
An Extensible Framework for the Development
of Coordinated Applications

Enrico Denti, Antonio Natali, Andrea Omicini, Marco Venuti

LIA - DEIS - Universith di B~ogna
Vi~eRisorgimento, 2 - 40136, Bologna (It~y)

mailto:{edenti,anatali,aomicini,mvenuti}@deis.unibo.it
http://www-lia.deis.unibo.it/Staff/

A b s t r a c t . Distributed programming suffers from the lack of abstrac-
tions and tools required to handle and analyse the large amount of in-
formation characterising distributed systems. On the other hand, the
separation of computation and coordination models definitely simplifies
the design of a programming environment for distributed applications.
Starting from this consideration, the ~4CET coordination model extends
the basic Linda kernel, by providing support for heterogeneous multi-
agent systems, as well as for hybrid agent architectures integrating de-
duction and reaction. The design of the architectural support for the
AGE'/- model led to the definition of a general-purpose scheme which is
powerful enough to be used both for the system extension of the basic
communication kernel and for building application-defined development
tools. Such an approach is based on the idea of reactive communication
abstractions, which can be programmed by agents according to a speci-
fication language which is rooted in the same model as the coordination
language.

Keywords : Coordination models, Distributed programming environ-
ments, Extensible communication abstractions

1 I n t r o d u c t i o n

One of the main problems in developing distributed applications is the amount
of information which has to be handled and analysed. Many aspects concerning
concurrency, communication, synchronisation, sequential execution have to be
taken into account altogether in order to get the whole picture of a distributed
system. In particular, tools designed for the development of sequential applica-
tions do not suffice in a distributed environment: new tools, new abstractions
are needed in order to cope with the complexity of distr ibuted applications.

An effective approach to this problem consists in defining the dimensions
of a distributed execution [9], where different orthogonal aspects are identified,
each of which can be analysed independently and then combined so as to obtain
the complete view of a system.

Coordination models like Linda [6] give then a relevant contribution to the
definition of a framework for the development of distributed applications. With
regard to this issue, two aspects are likely to have a strong impact:

306

i) the separation [8] between the computation and the coordination models;
ii) the concept of shared memory abstraction as a communication device, com-

bined with the notion of generative communication [6].

According to (i), the aspects of communication can be considered separately
from those of sequential execution. Thus, any computation model can in principle
be integrated with coordination primitives, while retaining at the same time its
basic operational semantics. Apart from the obvious conceptual economy of this
approach, tools designed for the support of sequential programming are generally
inadequate to capture distributed abstractions, but they can be re-used in order
to describe the behaviour of the sequential components of a distributed system.
As a further result, the definition of abstractions and tools for a distributed
programming environment can now be concentrated on communication aspects
only.

From the same viewpoint, the main consequence of (ii) is that communica-
tion channels can be re-interpreted as knowledge repositories, so that they can
be used to get the whole picture of the communication state in a distributed
application. With such an approach, one could build, for instance, a program-
ming framework where a distributed application can be developed and executed
keeping computation monitoring and communication monitoring separate.

~4gET (first presented in [12]) is a coordination model for multi-agent sys-
tems. Originating from research activities in the robotics field [15], A g s is
founded on a basic Linda-like kernel, extended with the notion of logic tuple
space (see also [1, 4]) intended as the theory of the communication, along with
the concept of multiple tuple spaces [7]. Tuples are first-order unitary clauses,
and heterogeneous agents based on different technologies may exploit the logic
theory represented by a tuple space according to their peculiar perception [5].
Non-logic agents (e.g. ,4CET-C agents) perceive the tuple space abstraction as
a simple message repository, on which basic communication operations can be
performed. Logic agents (e.g., .dCZ:T-Prolog agents), instead, can exploit logic
tuple spaces as knowledge repositories which can be taken as bases for reasoning
activities. For this purpose, the .AC/:T coordination language provides a small
set of demo primitives allowing the design of hybrid agent architectures for logic
agents, integrating deduction and reaction in a unique conceptual framework
[12].

When facing the problem of providing a full-fledged programming environ-
ment for the ~4gs model, two options are basically available:

- hardwiring the language and the supporting tools in an ad-hoc environment;
- defining a general-purpose extension scheme, such that the basic communi-

cation model can be enriched with new primitives (like the demo primitives),
and the programming framework can be extended according to application
needs.

The main aim of this work is to show how such a general-purpose scheme can be
defined and exploited in a distributed programming environment like the Agl :T
supporting framework.

307

The proposed approach actually focuses on enhancing the communication
abstraction. The basic idea is to shift the reactivity of the communication ab-
straction from the communication state to the communication events, lifting
system observability from tuples to operations on tuples. Moreover, an event-
(re)action scheme is defined allowing reactive activities to be associated to the
basic communication operations. As a result, according to [11], active processes
determine the behaviour of the distributed system, while reactive ones are in
charge of the system monitoring.

Moreover, the supporting model provides a specification language meant to
program the behaviour of the communication abstractions in terms of event
reactions. Both supporting tools and language extensions can be built using this
simple specification language, which is in turn based on the same communication
model of the basic system: tuples and basic operations over tuple spaces. In
particular, this work intentionally ignores the intricacies related to the definition
of language extensions, by focusing instead on how such a specification language
can be exploited to build supporting tools for distributed programming.

The paper is structured as follows. Section 2 discusses the role of the tuple
space communication abstraction in a distributed programming environment like
ACZ;T. Section 3 introduces the general-purpose extension scheme upon which
the ACf~T multi-agent programming framework is built. This is then exploited
in Section 4 to show how some simple support tools for the .4g~;T programming
environment can be practically defined. Section 5 is devoted to final remarks and
conclusions.

2 E n h a n c i n g t h e c o m m u n i c a t i o n a b s t r a c t i o n

From the viewpoint of the design of a distributed programming environment,
the main consequence of the separation between the computation and the coor-
dination models, discussed in [8], is that we can concentrate on the definition of
abstractions and tools for communication only.

In the . 4 g E T model, communication devices are represented by a multiplicity
of named logic tuple spaces. A tuple space is a collection of first-order unitary
clauses, uniquely identified by a ground term. So, the set of the logic tuple spaces
can be read as the theory of the communication and taken as the view of the
communication state in a distributed application.

However, such views are not enough for our purposes. In fact, they can pro-
vide static inter-process communication views [9] (i.e. views based on the con-
tent of the communication channel), showing the effects of interaction but not
the interaction itself. Instead, it is widely acknowledged that distributed system
monitoring calls for dynamic inter-process communication views, showing the op-
erations performed on the communication channel. As a result, from the system
viewpoint, the observability level should be moved from communication state
observability to communication event observability. Since a logic tuple space
can be seen as a communication channel view, the above requirement results in
lifting the observability from tuples to operation over tuples.

308

Even though a tuple space may be perceived as a merely passive component,
it is actually (implicitly) reactive, since it must be able, at least, to wake up sus-
pended agents when a suitable new tuple is inserted. From this perspective, it
seems natural to ground our general-purpose extension scheme on the enhance-
ment of the communication abstraction, and in particular on the capability of
specifying new tuple space behaviours.

Then, although a tuple space is intrinsically reactive to its state changes, as
shown above, such a reactivity level is not enough, since it captures the effects
of operations on tuple spaces, but not the operations themselves. So, primitives
which do not result in a state modification, such as read, cause, by definition,
no reaction at all.

Our approach is then to enhance the tuple space reaction level, making it sen-
sitive to communication events rather than just to communication state changes.
Although such an enhancement obviously concerns primarily the system level,
the resulting ability should be made available also to the upper level of the ap-
plication agents, thus providing the programmer with a flexible way to control
the communication channel behaviour.

For this purpose, programmers should be provided with a specification lan-
guage letting them specify tuple space reactions. For the sake of uniformity
and conceptual economy, such a language should be based on the same model
adopted for usual inter-agent communication, i.e. it should be expressed in terms
of logic tuples and tuple spaces. The resulting architecture can be interpreted
at two different abstraction levels: an agent level, and a system level, according
to a model where all interactions, at both levels, can be modelled with the same
basic coordination language.

3 A n a r c h i t e c t u r e f o r a m u l t i - a g e n t p r o g r a m m i n g

e n v i r o n m e n t

As discussed above, in order to provide a general-purpose extension scheme
for system programming, a notion of reaction to communication events has to
replace the conventional, implicit notion of reaction to communication state
changes. Moreover, a specification language is needed to capture the relevant
events and to define the intended reactions of the communication devices.

3.1 T h e r e a c t i o n m o d e l

The first idea of the proposed specification language is to provide the ability to
define a set of logical events, each denoted by a unique name, and associated
to physical events. Multiple physical events may correspond to the same logical
event, and, conversely, multiple logical events may be associated to the same
physical event.

Then, for each logical event, a set of distinct activities may be specified,
which can be interpreted as independent, reactive agents. The activities of these

309

agents, which are conceptually at a different level 1 from the application agents,
are expressed in terms of a first-order logic coordination language, where only
a subset of the coordination language available to logic agents can be used. For
instance, a possible reaction might consist of a goal like i n _ n o b l o c k (p (a)) ,
in_noblock(p(X)) , out (pp(a , X)).

If multiple reactions are specified in response to a given logical event, they are
all executed independently one from each other, in a non-deterministic way. In
addition, any specified reaction is performed as an atomic action, thus providing
a mechanism for expressing transactions. For instance, the example above pro-
duces either the deletion of two p/1 tuples and the addition of one pp /2 tuple,
or it yields no effect at all.

R e l e v a n t e v e n t s At the system level, the basic events to be intercepted are all
those related to the communication primitives in, out, read and their variants. 2
However, in and read operations are conceptually different from out operations.
In fact, while the latter simply adds a new tuple to a given tuple space, in and
read can not conceptually be reduced to a single phase: rather, three distinct
phases can be identified.

First, a tuple is sent by the agent to the tuple space. Then, the tuple space
looks for a unifying tuple, and the agent possibly suspends its execution if no
such tuple exists. Finally, when a unifying tuple is eventually found, the client
agent is given such a tuple and subsequently resumes its execution.

While the second phase concerns only the internal tuple space behaviour, the
first and the third phases represent two conceptually distinct events, which need
to be intercepted separately. We will refer to the first phase, where only the tuple
is considered, as the pre phase, and to the third phase, where only the unifying
tuple is taken into consideration, as the post phase. Note, however, that since
out operations imply no response from the tuple space, they can conceptually
be thought of as performing the pre phase only.

Each communication event also features some natural properties, such as
the name of the performing agent, the provided tuple, and the unifying tuple.
Moreover, in a multiple tuple space environment such as ACE'/-, the specification
of the operation yielding a given reaction should involve the tuple space name,
too.

1 However, reactive agents do not constitute a meta-level, but rather a lower level
with respect to the agent level. Actually, reactive agents can be conceived as a sort
of kernel extension, allowing programmers to monitor typical kernel-level events,
such as the occurrence of communication operations.

2 The typical variants for in and read integrated in a logic language as Prolog are the
non-blocking in and read, called also the predicate versions of the primitives [2]. These
primitives (here, in-noblock and rd_noblock) replace the suspension semantics with
the success/failure semantics, in that they fail (instead of causing the suspension of
the performing agent) when no matching tuples exist.

310

T h e s p e c i f i c a t i o n l anguage Two kinds of special tuples (map/2 and r e a c t / 2
tuples) constitute the proposed specification language, allowing the definition of

- the association between communication operations and logical events;
- the triggering of reactions in response to logical events.

This two-step specification allows multiple physical events to be associated to
the same logical events and viceversa, multiple reactions can also be associated
to the same logical event.

The first association is represented by a special tuple of the form

map(Operation, Event)

which captures the idea that each time the physical Operation is performed on
the tuple space, a logicM Event occurs.

If multiple Operations are bound to the same Event, all the corresponding
physical events will result in the same tuple space reaction. This could be useful,
for instance, to build a simple tracer, in which case all operations should just
be captured into the logical event t race , and handled somehow recording the
performed operation.

If, on the other hand, one Operation is bound to multiple Events, its oc-
currence will result in the triggering of a collection of logical events, which will
be handled autonomously and asynchronously one from each other.

Reactive agents, or simply reactions, are specified through tuples of the form

react(Event , Goal,)

where Event is the name of the logical event triggering the reactive agent, and
Goat is the body of the reaction, that is the collection of primitive operations to
be executed in order to perform the reaction.

Only a subset of the coordination primitives are allowed inside the body
(Goal) of the reaction specification: in particular, suspensive operations (such
as in and read) are obviously prohibited, due to the atomic action semantics of
reactions. Instead, out, rd_noblock and in_noblock can be freely combined in
a reaction body.

Moreover, it is not possible to nest goal demonstrations in Goat, by forcing
the proof of an atomic formula with respect to a given logic theory. Instead,
specific primitives can be used in a reaction body in order to test the intrinsic
properties naturally featured by each relevant event, such as the tuple space
involved, the name of the agent which caused the event, the provided tuple,
the unifying tuple, and the phase of the current operation (pre or post, when
applicable). As a result, also the following primitives can be used inside a reaction
body:

- c u r r e n t _ t s (? T S)

- c u r r e n t _ t u p l e (? T)

- c u r r e n t _ o p (? O p)

- c u r r e n t _ a g e n t (? A g)

311

- pre

- post
- - S u c c e s s

- failure

Obviously, pre and post primitives succeed only in the pre and post phases,
respectively. Correspondingly, c u r r e n t _ t u p l e returns the provided tuple in the
pre phase, and the unifying tuple in the post phase. Moreover, s u c c e s s fails
only in the post phase of a failed non-blocking primitive, in which case f a i l u r e
succeeds.

If multiple reaction goals are associated to one given logical event, a new re-
active agent is conceptually activated for each reaction goal. Since such reactions
are conceptually independent, such agents might work sequentially, concurrently
or in parMlel to the one other, depending on the underlying system.

Example 1 (A simple tracer). In order to show the power of this specification
language, we show here how a very simple tracer could be specified, which inter-
cepts all possible actions over the tupte space (either modifying or not modifying
its state) turning them into a common trace logical event, which is then handled
by generating a visible tuple showing the occurred physical event.

For the sake of simplicity, we avoid here using multiple tuple spaces: instead,
all communication primitives 3 are refered to the default A C ~ T tuple space.

map (rd, t r a c e) .
map(rd noblock, t r a ce) .
map(rid rd, t r a c e) .
map(in, t r a c e) .
map(in noblock, t r a ce) .
map (nd_in, t r a c e) .
map(out, t r a c e) .

r e a c t (t r a c e , (pre, current_op(Dp), out(happened(0p)))) .

R e a c t i o n s as t r a n s a c t i o n s Reactions are conceived as atomic actions. If all
the primitives constituting a reaction specification succeed, then the reaction
is brought to an end, and the side-effect operations possibly associated to it
are triggered all at once. Instead, if even only one subgoal fails, the reaction is
cancelled, having no effect at all. Thus, at the agent level, reactive agents are
perceived as featuring a transaction semantics.

Instead, from a system level viewpoint, reactions can be seen as sequences
of operations. In particular, the primitives constituting the body of a reaction
are conceptually executed as a sequence. So, the relative order of the subgoal
in a reaction body may influence the result of a reaction. However, this has no
influence over the agent level of perception since reactions are atomic actions at
that level. In particular, in case many side-effect operations occur in a successful

3 Primitives nd_rd and rid_in allow non-deterministic suspension on more than one
tuple, following the example of the SICStus Prolog Linda library [13]

312

reaction, then active agents would perceive such events as happening all at the
same time, and producing a single transition of the tuple space state.

A further consequence of the atomicity of reactions is that they cannot be
nested. Since the effects of a reaction Rare actualised if and only if R is success-
fully ended, no further reaction to the relevant events which could occur in R
can be fired until R is over, and the corresponding state transition is completed.

Example 2 (A simple reaction). For instance, the code below defines a reaction
specifying that any out performed over the tuple space ~orld should transform
the tuple space pqTS by adding a new a/1 tuple and transforming a tuple of the
form p (t) possibly contained in pqTS into a tuple q(g), where g is a generic
term.

map(out, outEvent).
react (outEvent, (current_ts(world), current_agent (A),

out (a(A)) @pqTS,
in_noblock (p (X)) @pqTS, out (q(X)) @pqTS)).

In Case a tuple of the form p(t) exists, the reaction is successfully finished, and
the transformation is completed as a transaction: the tuple space pqTS changes
its state (two tuples inserted, one tuple removed) in a one-step transition. If
no suitable p/1 tuple exists, the reaction cannot be completed, consequently it
produces no effect at all over pqTS, and no state change takes place in the system.
In particular, even the out (a(A)) operation, conceptually performed before the
in_noblock(p(X)), gives no results in the case of • failure.

Moreover, in case this reactive agent succeeds, it results in three relevant
events: two out and one in_noblock. In case some reactions are specified for
these events too, they would be executed only after this reactive agent has suc-
cessfully completed its task, with no nested reactions.

3.2 An a b s t r a c t a r c h i t e c t u r a l r e f e r e n c e m o d e l

In this Section we present an abstract architectural reference model, which cap-
tures all the concepts, components and functionalities needed to implement the
proposed architecture for the support of the .ACs model. However, this model
should not be intended as an immediate and direct transposition of the prac-
tically implemented architecture, but, rather, just as a (possibly inefficient and
unoptimised) way to model the system behaviours.

In the previous Sections we showed that a multi-agent system organised
around a tuple space abstraction for communication, synchronisation and co-
ordination could be observed at (at least) two different perception levels, the
(higher) agent level and the (lower) system level, where the reactive aspects of
the tuple space behaviour are implemented.

Therefore, our architectural model should include a general-purpose scheme
to support a flexible tuple space abstraction, where the same coordination model
may conceptually be exploited both at the agent and at the system level. This
means that the coordination abstraction should be designed, at some level, as

313

an open kernel, with mechanisms allowing default behaviours and policies to be
programmed so as to trigger new asynchronous (re)actions.

Unlike mechanisms typically used in the sequential programming language
area, (such as traps, for low-level languages, and late binding, in higher-level
languages like C++) , which aim to support the design of open application agents,
we require here that such a degree of openness is provided by the tuple space
abstraction, thus transferring to the coordination device the responsibility of
ensuring the necessary system flexibility,

Since the tuple space reactions ark represented in the specification language
described in the Subsection 3.1, which is based on the two special tuples map
and r e a c t , the first issue is where such specifications should be stored. For
this purpose, one of the tuple spaces is chosen as the Specification Tuple Space
(SpecTS in the following), where specification tuples are deposited by agents by
means of a series of out operations.

Since specification tuples are special only because of the way they are inter-
preted, we should determine which component of the system is in charge of such
an interpretation. To this end, the concept of a special system agent is required.
The system agent is notified of all events and - when needed - triggers the speci-
fied reactions. Then, each time a basic tuple space event occurs, the agent should
check the specifications, translate it into the logical events bound to it, and ac-
tivate as many reactive agents as the specified r eac t s . Notice that, because of
the restricted language allowed in reaction goals, no synchronisation is possi-
ble between reactive agents, or between reactive agents and active (application)
agents.

However, in order to trigger the specified behaviours, all tuple space events
must somehow be made observable. With regard to this issue, everything goes
as if the occurrence of any relevant event were matched by the insertion of an
explicit service tuple in a special tuple space, called Service Tuple Space (ServTS
in the following), visible only at the system level. A service tuple represents the
operation to be performed along with all its properties, such as the operation
phase (pre or post), the performing agent, the tuple space involved, and so on.
This conceptually captures the new notion of observability of the communication
processes, which is shifted from the communication state to the communication
events, by using the same metaphors as the basic model.

Moreover, observability of the communication events is not achieved by in-
tercepting and then reflecting such events to a meta-level which is in charge of
their handling. Rather, it is obtained by coupling any occurrence of a relevant
event with its representation in the form of a special tuple, which is directly
perceived only at the level of the reactive agents (which is conceptually a lower
level than the agent level). In this way, while the execution of a communication
operation may trigger a multiplicity of further (asynchronous) computat ional
threads in the form of atomic reactions, the behaviour of the communication
operation itself remains unchanged. As a result, this model does not introduce
any direct interference with the basic Linda coordination kernel.

For instance, the request for in (p (X, Y))�9 s operation performed by an agent

314

ag could be modelled by a service tuple of the form s e r v i c e (i n , pre , ag,
t s , p(X,Y), . . .) put in the ServTS, representing to the pre phase of the
in operation. Then, suppose the application agent ag suspends itself waiting
for the answer: when it is finally awakened, it receives the resulting tuple (for
instance, p(a ,6)) . This will be represented by the eventual appearance of a
service tuple like s e r v i c e (i n , pos t , ag, t s , succes s (p (a ,6)) , . . .) in the
ServTS, corresponding to the post phase of the in.

A major point here is that the ServTS should be thought as being conceptu-
ally different from the agent tuple spaces, since it is a conventional, state-reactive
tuple space, with no event-reaction capabilities at all. If it were not so, the re-
action handling mechanism would enter an endless loop, as the output of the
service tuple would trigger a new event, which should be handled using the same
protocol.

The system agent may then be considered as continuously waiting for service
tuples in the ServTS, searching the SpecTS for specifications about the per-
formed operation, and possibly forcing the execution of some reactive agents.
This conceptual behaviour shows that reactive agents do not merit the full ap-
plication agent status, since they are nothing more than mere asynchronous
execution threads, like Shared Prolog [1] ephemeral agents. This is reflected,
for instance, also by the fact that they don't even have a name: actually, a
current_agent subgoal within the reaction goal would return the name of the
application agent performing the tuple space operation.

Finally, it is worth noting that the conceptual architecture sketched here does
in no way imply a centralised approach to the implementation of the ACf~T
distributed programming environment.

4 Building support tools

The general-purpose event-reaction mechanism proved to be effective in the de-
sign of programming support tools for the .ACf~T environment, which have been
exploited also during the development of the ACET system itself.

In order to monitor a distributed application effectively, one needs a method
to watch the contents of a given tuple space (say, world) and to trace the oper-
ations performed by the application agents. These requirements have been met
in the ACZ.T environment by providing two support tools: the visualiser, and
the tracer.

4.1 T h e visualiser

Given that tuple spaces represent views of the inter-process communication state,
the first issue is to provide a simple tool for the visualisation of the contents of
a tuple space [9].

The .4Cs visualiser is a tool designed to provide a dynamic mirroring of
the contents of a given tuple space, and is built as an agent which monitors the
contents ofa tuple space and updates a visualisation (such as a terminal window)

315

whenever the tuple space is modified. As could be expected, such behaviour can
be achieved by suitably programming the tuple space reaction, so that a proper
signal is raised whenever a tuple space modification event occurs. As a result,
the visualiser can be designed as an endless loop waiting for such a signal, which
is handled by correspondingly updating the visualisation.

Then, only two reactive behaviours (agents) are needed, one for each basic
category of operations which can modify the tuple space content:

- a logical event to intercept in operations;
- another logicM event to capture the single out operation.

Both events result in the emission of a tuple of the form

do (Cor~ang (Tap ~ e))

telling the visualiser how to update the visualisation, into a separate tuple space
visTS, used as a knowledge repository by the visuMiser agent.

A possible event reaction specification needed for this purpose is the follow-
ing:

map(out, outEvent).
map(in, inEvent).
map(nd_in, inEvent).
map(in_noblock, inEvent).

reac t (outEvent , (
current t s (world) ,

reac t (inEvent , (post ,
current t s (world) ,

current_tuple(T),

current_tuple(T),

out(do(add(T)))@visTS)).

out(do(del(T)))@visTS)).

Although the specified reaction is similar in both cases, the one related to
inEvent is constrained to be performed only in the post phase, when the match-
ing tuple to be removed has been identified. Moreover, since the visualisation is
not influenced by knowledge access operations (such as read), these primitives
are not considered as relevant events.

Operationally, when activated over a given tuple space, the visualiser installs
its event-reaction specification tuples in the SpecTS by means of a series of out
operations. Then, it reads 4 and visualises the whole current tuple space content,
and enter the endless loop waiting for do/1 tuples.

As a further result, once a distributed tuple space implementation is provided,
the same mechanism used to design the visualiser can be taken as a basis to build
an error recovery mechanism. By ensuring that the monitored and the visualiser
tuple spaces are physically allocated on different machines, the "private copy"
of the tuple space content maintained by the visualiser could be exploited to
recover from a crash of the monitored tuple space, thus effectively enhancing the
system robustness.

4 Through the .4Cs rd_all primitive.

316

Example 3 (Visualiser). To show the previously described visualiser working, let
us consider a very simple multi-agent system, where three agents emy, e ly , and
evy communicate through a (initially empty) tuple space world. Suppose the
system behaves as follows:

- agent emy suspends itself on tuple space world with a blocking in (a (X)) ;
- subsequently, agent e l y performs two operations on the tuple space world:

first, an o u t (b (1)) , then, a non-blocking in_noblock(a (1)) .
- finally, agent evy performs two more operations on the tuple space world:

first, an out (a (2)) , then, a non-blocking rd_noblock(b(Y)) .

The visualiser output is then determined by the following command tuples,
recorded in tuple space visTS:

do (add(b(1))).
do (add (a (2))).
do(del (a(2))) .

A careful implementation of this model, retaining the correspondence between
the relative ordering of both agent level and system level events, would make
tuple ordering in the visTS tuple space relevant, by implicitly providing some
information about the temporal succession of operations.

4.2 T h e t r a c e r

The simple visualisation of the tuple space content may be insufficient when
analysing the correct behaviour of a set of agents and of their interactions. In
fact, this would provide no information about knowledge access operations (i.e.,
read), nor would it allow non-blocking in operations, which may fail without
removing any tuple, to be always detected.

Therefore, a different inspection tool is required, which monitors all tuple-
space-related events. Again, such a tool should specify a set of proper event
reactions, aimed to turn all operations into visible tracing tuples, such as the
following:

map(out,
map(rd,
map(in,
map(nd_rd,
map(nd_in,
map(rd_noblock,
map(in_noblock,
map(rd,
map(in,
map(nd_rd,
map(nd_in,
map(rd_noblock,
map(in_noblock,

preEvent)
preEvent)
preEvent)
preEvent)
preEvent)
preEvent)
preEvent)
awakeEvent).
awakeEvent).
awakeEvent).
aw~keEvent).
postEvent).
postEvent).

317

react (preEvent, (pre,
current_op(Op), current_ts (Ts), current_tuple (T), current_agent (Ag),
\+ T = trace(.......),

out (trace (agent (AE), performs (Op),
on_tuple (T), on_ts (Ts)))@trTS)) .

react (awakeEvent, (post,
current_op(0p), current_is (Ts), current_tuple (T), current_agent (Ag),
out (trace (agent (Ag), sleeping_on(0p),

awaken_with(T), on_is (Ts))) @trTS)).
react (postEvent, (post, success,

current op(0p), current_ts (Ts), current_tuple (T), current_agent (Ag),
out (trace (agent (Ag), asking_for(0p),

succeeds_with(T), on_is (Ts)))@trTS)).
react (postEvent, (post, failure,

current op(flp), current_ts(Ts), current_tuple(T), current_agent(Ag),
out (trace (agent (Ag), asking_for (0p),

failed, on ts(Ts)))@trTS)).

Here multiple logical events map the same physical event, in the same way as
multiple physical events are mapped into the same logical event. For instance, an
in operation is mapped both into a logical p reEven t (which is actually executed
only in the pre phase) and a logical awakeEvent (to be actually executed only in
the post phase). In turn, the p reEvent logical event maps practically all physical
operations.

In order to provide a diagnostic tracing which is as expressive as possible,
such mappings are closely tailored to the specific operation: so, for instance, two
post events are provided, one for possibly suspensive operations and another one
for non-suspensive operations with a success-or-failure semantics. An example
could be an • operation, which is never suspensive, and triggers a more
appropriate postEvent in its post phase rather than an awakeEvent. Notice the
check in p reEven t which is aimed to avoid tracing the trace tuples themselves,
which would cause an endless loop.

Obviously, since tracing information is collected in the t rTS tuple space, a
visualiser like the one described in Subsection 4.1 might be used to make the
tracing tuples visible.

E~:ample 4 (Tracer). To show the previously-described tracer working, let us con-
sider again the very simple multi-agent system introduced in the Example 3 on
page 12. The tracer output results in the following sequence of tracing tuples in
the tuple space trTS:

trace (agent (emy) , performs (in) ,
on_tuple(a(X)), on_is(world)).

trace (agent (ely) , performs (out) ,
on_tuple(b(1)), on_ts(world)).

trace (agent (ely) , performs (in_noblock),
on_tuple (a(1)) , on_ts (world)) .

trace (agent (evy) , performs (out) ,
on_tuple (a(2)) , on_ts (world)) .

318

t r a c e (agent (emy), sleeping_on (in) ,
awaken_with(a(2)) , on_ts (world)).

t r a c e (agent (evy), performs (rd_noblock),
on tuple(b(Y)) , on t s (wor ld)) .

t r a c e (agent (evy), asking_for (rd_noblock),
s u c c e e d s _ w i t h (b (1)) , on_ts (world)).

As already noted in the Example 3, the tuple ordering in the trTS tuple space
may be relevant, according to the peculiar implementation of the model, thus
implicitly provide information about the temporal succession of traced opera-
tions.

4.3 Fu r the r r emarks

The event-(re)action scheme defined in the previous Sections has also been ex-
ploited to extend the basic .ACET language. In particular, it has been used to
provide a family of hybrid dame primitives [12] allowing reasoning activities over
the evolving logic theory represented by a logic tuple space. The discussion of
how such a complex system extension is achieved is outside the scope of this
paper, and therefore will not be reported here.

5 C o n c l u s i o n s

In this work we have presented a framework for multi-agent system program-
ming, based on the logic tuple space abstraction, which provides a notion of
event reaction to tuple space operations which can be seen as the specification
of low-level, asynchronous reactive agents.

One of the closest models known in the literature is represented by Shared
Prolog, or ESP (Extended Shared Prolog) [1, 4, 3], whose main differences from
.ACf-.T are the following.

First, the neatness of the ESP model is by far superior to that of.ACf~T, since
ESP keeps sequential execution threads and communication operations clearly
separate [3]. Instead, ACf..T makes no syntactic restriction over the sequence
of the operations performed by both active and reactive agents: even though
this results in a less clean scheme, it seems more adequate to application envi-
ronments (such as robotics [15]) where hybridness is a requirement [10] at any
abstraction level.

Moreover, ESP agents are ephemeral, and express only reactive activities,
while ACs provides a framework where both active and reactive agents can be
designed and combined.

Finally, ESP active tuples can be used only to model static inter-process
communication views, since they react only to tuple space state modifications.
Instead, the .ACE'-/" programming framework provides a specification language
whose special tuples can also be used to model dynamic inter-process commu-
nication views, by allowing reactions to operations over tuple spaces to be cap-
tured, too.

319

This reaction mechanism has proved flexible enough to easily support the
construction of effective support tools for system programming, which are needed
to develop reM distributed applications. Moreover, it has been used to extend
the A C s coordination language with hybrid primitives integrating deduction
and reaction [12].

The ACf~T multi-agent programming environment presented here has been
mainly implemented on top of the SICStus Prolog system [14], and is currently
working in a network of Sun, HP and Linux workstations. The actual imple-
menta t ion proved to be quite robust, and will probably be tested in advanced
real application environments, in order to verify the effectiveness of the .Ags
model.

References

1. A. Brogi and P. Ciancarini. The concurrent language, Shared Prolog. ACM Trans-
actions on Programming Languages and Systems, 13(1), January 1991.

2. N. Carriero and D. Gelernter. How to write parallel programs: a guide to the
perplexed. ACM Computing Surveys, 21(3):323-357, September 1989.

3. P. Ciancarini. Coordinating rule-based software processes with ESP. Technical Re-
port UBLCS-93-8, Laboratory of Computer Science, University of Bologna, April
1993.

4. P. Ciancarini. Distributed programming with logic tuple spaces. New Generation
Computing, 12, 1994.

5. E. Denti, A. Natali, A. Omicini, and M. Venuti. Logic tuple spaces for the coordi-
nation of heterogeneous agents. In Proceedings of the First International Workshop
"Frontiers of Combining Systems", FroCoS'96, Munich, Germany, March 26-29
1996. Kluwer Academic Publisher.

6. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1), January 1985.

7. D. Geleruter. Multiple tuple spaces in Linda. In Proceedings of PARLE, volume
365 of LNCS, 1989.

8. D. Gelernter and N. Carriero. Coordination languages and their significance.
Communications of the ACM, 35(2):97-107, February 1992.

9. T.J. LeBlanc, J.M. Mellor-Crummey, and R.J. Fowler. Analyzing parallel program
executions using multiple views. Journal of Parallel and Distributed Computing,
9:203-217, 1990.

10. D.M. Lyons and A.J. Hendriks. Planning for reactive robot behavior. In Proc. of
the IEEE Int. Conf. on Robotics and Automation, Nice, France, May 1992.

11. D.C. Marinescu, J.E. Lumpp, T.L. Casavant, and H.J. Siegel. Models for monitor-
ing and debugging tools for parallel and distributed software. Journal of Parallel
and Distributed Computing, 9:171-184, 1990.

12. A. Omicini, E. Denti, and A. Natali. Agent coordination and control through logic
theories. In Topics in Artificial Intelligence - 4th Congress of the Italian Associ-
ation for Artificial Intelligence, AI*IA'95, volume 992 of LNAI, pages 439-450,
Firenze, Italy, October 11-13 1995. Springer-Verlag.

13. Swedish Institute of Computer Science, Kista, Sweden. SICStus Prolog Library,
1994.

320

14. Swedish Institute of Computer Science, Kista, Sweden. SICStus Prolog User's
Manual, 1994.

15. F. Zanichelli, S. Caselli, A. Natali, and A. Omicini. A multi-agent framework and
programming environment for autonomous robotics. In Proceedings of the Inter-
national Conference on Robotics and Automation (ICRA '9$), pages 3501-3506, S.
Diego, CA, USA, May 1994.

