
Autonomous Agents and Multi-Agent Systems, 2, 251–269 (1999)
© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Coordination for Internet Application Development

ANDREA OMICINI aomicini@deis.unibo.it
LIA—DEIS—Università di Bologna, Bologna, Italy

FRANCO ZAMBONELLI franco.zambonelli@unimo.it
DSI—Università di Modena, Modena, Italy

Abstract. The adoption of a powerful and expressive coordination model represents a key-point for
the effective design and development of Internet applications. In this paper, we present the TuCSoN
coordination model for Internet applications based on network-aware and mobile agents, and show how
the adoption of TuCSoN can positively benefit the design and development of such applications, firstly
in general terms, then via a TuCSoN-coordinated sample application. This is achieved by providing for
an Internet interaction space made up of a multiplicity of independently programmable communication
abstractions, called tuple centres, whose behaviour can be defined so as to embody the laws of coordina-
tion.

Keywords: coordination, Internet applications, mobile agents, programmable tuple spaces

1. Introduction

The design and development of Internet-based applications call for new paradigms,
models, languages and tools, effectively supporting the vision of the Internet as a
globally distributed computing system, where any kind of distributed information and
resources can be globally accessed and elaborated.

Traditional distributed applications are designed as sets of entities statically as-
signed to a given execution environment, and cooperating in a (mostly) network-
unaware fashion. However, enforcing transparency in a wide area network that lacks
centralised control, as in the case of the Internet, is not a viable approach. A more
suitable paradigm for the design of Internet applications is network-aware comput-
ing [14, 31]: the Internet is modelled as a collection of independent nodes, and
applications are made up of network-aware entities (agents) which explicitly locate
and access remote data and resources. Furthermore, the capability of the agents to
proactively migrate to different execution environments (i.e., Internet nodes) dur-
ing their execution (agent mobility) leads to a more efficient, dynamic and reliable
execution scenario [31, 21]: mobile agents can move locally to the resources they
need, requiring neither the transfer of possibly large amounts of data nor network
connection during the access. From now on, we will globally refer to network-aware
agents, either mobile or not, as Internet agents.

In the last few years, several systems and programming environments have ap-
peared to support widely distributed applications based on Internet agents [22], by
exploiting mobile code, security mechanisms and new Internet-oriented language
constructs [14]. Surprisingly, a few of the proposals provide suitable mechanisms

mailto:aomicini@deis.unibo.it
mailto:franco.zambonelli@unimo.it

252 omicini and zambonelli

and abstractions for agent coordination. In our opinion, instead, the choice and ex-
ploitation of a suitable coordination model [17] is a key point in the design and
development of Internet applications.

Most of the proposals rely on some forms of direct communication, based on
peer-to-peer or client-server protocols, which we consider to be inadequate for
Internet applications, since (i) direct communication between widely distributed,
asynchronous and independent entities—as Internet agents are—is inherently diffi-
cult, (ii) direct communication is not expressive enough, per se, to deal with issues
like heterogeneity, dynamicity, security, and so on. Tuple-based coordination mod-
els based on associative blackboards (like Linda [15]) seem to cope better with the
Internet scenario, since they enable both spatial and temporal uncoupling in inter-
action, a feature which is essential in the case of widely distributed, autonomous
and possibly mobile entities.

Still, the intrinsic data-orientation of Linda-like coordination models [29] makes
them lack the flexibility (typical of control-oriented coordination models) required
by the intrinsic dynamicity of the Internet: both agent-to-agent communication and
agent access to local data are tied to the built-in associative mechanisms integrated
in tuple spaces. Thus, any coordination policy not directly supported by the model
(like atomically reading two tuples) has to be charged upon agents, which have to be
made aware of the coordination laws. This increases the complexity of application
design, by breaking the logical separation between coordination and algorithmic
issues.

The above considerations motivate the definition of the TuCSoN (Tuple Centres
Spread over Networks) model for the coordination of Internet agents, based on the
notion of programmable coordination medium [9]. TuCSoN defines an interaction
space made up of a multiplicity of independent communication abstractions, called
tuple centres, spread over Internet nodes, and used by agents to interact with other
agents as well as with each local execution framework. Tuple centres are enhanced
tuple spaces, whose behaviour in response to agent triggered communication events
is no longer restricted to the raw Linda-like pattern-matching mechanism but can
be extended in order to embody specific coordination laws. This makes it possible to
embed global system properties into the interaction space, by charging tuple centre
behaviour with many issues critical to Internet applications, such as heterogeneity
and dynamicity of the hosting environments, mobile agent cooperation over space
and time, and incremental application development.

The rest of this paper is organised as follows. Section 2 discusses the issue of
coordination for Internet agents. Section 3 describes the TuCSoN model. Section 4
presents an application example in the area of distributed information retrieval and
discusses the impact of TuCSoN on it.

2. Motivation and related work

In agent-based Internet applications, both agent-to-agent and agent-to-execution
environment interactions have to be modelled and managed. As argued in [2],
the choice of the coordination model actually represents a key-point in the design

coordination for internet application development 253

process. In spite of that, among the several systems and programming environ-
ments aimed at supporting and facilitating the design and development of Internet
applications [22, 21, 20], only a few of them focus on the definition of a suitable
coordination model [7, 3].

2.1. Direct interaction models

In the context of mobile agent systems, direct communication between interacting
components is usually adopted as the main interaction protocol. Java-based mo-
bile agents systems [22, 20] adopt the client-server pattern typical of object-based
systems, and can exploit the TCP/IP protocol at the socket level. In the context
of intelligent multi-agent systems, the issue of inter-agent communication has been
widely studied in the past few years [13, 19, 25], leading to the definition of sophis-
ticated interaction models for knowledge exchange that are based on peer-to-peer
direct communication.

In our opinion, the above approaches do not generally suit Internet agents. In
fact, direct coordination implies a strict coupling between interacting entities in
terms of name (who the partners are), place (where the partners are) and time
(when the partners interact), which makes it difficult to deal with both agent mobil-
ity and execution environment unpredictability. In addition, mobility prevents direct
inter-agent coordination from being scalable: while it is possible to let mobile agents
interact in a small-sized network by tracking their movements, applying this method
to the Internet would be expensive, ineffective and unreliable. Furthermore, direct
inter-agent communication makes it difficult to enforce security policies, given that
interaction typically occurs with no control by the hosting execution environments.

The above problems are partially solved by the meeting-oriented coordination
model, implemented by the ARA [30] and MOLE [1] systems. In this model, inter-
actions are forced to occur in the context of abstract meeting-points, implemented
as special-purpose agents, which application agents join, either implicitly or explic-
itly, and can interact there with no need to know each other. However, agents still
need to share the common knowledge of meeting points’ identities and locations.

The interposition of specialised communication middleware—as in CORBA [26]
and in KQML [13]—is an alternative approach to solving the identified problems of
direct interaction models. However, apart from the uneasiness to scale to a world-
wide area, middleware cannot help models based on direct communication in shap-
ing the components’ space of interaction according to the application needs. In fact,
they do not provide the appropriate abstractions and metaphors needed to handle
and rule the interaction space, which is actually what a coordination model is meant
to do.

2.2. Blackboard-based coordination

Blackboard-based architectures [12] exploit shared data spaces (blackboards) to pro-
mote indirect communication. Since interaction is mostly ruled by the information

254 omicini and zambonelli

exchanged rather than by the communication actions, blackboard-based coordina-
tion models are usually defined as data-driven ones [29].

By uncoupling interacting entities, blackboard-based coordination models solve
many problems related to mobility and unpredictability: agents can interact via
blackboards without knowing who and where the partners are. In addition, these
models intrinsically provide a better support for security models, since blackboards
(where all interactions occur) can easily be fully monitored. Furthermore, the scal-
ability limit of computational models based on shared information spaces—that
would made them inapplicable to the Internet area—can be easily overcome by en-
forcing locality: local blackboards can be associated to each node, to be used by
agents to interact locally to their current execution environment.

Among several models, Linda tuple spaces [15, 17], based on associative black-
boards, are particularly suitable to data-oriented applications. In fact, associative ac-
cess permits agents to retrieve data from blackboards through some data-matching
mechanism (like unification, or pattern-matching) integrated within the blackboards.
This makes it easier to deal with data incompleteness as well as with dynamicity and
heterogeneity of the information sources, which are typical of Internet nodes.

Some recent proposals recognise the suitability of blackboard-based coordination
models in the context of Internet application, and define and implement locally
shared information spaces. In Ambit [4], a recently proposed formal model for mo-
bile computations, a mobile entity can “attach” a message to a given system, like a
post-it, which another entity can retrieve and read later. However, no associative ac-
cess to messages is provided. The ffMAIN agent system [11] defines mobile agents
that interact with both other agents and the local resources of the hosting execu-
tion environment via an information space accessed through the HTTP protocol,
which also integrates a simple associative mechanism. The PageSpace coordination
architecture [7] defines multiple—Linda-like—information spaces where agents of
any kind can store and associatively (i.e., by class name) retrieve object references.

2.3. Toward programmable communication abstractions

Despite the potential benefits of uncoupled and associative coordination [17], only
a few proposals in the area of Internet agents already adopt associative communica-
tion spaces. In our opinion, this may be due to the fact that Linda-like coordination
lacks flexibility and control: both agent-to-agent coordination and access to local
data are bound by the built-in data-access mechanisms provided by the blackboard.
Then, any coordination policy not directly supported by the model has typically to
be charged upon agents. In an open, heterogeneous and unpredictable environment
like the Internet, this is likely to notably increase the complexity of the agents, which
are forced both to implement in their code the peculiar coordination protocols re-
quired by the application, and to solve Internet-related issues, such as heterogeneity
and dynamicity of the information sources in the execution environments. In addi-
tion, forcing coordination rules to be distributed between blackboards and agents
affects the global application design and breaks the logical separation between co-
ordination and algorithmic issues.

coordination for internet application development 255

In order to address this limit, two kinds of proposals have been made, which
enhance the Linda communication kernel either (i) by permitting the addition of
new communication primitives, or (ii) by permitting to program and extend the
default behaviour of the primitives.

The former approach is adopted, for example, by T Spaces [23]: agents can add
any new primitive to the tuple space, in order to implement any required transaction
on the stored data. However, this approach cannot generally suit open applications,
because exploiting the additional functionalities requires a strict coupling between
the interacting entities, i.e., agents have to know which operations other agents may
have installed in the tuple space.

The latter approach has been adopted in the past by a few (non Internet-oriented)
systems like Law-governed Linda [24] and ACLT [27]. However, the capability of
programming the behaviour of the communication abstractions in response to com-
munication events suits Internet applications well, because agents can adopt the
same communication primitives, independently of the fact that their default be-
haviour could have been extended. The TuCSoN coordination model for Internet-
based mobile agents, presented in the following section, starts from the above con-
siderations, and exploits the notion of tuple centre, an enhanced tuple space whose
observational behaviour is not fixed once and for all by the coordination model, as
in Linda, but can instead be tailored according to the specific application needs.

The MARS system [3], developed in the context of an affiliated research project,
is (to the best of our knowledge) the only research proposal that defines and im-
plements a programmable tuple space model for mobile agents. However, unlike
TuCSoN, MARS exploits an object-oriented tuple space model, which makes it
more suitable to service and network management applications.

The already mentioned PageSpace architecture [7] recognises the need to con-
trol and tune the interaction space. However, PageSpace relies on special-purpose
agents associated to the interaction space to drive the local coordination laws, rather
than on the programmability of the coordination media.

3. TuCSoN

TuCSoN (Tuple Centres Spread over Networks) is a coordination model for Internet
applications based on network-aware and mobile agents. Following the concepts
and terminology introduced in [28], TuCSoN’s most relevant features, apart from
its Linda-like coordination language, concern

— the TuCSoN coordination space, with its twofold interpretation as either a global
interaction space made up of uniquely denoted communication abstractions, or
as a collection of local interaction spaces, and

— the TuCSoN coordination media, that is, the communication abstractions whose
behaviour can be defined so as to embed global coordination laws.

The first feature effectively supports the twofold role of Internet agents, as network-
aware entities that locate and access Internet data and resources, and as roaming

256 omicini and zambonelli

entities that transfer their execution on a site where they interact with local re-
sources. The second one enriches the coordination model, which is basically data-
oriented, with the flexibility and control required to deal with the complexity of
Internet applications.

3.1. The coordination space

TuCSoN coordination space relies on a multiplicity of independent communication
abstractions, called tuple centres, spread over Internet nodes and used by agents
to interact with other agents as well as with the local execution framework. Each
tuple centre is associated to a node and is denoted by a locally unique identifier.
As shown by the example in Figure 1, each node provides its own version of the
TuCSoN (coordination) media space (that is, the set of the admissible tuple centre
identifiers), by virtually implementing each tuple centre as an Internet service.

As a result, each tuple centre can be identified via either its full Internet (abso-
lute) name or its local (relative) name. More precisely, tuple centre tc provided
by the Internet node node can be referred to by means of its absolute name
tc@node from everywhere in the Internet, and by means of its relative name tc

in the context of node node. According to the example in Figure 1, the name
access@lia.deis.unibo.it univocally denotes the tuple centre access provided
by the Internet node lia.deis.unibo.it, while the name access may denote one
of the three access tuple centres provided by the three nodes, depending on the
node where the name is used.

Correspondingly, the TuCSoN coordination space can be seen as providing for
either a global interaction space, featuring a collection of uniquely denoted tuple

Figure 1. Three TuCSoN nodes �lia, library, lab2�.deis.unibo.it, each one implementing its
local version of the same TuCSoN media space �default, access, www�.

coordination for internet application development 257

centres (when referring to absolute tuple centre names), or a collection of local
interaction spaces, defining the same set of identifiers (when referring to relative
tuple centre names). For instance, the TuCSoN coordination space depicted in
Figure 1 defines three distinct local versions of the same media space �default,
access, www�. This space can also be interpreted as a unique, global media
space �default@lia.deis.unibo.it; default@library.deis.unibo.it; : : : ;
www@library.deis.unibo.it; www@lab2.deis.unibo.it�.

The following subsection should make clear how this can benefit Internet agent
coordination, by simplifying the interaction protocol.

3.2. The coordination language

Agents interact by exchanging tuples via tuple centres by means of a small set of
communication primitives (out, in, rd, inp, rdp) having basically the same seman-
tics as Linda ones. According to [5], out writes a tuple in a tuple centre, while in

and rd send a tuple template and expect the tuple centre to return a tuple match-
ing the template, either deleting it or not from the tuple centre, respectively. The
primitives inp and rdp work analogously to in and rd: however, while the lat-
ter wait until a matching tuple can be retrieved from the tuple centre, the former
immediately fail if no such tuple is found.

The general form for any admissible TuCSoN communication operation per-
formed by an agent is

tc?operation(tuple)

asking tuple centre tc to perform operation using tuple. Since tc can be either
an absolute or a relative tuple centre name, agents can adopt two different forms of
primitive invocation, the network and the local one, respectively, according to their
contingent needs.

The network communication form tc@node?operation(tuple) is used by agents
when they behave as network-aware entities, by denoting tuple centres through their
absolute names in the global TuCSoN interaction space. For example, this form can
be used by a mobile agent to remotely access a candidate hosting environment,
query it, and possibly authenticate itself before migrating there.

The local communication form tc@operation(tuple), referring by definition to
the local tuple centre implementation of the current execution node of an agent,
is used by agents when they behave as local components of their current hosting
environment. This form is typically used by mobile agents to interact with local
resources and to exchange data and knowledge with other agents.

The local communication form is not necessary, per se: an agent could always re-
fer to a tuple centre via its absolute name, even when accessing the tuple centres of
its current execution environment. However, the availability of both communication
forms enforces the separation between network-related issues (such as agent migra-
tion across the nodes) and local computation issues (such as the interaction with the
resources local to a node), thus reducing agent complexity. The above approach is

258 omicini and zambonelli

somehow analogous to the one provided by most file systems, where pathnames can
be specified in a relative (context-dependent) form, to facilitate file management
activities.

3.3. The coordination media

As discussed in Subsection 2.3, a typical problem of Linda-like coordinated systems
relies on the tuple space built-in and fixed behaviour: neither new primitives can be
added, nor can new behaviour be defined in response to communication operations.
As a result, either the support provided by the communication device is enough for
the application purposes, or the interacting entities have to be charged in their code
with the burden of the coordination. For this reason, TuCSoN exploits tuple centres
as its coordination media, where a tuple centre is a tuple space enhanced with the
notion of behaviour specification. More precisely, a tuple centre is a communication
abstraction which is perceived by the interacting entities as a standard tuple space,
but whose behaviour in response to communication events can be defined so as to
embed the laws of coordination.

According to Subsection 3.1, each TuCSoN node provides for a multiplicity of
tuple centres. Then, TuCSoN shares the advantages of models based on multiple
tuple spaces (such as enhanced expressiveness and support for modularity, infor-
mation hiding and security [16, 6]), and goes beyond, since the behaviour of every
single tuple centre can be defined separately and independently of any other tu-
ple centre according to specific coordination tasks. Thus, different communication
abstraction can encapsulate different coordination laws, providing system designers
with a finer granularity for the implementation of global coordination policies.

Generally speaking, the behaviour of a stateful communication abstraction like
a tuple space is naturally defined as the observable state transition following a
communication event. As a result, defining a new behaviour for a tuple centre
basically amounts to specifying a new state transition in response to a standard
communication event. This is achieved by enabling the definition of reactions to
communication events via a reaction specification language [10]. More precisely, a
reaction specification language makes it possible to associate any of the TuCSoN
basic communication primitives (out, in, rd, inp, rdp) to specific computational
activities, called reactions.

A reaction is defined as a set of non-blocking operations, and has a success/failure
transactional semantics: a successful reaction may atomically produce effects on the
tuple centre state, a failed reaction yields no result at all. Each reaction can freely
access and modify the information collected in the form of tuples in a tuple centre,
and can access all the information related to the triggering communication event
(such as the performing agent, the operation required, the tuple involved, : : :). Each
communication event may in principle trigger a multiplicity of reactions: however,
all the reactions executed as a consequence of a single communication event are
all carried out in a single transition of the tuple centre state, before any other
agent-triggered communication event is served.

coordination for internet application development 259

As a consequence, from the agents’ viewpoint, the result of the invocation of a
communication primitive is the sum of the effects of the primitive itself and of all the
reactions it triggered, perceived altogether as a single-step transition of the tuple
centre state. With respect to the default tuple space semantics, such a transition
is no longer limited to being the simple one (such as adding/deleting one single
tuple) determined once for all by the model, but can instead be made as complex
as desired by the system designer. This makes it possible to uncouple the agent’s
view of the tuple centre (which is perceived as a standard tuple space) from the
tuple centre actual state, and to connect them according to the application needs.

3.4. Tuple centres with ReSpecT

The TuCSoN model for the coordination of mobile agents abstracts from both
the communication language (tuple kind and matching criterion) and the lan-
guage adopted for tuple centre behaviour specification. In this paper, we adopt the
ReSpecT model [10] for TuCSoN tuple centres, defining both the communication
and the specification language, since (i) it is already well-established from both a
theoretical and an implementation viewpoint, and (ii) it provides communication
with the expressiveness of first-order logic, enabling the twofold interpretation of
the communication abstraction as both a message repository and a theory of the
interaction [27].

A ReSpecT tuple centre contains (ordinary) tuples and specification tuples. A
ReSpecT tuple is a first-order logic ground unitary clause, for which the Prolog
syntax is adopted. The collection of the logic tuples of a ReSpecT tuple centre
constitutes its tuple space part. A ReSpecT specification tuple, instead, is a Prolog
unitary clause of the form reaction(Op, R), which associates a communication
event represented as a logic term Op to the reaction R. The collection of all the
specification tuples of a tuple centre constitutes its specification space part, i.e., the
tuple centre behaviour specification.

Given a tuple centre tc and its behaviour specification Stc , the occurrence of a
communication event E (such as the incoming request to tc to perform an out oper-
ation) triggers all the reactions R such that a specification tuple reaction(Op, R) ∈
Stc exists, and E matches Op (that is, the representation of E as a logic term E uni-
fies with Op). All the reactions triggered are executed according to the transactional
semantics defined in the previous subsection for any TuCSoN tuple centre.

Each ReSpecT reaction is syntactically defined as a conjunction of reaction goals,
which can (i) access the information related to the triggering communication event,
(ii) manipulate terms, and (iii) read, write and consume tuples. In particular, pred-
icates like out r, in r, rd r, and no r make it possible to access and modify the
space of the tuples. More precisely, out r basically works as a conventional out,
while in r and rd r have the same effect as inp and rdp, respectively. Comple-
mentary to rd r, no r succeeds when its argument tuple does not unify with any
tuple in the tuple space, but fails otherwise.

Further ReSpecT reaction predicates are related to the semantics of some com-
munication primitives. First of all, in and rd may be seen as made up of two distinct

260 omicini and zambonelli

communication events [18]: the first query phase (pre phase), when a tuple template
is provided, and the subsequent answer phase (post phase), when a matching tuple
is eventually returned to the querying agent. According to that, ReSpecT introduces
the two pre/0 and post/0 predicates, succeeding only in the pre and post phase, re-
spectively, so that one may define reactions succeeding only in the pre or post phase
of in/rd operations. Analogous considerations apply to inp and rdp, too. However,
since these primitives may either succeed or fail, ReSpecT introduces two further
predicates, success/0 and failure/0, which succeed only in the case that the cur-
rent non-blocking primitive succeeded or failed, respectively. This makes it possible
to define different reactions for the post phase of an inp or a rdp, depending on
the success or failure of the operation.

Reactions can be defined not only for communication primitives, but also for
operations on tuples performed inside reactions. As a result, in a reaction(Op,

Body) tuple, Op may be not only out(T), in(T), rd(T), inp(T), or rdp(T), but
also out r(T), in r(T), rd r(T), or no r(T), where T stands for a logic tuple.

As a simple example, consider the following reaction:

reaction(out(p()), (in r(p(a)), in r(p(X)), out r(pp(a, X))))

which is triggered whenever a new logic tuple with predicate p and one argument is
inserted in the tuple centre by an out. Its intended effect is to replace two p tuples,
each one with one argument (one of which has to be a) with a single pp tuple with
the two arguments of the p tuples.

Since the reactions to a communication event are executed only after the event
has actually occurred, the p tuple emitted is already in the centre space when re-
action execution starts. If even a single reaction goal fails (possibly because there
is no further p tuple in the tuple centre, apart from the one just inserted by the
out), the whole reaction fails, and its execution yields no effects at all on the tuple
centre. If the reaction succeeds, instead, all its associated side-effects (removal of
two p tuples, and insertion of one pp tuple) are realised altogether as a single state
transition of the tuple centre. For instance, if tuple centre tc contains only the ordi-
nary tuple p(a) and the specification tuple above, the invocation of tc?out(p(b))
actually results in changing the set of the tuples of tc from �p(a)� to �pp(a,b)�
(instead of �p(a),p(b)�, as expected in the case of a standard tuple space).

4. Building an Internet application with TuCSoN

This section is aimed at showing the impact of the TuCSoN coordination model on
the design and development of Internet applications, by discussing a simple example
which raises several typical problems of Internet application development: hetero-
geneity of the information sources, incremental specification and development, safe
and secure access to resources.

Let us consider an Internet-based heterogeneous information system consisting of
a collection of WWW servers, which differ in both their software and hardware ar-
chitectures, as well as in the way in which knowledge is organised and represented.

coordination for internet application development 261

Think for instance of a group of servers belonging to different research groups, con-
taining information about their research activities which the groups mean to share.
In order to build a global information service from this heterogeneous collection,
the servers federate and constitute a TuCSoN environment: each federated node
implements TuCSoN as an Internet service, and provides its local version of the
same TuCSoN name space.

We suppose that an application has to be set up in this framework, exploiting
mobile agents to gather information about knowledge organisation on the WWW
servers, and automatically producing HTML pages of references on its home site.
In this context, mobile agents are used as ‘information retrievers’ roaming all the
federated servers, gathering all relevant information, and coming back to their home
site.

4.1. Application design

The design of a multi-component application should define the interacting entities
and their goals, as well as their interaction protocol, which determines (i) their ob-
servational behaviour, and (ii) their perception of the outside world. In this context,
exploiting a coordination model means shaping the interaction space according to
the abstractions provided by the model.

In our application example, mobile agents (acting as information retrievers roam-
ing a collection of federated WWW servers) and local applications (acting as in-
formation sources hosted by a single WWW server) interact via a multiplicity of
ReSpecT tuple centres, constituting the TuCSoN interaction space.

Given one or more keywords, each agent has to retrieve the URL of every HTML
page concerning each keyword. Then, TuCSoN can be exploited at its best by en-
suring that:

— Each federated WWW server provides a tuple centre named www recording the
server hypertextual structure, as well as the knowledge contained.

— Each www tuple centre is programmed on each WWW server so that it is
perceived by the agents as a tuple space containing one tuple of the form
kwURLs(KW,URLs) for any possible keyword KW, where URLs is the list of all
the URLs of the pages concerning KW, coherently with the current state of the
server.

This makes it possible to design agents around a very straightforward protocol,
such as the one sketched in Figure 2 with a sample imperative pseudo-language.
From any hosting node, the agent first interacts remotely (as a network-aware en-
tity) with the nodes it needs to explore, using the network communication form,
then it moves there (if allowed). In the new hosting node, the agent interacts with
the host’s resources through the local media space using the local communication
form. What Figure 2 helps to point out is that the interaction with local resources is
always performed in the same way, independently of the current hosting node: wher-
ever it is currently located, the agent simply reads tuples of the form kwURLs(KW,

262 omicini and zambonelli

: : :
mySelf = "Explorer Agent";keyword="TuCSoN";

while(nextNode = head(NodeList)) �
// ask access to the nextNode host

// with the network communication form

if (access@nextNode?rdp(authorised(id(mySelf)))) �
// if access is granted migrate to nextNode

moveTo(nextNode);

// locally access the tuple centre library

// of the hosting node

// with the local communication form

www?rd(kwURLs(keyword, ?URLs));

elaborateAndRecord(URLs);

�
NodeList = tail(NodeList);

�
: : :

Figure 2. A simple interaction protocol for a TuCSoN mobile agent.

URLs) from the local version of the www tuple centre. For example, when look-
ing for all the pages related to the TuCSoN project, the agent would perform a
www?rd(kwURLs("TuCSoN",URLs)) invocation, expecting as a result the instantia-
tion of variable URLs to the list of all URLs of the HTML pages of the server
containing some references to TuCSoN.

4.2. Heterogeneity

The issue of the heterogeneity of information sources may be faced in principle by
making mobile agents aware of all the different ways in which knowledge is rep-
resented and organised. This choice, however, would make agent design a highly
complex task, and produce a very inflexible structure. For instance, in our applica-
tion example, this choice would possibly imply the re-design of agents when a new
federated server is added.

In TuCSoN, instead, the burden of heterogeneity can be charged upon tuple
centres, which bridge the gap between the agent interaction protocols and the par-
ticular knowledge representation model adopted by each site. Take for instance two
federated WWW sites, A and B, recording page-content relations in two different
ways.

Server A describes the content of each page in terms of keywords by
means of tuples of the form keyword(KW, PageName), while page organisa-
tion is recorded by means of tuples of the form page(PageName, PageURL).
Both kind of tuples are stored in the local www tuple centre. For instance,
the logic tuples keyword("TuCSoN", "TuCSoN Home") and page("TuCSoN Home",

coordination for internet application development 263

"/TuCSoN/index.html") in the tuple centre www relate the location of the TuCSoN
home page with the keyword "TuCSoN".

In order to be perceived by agents as a tuple space containing one tuple
kwURLs(KW, URLs) for any possible keyword KW, the tuple centre www provided by
server A is programmed to react to an rd(kwURLs(KW, URLs)) operation (i) by
checking whether the required tuple is available, (ii) if not, by finding all the pages
referring to keyword KW, (iii) by building the list of their corresponding URLs, and
(iv) by finally providing the agent with the required answer tuple.

For instance, if the tuple centre www local to A contains the tuples

{ keyword("TuCSoN","TuCSoN Home"),

keyword("TuCSoN","ReSpecT Home"),

page("TuCSoN Home","/TuCSoN/index.html"),

page("ReSpecT~Home","/ReSpecT/index.html") }

then the invocation

www?rd(kwURLs("TuCSoN",URLs))

makes www react by adding tuple

kwURLs("TuCSoN",["/TuCSoN/index.html","/ReSpecT/index.html"])

to its tuple set. The corresponding ReSpecT code is presented in Figure 3a.
In its turn, server B is built around a DBMS application recording the site content.

The DBMS interacts with the tuple centre www through a wrapper, translating tu-
ples into queries, and answers into tuples. The wrapper waits for tuples of the form
query(Query) in www and translates them into queries for the DBMS. Then, it waits
for the DBMS answer and translates it into a tuple answer(Query, TableList),
where TableList is the answer table provided in the form of a list, which is put
in tuple centre www. In particular, a query of the form query(kwSearch(KW))

makes the wrapper ask the DBMS to return the URLs of all the pages contain-
ing references to keyword KW. The consequent answer is then given as a tuple an-

swer(kwSearch(KW), URLs) in www.
Tuple centre www of the server B can be programmed to react to an incoming

rd(kwURLs(KW, URLs)) invocation by producing a tuple query(kwSearch(KW)) for
the wrapper. When the corresponding tuple answer(kwSearch(KW), URLs) is in-
serted by the wrapper in www, the tuple kwURLs(KW, URLs) initially required by the
agent is finally produced.

For instance, the invocation of www?rd(kwURLs("TuCSoN", URLs)) on server B
generates tuple query(kwSearch("TuCSoN")), which is consumed by the wrap-
per and translated into the proper query to the DBMS. If the DBMS returns
a table with the two entries "/TuCSoN/index.html", "/MobAg/index.html" as
its answer, the wrapper inserts the tuple answer(kwSearch("TuCSoN"), ["/TuC-

SoN/index.html", "/MobAg/index/html"]) in www. In the end, the inserted tu-
ple is transformed into the tuple kwURLs("TuCSoN", ["/TuCSoN/index.html",

"/MobAg/index.html"]) required by the agent. The corresponding code is shown
in Figure 3b.

264 omicini and zambonelli

reaction(rd(kwURLs(KW,)), (pre, % When a kwURLs(KW,) tuple is read,

no r(kwURLs(KW,)), % but it is unavailable,

out r(kwPages(KW,[])))). % start building the list of pages on KW

reaction(out r(kwPages(KW,Pages)), (% For any keyword(KW,Page) tuple,

in r(keyword(KW,Page)), % add Page to the page list

out r(kwPages(KW,[Page|Pages])))). % and keep on building the list

reaction(out r(kwPages(KW,Pages)), (% Stop building the list of pages on KW:

no r(keyword(KW,)), % no more keyword(KW,) tuples are left, so

out r(pageURLs(KW,Pages,[])))). % start building the list of the URLs

reaction(out r(kwPages(KW,Pages)), % Delete the kwPages/2 tuple

in r(kwPages(KW,Pages))). % just outed

reaction(out r(pageURLs(KW,[Page|Pages],URLs)),(% For any Page found,

rd r(page(Page,URL)), % get the corresponding URL,

out r(keyword(KW,Page)), % restore the previously consumed keyword/2 tuple

out r(pageURLs(KW,Pages,[URL|URLs])))). % and keep on building the URL list

reaction(out r(pageURLs(KW,[],URLs)), % When no more Pages are left, produce

out r(kwURLs(KW,URLs))). % the kwURLs(KW,URLs) tuple initially required

reaction(out r(pageURLs(KW,Pages,URLs)), % Delete the pageURLs/3 tuple

in r(pageURLs(KW,Pages,URLs))). % just outed

Figure 3a. Swww@A: behaviour specification for the www tuple centre of server A.

reaction(rd(kwURLs(KW,)), (pre, % Intercept a rd(kwURLs(KW,)) operation

no r(kwURLs(KW,)), % when no kwURLs(KW,)tuple is available, and

out r(query(kwSearch,KW)))). % translate it into a query tuple for the DBMS

reaction(out(answer(kwSearch(KW),URLs)), (% Get the answer tuple from the DBMS,

in r(answer(kwSearch(KW),URLs)), % delete it from the tuple centre, and

out r(kwURLs(KW,URLs)))). % translate it into the kwURLs/2 tuple required

Figure 3b. Swww@B: behaviour specification for the www tuple centre of server B.

4.3. Application incremental development

Today complex software systems typically grow and change over time, to dynam-
ically embody new features and provide new services, so that their design should
intrinsically support and promote their incremental development. Since they are the
core of a flexible design process, TuCSoN tuple centres can be easily exploited so as
to take charge of the burden of incremental development, which can be performed
transparently to the already existing components.

Let us assume that the federated WWW server C has the same structure and
organisation as the server A described in the previous subsection. Then, suppose
that an intelligent agent L is added to C, to learn from user interaction and infer
new information from the user’s exploration paths. In particular, say that L is able
to infer that two knowledge items are strictly related from a semantic viewpoint.
So, whenever such a new relation is inferred, L makes it available to the world
by emitting a tuple of the form relKW(KW, RKW) in the tuple centre www, stating
that whichever refers to RKW typically refers to KW too. For example, if L infers
that pages concerning coordination typically refer to TuCSoN, too, it adds the tuple
relKW("TuCSoN","coordination") to www.

It would then be desirable to integrate the new component L in the whole system
in a transparent way, by making knowledge inferred by L available to explorer agents
without affecting their interaction protocol. To this end, a TuCSoN tuple centre can
be exploited to let a mobile agent, which is moving to C and asking for keyword KW,

coordination for internet application development 265

transparently get all the pages concerning both KW and all its related keywords, as
inferred by L so far. Thus, whenever a new relKW(KW, RKW) tuple is inserted by L,
www is programmed to react by looking for all the pages referring to RKW: for each
tuple keyword(RKW, PageName) found, a tuple keyword(KW, PageName) is added
to www, stating that the page concerns KW, too. Since any information previously
produced about KW in the form of a kwURLs(KW, URLs) tuple is now out of date,
it is finally removed, so that the first subsequent request by an agent causes the
production of a tuple kwURLs containing the updated information.

For instance, if the tuple relKW("TuCSoN", "coordination") is put into www

when keyword("coordination", "Coordination Home") is already in, reac-
tions add a tuple keyword("TuCSoN", "Coordination Home"). Subsequently,
if www already contains tuple kwURLs("TuCSoN", ["/TuCSoN/index.html",

"/ReSpecT/index.html"]), it is removed, so that any subsequent request for
such a tuple results in the insertion of the tuple kwURLs("TuCSoN", ["/TuC-

SoN/index.html", "/ReSpecT/index.html", "/coordination/index.html"]).
Figure 4 shows the corresponding ReSpecT code. It should be noted that the
behaviour specification of the tuple centre www local to C is simply given by the
union of the specification tuples in Figure 3a with those in Figure 4, that is, more
formally,

Swww@C = Swww@A ∪ 1Swww@C

This shows how TuCSoN makes the process of incremental development straight-
forward.

4.4. Safety and security

Malicious or simply badly programmed agents may undermine the internal coher-
ence of the hosting execution environments. A knowledge source should then be

reaction(out(relKW(KW,RKW)), % When new information is inferred by the learner

out r(newPages(KW,RKW,[]))). % start the process to find new related pages

reaction(out r(newPages(KW,RKW,Pages)), (% Collect all the Pages concerning RKW:

in r(keyword(RKW,Page)), % if another Page exists,

out r(newPages(KW,RKW,[Page|Pages])))). % add it to the list

reaction(out r(newPages(KW,RKW,Pages)), (% Collect all the Pages concerning RKW:

no r(keyword(RKW,)), % if no Page is left,

out r(relPages(KW,RKW,Pages)))). % state that Pages concern both KW and RKW

reaction(out r(newPages(KW,RKW,Pages)), % Delete the newPages/3 tuple

in r(newPages(KW,RKW,Pages))). % just outed

reaction(out r(relPages(KW,RKW,[Page|Pages])),(% Until there are Pages,

out r(keyword(KW,Page)), % state they concern KW

out r(keyword(RKW,Page)))). % as well as RKW

reaction(out r(relPages(KW,RKW,[])), % When no more Pages are left, if it is available,

in r(kwURLs(KW,))). % delete the kwURLs(KW,)) tuple, now out-of-date

reaction(out r(relPages(KW,RKW,Pages)), % Delete the relPages/3 tuple

in r(relPages(KW,RKW,Pages))). % just outed

Figure 4. 1Swww@C : further specification tuples for the www tuple centre of C.

266 omicini and zambonelli

reaction(out(updatePage(Name,NewURL)), (% If an updatePage(Name,NewURL) tuple is outed,

in r(updatePage(Name,NewURL)), % delete it immediately,

in r(page(Name,)), % delete the old location information of Page

out r(page(Name,NewURL)))). % and write the updated one

reaction(out(page(PageName,URL)), % If a pageName/2 tuple is outed,

in r(page(PageName,URL))). % delete it immediately

reaction(in(page(,)), (post, % If a pageName/2 tuple is consumed by an in,

current tuple(page(PageName,URL)), % determine its arguments

out r(page(PageName,URL)))). % and replace it immediately

reaction(inp(page(,)), (post, success, % If a pageName/2 tuple is consumed by an inp,

current tuple(page(PageName,URL)), % determine its arguments

out r(page(PageName,URL)))). % and replace it immediately

Figure 5. 1Swww@A: further specification tuples for the www tuple centre of A.

protected from those interactions which could affect the semantic consistency of
the information contained. In a coordination model like TuCSoN, where commu-
nication is mediated by a shared data space, the global consistency of a system
with respect to interaction can be granted by providing for the consistency of the
communication state (the space of the tuples, in TuCSoN).

Take again the server A sketched in Subsection 4.2, where page organisation is
recorded through tuples of the form page(PageName, PageURL) contained in the
local version of the tuple centre www. Then, we may like to ensure that, at any time,
each HTML page of the server has its own unique URL recorded in www. This
means that, given a PageName page, it should never happen that a page(PageName,

PageURL) tuple is not present in www, and, dually, that two or more tuples of that
kind occur in www at the same time.

The behaviour of tuple centre www can then be defined so as to avoid insertions
and removals of page(PageName, PageURL) tuples, by adding to www behaviour
specification reactions that make any in, inp, or out operation involving such tuples
ineffective. Coherently, www behaviour can be programmed to make the atomic up-
date of a page location possible through the emission of an updatePage(PageName,

NewURL) tuple. The corresponding reactions (i) delete the updatePage tuple just in-
serted in www, (ii) delete the page tuple recording the old page URL, (iii) add the
page tuple recording the new page URL. These three steps are performed alto-
gether atomically in a single transition of the tuple centre state, thus preserving
information consistency at the agent’s perception level.

For example, if tuple centre www contains the tuple page("TuCSoN Home",

"/TuCSoN/index.html"), the local invocation of a call www?out(updatePage

("TuCSoN Home", "/TuCSoN/home.html")) atomically results in the removal of
page("TuCSoN Home", "/TuCSoN/index.html") and in the addition of page

("TuCSoN Home", "/TuCSoN/home.html") to www. If we denote with A′ the server
A once enriched with the ReSpecT reactions described in this subsection (de-
noted as a whole as 1Swww@A in Figure 5), the behaviour specification of A′ is then
given by

Swww@A′ = Swww@A ∪ 1Swww@A

coordination for internet application development 267

5. Conclusions and future work

The most promising approach to the design and development of distributed applica-
tions over the Internet is based on network-aware and mobile agents. However, this
calls for new models and languages to manage interactions among the application
agents.

The paper identifies the main features of a coordination model suitable for In-
ternet applications and presents the TuCSoN coordination model, based on in-
dependently programmable communication abstractions local to each node, called
tuple centres. By defining their behaviour in response to communication events, tu-
ple centres can be charged with many issues critical to Internet applications, such
as heterogeneity and unpredictability of the execution environments, and (mobile)
agent cooperation over space and time.

As shown in this paper, the TuCSoN model can be effectively exploited in the
context of distributed information retrieval. However, we have already identified
several other application areas that could benefit from the programmable tuple
space model defined by TuCSoN such as agent-mediated electronic commerce and
distributed workflow management.

In spite of its many features, the TuCSoN model leaves some problems open. In
fact, the real Internet structure is not a flat one, but can be considered to be a hi-
erarchy of administrative domains separated by firewalls and gateways. So, we feel
that TuCSoN should be able to model this kind of topology, with regard both to
the naming of the tuple centres and to their local programmability. Furthermore,
security issues, such as agent authentication and privacy, or tuple centre protection
against malicious attacks, should be directly supported by the model. Our research
is currently focusing on these topics that, though neglected by this paper, neverthe-
less play a key role in the context of Internet applications. The first result of our
efforts is an extension of the TuCSoN model [8], which provides a unique, coherent
framework where coordination is exploited as the basis for dealing with network
topology, authentication and authorisation in a uniform way.

Acknowledgments

This work has been carried out under the financial support of the MURST (the
Italian “Ministero dell’Università e della Ricerca Scientifica e Tecnologica”) in the
framework of the Project MOSAICO “Design Methodologies and Tools of High
Performance Systems for Distributed Applications.”

References

1. J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, and M. Strasser, “Communication concepts for
mobile agent systems,” in Mobile Agents 97, LNCS 1219, Springer-Verlag, Berlin, 1997, pp. 123–135.

2. G. Cabri, L. Leonardi, and F. Zambonelli, “How to coordinate Internet applications based on mo-
bile agents,” in Proceedings of the 7th IEEE Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises, IEEE CS Press, 1998.

268 omicini and zambonelli

3. G. Cabri, L. Leonardi, and F. Zambonelli, “Reactive tuple spaces for mobile agent coordination,”
in Proceedings of the 2nd Workshop on Mobile Agents, LNCS 1477, Springer-Verlag, Berlin, 1998.

4. L. Cardelli and A. D. Gordon, “Mobile ambients,” in Foundation of Software Science and Computa-
tional Structures, 1998.

5. N. Carriero and D. Gelernter, “Linda in context,” Communications of the ACM, vol. 32(4), pp.
444–458, 1989.

6. P. Ciancarini, “Distributed programming with logic tuple spaces,” New Generation Computing, vol.
12, 1994.

7. P. Ciancarini, R. Tolksdorf, F. Vitali, D.Rossi, and A. Knoche, “Coordinating multiagent applications
on the WWW: A reference architecture,” IEEE Transactions on Software Engineering, vol. 24(5), pp.
362–375, 1998.

8. M. Cremonini, A. Omicini, and F. Zambonelli, “Modelling network topology and mobile agent inter-
action: an integrated framework,” in Proceedings of the 1999 ACM Symposium on Applied Computing
(SAC ’99), San Antonio, Texas, USA, February 28–March 2, 1999.

9. E. Denti, A. Natali, and A. Omicini, “Programmable coordination media,” in Coordination Languages
and Models, LNCS 1282, Springer-Verlag, Berlin, 1997, pp. 274–288.

10. E. Denti, A. Natali, and A. Omicini, “On the expressive power of a language for programming
coordination media,” in Proceedings of the 1998 ACM Symposium on Applied Computing (SAC ’98),
Atlanta, Georgia, USA, February 27–March 1, 1998.

11. P. Domel, A. Lingnau, and O. Drobnik, “Mobile agent interaction in heterogeneous environment.”
in Mobile Agents 97, LNCS 1219, Springer-Verlag, Berlin, 1997, pp. 136–148.

12. R. Englemore and T. Morgan, editors, Blackboard Systems. Addison-Wesley, Reading, MA, 1988.
13. T. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML as an agent communication language,” in

Proc. of the Third International Conference on Information and Knowledge Management, Gaithersburg,
Maryland, November 1994.

14. A. Fuggetta, G. Picco, and G. Vigna, “Understanding code mobility,” IEEE Transactions on Software
Engineering, vol. 24(5), pp. 352–361, 1998.

15. D. Gelernter, “Generative communication in Linda,” ACM Transactions on Programming Languages
and Systems, vol. 7(1), 1985.

16. D. Gelernter, “Multiple tuple spaces in Linda,” in Proceedings of PARLE, LNCS 365, 1989.
17. D. Gelernter and N. Carriero, “Coordination languages and their significance,” Communications of

the ACM, vol. 35(2), pp. 97–107, 1992.
18. D. Gelernter and L. Zuck, “On what Linda is: Formal description of Linda as a reactive system,” in

Coordination Languages and Models, LNCS 1282, Springer-Verlag, Berlin, 1997, pp. 187–204.
19. M. R. Genesereth and R. E. Filkes, “Knowledge interchange format: Version 3.0 reference manual,”

Technical Report Logic-92-1, Computer Science Department, Stanford University, 1992.
20. R. Gray, “Agent Tcl: A flexible and secure mobile-agent system,” in Proc. of the Fourth Annual Tcl/Tk

Workshop, Monterey, California, July 1996.
21. N. M. Karnik and A. R. Tripathi, “Design issues in mobile-agent programming systems,” IEEE

Concurrency, vol. 6(3), pp. 52–61, 1998.
22. J. Kiniry and D. Zimmerman, “A hands-on look at Java mobile agents,” IEEE Internet Computing,

vol. 1(4), pp. 21–33, 1997.
23. P. Wyckoff, S. W. McLaughry, T. J. Lehman and D. A. Ford, “T Spaces.” IBM Journal of Research

and Development, vol. 37 (3- Java Technology); pp. 454–474, 1998.
24. N. Minsky and J. Leichter, “Law-governed Linda as a coordination model,” in Object-Based Models

and Languages, LNCS 924, Springer-Verlag, Berlin, 1994, pp. 125–145.
25. A. Ohsuga, Y. Nagai, Y. Irie, M. Hattori, and S. Honiden. “PLANGENT: an approach to making

mobile agents intelligents,” IEEE Internet Computing, vol. 1(3), pp. 50–57, 1997.
26. OMG, CORBA 2.1 specifications, 1997. http://www.omg.org.
27. A. Omicini, E. Denti, and A. Natali, “Agent coordination and control through logic theories,” in

Topics in Artificial Intelligence, LNAI 992, Springer-Verlag, Berlin, 1995, pp. 439–450.
28. Andrea Omicini, “On the semantics of tuple-based coordination models,” in Proceedings of the 1999

ACM Symposium on Applied Computing (SAC ’99), San Antonio, Texas, USA, February 28–March 2,
1999.

coordination for internet application development 269

29. G. A. Papadopoulos and F. Arbab, “Coordination models and languages,” Advances in Computers,
vol. 46: The Engineering of Large Systems, pp. 329–400, August 1998.

30. H. Peine and T. Stolpmann, “The architecture of the Ara platform for mobile agents,” in Mobile
Agents ’97, LNCS 1219, Springer-Verlag, Berlin, 1997, pp. 50–61.

31. J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A note on distributed computing,” in Mobile
Object Systems, LNCS 1222, Springer-Verlag, Berlin, 1997, pp. 49–64.

