Service Plans for Context- and QoS-aware
Dynamic Middleware

SIUMI’06

Sten A. Lundesgaard (presenter), Ketil Lund
and Prof. Frank Eliassen

Simula Research Laboratory

University of Oslo, Norway

Agenda r

Background and Problem

Approach - to enable mobile middleware support QoS-sensitive
applications in a dynamic environment

Contribution —-middleware architecture and service plan concept

Life-Cycle Phases —application

Background (1) ;d‘

« Currently mobile terminals and mobile communication systems provide best-
effort QoS.

- Application provide and maintain QoS-levels:

QoS mechanisms integral part of the application logic (e.g., rate
adaptation, content processing, error correction).

Applications dynamically reconfigure itself (e.g., add, remove, or replace
component).

Background (2) ;d‘

Academia works on dynamic middleware; employs alternatives of the application
together with late bindings (of components) for run-time configuration.

Management plane and hard-coded rules to control reconfiguration of component
composition

Meta-level for introspection of the running application.

—[alal g

.

Problem ﬂ

- Each alternative explicitly (and completely) specified, i.e., many
configurations equal number of specifications.

- Dynamic (Re)Configuration according to changes in the environment, i.e.,
context-awareness only.

- Specification specialised for platform, no reuse of specification and thus the
alternative application.

Application

@)L -

Dynamic Middleware

gdd

Approach (1) ﬂ

- To solve the problem, we advocate that mobile middleware should be both
context- and QoS-aware.
= Context- and QoS-aware architecture

- Use components as software entity for late-binding and -configuration:

Selects and combines components for a given context and resource QoS
characteristics and user QoS requirements.

During mobility the middleware dynamically reconfigure the application to
context changes and to maintain QoS:

« Parameter settings of individual components
« Composition of components

« Implementation of component type

Approach (2) n‘

- Each alternative application configuration is prepared at design time and
deployed onto the mobile middleware.

- Specifications of the alternatives and internal representation within the
middleware.
=>» Service Plan Concept

Agenda ”

- Background and Problem

« Approach - to enable mobile middleware support QoS-sensitive
application in a dynamic environment

- Contribution —middleware architecture and service plan concept

« Life-Cycle Phases —application

Context- and QoS-aware middleware architecture (1) ;H‘

- Traditional mechanisms supported, e.g., context and reconfiguration management

=> In our QoS-aware middleware architecture employ hooks for QoS management
mechanisms.

| | al
< v e T
| [I R
[J
r
L
Context- and QoS-aware middleware architecture (2) ;H‘

=> Service type and Service Plan explicitly defines meta-level in architecture.

=> ServicePlanner chooses the application configuration based upon information
from ContextManager and ResourceManager and the service plans.

=> ServicePlanner decides when and what to reconfigure, based upon service plans.

=> Configuration and Reconfiguration managers use meta-level to (re)configure the

application.
R | IR
. A
— N —

e R —

lager

Nobile

Service Plan Concept (1)

« An application is formed by many components.

- Each one offers a service, which is grouped into compositions of services.

£]
B g1 —Co— &1 ioH
| +
i
E%g@i E{jo* g11C -
] |
{W < g1{™
o] g
f\07 =

Service Plan Concept (2)

« To be able to define alternatives of these compositions:
- Make the interface of each service explicit, i.e., service type
« Introduce a recursive structure of services.

- Variation points are placed in the structure and service type.

ServiceTypei
JAN
0 0

ServiceTypejk

JAY

0

ServiceTy“pejlm

N

ServiceTypeji

N

OR

1 \
‘ Serviceﬂ ‘ ‘ Serviceiz ‘

ServiceTypeiit ServiceTypejl2

f OR —j |
‘ Servicein ‘ ‘ Servicejlz H Serviceji3 ‘ : ‘ Serviceﬂn ‘

Service Plan Concept (3)

- Need some means to associate the

implementation of a service to the service type
=> the service plan.

ServiceType 00

« Plan specifies 1

a composition <<implements>>

<<sftecify>>

a component 1.0
ServicePlan

l.n
<<;])e@'f/ >>

0.1

Component

Service Plan Concept (4)

- Extends the plan to include information elements about:
Dependencies to the context
Any parameter configurations
QoS characteristics

—]
—
-
.

Application Life-Cycle I‘

ApplicationDesign | Lo s
i T Context- & QoS-aware architecture i
Design Deployment Planni
Context and Resourcejéos c'(wanges
Life-Cycle —Deployment (1) pag

Service types and Service plans are deployed using WSDL and XML respectively.
Open standards, Human readable, and supported by software design tools.

Service types and plans are parsed and analysed using existing (J)DOM API
since generic and small total foot-print.

L]

In case of a service composition the WSDL file (i.e., the service type to the sub-
service) imports the name spaces of the services in the composition.

Avoid duplication of information.

Reuse of to/from message definitions.

Service Plans employ a tree structure.

Elements (among other things) for specifying dependencies to context
elements in environment and calculating QoS at application and user level.

Life-Cycle —Deployment (2) w

- Specifying Context dependencies: ‘

Life-Cycle —Deployment (3) r

- Specifying QoS: 1ent

inputqoscontract_id

qosmodel_id

state—< =
gosmapping id
offeredServices .

inDimension

inpthoSContract{ / —

qosCharacteristics
unit

/ direction

- model_id -
qOSMOd€14<;— \ minQoSvalue
. \ maxQoSvalue

funcDimension
mappin id{ C fancion. D
qOSMappiﬂg < pp & function

allocation

Summary

- Context- and QoS-awareness can be achieved in the mobile domain.

- Require means to specify alternative application configurations
independent of target platform.

« Our solution:
New context- and QoS-aware middleware architecture.

Concept for specifying and representing in the middleware the application
configurations and their QoS characteristics.

Final Discussion

New services, design and rapid prototyping #

The idea of services and service composition is not new. Still they are useful the terms,
since enable us to discuss:

- software without having to take into consider implementation technologies.
- reuse of existing fully functional software that can be accessed by users.

Increased proliferation of Internet and mobile terminals
+ ERP and e-commerce and m-commerce systems

=> engineering methods and tools and middleware that allow for shorter
development time at a lower cost and self-configuration.

Hence, concepts and mechanisms for service (oriented computing) should be a natural
evolution of existing OOD and target platforms.

Middleware, significant requirements for best support #

Today, main motivation for middleware is to reduce the volume of code and testing
needed (i.e., fewer engineers in the project = lowest possible development cost).

Additional libraries (with advanced functionality) are added to the system on a needed
basis.

Middleware should be possible to use on as many types of computers as possible,
open for configurations of its functionality, and at deployment time and run-time add
mechanisms needed according to:

Technical domain (mobile, grid, embedded)

- Application type (transaction, streaming, content, logistics, control)

Dynamic middleware have a possibility for self-configuration, which will avoid high cost
even when systems spans across more computers.

