given a number of different definitions. In this article, we have
given a brief overview of current conceptualisations of coordination. Some dimensions along which to
organise coordination models have been discussed, and related to the characteristics of the supporting
coordination infrastructure.

We suggest that the notion of coordination knowledge is essential to the design of coordination
models and that, roughly speaking, depending on whether we take a knowledge-level or a symbol-level
stance, it relates to the structure or to the actual enactment of the model. From this perspective,
coordination knowledge engineering comes to be a key task in the design of a heterogeneous
distributed intelligent system: the different repercussions of this consideration are further developed
and discussed in the four articles constituting the remainder of this special issue.
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