
SODA: Societies and Infrastructures
in the Analysis and Design of Agent-Based Systems

Andrea Omicini

LIA, Dipartimento di Elettronica, Informatica e Sistemistica, Universit`a di Bologna
Viale Risorgimento 2, I-40136 Bologna, Italy

aomicini@deis.unibo.it

Abstract. The notion of society should play a central role in agent-oriented soft-
ware engineering as a first-class abstraction around which complex systems can
be designed and built as multi-agent systems. We argue that an effective agent-
oriented methodology should account forinter-agentaspects by providing en-
gineers with specific abstractions and tools for the analysis and design ofagent
societiesandagent environments.
In this paper, we outline theSODA agent-oriented methodology for the analysis
and design of Internet-based systems. Based on the core notion oftask, SODA
promotes the separation of individual and social issues, and focuses on the social
aspects of agent-oriented software engineering. In particular,SODA allow the
agent environment to be explicitly modelled and mapped onto suitably-defined
agent infrastructures.

1 Introduction

The engineering of complex applications in the Internet era raises new problems which
require new models, languages and methodologies. Agent-based approaches [21] ex-
ploit the agent abstraction to address issues like distribution, heterogeneity, decentral-
isation of control, unpredictability, and need for intelligence [22]. Agents situatedness
and their reactivity help to deal withdynamic and unpredictable environments; their
pro-activeness in pursuing goals makes it possible to abstract away from the control
issue and to easily deal with decentralisation of control; and so on.

However, the most mature approaches to agent-oriented engineering have till now
concentrated onintra-agentaspects – how to build an individual agent, starting from
ad hocagent languages, architectures, and methodologies. These approaches implic-
itly promote methodologies for the engineering of multi-agent systems where systems
are built as a sum of separately engineered agent components, which are then put to-
gether by exploiting some technology or infrastructure for interoperability – like ACL,
mediation services, brokers, and so on.

According to the most recent research trends, this neglects one of the most relevant
aspects of agent-based systems, that is, the social ones [9, 18, 19]. Agents are not simple
software components to be first built, then combined: they are goal-driven individuals,
who assume to live and interact with other individuals within asociety. In the same way
as human ones, agent societies exhibit global behaviours which cannot be reduced to the

P. Ciancarini and M.J. Wooldridge (Eds.): AOSE 2000, LNCS 1957, pp. 185−193, 2001.
 Springer-Verlag Berlin Heidelberg 2001



mere sum of the behaviours of their individual components. As a result, societies should
be considered as first-class components of multi-agent systems, and specific models,
abstractions, languages, and methodologies have to be provided for their engineering
[11,13, 14, 25].

Even more, theagent environment, that is, the space where agents live and interact,
is not neutral with respect to system design and development. Building a MAS in an
open, distributed, decentralised, heterogeneous,dynamic, and unpredictable environ-
ment obviously affects the way in which such a system is conceived and deployed. As a
peculiar example, think of an open system where some resources have to be made avail-
able to explorer agents coming from unknown sources – like buyer agents, for instance.
The engineering of such a system would simply amount to designing the agent environ-
ment in terms of available resources and services, and deploying a suitably-configured
infrastructure – possibly, without writing a single line of agent code. As a result, also
the structure of the agent environment should be adequately modelled through specific
abstractions, and taken intoaccount at every step of the engineering process of a multi-
agent system.

In this context, this paper outlines theSODA agent-oriented methodology for the
analysis and design of Internet-based systems, aimed at defining abstractions and pro-
cedures specifically tailored to the engineering of agent societies and environments.
Based on primitive notion oftask, SODA promotes the separation of individual and
social issues since the very early analysis phase. Since it intentionally does not address
intra-agent issues,SODA is not a complete methodology, and focuses instead on the so-
cial aspects of agent-oriented software engineering, by exploitingcoordination models
andtechnologies[15]. In particular,SODA allow the agent environment to be explicitly
modelled and mapped onto suitably-defined agent infrastructures.

2 Society and environment in agent systems

Till now, agent-oriented engineering [21] has been mainly concerned with intra-agent
aspects, that is, the analysis, design and development of individual agents. This is ba-
sically acomputationalissue [20], which involves the way in which each agent works
when seen as an individual (software) system.

As suggested by many recent research efforts [9, 18, 19], inter-agent issues should
instead be considered at least as relevant as intra-agent one, and handled as that. In
particular, by takinginteractionas an independent dimension for the analysis, design
and development of multi-agent system, it should be made clear how such a dimension
should affect the methodologies for the engineering of complex software systems as a
multi-agent one [10]. For instance, Miles, Joy, and Luck [13] present a methodology
for agent-oriented software engineering based on the analysis of agent interaction.

Agents in a multi-agent system interact by living and working within their envi-
ronment, and by relating with other agents. Correspondingly, inter-agent aspects in
multi-agent systems basically amount to two strongly related issues: the social and the
environment one.

186 A. Omicini



2.1 Society

Agents are individual entities with social abilities [22]. In general, they have a partial
representation of the world around them, a limited ability to sense and change it, and
typically rely on other agents for anything falling outside of their scope or reach. So,
agents are to be thought as living dipped into societies: the behaviour of an individual
agent is often not understandable outside its social structure. The behaviour of a buyer
agent in an auction is difficult to be explained out of the context of the auction itself and
of the rules that govern it. Dually, the behaviour of a society of agents cannot generally
be expressed in terms of the behaviour of its composing agents. So, the rules governing
an auction, in conjunction with the behaviour of the individual agents participating to
it, lead to a global behaviour that could not be reduced to the mere composition of the
individual’s behaviour [20]. Social rules harness agent interaction, and drive the global
behaviour of a society towards the accomplishment of its global goals.

So, societies should be no longer built by merely combining a number of separately
engineered agents. Instead, agent-oriented methodologies should adopt agent societies
as first-class abstractions to be exploited in the analysis, design, and development of
complex software systems. For this purpose, agent-oriented methodologies should sup-
ply specific models, abstractions, and technologies for the engineering of agent soci-
eties. In particular, a methodology should help engineers to determine the social struc-
tures required, the social laws they need, how social rules should be designed, and how
they should be enforced. For instance, one should be able to determine how much of
a social behaviour should be embodied in agents, and how much should be instead
charged upon social infrastructures – a particularly relevant issue when open systems
are concerned.

2.2 Environment

When looking at agents assituated entities, which cannot be thought separately from
the environment they live in, the idea of modelling a software system as a multi-agent
system without modelling the agentenvironmentseems to be ineffective from its very
ground. Generally speaking, agents and societies live in environments that may be het-
erogeneous, dynamic, open, distributed, and unpredictable – like the Internet. The prop-
erties of the environment obviously affect the way in which agents represent the world
they live in, and how they plan and deliberate their course of actions. So, agent-oriented
methodologies should make it possible to model the agent environment from the ear-
liest phases of the engineering process, and to express dependencies within the agents
and the environment itself.

Even more, the features of the agent environment are often not completely pre-
determined, but may be partially defined according to the systems needs. So, the en-
vironment of a multi-agent system may be subject to an engineering process, aimed at
shaping and configuring the environment itself. For instance, one may think of directory
services, shared knowledge bases, authentication services, and so on: how they are built
and made available to the agents of a multi-agent system both affects and depends on
the way in which the system and its agents are engineered. So, agent-oriented method-
ologies should help not only to model the agent environment, but also to shape and
build it.

187Societies and Infrastructures in the Analysis and Design of Agent-Based Systems



3 SODA

SODA (Societies inOpen andDistributedAgent spaces) is a methodology for the
analysis and design of Internet-based applications as multi-agent systems. The goal of
SODA is to define a coherent conceptual framework and a comprehensive software en-
gineering procedure thataccounts for the analysis and design of individual agents, agent
societies, and agent environments.SODA is not concerned with intra-agent issues: de-
signing a multi-agent system withSODA leads to define agents in terms of their re-
quired observable behaviour and their role in the multi-agent system. Then, whichever
methodology one may choose to define the agent structure and inner functionality, it
could be easily used in conjunction withSODA.

Instead,SODA concentrates on inter-agent issues, like the engineering of societies
and infrastructures for multi-agent systems. Since this conceptually covers all the inter-
actions within an agent system, the design phase ofSODA deeply relies on the notion of
coordination model[2, 16, 17]. In particular, as discussed in [4, 7], coordination models
and languages are taken as the sources of the abstractions and mechanisms required to
engineer agent societies: social rules are designed as coordination laws and embedded
into coordination media, and social infrastructures are built upon coordination systems.

3.1 Analysis

During the analysis phase, the application domain is studied and modelled, the available
computational resources and the technological constraints are listed, the fundamental
application goals and targets are pointed out. The result of the analysis phase is typically
expressed in terms of high-level abstractions and their mutual relationships, providing
designers with a formal or semi-formal description of the intended overall application
structure and organisation.

Since by definition agents have goals that they pursue pro-actively, agent-oriented
analysis can rely on agentresponsibilityto carry on one or moretasks. Furthermore,
agents live dipped into an environment, which may be distributed, heterogeneous, dy-
namic, and unpredictable. So, the analysis phase should explicitly take intoaccount and
model the required and desired features of the agent application environment, by mod-
elling it in terms of the requiredresourcesand theservicesmade available to agents.
Finally, since agents are basically interactive entities, which depend on other agents and
available resources to pursue their tasks, the analysis phase should explicitly model the
interaction protocols in terms of the information required and provided by agents and
resources.

So, theSODA analysis phase exploits three different models:

– the role model– the application goals are modelled in terms of thetasksto be
achieved, which are associated torolesandgroups

– the resource model– the application environment is modelled in terms of theser-
vicesavailable, which are associated to abstractresources

– the interaction model– the interaction involving roles, groups and resources is
modelled in terms ofinteraction protocols, expressed asinformationrequired and
provided by roles and resources, andinteraction rules, governing interaction within
groups.

188 A. Omicini



The above models represent the basis of theSODA analysis phase. Even though con-
ceptually distinct, they are obviously strictly related, and should be defined in a consis-
tent way.

The role model Tasksare expressed in terms of the responsibilities they involve, of
the competences they require, and of the resources they depend upon. Responsibili-
ties are expressed in terms of the state(s) of the world that should result from the task
accomplishment.

Tasks are classified as eitherindividual or social ones. Typically, social tasks are
those that require a number of different competences, and the access to several different
resources, whereas individual ones are more likely to require well-delimited compe-
tence and limited resources (see [4] for an example).

Each individual task is associated to an individualrole, which by consequence is
first defined in terms of the responsibilities it carries. Analogously, social tasks are
assigned togroups. Groups are defined in terms of both the responsibility related to
their social task, and thesocial rolesparticipating in the group. A social role describes
the role played by an individual within a group, and may either coincide with an already
defined (individual) role, or be definedex-novo, in the same form as an individual one,
by specifying its task as a sub-task of its group’s one.

The resource model Servicesexpress functionalities provided by the agent environ-
ment to a multi-agent system – like recording an information, querying a sensor, veri-
fying an identity. In this phase,each service is associated to an abstractresource, which
is then firstly defined in terms of the service it provides.

Each resource defines abstractaccess modes, modelling the different ways in which
the service it provides can be exploited by agents. If a task assigned to a role or a group
requires a given service, the access modes are determined and expressed in terms of the
grantedpermissionto access the resource in charge of that service. Such a permission
is then associated to that role or group.

The interaction model Analysing the interaction model inSODA amounts to the
definition of interaction protocolsfor roles and resources, andinteraction rulesfor
groups.

An interaction protocol associated to a role is defined in terms of theinformation
required and provided by the role in order to accomplish its individual task. An inter-
action protocol associated to a resource is defined in terms of the information required
to invoke the service provided by the resource itself, and by the information returned
when the invoked service has been brought to an end, either successfully or not. An
interaction rule is instead associated to a group, and governs the interactions among
social roles and resources so as to make the group accomplish its social task.

It is worth to be noted that this approach ensures a form of uncoupling: each inter-
action protocol is not specifically bounded to any other, and can be defined somehow
independently – by simply requiring the specification of the information needed, but
not its source. Obviously, the final outcome of the analysis phase shouldaccount for

189Societies and Infrastructures in the Analysis and Design of Agent-Based Systems



this, too, by ensuring that for any information required by any protocol, there is at least
one entity in the system in charge of supplying such information.

The outcome In all, the results of theSODA analysis phase are expressed in terms of
roles, groups, and resources. To summarise,

– a role is defined in terms of its individual task, its permissions to access the re-
sources, and the corresponding interaction protocol

– a group is defined in terms of its social task, its permissions to access the resources,
the participating social roles, and the corresponding interaction rule

– a resource is defined in terms of the service it provides, its access modes, the per-
missions granted to roles and groups to exploit its service, and the corresponding
interaction protocol.

3.2 Design

Design is concerned with the representation of the abstract models resulting from the
analysis phase in terms of the design abstractions provided by the methodology. Dif-
ferently from the analysis phase, a satisfactory result of the design phases is typically
expressed in terms of abstractions that can be mapped one-to-one onto the actual com-
ponents of the deployed system.

TheSODA design phase is based on three strictly related models:

– theagent model– individual and social roles are mapped uponagentclasses
– thesociety model– groups are mapped ontosocietiesof agents, which are designed

and organised aroundcoordination abstractions
– theenvironment model– resources are mapped ontoinfrastructureclasses, and as-

sociated totopological abstractions.

The agent modelAn agent classis defined as a set of (one or more) roles, both individ-
ual and social ones. As a result, an agent class is first characterised by the tasks, the set
of the permissions, and the interaction protocols associated to its roles. Agent classes
can be further characterised in terms of other features: theircardinality (the number of
agents of that class), theirlocation(with respect to the topological model defined in this
phase – either fixed, for static agents, or variable, for mobile agents), theirsource(from
inside or outside the system, given the assumption of openness).

The design of the agents of a class shouldaccount for all the specifications coming
from theSODA analysis phase – but may exploit in principle any other methodology
for the design of individual agents, since this issue is not covered bySODA. What is
determined bySODA is the outcome of this phase, that is, theobservable behaviour
of the agent in terms of all its interactions with the surrounding environment. Such a
behaviour is defined by the interaction protocols, delimited by the permission sets, and
finalised to the achievement of the agent tasks.

190 A. Omicini



The society modelEach group is mapped onto asociety of agents. So, an agent society
is first characterised by the social tasks, the set of the permissions, the participating
social roles, and the interaction rules associated to its groups.

The agent model also assigns social roles to agents, so that the main issue in the so-
ciety model is how to design interaction rules so as to make societies to accomplish their
social tasks. Since it deals with managing agent interaction, the problem of achieving
the desired social behaviour by means of suitable social rules is basically acoordina-
tion issue [12]. As a result, societies inSODA are designed aroundcoordination media,
that is, the abstractions provided by coordination models for the coordination of multi-
component systems [3].

So, the first point in the design of agent societies is the choice of the fittest coordi-
nation model – that is, the one providing the abstractions that are expressive enough to
model the society interaction rules [6]. Thus, a society is designed around coordination
media [7] embodying the interaction rules of its groups in terms ofcoordination rules.
The behaviour of the suitably-designed coordination media, along with the behaviour
of the agents playing social roles and interacting through such media, makes an agent
society pursue its social tasks as a whole. This allows societies of agents to be designed
as first-class entities, as shown in [4] where an example is also discussed.

The environment model Resources are mapped ontoinfrastructure classes. So, an in-
frastructure class is first characterised by the services, the access modes, the permissions
granted to roles and groups, and the interaction protocols associated to its resources. In-
frastructure classes can be further characterised in terms of other features: theircardi-
nality (the number of infrastructure components belonging to that class), theirlocation
(with respect to topological abstractions), theirowner(which may be or not the same
as the one of the agent system, given the assumption of decentralised control).

The design of the components belonging to an infrastructure class may follow the
most appropriate methodology for that class – sinceSODA does not specifically ad-
dress these issues, components like databases, expert systems, or security facilities, can
all be developed according to the most suited specific methodology. Again, what is de-
termined bySODA is the outcome of this phase, that is, the services to be provided
by each infrastructure component, and itsinterfaces, as resulting from its associated
interaction protocols.

Finally, SODA assumes that a topological model of the agent environment is pro-
vided by the designer – but does not provide for topological abstractions by its own,
since any system and any application domain may call for different approaches to this
problem. However, as an example of an expressive set of topological abstractions that
may easily fit many Internet-based multi-agent systems, one may look toplaces, do-
mainsandgatewaysas defined by theTuCSoN model for the coordination of Internet
agents [5].

The outcome In all, the results of theSODA design phase are expressed in terms of
agent classes, societies of agents, and infrastructure classes. To summarise,

– an agent class is defined in terms of its individual and social roles, as well as its
cardinality, location, and source

191Societies and Infrastructures in the Analysis and Design of Agent-Based Systems



– a society of agents is defined in terms of its groups, as well as its corresponding
coordination abstraction(s)

– an infrastructure class is defined in terms of its resources, as well as its cardinality,
location, and owner.

4 Related works and conclusions

The main reference for the development ofSODA is represented by the pioneering work
on Gaia [23]. Gaia, to our knowledge, is the first agent-oriented software engineering
methodology that explicitly takes intoaccount societies (there, mainly referred to as
organisations) as first-class entities, by providing a coherent conceptual framework for
the analysis and design of multi-agent systems. Even though at an early stage of its
development,SODA addresses some of the shortcomings of Gaia, which does not suit
well open systems, and cannot easily deal with self-interested agents [24]. In addition,
SODA is the first agent-oriented methodology to our knowledge to explicitly take the
agent environment intoaccount, and provide engineers with specific abstractions and
procedures for the design of agent infrastructures.

Zambonelli, Jennings, and Wooldridge [25] also try to address Gaia shortcomings,
by putting the notion of organisation at the core of their agent-oriented methodology. A
similar approach is proposed by Kendall [11], which adoptsrole modelsas the main or-
ganisational abstraction for modelling multi-agent systems. There, however, the notion
of role is taken as primitive, whereasSODA considers role as a derived notion, and task
and service as primitive ones. In turn, Blanzieri and Giorgini [1] address the openness
issue by proposing a conceptual infrastructure based on the notion ofimplicit culture.

Early versions of theSODA methodology have already been used for the analysis
and design of Internet-based multi-agent systems [7, 8]: however, the methodology was
never explicitly neither formalised nor named before. In the near future, we intend to
exploitSODA in the design of real Internet-based multi-agent systems so as to further
verify its effectiveness.

References

1. Enrico Blanzieri and Paolo Giorgini. Implicit culture and multi-agent systems. In this vol-
ume.

2. Nadia Busi, Paolo Ciancarini, Roberto Gorrieri, and Gianluigi Zavattaro.Coordination Mod-
els: A Guided Tour, chapter 1. In Omicini et al. [15], December 2000.

3. Paolo Ciancarini. Coordination models and languages as software integrators.ACM Com-
puting Surveys, 28(2):300–302, June 1996.

4. Paolo Ciancarini, Andrea Omicini, and Franco Zambonelli. Multiagent system engineering:
the coordination viewpoint. In Nicholas R. Jennings and Yves Lesp´erance, editors,Intel-
ligent Agents VI — Agent Theories, Architectures, and Languages, volume 1767 ofLNAI,
pages 250–259. Springer-Verlag, February 2000.

5. Marco Cremonini, Andrea Omicini, and Franco Zambonelli. Multi-agent systems on the
Internet: Extending the scope of coordination towards security and topology. In Francisco J.
Garijo and Magnus Boman, editors,Multi-Agent Systems Engineering – Proceedings of the
9th European Workshop on Modelling Autonoumous Agents in a Multi-Agent World (MA-
MAAW’99), volume 1647 ofLNAI, pages 77–88. Springer-Verlag, June 30–July 2 1999.

192 A. Omicini



6. Enrico Denti, Antonio Natali, and Andrea Omicini. On the expressive power of a language
for programming coordination media. InProceedings of the 1998 ACM Symposium on Ap-
plied Computing (SAC’98), pages 169–177. ACM, February 27 - March 1 1998. Track on
Coordination Models, Languages and Applications.

7. Enrico Denti and Andrea Omicini. Designing multi-agent systems around an extensible
communication abstraction. In John-Jules Ch. Meyer and Pierre-Yves Schobbens, editors,
Formal Models of Agents – ESPRIT Project ModelAge Final Report, volume 1760 ofLNAI,
pages 90–102. Springer-Verlag, 1999.

8. Enrico Denti and Andrea Omicini. Engineering multi-agent systems inLuCe. In Stephen
Rochefort, Fariba Sadri, and Francesca Toni, editors,Proceedings of the ICLP’99 Inter-
national Workshop on Multi-Agent Systems in Logic Programming (MAS’99), Las Cruces
(NM), November 30 1999.

9. Fumio Hattori, Takeshi Ohguro, Makoto Yokoo, Shigeo Matsubara, and Sen Yoshida. So-
cialware: Multiagent systems for supporting network communities. Communications of the
ACM, 42(3):55–61, March 1999. Special Section on Multiagent Systems on the Net.

10. Michael N. Huhns. Interaction-oriented programming. In this volume.
11. Elizabeth A. Kendall. Agent software engineering with role modelling. In this volume.
12. Thomas Malone and Kevin Crowstone. The interdisciplinary study of coordination.ACM

Computing Surveys, 26(1):87–119, 1994.
13. Simon Miles, Mike Joy, and Michael Luck. Designing agent-oriented systems by analysing

agent interactions. In this volume.
14. James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing agent interaction

protocols in UML. In this volume.
15. Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf, editors.Co-

ordination of Internet Agents: Models, Technologies and Applications. Springer-Verlag, De-
cember 2000.

16. George A. Papadopoulos.Models and Technologies for the Coordination of Internet Agents:
A Survey, chapter 2. In Omicini et al. [15], December 2000.

17. George A. Papadopoulos and Farhad Arbab. Coordination models and languages.Advances
in Computers, 46:The Engineering of Large Systems:329–400, August 1998.

18. Joav Shoham and Moshe Tennenholtz. Social laws for artificial agent societies: Off-line
design.Artificial Intelligence, 73, 1995.

19. Munindar P. Singh. Agent communication languages: Rethinking the principles.IEEE Com-
puter, 31(12):55–61, December 1998.

20. Peter Wegner. Why interaction is more powerful than computing.Communications of the
ACM, 40(5):80–91, May 1997.

21. Michael J. Wooldridge. Agent-based software engineering.IEE Proceedings on Software
Engineering, 144(1):26–37, February 1997.

22. Michael J. Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice.
The Knowledge Engineering Review, 10(2):115–152, 1995.

23. Michael J. Wooldridge, Nicholas R. Jennings, and David Kinny. The Gaia methodology for
agent-oriented analysis and design.Autonomous Agents and Multi-Agent Systems, 3(3):285–
312, September 2000.

24. Franco Zambonelli, Nicholas R. Jennings, Andrea Omicini, and Michael J. Wooldridge.
Agent-Oriented Software Engineering for Internet Applications, chapter 13. In Omicini et al.
[15], December 2000.

25. Franco Zambonelli, Nicholas R. Jennings, and Michael J. Wooldridge. Organisational ab-
stractions for the analysis and design of multi-agent systems. In this volume.

193Societies and Infrastructures in the Analysis and Design of Agent-Based Systems


	Introduction
	Society and environment in agent systems
	Society
	Environment

	SODA
	Analysis
	Design

	Related works and conclusions
	References

