
Agent Coordination and Control
through Logic Theories

Andrea Omicini, Enrico Denti, Antonio Natali
Dipartimento di Elettronica, Informatica e Sistemistica

Università degli Studi di Bologna - Italy
email: {edenti, anatali, aomicini}@deis.unibo.it

Abstract. This work describes an agent interaction model (
� � � �

, Agent
Communicating through Logic Theories) rooted in the concept of logic theory.� � � �

 agents and their behaviour are conceived as inferential as well as
procedural activities within a multiple theory space. The communication unit
(CU) abstraction is exploited, subsuming traditional communication models
(both shared memory and message passing) based on explicit and extensional
knowledge, while allowing agents to exploit partial/incomplete knowledge
through deduction. Agent synchronization is reconducted to the concept of
theory evolution, by allowing agents to wait for theory modification until facts
can be deduced from a CU. Agent cooperation/competition is re-interpreted in
terms of knowledge generation/consumption. A coherent notion of logic
consequence in a time-dependent environment is proposed. As a result, the
traditional dichotomy between reactive and symbolic systems is here exploited
as a feature rather than a problem, leading to an integration of behavioural and
planning-based approaches.

1 Introduction

The abstract model of interaction between agents, as well as the balance between
high-level agent coordination/management and low-level communication/control, are
among the most critical issues in the design and implementation of multiagent
systems.

The (high-level) notions of agent and agent coordination cannot be simply
reconducted to the (low-level) concepts of process, and process communica-
tion/synchronization. Metaphors for communication abstracted from the physical
support by which the interaction takes place (like monitors, derived from the idea of
using shared memory as a communication device, or message passing, inspired by
communication via connection lines) are well suited in the development of machine-
level systems, such as operating systems: however, higher-level communication
models and abstractions are required to capture the idea of a general-purpose,
hardware independent multiagent architecture.

In particular, it is often the case that a multiagent system is designed (or described,
once built) as a knowledge-based system where agents interact not simply by
exchanging raw information (such as messages or signals), but by sharing and
exchanging knowledge. This mainly occurs when the information exchanged by
agents can be interpreted as a (partial) model of the world (the application domain), so

that agents can exploit that knowledge in order to deduce new facts that are not
explicitly generated, exchanged or stored.

In order to promote a knowledge-based approach to agent interaction, new
communication abstractions have been proposed, such as the concept of blackboard
[1] or the idea of a tuple space as a (generative) communication device [2]. The main
benefits of such abstractions are related to the following properties:

– agent interaction can be expressed in a very simple way
– agents can be heterogeneous (the blackboard or the tuple-space acts as a

coordination device)
– agent do not need to know each other (agent name independence)
– time uncoupling

However, what these models lack is an effective way to exploit (shared) information
as true knowledge, since they provide no means to infer new information from it. This
would be useful not only for multiagent systems based on explicit world-modelling
and symbolic reasoning, but also for reactive systems, since reactions can take place
as a consequence of an inference.

The aim of this work is to show the benefits of endowing a generative
communication model with inferential capabilities for designing multiagent systems.
The � � � � (Agents Communicating through Logic Theories) model proposed in this
paper is a first-order logic-based approach, rooted in the CPU programming model
described in [3]. Its key idea is to take logic theory as an abstract data type which
clients can perform three kinds of operations on:

– Linda-like communication operations, based on side-effect,
– logic inferences, based on don’t know non-determinism, and
– hybrid operations.

The � � � � model allows multiagent system designers to obtain a good balance
between high-level agent coordination and management and (the cost of) low-level
communication/control. In addition, this approach promotes hybrid architectures in
which pure reactive behaviours can be naturally integrated with high-level symbolic
activities, based on reasoning and planning. In the work we will give examples of
these capabilities, by discussing in particular some problems originating from the field
of autonomous robot control.

This paper is structured as follows. Section 2 introduces the basics of the � � � �
programming model, as implemented in a multiple theory logic language based on
Prolog. Section 3 discusses the implications involved with the coexistence of
time-related changes and logic inferences in the � � � � model, by presenting some

� � � � hybrid primitives. After a short sketch of the actual implementation, given in
Section 4, Section 5 is devoted to final remarks and conclusions.

2 The � 	
 � model

2.1 Basic communication primitives

The � � � � model for multiagent systems is rooted in the CPU model [3], and is
founded on the notion of logic theory as a coordination device.

An � � � � agent is a process generated by an � � � � sequential logic program.
However, � � � � allows any process able to accomplish the basic communication
protocol (� � � � non-backtrackable Linda-like primitives) to interact with the whole
multiagent system. A new � � � � agent is started through the activate/2 primitive:
activate(Theory, Goal) generates a new agent as a concurrent logic process trying
to derive Goal from Theory .

A multiplicity of � � � � agents communicate through a collection of unitary clauses
by means of Linda-like operations (in, out, and read). Such primitives work on a
clause database used as conventional Linda tuple space, by inserting, removing or
accessing logic tuples (à la Shared Prolog [4]). Thus, the main features of Linda as a
coordination language (time uncoupling, communication orthogonality) and its
expressive power can be fully captured in � � � � .

Following [5], � � � � relaxes original Linda constraint of a unique tuple space, by
allowing many communication units to be defined and used independently by a
collection of agents. An � � � � communication unit (CU) is a logic theory, denoted by
a ground name, to be used as a logic tuple space. The following syntax

:- commUnit world.

declares that world denotes an � � � � communication unit, which can be subsequently
associated to any � � � � communication primitive. Thus,

out(p(̃t))@world

inserts logic tuple p(̃t) (where ̃t is a tuple of terms) into CU world . Of course, in
and read primitives can be used the same way:

in(p(̃t))@world
read(p(̃t))@world

In addition, � � � � provides the full power of unification instead of the pure Linda
pattern matching. Thus, an agent calling read(p(̃t))@world is suspended until a
logic tuple p(̃t ’) unifying with p(̃t) can be found in theory world . Then, agent is
resumed after unification of p(̃t) and p (̃t ’) . Analogous considerations can be
repeated for in primitive, except for the removal of p(̃t ’) from world , occurring
between unification and agent resumption.

2.2 Communication units as logic theories

However, the main feature of the logic-based � � � � model comes from fully
exploiting the twofold interpretation of the CU abstraction. Information shared by
agents through CUs can be interpreted as knowledge about the world. In this view,
agents do not simply exchange messages through the tuple space, but behave as
knowledge sources (such as in a blackboard-based system), each one giving a partial

description of the world. Thus, an � � � � agent can exploit a CU in two distinct ways,
(i) as a communication device, and (ii) as a logic theory describing the application
domain.

The main consequence of interpreting the tuple space information as knowledge in
a logic framework, is the chance to perform logic inference operations based on CU
axioms. � � � � logic-based model provides primitives such as

demo(p(̃t))@world

whose intended semantics follows the typical inference mechanism of a logic
language based on don’t know nondeterminism, like Prolog. In fact,
demo(p(̃t))@world succeeds iff p(̃t) logically follows from logic theory world .

Given that CUs contain only unitary clauses, it might be observed that a very
limited notion of logical consequence is used here. However, since the problems of
non-deterministic exploration of a knowledge base are basically unaffected by this
restriction, this seems not to represent an issue in our framework.

The following simple example shows how Linda-like “standard” primitives and
logic-based primitives like demo can fruitfully coexist in a multiagent framework.

:- unit speedyMouse.

startAt(FX,FY) :-
 read(cheeseAt(TX,TY))@grid,
 in(freeCell(FX,FY))@grid,
 speedyMove(FX,FY,TX,TY,[]),
 out(cheeseFoundAt(TX,TY))@grid.

speedyMove(FX,FY,TX,TY,RPath) :-
 activateDirSensors(FX,FY),
 demoWaitLast(door(FX,FY,Dir))@grid,
 \+ loop([Dir|RPath]),
 nextCell(Dir,FX,FY,X,Y),
 in(freeCell(X,Y))@grid,
 moveTo(X,Y),
 out(freeCell(FX,FY))@grid
 (X = TX, Y = TY -> true;
 speedyMove(X,Y,TX,TY,[Dir|RPath])).

loop([]) :- !, fail.
loop([_]) :- !, fail.
loop([Dir|Path]) :- loop(Path).
loop(Path) :- relMove(Path,(0,0),(0,0)).

relMove([],(X,Y),(X,Y)).
relMove([Dir|Path], (X,Y), (TX,TY)) :-
 (Dir = north -> NY = Y+1, NX = X;
 Dir = south -> NY = Y-1, NX = X;
 Dir = east -> NX = X+1, NY = Y;
 Dir = west -> NX = X-1, NY = Y),
 relMove(Path,(NX,NY),(TX,TY)).

nextCell(west,X,Y,NX,Y) :- NX is X - 1.
nextCell(east,X,Y,NX,Y) :- NX is X + 1.
nextCell(south,X,Y,X,NY) :- NY is Y - 1.
nextCell(north,X,Y,X,NY) :- NY is Y + 1.

...

:- unit lazyMouse.

startAt(FX,FY,M,N) :-
 freeCells(M,N),
 activateCheeseSensor,
 read(cheeseFoundAt(X,Y))@grid,
 smartMove(FX,FY,TX,TY,0).

smartMove(FX,FY,TX,TY,Dev) :-
 plan(FX,FY,TX,TY,Dev,Path,[])
 -> moveAlong(Path)
 ; NDev is Dev + 1,
 smartMove(FX,FY,TX,TY,NDev).

plan(X,Y,X,Y,_,Path,RPath) :-
 reverse(RPath,Path).
plan(FX,FY,TX,TY,Dev,Path,RPath) :-
 getCellDoors(FX,FY,D),
 (noDev(D,FX,FY,TX,TY,X,Y)
 -> plan(X,Y,TX,TY,Dev,Path,[D|RPath])
 ; Dev > 0, NDev is Dev - 1
 plan(X,Y,TX,TY,NDev,Path,[D|RPath])).

noDev(D,X,Y,TX,TY,NX,NY) :-
 D = west, X > TX -> NX is X - 1, NY = Y;
 D = east, X < TX -> NX is X + 1, NY = Y;
 D = south,Y > TY -> NY is Y - 1, NX = X;
 D = north,Y < TY -> NY is Y + 1, NX = X.

getCellDoors(X,Y,D) :-
 demo(door(X,Y,D))@grid;
 (D = west -> NX is X -1, NY=Y, OD = east;
 D = east -> NX is X+1, NY=Y, OD = west;
 D = south -> NY is Y-1, NX=X, OD = north;
 D = north -> NY is Y+1, NX=X, OD = south),
 demo(door(NX,NY,OD))@grid.

...

Fig. 1. Speedy (a) and lazy (b) mouse code

2.3 The Mouse Agents Example

Two sorts of mouse agents (speedy mice and lazy mice) live in a 2-dimensional space,
represented by a m × n grid, whose cells (denoted by a pair of coordinates) are
separated by either doors or walls. Mouse agent’s aim is to reach a piece of cheese,
located at a given cell of the grid, by moving across the grid. Mice can pass doors, but
obviously cannot cross walls.

Each speedy mouse features four sensors, one for each basic direction (north,
south, etc.), to tell doors from walls, assuming that there is always at least one door
for any cell. Sensor activation is under the explicit agent control through the primitive
activateDirSensors(X,Y) , which results in storing one to four facts of the form
door(X,Y,Dir) in the CU grid , through an out primitive triggered by physical (low-
level) sensors. Each door(X,Y,Dir) fact denotes the presence of a door allowing
agents to move from cell (X,Y) in direction Dir . Instead, no explicit information is
stored about wall positions.

Speedy mouse initially waits for information about cheese location coming from
lazy mouse. Thus, it is initially suspended on a read(cheeseAt(X,Y)) operation on
the CU grid . When a fact such as cheeseAt/2 is inserted in grid by lazy mouse’s
cheese sensors, speedy mouse can start its exploration.

Speedy mice cannot occupy the same cell at the same time. These agents wait for
a fact freeCell(X,Y) (through a in) before moving to cell (X,Y) , and insert the same
fact when stepping out from there. Whenever a new (i.e., never previously visited)
cell is entered, a speedy mouse agent activates direction sensors, then chooses where
to go according to a simple non-loop strategy. Should two or more directions be
possible, one is chosen nondeterministically (while the others are possibly
reconsidered on backtracking). When cheese is finally reached, speedy mouse outputs
a fact of the form cheeseFoundAt(X,Y) , thus triggering lazy mouse agents.

cheese cellstart cell

walls

doors

cheese cellstart cell(a) (b)

�

�

�
�

0 1 2 3 4 0 1 2 3 4

�

�

�
�

❍ ❍

Fig. 2. Speedy (a) and lazy (b) mouse paths in a 5x5 grid

Figures 2 refer to the simple case of two agents (one speedy and one lazy mouse),
both starting at the (0,0) cell of a 5 × 5 grid, and looking for cheese located at (4,1).
The following goal leads to the activation of such a 2-agent system.

:- commUnit(grid),
 activate(lazyMouse, startAt(0,0,5,5)),
 activate(speedyMouse, startAt(0,0)).

It is easy to see how more mice could be started at the same time, even though the
trivial protocol used here for free cell detection would be obviously not able to
prevent even the simplest case of deadlock.

During its exploration of the grid space, speedy mouse works as a source for
information about grid configuration. Such knowledge remains available in the grid

CU. Figure 3 shows grid status after speedy mouse’s exploration of Figure 2(a).

:- commUnit grid.

freeCell(0,2).
freeCell(0,3).
freeCell(0,4).
freeCell(0,5).
freeCell(1,0).
freeCell(1,2).
freeCell(1,3).
freeCell(1,4).
freeCell(1,5).
freeCell(2,2).
freeCell(2,3).
freeCell(2,4).
freeCell(2,5).
freeCell(3,2).
freeCell(3,3).

freeCell(3,4).
freeCell(3,5).
freeCell(4,2).
freeCell(4,3).
freeCell(4,4).
freeCell(4,5).
freeCell(5,0).
freeCell(5,1).
freeCell(5,2).
freeCell(5,3).
freeCell(5,4).
freeCell(5,5).
cheeseAt(4,1).
door(0,0,north).
door(0,0,east).

freeCell(0,0).
door(0,1,south).
door(0,1,east).
freeCell(0,1).
door(1,1,east).
door(1,1,north).
door(1,1,west).
freeCell(1,1).
door(2,1,south).
door(2,1,west).
door(2,1,north).
freeCell(2,1).
door(2,0,east).
door(2,0,west).
door(2,0,north).

freeCell(2,0).
door(3,0,east).
door(3,0,north).
door(3,0,west).
door(4,0,west).
freeCell(4,0).
freeCell(3,0).
door(3,1,south).
door(3,1,east).
door(3,1,north).
freeCell(3,1).
cheeseFoundAt(4,1).

Fig. 3. CU grid configuration after speedy mouse exploration

Unlike speedy mice, lazy mouse has no direction sensors. Instead, it is provided with
a cheese sensor, which gets it to detect cheese position. In fact, a cheeseAt(X,Y) fact
is initially inserted in grid as a result of activateCheeseSensor lazy mouse’s
invocation.

When cheese is reached, speedy mouse awakens lazy mouse, previously
suspended on a read(cheeseFoundAt(X,Y))@grid . With respect to speedy mouse,
lazy mouse adopts a more sophisticated, intelligent strategy, since it reasons over
already-available knowledge to identify the best path. In the case shown in Figure 2,
lazy mouse recognizes that a better path exists with respect to the one used by speedy
mouse, and moves straight to the cheese position (indicated by a flag).

This example clearly points out (i) how a CU can be used at the same time both as
a synchronization device and as a knowledge repository, as well as (ii) how these two
interpretations can coexist fruitfully. In particular, this can be seen from sensor
information about grid doors: generated by a low-level agent, this information is used
first in a reactive fashion by speedy mouse, which waits for sensor input before
moving, then as a knowledge base for a planning activity by lazy mouse, inferring the
best path to cheese. Moreover, the example highlights how the abstractions defined
can be exploited to lift up at the symbolic level some typical, low-level reactive
behaviours.

3 Logic consequence and time-related changes

3.1 � � � � primitives for logic inference

The main problem of using a logic-based language as a coordination language lays in
side-effect nature of the communication primitives. While the interpretation of a
clause database as communication device is bound to a vision of dynamic, evolving
information, the logic theory reading is instead founded over a notion of platonic,
universal truth. The main issue of this paper is then how to make the two readings
coexist in the same conceptual framework, by pointing out at the same time some
benefits of this integration.

The Mouse Agents Example intentionally hides some of the problems connected
to the twofold interpretation. Initially, nothing is known about grid doors and walls.
Then, information about grid structure grows with speedy mice’s exploration, and
stops growing when such a task is brought to end. As a result, when lazy mice start
moving, CU grid contains a (possibly partial) description of the grid space, which
will remain unchanged if no other speedy mouse is started. In this case, such a
knowledge can be used for reasoning activities with no particular caution: nothing
changes in the logic theory during lazy mouse inference operations.

The problem would arise for instance in case the lazy mouse would have started
its reasoning while some speedy mouse is still moving. In that case, sequential
exploration of a set of axioms under evolution would pose a problem, due its cost in
terms of computational time: which knowledge have to be considered for the
construction of a logic proof in an evolving knowledge space?

In this connection, it is useful to discuss the relation between time-related (such as
communication primitives based on side-effect) and time-independent operations
(such as logic inference) by defining the class of the demo primitives provided by

� � � � .
Till now, we only said that demo(p(̃t))@world succeeds if p(̃t) logically

follows from world . However, this semantic specification is not satisfactory at all,
given that world is not a statically defined collection of axioms, but rather a clause
database which evolves during the computation. Sequential exploration of an axiom
space has a cost in terms of computational time, and the knowledge related to p

predicate may grow or shrink during the exploration.
However, the notion of logic consequence lays on the assumption of a fixed axiom

set defining the space of the theorems. Thus, in order to define a coherent notion of
logic consequence in a time-dependent environment, we choose to set an instant when
to freeze time, so as to perform time-independent activities. As a result, each demo
operation has to be associated to a given snapshot of the involved CU, where to
perform safely sequential proofs.

Thus, different semantics for demo can be defined according to different
definitions of when a communication unit snapshot has to be taken to be associated
conceptually to the demo operation. Alternatively, different primitives of the demo
class can be defined by taking the snapshot at different moments.

In particular, � � � � provides four basic demo primitives: demo, demoWait ,
demoLast , and demoWaitLast . If the operation is performed at t, first served at t’ , and

(possibly) fails at t” , then the snapshots associated to the primitives are conceptually
taken at t, t’ , t” , and (again) t” , respectively. In detail, the intuitive semantics of the
four primitives can be given conceptually as follows.

When a demo(p(̃t))@world operation is performed by an � � � � agent, a
p(̃t) -snapshot of world (that is, those axioms of world unifying with p(̃t)) is
immediately (at t) taken, and bound to that primitive activation, which is immediately
served (t = t’). If this snapshot is empty, then the call immediately fails (t’ = t”).
Instead, if some facts unifying with p(̃t) exist in world , then a logic derivation is
performed, using standard Prolog computational rule. If no branch of the derivation
succeeds, the computation finally fails (t’ < t” , where ∆t = t” - t’ is the non-null
computational cost of the exploration of the p axioms).

In the Mouse Agents example, for instance, lazy mouse performs several
demo(door(X,Y,Dir)) operations (see Fig. 1) in order to derive the best path from
information about grid doors provided by speedy mouse. For instance, when the first
call demo(door(0,0,Dir))@grid is performed by lazy mouse as an indirect result of
smartMove in order to step out from the start cell, the snapshot of grid associated to
that demo operation consists of the two facts {door(0,0,north), door(0,0,east) }
(see Figure 2). Any further modification to grid theory (for instance, by a third mouse
agent) has no effect on door(0,0,Dir) demonstration.

Instead, when a demoWait(p(̃t))@world operation is performed, the calling agent
is suspended until some suitable knowledge is found in. The p(̃t) -snapshot of world

is then taken when the operation is first served (at t’). No suspension takes place iff at
t some axioms unifying with p(̃t) is already available: in that case, demo and
demoWait semantics perfectly match (since t = t’). They differ, instead, when no
suitable fact is found in world at t, so that the snapshot is taken at t’ > t. Since
demoWait is always associated to a theory containing suitable knowledge, the
computational cost of its logic proof is never null, so that t’ < t” always holds.

Instead, demoLast(p(̃t))@world has no suspensive semantics (t = t’). It has
actually the same behaviour as demo(p(̃t))@world in case no facts unifying with
p(̃t) can be found at t in world : it immediately fails (t’ = t”). However, world

snapshot is not taken when the operation is performed: instead, demoLast try to
exploit all the suitable knowledge of world , including that one generated after the
operation was first served (after t = t’). Thus, if some suitable axioms exists at t in
world , they all are taken into account. In addition, since the cost of sequentially
exploring them all is not null, further axioms unifying with p(̃t) may have been
inserted in world during the corresponding computation. In that case, this new
information too is to be used for logic inference. Such an operation is repeated until
all suitable facts in CU world have been tried (with failure) and no further facts
unifying with p(̃t) have been added. Then, and only then, demoLast(p(̃t))@world

fails. Since failure occurs only when none of the axioms which can be found in world

at failure time has produced a successful branch, this amounts to say that
p(̃t) -snapshot of world associated to demoLast has been taken at t” .

As its name suggests, demoWaitLast combines the semantics of demoLast and
demoWait . demoWaitLast(p(̃t))@world works like demoWait when no suitable
knowledge is found in world : thus, it never fails immediately, and t” > t’ always

holds. However, when world contains some facts unifying with p(̃t) , demoWaitLast

behave exactly like demoLast , by trying to exploit any suitable knowledge made
available in world at any time.

One example of demoWaitLast application has been hidden in the Mouse Agents
Example. How can speedy mouse ask for doors, keep itself synchronized waiting for
different knowledge sources (its direction sensors) making information available, and
then exploit it at its best without polling or time-outs? Its suspensive semantics
ensures that the speedy mouse agent waits for at least one sensor response when
performing demoWaitLast(door(FX,FY,Dir))@grid . In addition, its delay in taking
the snapshot presumably avoids that only the first door(FX,FY,Dir) sensor
information arrived is taken into account. In a situation where we have four distinct
sensors of the same type, having then very similar (even though not identical)
response time, all door(X,Y,Dir) facts relative to a cell (X,Y) are usually considered
by speedy mouse’s demoWaitLast . Thus, demoWaitLast is actually used as an hybrid
primitive: it first produces a synchronizing behaviour, since it allows speedy mouse to
wait for at least one door to be detected before start moving. But it is then used also
for inference activities since it allows backtracking and possibly exploiting alternative
choices on failure.

3.2 Knowledge classification

However, even though this approach seems to be effective from an operational
viewpoint, it may lead to inconsistencies from a conceptual viewpoint. What happens,
in fact, if some agent withdraws from the tuple space one axiom which belongs to a
demo snapshot currently under execution? Operationally, no problem arises. On the
other hand, it may happen that some agent is pursuing a current line of reasoning
which may be based on assumptions which are no longer valid. This gap between the
model of the world assumed by an agent reasoning, and its current axiomatic
description obviously weakens the meaning of a logic inference.

Since non-monotonic reasoning [14] intentionally falls out of the scope of this
paper, this problem has been faced by adopting a simple classification scheme for the
different sorts of knowledge involved. Take for instance the grid doors information
represented by door/3 facts in CU grid in the Mouse Agent Example. There, a logic
inference would have sense at any time (also during speedy mouse exploration) since
such information is stable, even though partial.1 On the other hand, if more than one
speedy mouse is activated, they would compete for cell occupation while exploring
the grid. Competition is managed through a simple semaphoric protocol based on
facts of the form freeCell(X,Y) to be withdrawn from grid before to move to cell
(X,Y) , and then re-inserted when leaving it. Any (sequential) logic inference based on
such kind of knowledge should then be avoided.

As a result, the � � � � model distinguishes between two sorts of knowledge which
may happen to be involved in a communication via a CU:

1 Here, we obviously lay on the implicit assumption that a faulty sensor does not produce any

information at all. Conversely, we should take into account the case of false believes about the world,
which would call for more complex approaches to non-monotonic reasoning.

– partial, incomplete knowledge
– transient knowledge

The former category refers to those parts of the application domain which are
unknown yet, but that can be considered (practically) stable (such as the structure of
the grid in the example). The latter refers to that part of the world which evolves
during agent life (such as each cell being at a given moment free or occupied), so that
they cannot be taken safely as a basis for logic operations.

A possible approach might exploit the multiplicity of “knowledge containers”
(CUs) in order to keep transient knowledge separate from incomplete knowledge. In
other words, each CU might be defined as containing either one category or the other
one, thus forbidding in or demo class primitives, accordingly.

On the other hand, first-order logic-based languages provide another way to
partition knowledge into chunks. In particular, predicate symbols can be thought as a
source of a primary form of modularity: given predicate p, the collection of the facts
of the form p(̃t) constitutes a unique knowledge chunk. Thus, one could define each
predicate symbol as representing either a transient or a partial form of knowledge.

Logic theories (CUs, too) represent objects of the application domain, denoted by
elements of the Herbrand Universe (ground terms of a logic language), according to a
given interpretation. On the other hand, predicate symbols (which the Herbrand Base
of a logic program is built from) define relations over computational objects. Since it
seems more reasonable to associate information categories to relations rather than to
objects, � � � � allows each predicate symbol occurring in a CU to be defined (either
explicitly, through suitable static declarations, or implicitly, by the primitives
dynamically used to access the corresponding axioms) as being either transient or
extendible.

Thus, door/3 predicate in the Mouse Agents Example is implicitly defined as
extendible with respect to CU grid : any (exploring) agent can add further information
about grid doors, and perform logic inference based on this knowledge: however, this
knowledge cannot be removed by no one. This corresponds to an idea of the grid
structure as being (relatively) non-mutable with respect to the mouse agents
computation. Otherwise, it may happen the case of a lazy mouse reasoning on its path
toward cheese, trusting some door knowledge, while this knowledge has meanwhile
being removed by some other agent, making the assumption inconsistent.

At the same time, a competition between many speedy mouse agents, fighting for
cell access, is based on a transient freeCell/2 predicate. Grid structure is fixed,
however one given cell being free or occupied by a mouse is an information changing
as the multiagent system evolves. As a result, the interaction based on freeCell

results in a sequence of in and out operations performed by different agents, while no
agent activates an inferential activity based on sequential exploration and
backtracking on f r eeCe l l axioms, which is quite reasonable. Thus, no
demo(freeCell(X,Y))@grid is conceptually acceptable in the � � � � categorization.

4 Sketch of the � 	
 � implementation

� � � � has been built starting from a SICStus Prolog [6] system. Since it has been
implemented as a library which can be loaded by any SICStus logic process, any
SICStus program can easily become an � � � � agent.

Agents can be spread over a network of machines, each one running an � � � �
daemon. Daemons are in charge of managing communication between � � � �
processes running on the same machine (through UDP connections), as well as on
different machines (through TCP connections), ensuring transparency of the
communications: no information about physical allocations of agents is needed in
order to access to any CU.

The whole � � � � system (both daemons and agents) is built by exploiting the full
power of the CSM programming environment [7]. CSM actually implements upon
SICStus Prolog (again, as a SICStus library) a model for declarative object-oriented
languages based on first-order logic [8]. Thus, the � � � � kernel is defined as an open
software layer which can be easily specialized by exploiting dynamic inheritance
mechanisms. More refined communication protocols can be implemented on top of
the � � � � basic system, by simply adding new layers. In addition, each � � � � agent
can be developed according to an object-oriented design, by exploiting at the same
time the full power of a declarative language.

Even though the SICStus programming environment (as well as CSM) is available
on most hardware platform (UNIX, PC, Macintosh), current implementation works
only on a network of Sun and HP workstations, and on PCs running Linux. Further
work will be devoted to extend the number of the different architectures supporting
the � � � � system.

5 Conclusions

Many different models for process communication/synchronization based on logic
languages have been proposed in the literature (such as [5,9]). However, the original
contribution of � � � � lays in the twofold interpretation of the communication units as
both repositories for message exchange, and logic theories representing evolving
models for the objects of the application domain. In fact, � � � � make such two
readings coexist in the same conceptual framework, by clarifying the relationship
between time-related tasks and logic inference. By exploiting a simple knowledge
classification scheme which distinguishes between partial and transient knowledge,

� � � � provides a set of disciplined primitives for logic inference, allowing multiagent
systems to be designed where both single agents, and the system organization as a
whole, are able to perform reasoning activities interleaved with reactive behaviours.

On the other hand, despite of some analogies, the � � � � model cannot be properly
classified as a knowedge assimilation framework [12, 13], since the flow of input
sentences (knowledge coming from agents) into a theory (CU) is subsantially
independent of the logical relation between the theory and the knowledge to be
assimilated. Moreover, the � � � � scheme does not provide direct support for
non-monotonic reasoning [14]. Even though it may be argued that � � � � may

somehow be exploited in order to deal with uncertain knowledge, this issue falls far
outside the scope of this work.

The starting point for the development of � � � � , rooted in the CPU model [3], has
to be found in the experimental work made with CARA [11] (where the Mouse
Agents Example comes from), where the need for a unique model integrating
reasoning and reaction clearly emerged. Multiagent systems built with CARA were
meant to exploit the power of logic programming in advanced application domains
such as robotics, where high-level symbolic activities have to coexist with low-level
reactive behaviours. Further work will be then devoted to test the effectiveness of
both � � � � model and implementation in real cases, such as the robotics case studies
used for CARA testing.

Bibliography

1 R. Englemore, T. Morgan (eds.). Blackboard Systems. Addison-Wesley, Reading, Mass.,
1988.

2 D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1), January 1985.

3 P. Mello, A. Natali. Extending Prolog with Modularity, Concurrency and Metarules. New
Generation Computing, 10(4), August 1992.

4 A. Brogi, P. Ciancarini. The Concurrent Language, Shared Prolog. ACM Transactions on
Programming Languages and Systems, 13(1), January 1991.

5 D. Gelernter. Multiple Tuple Spaces in Linda. Proceedings of PARLE, 1989, LNCS 365.
6 Swedish Institute of Computer Science. SICStus Prolog User’s Manual. Kista, Sweden,

1994.
7 E. Denti, A. Natali, A. Omicini. Moving Prolog Toward Objects. In E. Tick, G. Succi

(eds.), Implementations of Logic Programming Systems, Kluwer, Dordrecht (NL) 1994.
pp. 89-102.

8 A. Omicini, A. Natali. Object-Oriented Computations in Logic Programming. In
M. Tokoro, R. Pareschi (eds.), Object-Oriented Programming. LNCS 821. New York,
Springer-Verlag 1994, pp. 194-212.

9 P. Ciancarini. Distributed Programming with Logic Tuple Spaces. New Generation
Computing, 12, 1994.

10 F. Zanichelli, S. Caselli, A. Natali, A. Omicini. A Multi-Agent Framework and
Programming Environment fot Autonomous Robotics. Proceedings of the International
Conference on Robotics and Automation, ICRA ’94, S. Diego, May 1994.

11 E. Denti, A. Natali, A. Omicini, F. Zanichelli. Robot Control Systems as Contextual Logic
Programs. In C. Beierle, L. Plümer (eds.), Logic Programming: Formal Methods and
Practical Applications. Elsevier, 1994.

12 R.A. Kowalski. Logic without Model Theory. 1993. Found at the following WWW location:
http://src.doc.ic.ac.uk/ic.doc.lp/Kowalski/models.ps.gz.

13 R.A. Kowalski. Logic for Problem Solving. North Holland Elsevier, 1979.
14 R. Reiter. Non-monotonic Reasoning. In Ann. Rev. Computer Science, 1987, 2,

pp. 147-186.

