
QuA

Service Plans for Context- and QoS-aware 
Dynamic Middleware

Service Plans for Context- and QoS-aware 
Dynamic Middleware

SIUMI’06

Sten A. Lundesgaard (presenter), Ketil Lund
and Prof. Frank Eliassen

Simula Research Laboratory

University of Oslo, Norway

SIUMI’06

Sten A. Lundesgaard (presenter), Ketil Lund
and Prof. Frank Eliassen

Simula Research Laboratory

University of Oslo, Norway

Agenda

• Background and Problem

• Approach - to enable mobile middleware support QoS-sensitive 
applications in a dynamic environment

• Contribution –middleware architecture and service plan concept 

• Life-Cycle Phases –application

• Background and Problem

• Approach - to enable mobile middleware support QoS-sensitive 
applications in a dynamic environment

• Contribution –middleware architecture and service plan concept 

• Life-Cycle Phases –application



Background (1)

LAN

IP-network WLAN

Mobile com. sysCellular

Linux, Unix

Symbian, PocketPC

• Currently mobile terminals and mobile communication systems provide best-
effort QoS.

• Application provide and maintain QoS-levels:

• QoS mechanisms integral part of the application logic (e.g., rate 
adaptation, content processing, error correction).

• Applications dynamically reconfigure itself (e.g., add, remove, or replace 
component).

• Currently mobile terminals and mobile communication systems provide best-
effort QoS.

• Application provide and maintain QoS-levels:

• QoS mechanisms integral part of the application logic (e.g., rate 
adaptation, content processing, error correction).

• Applications dynamically reconfigure itself (e.g., add, remove, or replace 
component).

Linux, Windows

Background (2)

• Academia works on dynamic middleware; employs alternatives of the application 
together with late bindings (of components) for run-time configuration. 

• Management plane and hard-coded rules to control reconfiguration of component 
composition

• Meta-level for introspection of the running application. 

• Academia works on dynamic middleware; employs alternatives of the application 
together with late bindings (of components) for run-time configuration. 

• Management plane and hard-coded rules to control reconfiguration of component 
composition

• Meta-level for introspection of the running application. 



Problem

• Each alternative explicitly (and completely) specified, i.e., many 
configurations equal number of specifications. 

• Dynamic (Re)Configuration according to changes in the environment, i.e., 
context-awareness only.

• Specification specialised for platform, no reuse of specification and thus the 
alternative application.

• Each alternative explicitly (and completely) specified, i.e., many 
configurations equal number of specifications. 

• Dynamic (Re)Configuration according to changes in the environment, i.e., 
context-awareness only.

• Specification specialised for platform, no reuse of specification and thus the 
alternative application.

Dynamic Middleware

Application

Approach (1)

• To solve the problem, we advocate that mobile middleware should be both 
context- and QoS-aware.

Context- and QoS-aware architecture

• Use components as software entity for late-binding and -configuration:

• Selects and combines components for a given context and resource QoS 
characteristics and user QoS requirements.

• During mobility the middleware dynamically reconfigure the application to 
context changes and to maintain QoS:

• Parameter settings of individual components

• Composition of components

• Implementation of component type

• To solve the problem, we advocate that mobile middleware should be both 
context- and QoS-aware.

Context- and QoS-aware architecture

• Use components as software entity for late-binding and -configuration:

• Selects and combines components for a given context and resource QoS 
characteristics and user QoS requirements.

• During mobility the middleware dynamically reconfigure the application to 
context changes and to maintain QoS:

• Parameter settings of individual components

• Composition of components

• Implementation of component type



Approach (2)

• Each alternative application configuration is prepared at design time and 
deployed onto the mobile middleware.

• Specifications of the alternatives and internal representation within the 
middleware. 

Service Plan Concept

• Each alternative application configuration is prepared at design time and 
deployed onto the mobile middleware.

• Specifications of the alternatives and internal representation within the 
middleware. 

Service Plan Concept

Agenda

• Background and Problem

• Approach - to enable mobile middleware support QoS-sensitive 
application in a dynamic environment

• Contribution –middleware architecture and service plan concept 

• Life-Cycle Phases –application

• Background and Problem

• Approach - to enable mobile middleware support QoS-sensitive 
application in a dynamic environment

• Contribution –middleware architecture and service plan concept 

• Life-Cycle Phases –application



Context- and QoS-aware middleware architecture (1)

• Traditional mechanisms supported, e.g., context and reconfiguration management

In our QoS-aware middleware architecture employ hooks for QoS management 
mechanisms.

• Traditional mechanisms supported, e.g., context and reconfiguration management

In our QoS-aware middleware architecture employ hooks for QoS management 
mechanisms.

Context- and QoS-aware middleware architecture (2)

Service type and Service Plan explicitly defines meta-level in architecture. 

ServicePlanner chooses the application configuration based upon information 
from ContextManager and ResourceManager and the service plans.

ServicePlanner decides when and what to reconfigure, based upon service plans. 

Configuration and Reconfiguration managers use meta-level to (re)configure the 
application.

Service type and Service Plan explicitly defines meta-level in architecture. 

ServicePlanner chooses the application configuration based upon information 
from ContextManager and ResourceManager and the service plans.

ServicePlanner decides when and what to reconfigure, based upon service plans. 

Configuration and Reconfiguration managers use meta-level to (re)configure the 
application.



Service Plan Concept (1)

• An application is formed by many components.

• Each one offers a service, which is grouped into compositions of services. 

• An application is formed by many components.

• Each one offers a service, which is grouped into compositions of services. 

Service Plan Concept (2)

• To  be able to define alternatives of these compositions: 

• Make the interface of each service explicit, i.e., service type

• Introduce a recursive structure of services. 

• Variation points are placed in the structure and service type.

• To  be able to define alternatives of these compositions: 

• Make the interface of each service explicit, i.e., service type

• Introduce a recursive structure of services. 

• Variation points are placed in the structure and service type.

OR

ServiceTypei

Servicej

ServiceTypej1 ServiceTypejk

Servicej1 Servicej2 Servicejl

ServiceTypejl1

Servicejl1 Servicejl2 Servicejl3 Servicejln

ServiceTypejl2 ServiceTypejlm

OR



Service Plan Concept (3)

• Need some means to associate the 
implementation of a service to the service type 

the service plan. 

• Plan specifies 

• a composition

• a component

• Need some means to associate the 
implementation of a service to the service type 

the service plan. 

• Plan specifies 

• a composition

• a component

ServiceType

ServicePlan

Component

1

1..n

<<specify>>

0..1

1..n 1

0..n

<<implements>>

<<specify>>

Service Plan Concept (4)

• Extends the plan to include information elements about:

• Dependencies to the context

• Any parameter configurations

• QoS characteristics

• Extends the plan to include information elements about:

• Dependencies to the context

• Any parameter configurations

• QoS characteristics



Application Life-Cycle

Context- & QoS-aware architecture

Context and Resource QoS changes

Service Plan
Application Design

Life-Cycle –Deployment (1)

• Service types and Service plans are deployed using WSDL and XML respectively. 

• Open standards, Human readable, and supported by software design tools.

• Service types and plans are parsed and analysed using existing (J)DOM API 
since generic and small total foot-print. 

• In case of a service composition the WSDL file (i.e., the service type to the sub-
service) imports the name spaces of the services in the composition. 

• Avoid duplication of information. 

• Reuse of to/from message definitions.

• Service Plans employ a tree structure.

• Elements (among other things) for specifying dependencies to context 
elements in environment and calculating QoS at application and user level.

• Service types and Service plans are deployed using WSDL and XML respectively. 

• Open standards, Human readable, and supported by software design tools.

• Service types and plans are parsed and analysed using existing (J)DOM API 
since generic and small total foot-print. 

• In case of a service composition the WSDL file (i.e., the service type to the sub-
service) imports the name spaces of the services in the composition. 

• Avoid duplication of information. 

• Reuse of to/from message definitions.

• Service Plans employ a tree structure.

• Elements (among other things) for specifying dependencies to context 
elements in environment and calculating QoS at application and user level.



Life-Cycle –Deployment (2)

• Specifying Context dependencies: • Specifying Context dependencies: 

Life-Cycle –Deployment (3)

• Specifying QoS: • Specifying QoS: 

qosCharacteristics

offeredServices

inputQoSContract

qosModel

qosMapping

maxQoSvalue

dimension

direction
unit

minQoSvalue

funcDimension

function

inputqoscontract_id

qosmodel_id

qosmapping_idoperation
state

inDimension

lowestQoScontract_id

model_id

mapping_id

allocation



Summary

• Context- and QoS-awareness can be achieved in the mobile domain.

• Require means to specify alternative application configurations 
independent of target platform.  

• Our solution:

• New context- and QoS-aware middleware architecture. 

• Concept for specifying and representing in the middleware the application 
configurations and their QoS characteristics.

• Context- and QoS-awareness can be achieved in the mobile domain.

• Require means to specify alternative application configurations 
independent of target platform.  

• Our solution:

• New context- and QoS-aware middleware architecture. 

• Concept for specifying and representing in the middleware the application 
configurations and their QoS characteristics.

Final Discussion



New services, design and rapid prototyping

• The idea of services and service composition is not new. Still they are useful the terms, 
since enable us to discuss: 

• software without having to take into consider implementation technologies. 

• reuse of existing fully functional software that can be accessed by users. 

• Increased proliferation of Internet and mobile terminals 

+ ERP and e-commerce and m-commerce systems

=> engineering methods and tools and middleware that allow for shorter 
development time at a lower cost and self-configuration. 

• Hence, concepts and mechanisms for service (oriented computing) should be a natural 
evolution of existing OOD and target platforms. 

• The idea of services and service composition is not new. Still they are useful the terms, 
since enable us to discuss: 

• software without having to take into consider implementation technologies. 

• reuse of existing fully functional software that can be accessed by users. 

• Increased proliferation of Internet and mobile terminals 

+ ERP and e-commerce and m-commerce systems

=> engineering methods and tools and middleware that allow for shorter 
development time at a lower cost and self-configuration. 

• Hence, concepts and mechanisms for service (oriented computing) should be a natural 
evolution of existing OOD and target platforms. 

Middleware, significant requirements for best support

• Today, main motivation for middleware is to reduce the volume of code and testing 
needed (i.e., fewer engineers in the project lowest possible development cost). 

• Additional libraries (with advanced functionality) are added to the system on a needed 
basis.

• Middleware should be possible to use on as many types of computers as possible, 
open for configurations of its functionality, and at deployment time and run-time add 
mechanisms needed according to:

• Technical domain (mobile, grid, embedded)

• Application type (transaction, streaming, content, logistics, control) 

• Dynamic middleware have a possibility for self-configuration, which will avoid high cost 
even when systems spans across more computers. 

• Today, main motivation for middleware is to reduce the volume of code and testing 
needed (i.e., fewer engineers in the project lowest possible development cost). 

• Additional libraries (with advanced functionality) are added to the system on a needed 
basis.

• Middleware should be possible to use on as many types of computers as possible, 
open for configurations of its functionality, and at deployment time and run-time add 
mechanisms needed according to:

• Technical domain (mobile, grid, embedded)

• Application type (transaction, streaming, content, logistics, control) 

• Dynamic middleware have a possibility for self-configuration, which will avoid high cost 
even when systems spans across more computers. 


