SOCS

A COMPUTATIONAL LOGIC MODEL FOR THE DESCRIPTION, ANALYSIS AND VERIFICATION
OF GLOBAL AND OPEN SOCIETIES OF HETEROGENEOUS COMPUTEES

IST-2001-32530

D9: A Prototype for the Animation of Societies
of Computees

Project number:

Project acronym:
Document type:
Document distribution:
CEC Document number:
File name:

Editor:

Contributing partners:

Contributing workpackages:

Estimated person months:
Date of completion:

Date of delivery to the EC:
Number of pages:

IST-2001-32530

SOCS

IN (information note)

I (internal to SOCS and PO)
IST32530/CITY/012/IN/1/al
3012-al[socs-d9].pdf

K. Stathis and P. Torroni
ALL

WP4

35

22 December 2003

1 January 2004

85

ABSTRACT

The development of the prototype demonstrator in SOCS integrates the implementation
effort of the logical models developed in deliverables D4 [57] and D5 [66] according to the
computational model described in D8 [58]. The combined implementation effort results in
PROSOCS, a generic platform whose name stands for Programming Societies Of ComputeeS.
We describe PROSOCS, we demonstrate its application to implement a series of examples in
the context of a global computing application, we evaluate the resulting interactions, and we
discuss our plans for future work.

Copyright © 2003 by the SOCS Consortium.
The SOCS Consortium consists of the following partners: Imperial College of Science, Technology and Medicine,
University of Pisa, City University, University of Cyprus, University of Bologna, University of Ferrara.

D9: A Prototype for the Animation of Societies
of Computees

Marco Alberti®, Andrea Bracciali?, Anna Ciampolini®, Federico Chesani®,

Neophytos Demetriou?, Ulle Endriss', Marco Gavanelli®, Antonis Kakas?, Evelina
Lamma®, Wenjin Lu?, Paoclo Mancarella?, Paola Mello®, Michela Milano®, Fabrizio
Riguzzi®, Fariba Sadri', Kostas Stathis®, Francesca Toni!, Paolo Torroni®

! Department of Computing, Imperial College London, UK.
Email: {ue,ft,fs}@doc.ic.ac.uk

2 Dipartimento di Informatica, Universita degli Studi di Pisa
Email: {braccia,paolo}@di.unipi.it
3 Department of Computing, City University London, UK.
Email: {lue,kostas}@soi.city.ac.uk

4 Department of Computer Science, University of Cyprus
Email: {nkd,antonis}@ucy.ac.cy

5 DEIS, Universita degli Studi di Bologna

Email: {aciampolini ,fchesani,pmello,mmilano, ptorroni}@deis .unibo.it

6 Dipartimento di Ingegnieria, Universita degli Studi di Bologna
Email: {malberti,elamma,mgavanelli,friguzzi}@ing.unife.it

ABSTRACT

The development of the prototype demonstrator in SOCS integrates the implementation
effort of the logical models developed in deliverables D4 [57] and D5 [66] according to the
computational model described in D8 [58]. The combined implementation effort results in
PROSOCS, a generic platform whose name stands for Programming Societies Of ComputeeS.
We describe PROSOCS, we demonstrate its application to implement a series of examples in
the context of a global computing application, we evaluate the resulting interactions, and we
discuss our plans for future work.

Contents

I OVERVIEW

1

Introduction

1.1
1.2
1.3
14
1.5

Motivation e e e e e e e e e e e e e e e e
AImS . . . e e e e e e e e
Objectives e
Contribution L
Structure e e e e e e e e e e e

Deliverable Information

2.1
2.2
2.3

Task Allocation e e e e e
Components of D9 L
Publications e e e e

II IMPLEMENTATION OF SOCS

3

The PROSOCS Platform

3.1
3.2
3.3
3.4
3.5

The PROSOCS Reference Model
The Reference Model of Individual Computees
The Society Reference Model
The Medium e
Choice of Technologies for Building PROSOCS

Implementation of a Computee

4.1

4.2

4.3

Implementation of the Mind L .
4.1.1 Computee Implementation Architecture
4.1.2 The State of a Computee
4.1.3 Proof-Procedures. L
414 Capabilities
4.1.5 Transitions e e e e
4.1.6 Cycle Theory i s
The Implementation of the Body
421 Body. e
422 GUIL . ..o e
The Implementation of the Medium
4.3.1 The JXTA Project o o i i e e e
4.3.2 The PROSOCS Mediumasan API.

Implementation of Societies

5.1
5.2

Overall Architecture L
The Society Module
5.2.1 The Social Compliance Verifier
5.2.2 The History Manager
5.2.3 The Event Recorder

5.2.4 Message processing e e e e
5.3 Proof Procedure e
5.3.1 Overview
5.3.2 Variables
5.3.3 Data Structures L
5.3.4 Transitions L e e
54 GUT . . . e
III THE DEMONSTRATOR IN PROSOCS
6 A Prototype Application
6.1 The Application Scenario Lo e
6.2 Summary of the Leaving San Vincenzo scenario
6.3 Extending Leaving San Vincenzo
6.4 Running the SOCSDemo
6.5 AnExample Run
7 Evaluation
7.1 Evaluation of WP4
7.2 Mobility in (PRO)SOCS: A Feasibility Study
7.2.1 Preliminaries L e
7.2.2 Mobility in PROSOCS: A Sketch
7.2.3 Which primitives? oL
7.2.4 Can we take advantage of SOCS to support mobility?
7.3 Related work L
7.3.1 Platforms based on a Directory Facilitator Approach
7.3.2 Platforms that treat Agents as First Class Objects
7.3.3 Commercial-grade platforms. o oL
734 Agent Programming Languages
7.3.5 Social Infrastructures Lo
IV . CONCLUSION
8 Summary
9 Future work
10 Appendices
10.1 Protocol definition language Lo
10.2 A brief introduction to Constraint Handling Rules

57

57
57
57
58
58
59

60
60
61
62
64
66
67
68
68
69
71
72
74

75
75

75

Part I
OVERVIEW

1 Introduction

Global Computing(GC) [44] proposes a new vision for information and communication technolo-
gies whereby most physical objects that people use will be transformed into electronic devices
with computing processors and embedded software designed to perform (or control) a multitude
of tasks in people’s everyday activities. Many of these devices will also be able to communicate
with each other and to interact with the environment in carrying out the tasks they are designed
for. The expectation is that the design of computational and information processing systems
will rely entirely on the available infrastructure. The challenge this vision poses is huge in that
it requires the definition and exploitation of dynamically configured applications of software
entities interacting in novel ways with other entities to achieve or control their computational
tasks and processing power around us.

In the context of GC environments, the SOCS project [83] investigates the development
of computational and logical models of individual and collective behaviour of computational
entities - which we refer to as computees. Computees are software agents with a strong logic-
based component representing the cognitive and social capabilities of such agents in a global
and open computing environment. By using these socio-cognitive abilities computees can form
complex organisations, which in SOCS we call Societies of Computees.

1.1 Motivation

In SOCS we are motivated by the observation that techniques for developing interactions in
global computing environments result either in low-level implementations with no obvious log-
ical characterisation, which are, therefore, not verifiable, or in abstract specifications possibly
employing expressive modalities, but which are computationally intractable in many cases. In
workpackages WP1, WP2 and WP3, we have developed computational logic models [57, 66, 58]
that attempt to bridge this gap between specification and implementation. However, we also
need to demonstrate their realisation by means of a platform, as well as, their computational
viability with experiments. The implementation effort described in this workpackage WP4
seeks to support the activities of the third and final year of the project, in particular, the
experimentation process planned be carried out in workpackage WP6.

Another motivation of this work stems from the fact that although a number of Multi-
Agent Systems (MAS) platforms and tools are available, for example see [72, 16, 74], often the
programmer is left alone with the responsibility to develop the reasoning capabilities of the agent
from scratch. Other times, whenever a language with reasoning features is available [75, 45],
the programmer is often left alone to deal with with the development of the communication
and interaction of the agent in an open and distributed environment. In many cases where
both the agent reasoning and the distributed systems infrastructure is in place [1, 64], there is
little help with tools that ensure how (or in what sense) the actual behaviour of the artificial
agent societies being created deviate from the expected behaviour required by the specification
of the application. In some cases [12], it is not that the technologies are not in place, but rather
that the construction of the platform is motivated by a specific class of applications, where the
conformance to an expected overall behaviour simply plays a less prominent role.

1.2 Aims

Given the original motivation of the SOCS project and the current state of the art of MAS
platforms this work aims at:

e identifying the generic components of the logical models to form the basis of the platform;

e developing a platform suitable for building societies of computees based on the computa-
tional models developed in the SOCS project (WP1,WP2,WP3);

e providing implementation reference models for organising the interaction of the generic
components;

e demonstrating how the generic functionality of the platform can be used to develop ap-
plications in the context of GC.

1.3 Objectives

The main objective of this work is to implement a concrete instance of the platform showing
how the logical components can be combined in a distributed system implementation to support
practical applications. This instance should support a prototype demonstrator showing how
examples of GC problems/applications can be tackled using the resulting technology.

The specific objectives of the work is to use the demonstrator to animate the models provided
in previous workpackages (WP1,WP2 WP3), in order to support:

o different reasoning capabilities of a computee;

e knowledge, goals, and plans of a computee;

e communication capabilities of a computee;

e protocol-based interaction amongst computees in a society;

e normative control by the society over computees;

e adaptive behaviour of a computee;

e properties of individual computees and societies of computees.

In the longer term the platform seeks to support not only the specification of computees
and their societies, but also the use of the platform to verify their properties experimentally
(WP6), which can be expressed and verified formally with respect to the SOCS models (WP5).
In future experiments, these properties may be local - within a single computing environment,
or global - within a dynamic collection of open and connected sub-environments.

1.4 Contribution

The main contribution of this work is that it demonstrates the computational feasibility of the
models developed in deliverables D4 [57], D5 [66], and D8 [58]. In this context, it presents
an implementation framework exemplifying how the different computational logic techniques
developed in the project can be integrated in a single reusable tool.

The specific contribution of this work is that it:

e proposes an agent architecture that uses logic programming to represent the Mind of
a computee and concurrent, object-oriented programming to represent the Body of a
computee, in this way separating clearly the development of the reasoning capabilities of
the computee from the interaction of the computee with the environment;

o identifies and implements what we call a Medium, an Applications Programmer’s Interface
(API) developed on top of the Peer-to-Peer Computing support of JXTA[56], that allows
the body of a computee to sense and affect the state of an open and networked electronic
environment;

e proposes a Social Infrastructure component that allows a user to specify in a logical
form the expected interactions amongst computees using logic programming and object-
oriented programming techniques;

e uses the Medium to enable the Social Infrastructure to access the interactions amongst
computees and verify their compliance against expected behaviour specified in the form
of logical protocols;

e implements an initial set of Graphical User Interfaces that allow the user to view the
reasoning and the interactions of computees, as well as test the interactions against the
expectations of the societies these computees are members of;

e illustrates through concrete examples how the generic functionalities of the proposed
system can be used to develop GC applications;

e investigates how the resulting platform can be extended to provide mobility of computees;

e compares and contrasts the approach taken to develop the work with existing approaches
in the literature that have achieved the building of noteworthy agent platforms.

1.5 Structure

Apart from this introduction, this overview part I contains in the next section useful information
about the deliverable for the reviewers, such as the allocation of tasks, the components of the
deliverable, and the published papers that support the work described in this deliverable.

Three additional main parts follow.

Part IT describes the implementation of the SOCS models, whose realisation gives rise to the
PROSOCS platform. In this part we present the reference models for PROSOCS and we give
a justification for the choice of technologies to implement them. We then proceed to discuss in
detail the implementation of individual computees and, separately, the implementation of their
societies.

The generic implementation of the platform is instantiated in Part ITI, where we describe a
demonstration scenario that will allow us to exemplify the interactions that are currently being
supported by the system. We also evaluate the current status of the implementation. The
evaluation contains a separate discussion on the feasibility of mobility in SOCS, as well as a
section on related work.

The final part, part IV, summarises the work that we have presented, further discussing
concrete directions for future work.

2 Deliverable Information

2.1 Task Allocation

The allocation of tasks for WP4 and the way the consortium was organised during the second
year to meet this challenge has already been discussed in detail in deliverable D7 [18]. The task
allocation is shown in Fig. 1. Each task identified is discussed in detail later in the document.

[[ICSTM | DIPISA | CITY | UCY | UNIBO | DIFERRARA |

Social Infrastructure X X
Society GUI X X
Cycle + State + Transitions X X
Planning + Reactivity X X

Preconds + Constraint Solving X

Goal Decision X
Temporal Reasoning X X
Computee Interface
Sensing Capability
Medium

Platform

Example Documents
Web-Site for the Prototype

| >
| >
|

| | | <] <] R

| 4| A
| 4|

Figure 1: Task Allocation for WP4 in the second year

The allocation of these tasks has been done coherently with the WP3 allocation task plan,
shown in the companion deliverable D8, as it seemed reasonable for the same partners to take
primary responsibility for both the definition and the implementation of each computational
model they were allocated.

2.2 Components of D9

Contractually, deliverable D9 should consist of the following components:

e the software deliverable of the prototype demonstrator of SOCS, which we shall refer to
in this document as the SOCSDemo;

e a web-site dedicated solely on the SOCSDemo explaining how it can be ac-
cessed/downloaded;

e a paper deliverable (this document), which should provide an overview of the implemen-
tation effort, so that the contribution and the status of the implementation effort is given
the right importance.

To demonstrate the significance the WP4 task has in SOCS, however, the consortium decided
that we should further complement the contractual obligations for D9 with the following doc-
uments:

e two documents with example descriptions, whose aim is to focus the development activity,

2.3

specifying the concrete interactions characteristic of GC kind of applications that the
SOCSDemo should seek to demonstrate;

a user manual, providing detailed instructions on how to run the SOCSDemo, including
a first attempt that discusses how to use the PROSOCS platform for writing a simple
application from scratch.

Publications

The following publications have been produced as a result of the implementation effort:

a general description of PROSOCS with emphasis on the computee architecture and its
implementation has been accepted for presentation in [88];

a general description of the implementation of the Society Infrastructure and verifier has
been submitted and is under review [8];

a preliminary implementation of the social proof using constraint handling rules, along
with some examples including the NetBill and the FIPA-Contract-Net protocols has been
presented/accepted for presentation in [9, 10];

preliminary work discussing the combination of Peer-to-Peer Computing with the Com-
putational Logic we use to build PROSOCS is described in [63];

a simplified version of the scenario of the SOCSDemo has been presented in [30].

Part II
IMPLEMENTATION OF SOCS

3 The PROSOCS Platform

PROSOCS (Programming Societies of Computees) is the generic functionality obtained by
implementing in a distributed environment the logical models specified in the SOCS project. In
this section we present the organisation of PROSOCS in terms of its constituent components.
This is an implementation-independent part of the system, which is intended to describe what
we call reference models of PROSOCS, viz., the overall architecture and conceptual organisation
of the system. In other words, the intention here is to show an intuitive picture of what the
prototyping effort has considered as important, before giving the technical details that will
follow in the sections after this. We close the section with a discussion of the technologies used
to build PROSOCS.

3.1 The PROSOCS Reference Model
PROSOCS is built according to the Reference Model shown in Fig. 2. This figure depicts an

lser B User &

ﬁ SOCS Platform

[society LI User Interface (LI} Computee UI

Computee

I."Electmmc Cormputes World

= ~Environment for C1
7 Comnputee §
y ormputes en i
Society : c3
Infrastructure { computea
: c2

! “T Medium

Figure 2: The Reference Model of PROSOCS

electronic world which provides, first of all, a Medium that allows entities in that world to
interact and communicate with each other, discover each other, and that allows connectivity of

10

the world with other worlds representing different instances of the same platform. To view the
world and communicate their needs, users interact with the world via a User Interface.

The reference model also depicts a computee C; in the world, with the world situating C;
in an Environment, a notional component that conceptually aggregates all the other actual
computees in the world except Cy, viz., Cs, Cs,...,Cy. It is important to note that a computee
is considered to be an intelligent software component with reasoning capabilities that allow the
computee to act autonomously in the world. In this model, objects in the environment can be
handled by introducing computees that enforce the rules of the environment to manage and
access the functionalities and states of these objects. We will discuss computees in section 3.2.

To regulate the interactions amongst computees in a world, the reference model also relies
on a Social Infrastructure, a component that enforces social rules which in turn specify the
ideal functioning of the computees’ world. For example, communication protocols and social
membership rules are social rules of the kind handled by the Social Infrastructure. We will
describe this component in more detail later in section 3.3.

3.2 The Reference Model of Individual Computees

We propose a computee architecture where we interpret a computee being situated in an en-
vironment as the computee directly controlling a body that allows the computee to access the
world that gives rise to that environment. By direct control we mean that the body will execute
any action that the computee mind selects to execute. However, the results of these actions
are mediated by the interaction of the body and the external environment, which are outside
of the mind’s control.

Sensor

Effector

Body State

Body Control

Effector

Effector

Figure 3: The software architecture of a single computee (defined in [86]), in the special case
where the computee’s body has three effectors and one sensor.

As depicted in Fig 3, a body senses what is external to it by using sensors that can access
the current state of the external world. Information from the sensors is then stored in the body
state, which is a data structure containing all the necessary information that enables the body
to act. The body state is accessed by the mind which is effectively treated as an action selection
process, that can be integrated with the body in order to choose what the body will do next.

11

In SOCS this action selection process reasons upon a set of extended logic programs consisting
of a cycle theory and a number of (sub) knowledge bases, by means of transitions, capabilities,
and proof-procedures as specified in the KGP model [57].

Communication between the body and the mind is achieved through the percepts that the
mind needs to observe in order to select an action. Actions selected by the mind change the
state of the body, which is also accessed by the body control, a component that mechanically
updates the body state and communicates the action to the effectors, which in turn influence
the environment. With this architecture of computees, we conceptually separate the logical
process of reasoning with the physical processes of Action Execution and sensing.

3.3 The Society Reference Model

Within the PROSOCS reference model, a society is an instance of a social framework, where
behaviour protocols are coded. In particular, we are interested in the social behaviour of
computees, i.e., the interactions occurring among members of the society. In the context of the
PROSOCS platform, the society collects messages exchanged among computees and reasons
upon them. The output of such reasoning activity is part of the SEKB, the dynamic and evolving
Social Environment Knowledge Base, as we called it in Deliverable D5 [66]: the (positive
or negative) expectations which are pending, fulfilled, or violated. The declarative model of
the social framework is defined in Deliverable D5, and its operational semantics is defined in
Deliverable D8 [58].

A society can also function as a stand-alone module. In that case, it will not reason upon
messages received through a medium, but it will read messages from other media such as an
input file, or from the user prompt.

Society Infrastructure

Society
<:> Mggjle — Society Module

Figure 4: The Society Reference Model

Figure 4 depicts the society reference model, where we present the possible inputs and the
output given through a graphical user interface. Later on in this document we will refine this
figure and describe how all the various elements have been implemented in detail.

12

3.4 The Medium

The PROSOCS architecture relies on the premise that the body of an agent is part of the
electronic world, thus mediating the interactions between the mind of the computee and the
environment. We assume that the body of a computee has access to the medium through
modular constructs embedded in the computee’s body, that represent specific types of generic
sensors and effectors.

)

SEE
LISTEN

SPEAK

MEDIU M

BODY

zzzzw

Figure 5: Using the Medium via an Agent Body

As shown in Fig. 5, the reference model of PROSOCS assumes a medium that provides the
following sensors and effectors:

e 3 speak effector that allows the body to utter a statement in a communication language;

e 3 listen sensor that allows the body to listen to statements uttered by other agents in that
language;

e a do effector that can also perform “physical” actions in the environment;

e a see sensor that allows sensing the effects of actions in the environment.

In addition to the above functionality, we also assume that it is part of the implementation of
the medium to provide automatic discovery of components such as computees or the society
through the support of low-level protocols. We will touch this point in the next section, where
we are going to discuss what kind of technology will be used to implement the PROSOCS
medium.

3.5 Choice of Technologies for Building PROSOCS

In general, the implementation of the SOCS project poses three main challenging requirements
on the technologies available to build agent-based systems. The first requirement is that the
technology should allow us to develop the computational logic components, to smoothly support

13

the detailed reasoning processes based on the models developed in WP1, WP2, WP3, and WP5.
The second requirement is that the technology should provide support for an open, distributed
and interactive systems infrastructure that will place our approach in the GC context and
accommodate the experimentation work in WP6. The third requirement is about combining
the reasoning and distributed aspects in an integrated and reusable whole to allows us to
differentiate the contribution of this work in the area of Multi-Agent Systems.

The main requirements above have been concrete in deliverable D7 [18] by a set of more
specific requirements for building the PROSOCS platform. These can be summarised as follows:

e R1 — support the ability to deploy computees, rapidly prototype their knowledge bases
and reasoning capabilities with logical tools that are easily extensible for this purpose
(required by WP1, WP2, WP3, WP5, WP6);

e R2 - offer the potential of reusing existing computational logic tools already developed by
SOCS partners, provided that these tools may sufficiently accelerate the implementation
effort without compromising its generality (required by WP4);

e R3& — provide facilities that support communication and interaction in an open and dis-
tributed environment (such as those envisaged by GC) where the discovery of computees
and their services in a network is done dynamically and do not rely on solutions provided
at the application level (required by GC applications);

e R/ — make available primitives that allow for multi-threaded, modular and component-
based development of applications (required by WP1, WP2, WP3, WP6);

e R5 — be platform independent and afford libraries of components that provide for the
development of user interfaces (required by WP4 and WP6).

At the time when the SOCS project started there was a number of computational logic
languages and tools (e.g. SICStus Prolog [80], Qu-Prolog [24], Jinnie [90], and Go! [23]) that
could be used to develop the reasoning capabilities of computees and their societies. However,
at that time, only a few (e.g. Qu-Prolog [24]) of these tools could easily support reasoning to
be executed on a network with little programming effort. None of them provided facilities for
managing computees, except perhaps [23] that however failed R5, as these languages have no
concept of computee (agent) as a first-class object. Moreover, as these languages do not have
consistent product support and facilities for graphical user interfaces, committing to implement
in them PROSOCS would have been too risky.

A plethora of languages and systems also exist for building agent-based systems (e.g. JACK
[2], AgentBuilder [3], JADE [16], FIPAOS [74], ZEUS [72]), but few were available to express the
knowledge and reasoning capabilities of the agent in logic-based formalisms, in particular, the
kind of computational logic (and its extensions) that we are trying to explore in SOCS. Although
these tools could support some of the requirements that we have for the SOCS demonstrator,
most of them would conflict either with the model of individual computees or with the model of
the societies or both. Almost all of those that were stable, could not support dynamic discovery
of agents in open environments as envisaged in GC (we will return to this point later, when we
discuss related work in section 7.3).

To accommodate all the SOCS requirements, we have chosen an integrated approach with
the following combination of technologies:

14

e use SICStus Prolog [80] for the knowledge representation, reasoning, logical and social
capabilities of the computee, as well as the reasoning required by the society module;
the advantage here being that this Prolog system is extremely stable and good for rapid
prototyping, it can support the reasoning capabilities of computees, it supports multi-
threading and constraint solving, it has the potential of reusing work already done by
partners through its libraries, like CLP(FD) and CHR, and it is extensible with its use of
meta-level facilities;

o use the Sun Microsystems Peer-to-Peer platform JXTA [56] to develop the low-level com-
munication requirements of the implementation and handle the openness of the GC envi-
ronment;

o use XML [94] for exchanging messages between JXTA peers;

o use Java [55] for integrating the various components and building the user interfaces.

Before committing to the above technologies we have investigated alternative approaches.
One is reported in [11], but it has been discarded, as it was not sufficient for fulfilling the require-
ment R3. Another, was attempted in the first year of the project, and involved experimenting
with existing Prolog technologies, in particular the Qu-Prolog system [24], used to implement
the IFF procedure as the engine underlying communicating agents[33]. This implementation
platform was discarded because it did not support requirement R5.

4 Implementation of a Computee

In the previous section we presented the structure of the PROSOCS platform by presenting the
parts that described the generic organisation of the system. The resulting reference models,
however, were implementation independent. Using the choice of technologies proposed in the
previous section, we present here the implementation of PROSOCS, namely, the tools that we
have developed and the concrete choices that we have made in order to implement the computee.
We discuss first how we have implemented the mind component, then how we have implemented
the body component. We also show how the body relies on an Application Programming
Interface (API) that we have developed to support the functionality of the PROSOCS medium.

4.1 Implementation of the Mind

In order to prototype any software component that is based on a demanding logical model such
as KGP [57], a programmer will often have to make a number of pragmatic choices. Stating
these choices at the outset is very important for two main reasons. First, these choices give
an idea of which parts of the model are straightforward and which ones are complex from an
implementation perspective. Secondly, these choices provide a clear idea of what assumptions
have been made and, as a result, what extensions need to be incorporated into the system in
the future.

In PROSOCS, while building the mind of a computee using the KGP model we have made
the following choices:

e the (core) selection functions, for the selection of actions, goals, preconditions and fluents
in cycle, return individual items rather than sets of items; as a consequence

15

e the transitions Action Execution (AE), Plan Introduction (PI), Sensing Introduction (SI),
Active Observation Introduction (AOI), which take sets (of actions, goals, preconditions
of actions and fluents, respectively) as inputs, are given singleton sets as inputs instead;

e the transition Goal Introduction (GI) returns only one goal as output, rather than a full
set;

e the identification of preconditions capability is incorporated within the planning and
reactivity capabilities;

e sensing actions are assigned to have no preconditions, represented by true in the model.

e we implement the version of operational trace described in D4, rather than its generali-
sation described in DS8.

e the proof-procedure C-IFF, when invoked from within PI, returns partial plans of depth
one, rather than any depth;

e temporal constraints are not stored alongside actions in Plan and goals in Goals, but
rather in a global constraint store; we believe this to be not restrictive with respect to
the model, and to actually provide a potential improvement upon the model, that might
be imported into the model in the third phase of the project;

e K By is stored directly as a set of ground facts, alongside the (existentially quantified)
variable substitutions that are implicitly kept within K By in the model;

e the operational trace obtained by reasoning with the cycle is finite rather than infinite (as
envisaged by the model); finiteness is achieved via appropriate inputs from the computee’s
graphical user interface.

4.1.1 Computee Implementation Architecture

Based on the choice of technologies that we have identified earlier for building PROSOCS, the
implementation architecture of a computee is shown in Fig. 6. As shown in Fig. 6, the mind of
a computee is a SICStus Prolog program implementing the mind’s state, the proof-procedures
required to build the mind’s capabilities, the transitions of the mind based on these capabilities,
and the cycle theory of the mind that controls which transitions to execute next, depending
on the computation of the selection functions. We use the JASPER interface of SICStus to
connect the mind of the computee with its body implemented in Java. We have also used Java
to implement a Medium API that uses JXTA to implements the generic effectors (such as the
speak and do), sensors (such as see and listen), as well as the functionality of clock. These
effectors and sensors allow us to access and affect a whole virtual network of computers via the
JXTA P2P infrastructure that will also be used in the same manner to support other computees
that are started using PROSOCS.

We shall spend the rest of this section to define the components of the implementation
architecture of a computee in more detail.

16

COMPUTEE

STATE
PROOF PROCEDURES
CAPABILITES
TRANSITIONS
CYCLE THEORY

JASPER

w e T oOT W

zZc—om=

> < > o

g

BODY GONTROL

o =

BODY STATE

Figure 6: Implementation Architecture of a PROSOCS Computee

4.1.2 The State of a Computee

In KGP the state of a computee is a triple (KB, Goals, Plans), where KB is the computee’s
knowledge base, Goals is the set of properties that the computee currently wants to achieve,
and Plans is a set of concrete actions by which the computee aims at reaching its goals.
KB is divided into several (sub)knowledge bases to support different reasoning tasks. These
(sub)knowledge bases, except K By, in turn may contain different forms of rules and constraints
to represent knowledge, which is specific to these modules as we shall see in the next section.
We describe next how we have implemented the state components of goals, plans, and the
sub-knowledge base K By.

Existentially quantified variables. In order to distinguish between existentially quantified
variables (as defined in [57]) and normal Prolog variables in the representation of goals and
actions, we use terms of the form:

eqv (Id)

in the representation of the state of a computee. Id is a unique identifier generated using the
Prolog primitive gensym/2. For instance, the term:

eqv(tl)

is an example of such a generated existentially quantified variable for a time t1. We will see
shortly how these variables are utilised in the representation of goals and plans.

Temporal Constraints Store. Apart from the representation of existentially quantified
variables, at the implementation level we have also decided to maintain temporal constraints

17

in a single global constraint store (to be shared by all transitions, selection functions, and
capabilities) in order to avoid replication. This global constraint store is represented as a list
of temporal constraints such as:

[egv(tl) #>= 18, ..., eqv(t12) #< 32]

We shall see in subsequent sections how this list of temporal constraints is updated by transitions
such as Goal Introduction, Plan Introduction, and Reactivity when goals and plans are. For
interpreting the store we use the C-IFF proof-procedure whose syntactic features to represent
constraints, such as #<, will be discussed in in the C-IFF part of section 4.1.3. For the time
being, it suffices to say that these constraints are accessible at the implementation level by
calling the predicate get _TCS/1; TCS stands for Temporal Constraints Store.

Goals and Plans. Goals and actions in the state are organised in a hierarchy represented
as a tree with goals and actions as nodes. This tree has a root root_0 representing 1 in D4
[57], and children root_1 and root_2 representing 1" (reactive sub-tree) and L™ (non-reactive
sub-tree) respectively. Goals in the tree are represented by assertions of the form:

goal(Goal, ParentGoal, TemporalConstraints).

Goal and ParentGoal are both of the form (Fluent, Time), indicating that the computee is
trying to achieve the goal specified in the Fluent at a Time (an existentially quantified variable
constrained by a the list of TemporalConstraints !. For example, the assertion:

goal ((have(festival_ticket),eqv(t4)), root_1, [eqv(t4)#=<10]).

represents a top-level goal (i.e. a goal with the reactive root as the parent) for a computee
to have a festival ticket before or at time 10 (note the example shows also an instance of an
existentially quantified variable).

Similarly to goals, actions are represented by assertions of the form:

action(Action, ParentGoal, Preconditions, TemporalConstraints).

Action is a pair (Operator, Time), whose Operator must be executed at a Time (constrained
as before by the list of TemporalConstraints), provided that the list of Preconditions is not
violated in the current state of the computee. The example below:

action((call_taxi(Taxi), eqv(t17)),
(get_to_station, eqv(th)),
[taxi_is_available(Taxi)],
[eqv(t17) #=< 13]

INote that, despite the choice to use a TCS to store all the temporal constraints in the state, we still associate
a temporal constraint to goals and actions, as in the KGP model. This is a left over from earlier stages of the
development of PROSOCS which aids our presentation here. Note also that in the actual implementation, the
temporal constraints of goals and actions will always be empty (represented as the empty list [1 in Prolog),
while the concrete temporal constraints associated with goals and actions exemplified below will always be part
of the TCS.

18

shows how an action whose operation is call _taxi(Taxi), with parent goal get_to_station,
preconditions taxi is available(Taxi), and a temporal constraint on the time of the action
to be less than or equal to 13.

In addition to the predicates for representing goals and actions, a set of auxiliary predicates
have also been introduced to represent relationships amongst nodes in the goal/action tree, as
well as to collect state components, such as plans for goals.

Data structures for KBy. KBy holds the (dynamic) knowledge of the computee about the
external world, which are mainly observed facts and happened events represented by assertions
of the form:

e observed(Property, Time) — represents the fact that Property has been observed to
hold at Time.

e observed(Agent, Action, Time) — states the fact that an Agent has been observed to
execute an Action at a specific Time.

The assertion below is an example of an observation illustrating the fact that the computee
whose K By we are modeling has observed at time 7 that a computee c1 has informed a computee
c2 at time 5 within a dialogue d about the fact that there are no_member_seats.

observed(cl, tell(cl, c2, inform(no_member_seats), d, 5), 7).
The knowledge base K By also contains assertions of the form:
executed(Action, Time).

recording the fact that Action has been executed at Time by the computee “owning” K By. For
instance, the assertion:

executed((call_taxi(taxil2), eqv(t17)), 6).

is an example of a concrete instance of such recording. It is important to note that when an
action is executed the system instantiates the time of the existentially quantified variable of the
action. A list of variable instantiations, which we call Sigma, represents what we have called
¥ in deliverable D4 [57]. This list contains equalities for existentially quantified variables that
result from the execution of actions and observations of fluents. For example, if the action:

(call_taxi(taxil2),eqv(tl7))
is executed at time 6, then Sigma is updated by appending the equality constraint:
[eqv(t17)#=6]

to it. We call these instantiations of variables in Sigma FEquality Temporal Constraints. Such
constraints are then used together with the temporal constraints store in transitions and se-
lection functions that rely on the planning, reactivity, and temporal reasoning capabilities, as
well as the constraint solving underlying the computee models in D4 [57] and D8 [58]. For the
time being it suffices to say that in order to access the data structure representing Sigma, we
have implemented a predicate called get_Sigma/1. We will see examples of how this predicate
is used when we discuss the implementation of transitions.

19

4.1.3 Proof-Procedures
Gorgias: Implementing LPwNF

A proof-procedure for LPwNF (and its integration with abduction) has been implemented as a
Prolog meta-interpreter, named Gorgias[48]. Gorgias is a system for argumentation in LPwNF
that combines preference reasoning and abduction. It can form the basis for reasoning about
adaptable preference policies in the face of incomplete information from dynamic and evolving
environments. Gorgias has been ported to work both with SICStus and SWI-Prolog. One can
run user defined domain descriptions by loading the system itself and a knowledge base of rules
that specify the preference policy at hand.
A Gorgias program consists of Prolog labelled rules of the form:

rule(Label, Head, Arg_Body) : —Body.

where, the Head is a literal, the Body is a list of literals referring to auxiliary predicates defined
by ordinary Prolog rules, and Label is a compound term composed of a rule name and selected
variables from the Head, Arg_Body, and Body. Arg_Body is a list of literals referring to
predicates on which we carry out preference reasoning. Negative literals are terms of the form
neg(L).

Priority rules are again described using the rule syntax given above together with the special
predicate prefer(Labely, Labels) in the head of the rule which means that the rule with name
Label; has higher priority than the rule with name Label, if the body of this priority rule holds.
The role of these priority rules is to encode locally the relative strength of rules in the theory,
typically between contradictory rules.

The statement con flict(Labely, Labels) indicates that the rules with names Label; and
Label, are conflicting. In many cases con flict(Labely, Labelz) will be true iff the heads of the
rules are contrary literals, but other rules can also be declared as conflicting by the designer
of the domain description. In addition, the predicate conflict/2 is derived by statements of
the form of complement(Literaly, Literals) which means that rules with heads Literal; and
Literaly are conflicting. A literal and its negation are always considered to be complements of
each other. Other possibilities for complement are derived through incompatibility statements
in the domain dependent part of a given theory.

The computation of a query in Gorgias consists of two interleaving phases, called resolution
and qualification (or argumentation) phases. In the resolution phase, the query is reduced to
an initial set of rules identified by their labels and a partial valuation of the variables for each
label together with ground hypotheses on the open abducible predicates. The top-level rule of
the Gorgias meta interpreter is:

prove(Query, Delta) :-
resolve(Query, Deltal),
isconsistent (Delta0),
extend(Delta0O, [], Delta).

The qualification phase extends the initial set of rules (an initial argument) to an admissible
set, i.e. to a set that can remain consistent (not self-attacking) and that there exists an admis-
sible defense against each (minimal) attack. The existence of several answers reflects itself on
the existence of several defenses for a given set, and imposes a non-deterministic choice among

20

defenses in the proof-procedure. However, not every potential defense can be promoted to the
answer set and thus this affects back the overall computation.

Proof procedures for Gorgias are obtained by adopting specific ways of computing attacks
in the particular framework in such a way that it permits the monotonic growth of the answer
set, A, during the computation. This is captured by the following definition:

extend([], DeltaAcc, Deltalcc).
extend(DeltaQ, DeltaAcc, Delta) :-
isconsistent (Delta0),
findall (AttackNode, (attacks(_, ’A’, DeltaQ, AttackNode)),AttackNodes),
union(Delta0O, DeltaAcc, NewDeltaAcc),
counterattack(AttackNodes, NewDeltaAcc, Delta).

counterattack([], DeltaThis, DeltaThis).

counterattack([AttackNode|Rest], DeltaThis, Delta) :-
counterattackone(AttackNode, DeltaThis, NewDeltaThis),
counterattack (Rest, NewDeltaThis, Delta).

counterattackone([], DeltaThis, DeltaThis).

counterattackone (AttackNode, DeltaThis, Delta) :-
findall(DefenceNode, (attacks(_, ’D’, AttackNode, DefenceNode),
isconsistent(DeltaThis, DefenceNode)), DefenceNodes),
member (DefenceNode, DefenceNodes),
counterattackoneaux(DefenceNode, DeltaThis, Delta).

The predicate counterattackoneaux/3 will first check whether the DefenceNode is already
subsumed by the current answer set or otherwise extend the answer set, appropriately.

The attacking relation, namely attacks/4, used in this employs a qualification relation during
argumentation that encodes the relative strength of arguments. One simple example of a
qualification relation is “prefer rules of the theory” over (abductive) assumptions of the negative
conclusion.

A qualification relation is specified via rules of the form

attacksO(?QR, 7LT, +Culprit, +Argument, ?CounterArgument)

where QR is the name of a concrete instance of a qualification relation, LT is the level type
that the relation may be applied (either ‘A’ or 'D’ for attack and defense level, respectively),
Culprit is a rule label or assumption in the given Argument that forms the basis on which the
QR constructs the Counter Argument. For instance,

attacksO(’GEN’, _, ass(L), _, CA) :-
complement (L, NL),
rule(Sig, NL, ArgBody),
resolve(ArgBody, Resolvent),
CA = [Sig|Resolvent].

denotes the qualification relation GEN (generation) that may be applied either in an attack
level or a defense level, i.e. no constraints on the level type, and it constructs a counterargument
C'A provided that the given argument contains an assumption (the culprit in our case) ass(L).

21

Here, the predicate complement/2 was used in order to find contrary, with respect to negation,
literals.

There are cases of qualification relations in which the qualification is concluded based on
the rule labels only and thus the predicate con flict/2 is used instead of complement/2 as seen
below.

attacksO(’DYN_GEQ’, _, Culprit, _, CA) :-
conflict(Culprit, CC),
rule(SigHP, prefer(CC, Culprit), BodyHP),
resolve(BodyHP, ResolventHP),
rule(CC, _, BodyCC),
resolve(BodyCC, ResolventCC),
union([nott(SigHP), CC|ResolventCC], [SigHP|ResolventHP], CA).

Here the counter argument C' A consists of the rules [C'C|ResolventCC] that derive the conflict
to the culprit and the rules [SigH P|ResolventH P] that derive that at least one rule in the
counter argument has higher priority than the rule of the culprit.

Gorgias can also be extended with domain-specific qualification relations.

We have tested the Gorgias system with examples from various domains like legal reason-
ing, inheritance theory, and autonomous agent deliberation. The experiments have shown the
flexibility of the system, and its ability to be specialised to additional or changing needs. It
forms the basis for the implementation of the Goal Decision capability and the cycle theories
of computees.

C-IFF

The C-IFF proof-procedure for abductive logic programming with constraints forms the basis
of the implementation of the planning, reactivity, and temporal reasoning capabilities described
later in this document, as well as the constraint solver. This proof-procedure is both an exten-
sion and a refinement of the IFF proof-procedure proposed by Fung and Kowalski [43] and is
described in deliverable D8 [58].

The procedure has been implemented in SICStus Prolog [80]. Most of the code could very
easily be ported to any other Prolog system conforming to standard Edinburgh syntax.? The
main predicate of our implementation of the C-IFF proof-procedure is ciff/4:

ciff(+Defs, +ICs, +Query, -Answer).

The first argument is a list of iff-definitions, the second is a list of integrity constraints, and the
third is the list of conjuncts in the query. The answer consists of three parts: a list of abducible
atoms, a list of restrictions on the answer substitution, and a list of (temporal or arithmetic)
constraints.

2 A small exception is the module concerned with constraint solving as it relies on SICStus’ built-in constraint
logic programming solver over finite domains CLP(FD) [20]. However, the modularity of our implementation
would also make it relatively easy to integrate a different constraint solver into the system. The only changes
required would be an appropriate re-implementation of a handful of simple predicates providing a wrapper
around the constraint solver chosen for the current implementation.

22

Syntax of abductive logic programs. The C-IFF procedure is defined over completed logic
programs, i.e. the logic program in the input is required to be a list of predicate definitions in
iff-form rather than a list of rules (in if-form) and facts. As these definitions can become rather
long and difficult to read, our implementation includes a simple module that translates logic
programs into completed logic programs which may be used as input to the C-IFF procedure.
Being able to complete logic programs on the fly also allows us to spread the definition of a
particular predicate over different knowledge bases. The syntax for facts and rules of a logic
program is taken from Prolog. In addition, we also allow for (temporal) constraints as subgoals
to a rule. Admissible constraints are terms such as T1 #< T2+5. The available constraint
predicates are #=, #\=, #<, #=<, #>, and #>=, each of which take two arguments that may
be any arithmetic expressions over variables and integers (using operators such as addition,
subtraction, and multiplication). Note that for equalities over terms that are not arithmetic
terms, the usual equality predicate = should be used (e.g. C = francisco). Furthermore, we
use the predicate not/1 for the negation of subgoals in a rule.

Integrity constraints are expressions of the form A implies B where A is a list of literals
(representing a conjunction) and B is a list of atoms (representing a disjunction). Atoms are
atomic formulas, including temporal constraints and equalities, but expressions using not/1
are not allowed. For the list of literals, on the other hand, also negated atoms are admissible.
We should stress here that not every logic program with integrity constraints following the
syntax definitions given here constitutes an allowed abductive logic program according to the
original IFF. Additional restrictions are required to be able to avoid the explicit representation
of quantifiers. Appropriate allowedness conditions are given in deliverable D8 [58].

Data structure and proof rules. We are now going to turn our attention to the actual
implementation of the C-IFF proof-procedure. The procedure manipulates, essentially, a set of
formulas that are either atoms or implications (the latter coming from the integrity constraints).
The set of definitions of the abductive logic program is kept in the background and is only used to
unfold defined predicates as they are being encountered. In addition to atoms and implications
the aforementioned set of formulas may contain disjunctions of atoms and implications to which
the splitting rule may be applied, i.e. which give rise to different branches in the proof search
tree. In the terminology of C-IFF, the sets of formulas manipulated by the procedure are
called nodes. A node is a set (representing a conjunction) of formulas (atoms, implications, or
disjunctions thereof) which are called goals.

A proof is initialised with the node containing the integrity constraints in the program and
the literals of the query. The proof-procedure then repeatedly manipulates the current node of
goals by rewriting goals in the node, adding new goals to it, or deleting superfluous goals from
it. These proof rules used to manipulate the current node and to derive its successor node are
described in detail in deliverable D8 [58]. Whenever a disjunction is encountered, the current
node is split into a set of successor nodes (one for each disjunct). The procedure then picks one
of these successor nodes to continue the proof search and backtracking over this choice-point
results in all possible successor nodes being explored. In theory, the choice of which successor
node to explore next is taken nondeterministically; in practice we simply move through nodes
from left to right. The procedure terminates when no more proof rules apply (to the current
node) and finishes by extracting an answer from the final node. Enforced backtracking will
result in the next branch of the proof tree being explored, i.e. in the remaining abductive
answers being enumerated.

The Prolog predicate implementing proof rules is called sat/7 (as it is used to saturate a

23

set of formulas):
sat(+Node, +EV, +CL, +LM, +Defs, +FreeVars, —-Answer).

Node is a list of goals, representing a conjunction. Given our earlier discussion, from a syntactic
point of view, we can distinguish three kinds of goals: (1) Prolog terms representing atoms;
(2) Prolog terms of the form A implies B representing implications (residues of integrity con-
straints) whose antecedents are conjunctions of atoms and whose consequents are disjunctions
of literals; and (3) lists of lists of either of the above, representing disjunctions of conjunctions
of formulas.

EV, the second argument of sat/7, is used to keep track of existentially quantified variables
in the node. This set is relevant to assess the applicability of some of the proof rules. CL (for
constraint list) is used to store the (temporal) constraints that have been accumulated so far.
The next argument, LM (for loop management) is a list of expressions of the form A: B recording
pairs of formulas that have already been used with particular proof rules, thereby allowing us to
avoid loops by applying these rules over and over to the same arguments (this is necessary for
both the propagation and the factoring rule). Defs is a list of iff-definitions. They represent the
completed logic program with respect to which we are evaluating the query. The penultimate
argument, FreeVars, is used to store the list of free variables, i.e. the list of variables appearing
in the original query. Finally, running sat/7 will result in the variable Answer given in the
final argument position to be instantiated with a representation of the abductive answer found
by the procedure (consisting of a list of abducible atoms, a list of restrictions on the answer
substitution, and a list of constraints).

An example. Let us now look at an example of how the proof rules have been implemented.
Each rules corresponds to a Prolog clause in the implementation of sat/7. The unfolding rule
for atoms is used to replace an atom in a node with its definition according to the abductive
logic program in question. This rule has been implemented as follows:

sat(Node, EV, CL, LM, Defs, FreeVars, Answer) :-
member (A, Node),
is_atom(A),
get_def(A, Defs, Ds), !,
delete(Node, A, Nodel),
NewNode = [Ds|Nodeil],
inform(’unfold atom’, A iff Ds, NewNode),
sat(NewNode, EV, CL, LM, Defs, FreeVars, Answer).

The auxiliary predicate is_atom/1 will succeed whenever the argument represents an atom (i.e.,
in particular, whenever it is not an implication). Furthermore, get_def (A, Defs, Ds), with
the first two arguments being instantiated at the time of calling the predicate, will instantiate
Ds with the list of lists representing the disjunction that defines the atom A according to the
iff-definitions given in Defs whenever there is such a definition (i.e. the predicate will fail for
abducible predicates). The appropriate substitutions in Ds are also made within get_def/3.
Once get_def (A, Defs, Ds) succeeds we definitely know that the unfolding rule is applicable:
there exists and atom A in the current Node and it is not abducible. Therefore, this is the right
point to insert a cut into the clause as we do not want to allow any backtracking over the
order in which rules are being applied. After we are certain that this rule should be applied
we manipulate the current Node and generate its successor NewNode. We first delete the atom

24

A and then replace it with the disjunction Ds. The predicate sat/7 then recursively calls itself
with the new node.?

Testing. The Prolog clauses in the implementation of sat/7 may be reordered almost arbi-
trarily (the only requirement is that the clause used to implement answer extraction is listed
last). Each order of clauses corresponds to a different proof strategy, as it implicitly assigns
different priorities to the different proof rules. This feature of our implementation would, in
principle, allow for an experimental study of which strategies yield the fastest derivations (al-
though the systematic evaluation of the efficiency of a proof-procedure such as C-IFF does
not fall within the scope of SOCS). The order in which proof rules are applied in the current
implementation follows some simple heuristics. For instance, logical simplification rules as well
as rules to rewrite equality atoms are always applied first. Splitting, on the other hand, is one
of the last rules to be applied.

The implementation of the C-IFF proof-procedure has been tested successfully on a number
of different examples. Most of these examples are taken from applications of C-IFF within
SOCS, e.g. examples to demonstrate different features of the planning and the reactivity capa-
bilities, both of which have been implemented using C-IFF.

4.1.4 Capabilities

To give examples of how capabilities are represented in the mind of a PROSOCS agent, we
show here how the capabilities of Goal Decision, Planning, Reactivity, Temporal Reasoning,
and Constraint Checking are implemented.

Goal Decision. The Goal Decision (GD) capability is called through the Goal Introduction
(GI) transition in order to decide the current preferred goals of the computee. The specification
of goal decision and its computational model are described in D4 and D8. The derivability
relation Fgp of goal decision is implemented in Gorgias by the following top-level rule:

self__goal_decision(0GDs) :-
findall(GD, self__prove(gd(GD)), GDs),
filter_incompatible(GDs, 0GDs).

The goal decision capability returns a set of goals by finding first the list of goals using the
proof-procedure of Gorgias, and then filters out incompatible goals in the returned answer set
via means of the filter_incompatible/2 predicate.

During its computation, Gorgias uses the predicate complement/2 to identify conflicting
goals in terms of user-defined incompatibilities specified via the predicate kb_gd__incompatible/2
in KBgp. The link between the aforementioned predicates is coded as follows:

complement (gd (X) ,gd(Y)) :-
kb_gd__incompatible(X,Y).

The predicate filter_incompatible/2 is coded as follows:

3The predicate inform/3 is used by the debugger to allow for the name of the rule that has been applied,
the formulas involved, and the new node to be displayed on demand.

25

filter_incompatible([], [1).
filter_incompatible([G|Gs], Result) :-
findall_incompatible_to(G, Gs, IGs),
difference(Gs, IGs, Rest),
(IGs = [] -> Result = [G|Rest] ; Result = Rest).

findall_incompatible_to(G, Gs, IGs) :-
findall(IG, (member(IG, Gs), kb_gd__incompatible(G,IG)), IGs).

For the generation of non-ground goals, Gorgias needs an extension of its complement/2
predicate as follows:

complement (gd ((L1,T1,TC1)), gd(L2,T2,TC2)) :-
kb_gd__incompatible(L1,L2),
overlap(TC1,TC2) .

where T'C'1 and T'C2 are of the form Tjoyy < T < Thign With Tjoyy and Thien ground timepoints,
and overlap/2 holds when these two time intervals overlap.

The goal decision capability is called by the GI transition to decide the preferred goals
at a given current time, namely T},,. This time is used in the rules of the K Bgp so that
these conditions are evaluated accordingly (see the Users’ Manual entry for Goal Decision).
Conditions of the goal decision rules of the form holds_at(P,T) are evaluated using the temporal
reasoning capability. The SOCS library arranges for this through the rule

holds_at(P,T) :- self__tr(P,T).

The GI transition calls the goal decision capability by wusing the predicate
sel f__goal decision/1 directly. For example, the call sel f__goal_decision(Goals) when the cur-
rent time 71,4, = 2 for the first example given in the Goal Decision section of the users’ manual
returns:

Goals = [(1ba,4)]

when the conditions holds_at(finished_work,2) and holds_at(low_battery, 2) are evaluated true
by the temporal reasoning capability.

Planning. Given the computational model for planning put forward in deliverable D8 [58]
and the implementation of the C-IFF proof-procedure described earlier in this document, the
implementation of the planning capability has been straightforward. In essence, it consists of
only a single Prolog clause:

plan(KBO, Assumptions, SelectedGoal, TCs, Answer) :-
switch_triggering(on),
kb(plan, PlanDefs, ICs),
close_pred(executed/2, KBO, EX),
close_pred(observed/2, KBO, 0B),
close_pred(observed/3, KBO, 0A),
close_pred(time_now/1, KBO, TN),
Defs = [EX,0B,0A,TN|PlanDefs],
append([SelectedGoal|Assumptions], TCs, Query),

26

ciff(Defs, ICs, Query, Plan:Substitution:NewTCs),
delete(Plan, Assumptions, NewPlan),
Answer = NewPlan:Substitution:NewTCs.

KBO is a list of (ground) terms of the form executed(Action,T), observed(Fluent,T), and
observed(Computee,Action,T) as well as a single term of the form time now(N) to com-
municate the current time (N is an integer). Assumptions is a list of terms of the form
assume_holds(Goal,T) and assume happens(Action,T) encoding the goals and actions in
the current state. SelectedGoal, the goal to plan for, is a term of the form holds(Goal,T)
and TCs is a list of temporal constraints. The variable Answer will be instantiated with a
representation of the chosen plan if there exists one; otherwise plan/5 fails.

The first subgoal sets up the C-IFF proof-procedure in such a way as not to unfold certain
implications before having applied the propagation rule. This variant of the search strategy is
required to handle the “non-allowedness” of parts of the theory used for planning (see [58] for
details on this issue). Then the iff-definitions (PlanDefs) and the integrity constraints (ICs) of
K Bpjon are retrieved. The predicate close_pred/3 is used to generated iff-definitions for the
predicates occurring in KBO and these are appended to the list of definitions to obtain Defs.
Then the C-IFF proof-procedure is called with Defs as the background theory, ICs as the
integrity constraints, and the list of all other relevant terms as the query. The first component
of the answer consists of a list of abducible predicate encoding the plan (using assume holds/2
for subgoals and assume_happens/2 for actions). The assumptions (goals and actions) already
present in the input need to be deleted from this list. Furthermore, the answer may also include
a list of variable substitutions and an updated constraint store NewTCs.

An additional predicate (set_kbplan/1) is used to read the definition of a planning knowl-
edge base from a file (or possibly a list of files). After completing the respective abductive logic
program, iff-definitions and integrity constraints can be retrieved using kb/3 with the first ar-
gument being plan. The remaining implementation effort has been spent on providing tools to
translate between the representation formalism used within the main computee module on the
one hand and the module implementing the C-IFF proof-procedure on the other. For instance,
while the former employs a ground representation of existentially quantified variables, the lat-
ter relies on actual Prolog variables. Also, only the latter uses the predicates familiar form the
abductive event calculus to represent goals and actions. Finally, the translation process also
includes the identification of any preconditions of actions generated by the planning capability.

Reactivity. The planning and reactivity capabilities are closely related; the reactivity knowl-
edge base is an extension of the planning knowledge base and both capabilities have been
implemented in terms of the C-IFF proof-procedure. Consequently, the implementation of the
reactivity capability is very similar to that of planning.

In fact, only three predicates needed to be implemented specifically for reactivity. The
central one is react/4 which is almost identical to the predicate plan/5 described earlier.
The only difference is that there is no selected goal passed to reactivity and hence the query
submitted to C-IFF only consists of the list of assumptions (goals and actions in the current
state) and the list of temporal constraints. The second predicate provides the interface to
the main computee module and handles the translation between the different representation
formalism used in exactly the same way as this is done in the case of planning. The third of
the aforementioned predicates is set_kbreact/1 to load the reactive knowledge base K B, .¢qct,
which should include the planning knowledge base K Bpjqp-

27

Temporal Reasoning. The Temporal Reasoning computational model is based on the
“standard” computational model of abductive reasoning in ALP. The current implementation
within the SOCSDemo runs over the C-IFF proof-procedure for an appropriately restricted
class of temporal reasoning knowledge bases. In this subsection, the current implementation is
illustrated with reference to the formal model and the computational model developed in D4
and D8, respectively. Some considerations about how this implementation can be extended in
order to cover more general forms of temporal reasoning are given.

How Temporal Reasoning (KBrgr) works: Some assumptions have been introduced in order
to restrict the general problem of reasoning with time, see D8. Basically, the core framework
which has been implemented aims at proving whether a fluent literal, i.e. a property of the
world holds namely, whether the goal holds_at (F1, T) is entailed by the temporal reasoning
knowledge base, with F1 a fluent literal, and T a time point. The main restrictions adopted are

o K Brgr must provide a possibly partial, but consistent, view of what has occurred in the
world, i.e. it can not entail that a fluent holds and does not hold at the same time.

e all the observed facts and executed actions have a ground associated time, and queries
are ground (or quantified, in a first extended version) with respect to time.

K Brpg consists of

1. a domain independent theory, based on Abductive Event Calculus [78], which explains how
events cause fluents and how fluents persist in time. For instance, the domain independent
rule

holds_at(F, T) :-
happens(4,T’),
T < T,
initiates(A, T?, F),
not clipped(T’, F, T).

states that a fluent F holds at time T if an action A has occurred at the previous time T?,
it causes the fluent and the fluent has not been clipped in the meantime.

2. a domain dependent theory, specific of the domain at hand, like

initiates(switch_on, T, light) :-
holds_at (neg(broken_bulb), T).

putting the switch on causes light if the bulb is not broken.

3. a marration, contained in K By, representing facts that are known to be occurred, like
executed(switch_on, 10).
4. the consistency integrity constraint

[holds_at(F, T), holds_at(neg(F), T)] implies false.

28

which is a C-IFF implication preventing a fluent and its negation to hold at the same
time.

Implementation of the basic computational model: With the above mentioned simplifying as-
sumptions, the so-called “deserts and oases” approach has been adopted in order to overcome
some difficulties with reasoning with universal quantification of time variables, as presented in
D8. Moreover, the approach has revealed to be suitable for supporting the extensions of the
computational model obtained by relaxing some of the initial assumptions. The implementa-
tion described here refers to the basic cases of reasoning (credulous and skeptical), on which the
current implementation of the SOCSDemo is based.

According to the “deserts and oases” approach, the consistency integrity constraint is
grounded into the significant points of the time line, called oasis, i.e. all the points where some-
thing significant has occurred. Results from D8 guarantee that this is a sound and complete
transformation. Then, the so constructed theory is processed by the C-IFF proof-procedure.

Let < Prg,Amg, Itr > be the abductive logic program, where Pry is the domain depen-
dent and independent part of KBrg(in the C-IFF syntax), Ap consists of the abducible
assume holds(F,0) and ICry of the consistency integrity constraint, KBy is the current nar-
ration and holds_at(F,T). is the query fluent F which is required to hold at time T.

The general schema of the main predicate implementing the Temporal Reasoning capability
is as follows:

query_credulous_TR((PTR, ATR, ITR),KBO, holds._at(F,T), Answer) : —
extract_oases(KBO, 0),
instantiate_constraints(ITR,0,0ITR),
prove_credulously TR((PTR,ATR,0ITR),KBO,holds at(F,T), Answer).

prove_credulously TR((PTR, ATR, 0ITR), KBO,holds_at(F,T), Answer) : —
set_up_theory((PTR, ATR, 0ITR),KBO, Defs, ICs),
ciff(Defs, ICs,holds.at(F,T), Answer).

The extract_oases(KB0,0) predicate extracts the significant points, the oases,

from the narration, according to the definition given in DS. The predicate
instantiate constraints(ITR,0,0ITR), makes the grounding of the (universally quan-
tified) consistency integrity constraint on such significant points. The predicate

set_up_theory((PTR, ATR, 0ITR), KBO, Defs, ICs) compiles the theory in a form that can be
passed to the C-IFF proof-procedure. Actually, differently from this abstract schema,
only the narrative KBy is passed as a parameter to each call of TR. The rest
of the TR theory is pre-consulted and dynamically accessed. Finally, the predicate
ciff(Defs, ICs,holds at(F,T), Answer) calls the C-IFF proof-procedure.

The call schema for skeptical reasoning, follows straightforwardly from its definition in D4:

query_skeptically TR(KBTR,KBO, Goal, Answer) : —
query_credulously TR(KBTR,KBO, Goal, Answer),
negate_goal(Goal, NegGoal),
not query._credulously TR(KBTR,KBO,NegGoal,_)

where NegGoal is the goal relative to the fluent that is the negation of the fluent in Goal.

29

How Temporal Reasoning is called: The core functioning of TR is exploited within a computee
by other capabilities, transitions and cycle theory. TR exports two different main predicates
that can be used by them, according to their needs. Basically, those which do not require TR to
return an answer. e.g. the current implementation of Goal Decision and the preferential theory
of the main Cycle Theory, access TR by means of the following call to skeptical reasoning

ground_temporal_reasoning_skeptical (KBO, Goal).

Note that only K By and a ground fluent as a Goal are passed to TR. No answer is required,
since it is only necessary to check whether the goal is or is not entailed by the theory and the
current narration. In the first case the call simply succeeds, otherwise it fails.

On the other hand, some components of the computee model need to ask TR whether a
fluent holds at an existentially quantified time point within an interval, possibly subject to
further temporal constraints from the state of the computee. In this case, TR provides the call

temporal_reasoning_skeptical (KBO, EqvGoal, EqvTCs, EqvSigma).

where KBO is the narrative, EqvGoal is the goal, EqvTCs is a set of temporal constraints
existential variables, and EqvSigma is an assignment for these variables, as they are represented
in the state of the computee (TR performs an appropriate translation into its own syntax).
Note that the present call differs from the basic temporal reasoning in that the query is
not necessarily relative to a ground time point, and, also, in that the temporal reasoning
is intertwined with the satisfaction of constraint sets (dealt with by exploiting, in a way
compatible with the temporal reasoning, the C-IFF constraint solver).

Constraint Checking. This module is implemented in a straightforward call to the C-IFF
system as follows:

check_constraints(EqvICs) :-
eqvs_to_vars(EqvTCs, TCs, _),
ciff([0, [1, TCs, _).

In other words, to check the consistency of a list of constraints in the form of existentially
quantified variables (described in section 4.1.2) we transform them to C-IFF constraints first
and then we use C-IFF to solve them. The predicate check_constraints/1 succeeds if the list
of constraints is consistent.

4.1.5 Transitions

We use capabilities and the proof-procedures they rely upon to write state transition rules for
the computee. Transitions are implemented with rules of the form:

<name0fTransition>(<Parameters>) :- Conditioms.

To give an example of how a transition is implemented, we present here the definitions of the
Goal Revision (GR) transition. Whenever this transition is called, it enables the computee to
revise its goals. This is done by building the new goals for both sub—trees (the one holding the
reactive goals and the one holding the non-reactive goals) by following conditions (i), (ii), and
(iii) of its specification in D4 [57], further updating the state with these new goals at the current
TimeNow of the system, which is supplied as input. The following Prolog code implements this
transition:

30

goal_revision(TimeNow) :-
reactive_root (RootR),
non_reactive_root (RootNR) ,
select_children([RootNR,RootR], TopLevel),
revised_goals(TimeNow, TopLevel, [], NewGoals),
update_goals(NewGoals) .

In the definition above, the first two predicates access a description of the roots for the sub-trees
of goals (reactive_root/1 and non reactive root/1), while the third predicate evaluates the
TopLevel goals by looking at the children of the roots using select_children/2. The TopLevel
goals are then revised in order to build up the NewGoals. This is achieved by using the predicate:

revised_goals(Now, Tocheck, Goals, Goals) :-
persist_goals(Now, Tocheck, [1, [1), !.
revised_goals(Now, Tocheck, GoalsSoFar, NewGoals) :-
persist_goals(Now, Tocheck, [], Persistent),
append (GoalsSoFar, Persistent, IntermGoals),
select_children(Persistent, Children),
revised_goals(Now, Children, IntermGoals, NewGoals).

revised goals/4 builds the new revised goals from the current state incrementally (i.e. only
those that whose parent is in the list of the new goals persist). In addition, they should also
still have not been achieved, and they should not be timed out. These checks are carried out
by the predicate :

persist_goals(_, [], Goals, Goals).

persist_goals(Now, [G|Rest], Goals, NewGoals) :-
goal_not_achieved (Now, G),
goal_not_timed_out (Now, G), !,
persist_goals(Now, Rest, [G|Goals], NewGoals).

persist_goals(Now, [_|Rest], Goals, NewGoals) :-
persist_goals(Now, Rest, Goals, NewGoals).

In other words, a goal persists if it has not been achieved or if its time has not run out;
otherwise, the goal is ignored in the new state (this is the implementation of the condition (i) of
the specification of the GR transition in D4). We then define a goal as not achieved as follows:

goal_not_achieved(Now, Goal):-
\+ goal_achieved(Now, Goal).

goal_achieved (Now, Goal):-
time_of (Goal, T),
get_TCS(TCS),
append (TCS, [T #< Now], TCS_U_Now),
kb_0(KBO),
get_Sigma(EqvSigma),
temporal_reasoning_skeptical(KBO, Goal, TCS_U_Now, EqvSigma).

31

The definition of how a goal is achieved (second predicate above) shows how we call the capa-
bility of temporal reasoning to check the constraints (this is in fact how the implementation
ensures that the condition (ii) of the specification of the GR transition as defined in D4).

Similarly, the representation of a goal that is not considered timed out is given by the
definition:

goal_not_timed_out (Now, Goal):-
time_of (Goal, T),
get_TCS(TCS),
append(TCS, [T #> Now], Constraints),
check_constraints(Constraints).

The definition above ensures, using the constraint solver of the system (check_constraints/1
uses C-IFF to access the SICStus constraint solver), that the global constraint store (TCS),
together with the temporal constraints of the goal are satisfiable (this is in fact how the imple-
mentation of condition (iii) of the GR transition specification is represented).

Once all the new goals have been generated, the system updates the new goals in the state
using the definition:

update_goals(NewGoals) : -
retractall(goal(_,_,_)),
assert_list(NewGoals).

assert_list([]).

assert_list([One|Rest]):-
assert(One),!,
assert_list(Rest).

In other words, we first clear all the goals from the state of the computee and then we add the
new goals.

The rest of the transition are implemented in a similar manner, following the specification
of D4 and the computational model of DS8.

4.1.6 Cycle Theory

Cycle Theories for Computees. The operation of a computee is controlled by its cycle
theory. Cycle theories define in a declarative way the possible alternative operational traces of
the internal transition of a computee depending on the particular circumstances of the external
environment at the time of the operation. Their role is not to provide absolute control on the
operation but to regulate the operation and to provide a desired pattern of behaviour.

A cycle theory is a logic program with priorities in the LPwN F framework that specifies a
preference policy on how to choose the next transition under the current circumstances. Hence
the reasoning of a cycle theory is the same preference reasoning as in other parts of the model,
e.g. in the goal decision capability. But now this is carried out at the meta-level, reasoning on
the whole state of the computee and using other capabilities, such as temporal reasoning, in an
auxiliary way.

The cycle theory is called through the outer computee shell and is executed by Gorgias to
give the next internal transition of the computee. This is done through the top-level rule of:

32

self__next(step(Transition,Input)) :-
self__prove(step(Transition,Input)).

self__prove(X) :-
gorgias__prove (X).

The execution of this query, namely step(Transition, Input), depends on the given cycle theory
of the computee and its current state. Note that this is a simplified execution where we choose
the first transition that can be proved admissibly by Gorgias from the cycle theory. In general,
we can find all the admissible next transitions and choose randomly one from them, as specified
by the computational model of cycle theories in [58].

In this execution of Gorgias for cycle theories, the notion of conflicting rules is defined
via means of a specialised complement/2 predicate that states that any two transitions are
incompatible. Specifically,

complement (step(X,_) ,step(Y,_)) :-
ct__incompatible(X,Y).

complement (step (X, Input_1) ,step(X,Input_2)) :-
ct__istransition(X),
ct__ec(X,Input_1),
ct__ec(X,Input_2),
Input_1 \= Input_2.

Note that, if we want to extend the computational model of cycle theories to allow concurrent
execution of different transitions, we need to adapt appropriately the definition of this predicate.
A cycle theory consists of three components:

e A basic part that determines the basic steps of operation by specifying the allowed unitary
cycle-steps from one transition to the next one.

e An interrupt part that specifies the cycle-steps that can follow a passive observation
introduction, i.e. an interrupt with new information. These are viewed as (possible)
re-initialization steps for the cycle operation.

o A behaviour part specifies priority rules on the alternatives given in the basic and interrupt
parts, and thus specifies the special characteristics of the operation of the computee?.

The basic part of any cycle theory consists of rules of the form:

ct__rule(step(Transition, Input), step(Transition, Input), []) :-
ct__ec(Transition, Input).

where the first argument ct__rule/3 is a label that names this rule which can be chosen by the
user as any Prolog term. In practice though it is important to have in this the name of the
transition and its parameters chosen by this rule. Hence we are going to adopt the convention
to use the head of the basic cycle step rule, which is the second argument, also as the name of
the rule so that we carry all relevant information of the rule in its name. One example of such
rule that states that GI is a possible next transition step when currently there are no unplanned
goals is given below:

4At the moment a computee has a fixed cycle theory given to it at design time but we envisage that computees
will be able to change their cycle theory during their operation.

33

ct__rule(step(’GI’, [1), step(’GI’, [1), [1) :-
ct__ec(’GI’, [1).

The enabling conditions ct__ec/2 in this case check that there are no unplanned goals. Its
definition is given by:

ct__ec(’GI’,[]1) :-
ct__ec_aux_p(’GI’,[]).

where ct__ec_.auz_p/2 is a general predicate that checks whether the selected step is allowed
based on a given previous transition. This is coded as follows:

ct__ec_aux_p(Transition,Input) :-
self__timestamp_current(T1),
TO is T1 - 1,
self__history(TO,step(Prev_Transition,Prev_Input)),
ct__ec_user_p(Prev_Transition, Prev_Input, Transition, Input).

where it first retrieves the previous transition, namely Prev_Transition, from its internal his-
tory and then checks that Transition is allowed to follow Prev_Transition via the user-defined
predicate ct__ec_user_p/4. In our example, we have the rule

ct__ec_user_p(_, ’GI’) :-
findall(G, fun__goal_selection(G),[]).

which states that GI may follow any transition provided that there are no unplanned goals as
mentioned earlier.

Another example of a basic cycle-step rule that enables Plan Introduction as the next
transition is given by:

ct__rule(step(’PI’, Gs), step(’PI’, Gs), []) :-
ct__ec(’PI’, Gs).

ct__ec(’PI’,Gs) :-
fun__goal_selection(Gs),
ct__ec_aux_p(’PI’,Gs).

where fun__goal_selection/1 is a core selection function that selects from the current state an
unplanned goal or subgoal that is used as an input to the PI transition. It is defined as follows:

fun__goal_selection(((Goal,GT) ,Parent_Goal,TC)) :-
self__goal((Goal,GT) ,Parent_Goal,TC),
self__temporal_constraints_validate(GT,TC),
self __goal_ancestors_eq(Parent_Goal,Ancestors),
self__goal_check_ancestors_nopass(Ancestors).

where (a) the first conditions picks a goal from the state of the computee via the predicate
self__goal /3, then (b) checks that the temporal constraints are still satisfied, and (c) the last
two conditions check that none of the goal’s ancestors have been satisfied already.

The interrupt rules of the cycle theory are analogous, in syntax, to the basic rules. However,
each interrupt rule specifies what might follow a PO transition, which acts as an interrupt. This
is again accomplished as follows:

34

ct__ec_user_p(’P0°,’GI’).
ct__ec_user_p(’P0’,’RE’).
ct__ec_user_p(’P0’,’GR’).

The Behaviour Part of Cycle Theory. The behaviour part of the cycle theory consists

of priority rules whose role is to encode locally the relative strength of the rules in the other

components of the cycle theory of the computee. These are then used to determine, amongst

all the enabled cycle-steps, which ones are preferred under the current circumstances. Through

the behaviour part of the cycle theory we can encode different patterns of operation.
Behaviour rules are Gorgias rules of the following form:

patt__rule(prefer (Pattern_Name,step(Trl,I1),step(Tr2,I2)),
prefer(step(Tr1,I1),step(Tr2,12)), [1) :-
behaviour_conditions(Tr1,I1,Tr2,I12).

where prefer(Pattern_Name, step(Trl,I1), step(Tr2,12)) is the label that names this rule
which can be chosen by the user as any Prolog term. As above for basic rules, it is important
to have in this the name of the transitions involved and their parameters. Hence we are going
to adopt the convention to use in this name both steps involved together with their parameters
and in addition use the pattern name in order to be able to define general higher-order priority
rules.

The behaviour conditions are heuristic conditions (e.g. heuristic selection functions) under
which the cycle step step(T'rl,I1) is preferred over step(Tr2,12).

For example, the careful pattern of behaviour which gives priority to Plan Revision over
any other transition when the current state contains timed out actions will have the following
priority in its behaviour pattern:

patt__rule(prefer(careful ,step(’PR’,[]),step(Z,X)),
prefer(step(’PR’,[]1),step(Z,X)), [1) :-
fun__action_timeout,
Z \= ’PR’.

Similarly, by giving priority to cycle steps of Active Observation on the effect of an action
after an Action Execution transition we have a cautious pattern of behaviour where the com-
putee attempts to get explicit confirmation of the successful execution of its actions. This latter
preference is captured by the behaviour rule:

patt__rule(prefer(cautious,step(’AQ0’,Fs),step(Z,X)),
prefer(step(’AD’ ,Fs),step(Z,X)), [1) :-
self__last_transition(’AE’,As),
fun__action_effect(As,Fs),
Z \= ’A0’.

where fun__action_ef fect/2 returns a set of fluents which are the desired effects of the last
executed action. This condition can be restricted further to apply only for some types of actions
which are typically unreliable under the present conditions when the action was executed.

A pattern of operation that can be taken as an underlying basis on which we can build
different and additional patterns of behaviour is what we can call the normal pattern of be-
haviour. This specifies a pattern of operation where the computee prefers to follow a sequence

35

of transitions that allows it to achieve its goals in a way that matches an expected “normal”
behaviour. Basically, it introduces goals , then plans for them, executes a plan, revises the
state, executes another plan until all goals are dealt with (successfully completed or revised
away) and then returns to introduce new goals. See deliverable D8 for its full definition.

This pattern contains behaviour rules to capture that after Goal Introduction we plan for
the goal introduced via Plan Introduction and that after the last possible Action Execution we
prefer to do a revision of the state.

These rules are coded respectively as follows:

patt__rule(prefer(normal,step(’PI’,Gs), step(Z,X)),
prefer(step(’PI’,Gs), step(Z,X)), [1) :-
self__last_transition(’GI’),
Z \= ’PI’.

patt__rule([refer(normal,step(’GR’,_), step(_,_)),
prefer(step(’GR’,_), step(_,_)), [1):-
self__last_transition(’AE’),
empty_plan.

The condition, empty plan/0, used in this example is a behaviour condition that is true
whenever there are no actions in the state of the computee, i.e.:

empty_plan :-
findall(A, self__action(A), As),
As = [].

Under the normal pattern of behaviour we also give preference to responding to communi-
cation messages received by a computee as passive observations via the PO transition. This is
captured by the behaviour rule:

patt__rule(prefer(normal,step(’GI’,_), step(_,_)),
prefer(step(°GI’,_), step(_,_)), [1) :-
self__last_transition(’P0’, Obs),
comm_msg (0bs) .

which gives preference to the Goal Introduction transition that through its goal decision ca-
pability will decide the response to Obs. In addition, in the normal pattern of behaviour the
rule

patt__rule(prefer(normal,step(’AE’,As), step(Z,X)),
prefer(step(’AE’ ,As), step(Z,X)), [1) :-
self__last_transition(’PI’),
Z \= ’AE’.

gives preference to Action Execution (AE) after a Plan Introduction (PI) transition while the
rule

patt__rule(prefer(normal,step(’AE’ ,As), step(’AE’,As_2)),
prefer(step(’AE’ ,As), step(’AE’,As_2)), [1) :-
comm_action_selection(As).

36

states that amongst possible actions to be executed, the communication actions are those
preferred. Furthermore, the higher-order priority

patt__rule(prefer(normal_ho_pref), prefer(Pref_1, Pref_2)) :-
Pref_1 = prefer(normal,step(’AE’,As_1), _),
Pref_2 = prefer(normal,step(’AE’,As_2), _),
more_urgent (As_1, As_2).

ensures that the more urgent communication action is preferred.

Here comm_action_selection and more_urgent are heuristic selection functions that con-
tribute to the behaviour conditions of the pattern specified by the cycle theory. These are
auxiliary predicates defined by Prolog rules. For example, comm_action_selection is defined
by:

comm_action_selection(A) :-
self__action((0OP,T),_,_,_),
0P = tell(_,_,_,_).

4.2 The Implementation of the Body

The body of a computee in PROSOCS is implemented as a Java process. This process connects
the mind of the computee with the electronic environment that the computee is situated in.
The connection of the body with the environment is achieved by importing the Medium API
that we shall describe in section4.3. We outline in this section how the body is implemented
and we concentrate on the representation of the control loop used by the body. We also discuss
how a graphical user interface is used to animate useful information to a user that uses the
platform.

4.2.1 Body

When a computee is created in PROSOCS the system creates a generic body which uses the
Medium API to import the functions of sensors/effectors. The system also creates a mind,
which is a Prolog process, appropriately instantiated with a mind state. Creating a body
also implies creating a body state, containing information about the mind of the computee,
structures that contain information for the interfacing of the mind with the body, as well as
configuration information (such as the name of the file containing the KB underlying the mind).
The body also contains a new thread of control represented by the pseudo-code:

private void bodyControl() {
do {
BodyAction nextAction = askActionFromMind();
if (nextAction != null)
switch (isOfActionType(nextAction)){
case SENSING: doSee(nextAction) ;break;
case COMMUNICATIVE: doSpeak(nextAction) ;break;
case PHYSICAL: doEffectors(nextAction) ;break;
}
Percepts nextPercepts = sensors.passiveObservation();
if (nextPercepts != null) tellMind(nextPercepts);

37

} while (!stopped);
}

The pseudo-code above shows how the body control of a computee interfaces the mind with the
environment. The loop starts by asking the mind for the next action to be executed. This causes
the mind to call the cycle theory for the next transition to be executed. If such a transition
exists, then this transition will be called to change the state of the mind. The body then checks
to see if the transition has generated a new action. If it has, the body will carry it out by
invoking the appropriate effector. In any case, the body will also perform a passive observation
to see if there are any events that the sensors have recorded as a result of events happening in
the environment. If any, the body will inform the mind about the events through its percepts.
This process will go on forever, until the computee is stopped, via the user interface.

4.2.2 GUI

The graphical user interface is designed to animate useful information about the body and the
mind of a computee in the platform. It provides functions to create and manage a particular
computee, as well as animate the operational status of other computees in the environment. A
screen-shot of the current status of a computee’s graphical user interface is shown in Figure 7.

File Action Confiy Tools Help

-Camputees—— °| Chserved Events
@E‘WLESOCS el Bocslds | Contexld \ Sender \ Receivers \Ferfurmative\ Content | 3.Time \ R Time |_
0 | Ll f [EH] lery_ref _[anival_imefr.. 0 fit 2
1
e @me

S
[EHI

‘| Executed Actions 1

Sooslds | Contedld | Recevers | Paformabve | Conet | S Time |_i

| Ll U} infam vl fimedrl 23} .14 El
{ 4 E
Running Info : |P0 | KB: \C‘ISocs—PIatformISocs-DemoIexampIestecﬂonﬁlexamp\eﬂIsemngzisvs.p\ | Time: | \ Ouit

Figure 7: The GUI of a Computee

38

To facilitate users create a computee, the interface provides a configure function that allows
a user to select a knowledge base. Once the mind (knowledge and cycle theory) is selected, a
computee is created. The computee can then be started, and subsequently suspended, resumed
and stopped through the menus provided by the interface.

The computees present in the environment and status information are animated in the top
left part of the interface through icons labelled with their name. Different icons represent
different statuses for a computee. When a computee’s status changes, its status icon will
automatically change on the other computees’ interface.

To help the user to trace computees interactions, messages exchanged between the computee
and other computees in the SOCS group are also displayed. The top right part of the window
displays the messages observed by the computee svs (in this case that a computee called £ has
requested from svs information about the arrival time of a train arrival time(tr123)). The
bottom right part of the window displays actions executed by the computee (in this case that
svs has sent a message to inform f about the arrival time of the train).

4.3 The Implementation of the Medium

As we discussed in section 3.4, the medium provides functionality that allows a computee to
access other computees in a networked and distributed environment. In order to support the
implementation of the body with the environment, we have developed an APT that supports the
functions discussed in section 3.4, viz., speak, listen, do and see, by building on top of the
Peer-to-Peer (P2P) platform JXTA [56, 93]. In this section we first provide a brief introduction
to the JXTA project and we then illustrate how the Medium API is built on top of this global
platform .

4.3.1 The JXTA Project

The open-source Project JXTA [56, 37, 93] is the industry leading peer-to-peer (P2P) plat-
form originally conceived by Sun Microsystems Inc. and designed with the participation of a
small but growing number of experts from academic institutions and industry. The Project
JXTA protocols establish a virtual network overlay on top of the Internet and non-IP networks,
allowing peers to directly interact and self-organize independently of their network connectivity.

Project JXTA standardizes a common set of protocols for building P2P virtual networks.
The JXTA protocols defines the minimum required network semantic for peers to form and join a
virtual network. The Project JXTA protocols define a generic network substrate usable to build
a wide variety of P2P networks. Project JXTA enables application developers, not just network
administrators to design network topology that best match their application requirements.
Multiple ad hoc virtual networks can be created and dynamically mapped into one single
physical network.

In PROSOCS we use the Project JXTA 2.0 implementation that builds upon the virtual
network abstractions introduced in JXTA 1.0 [37]. A peeris any network device that implements
one or more of the JXTA protocols. Each peer exists independently and asynchronously from all
other peers, and uniquely identified by a peer ID. The notion of peergroups let peers dynamically
self-organize into protected virtual domains. Peers in peergroups use advertisements to publish
peer resources (peer, peergroup, endpoint, service, content). In addition, a universal binding
mechanism, called the resolver performs all binding operations required in a distributed system.

39

Finally, the notion of pipes is used as virtual communication channels enabling applications to
communicate between each other.

4.3.2 The PROSOCS Medium as an API

In the current prototype of PROSOCS, all interactions amongst computees are implemented
via JXTA communication. The messages that are exchanged for this kind of communication

are represented as XML documents. The example below shows a message for communicative
actions in PROSOCS:

<?xml version=’’1.0’’ 7>

<socsmsg>
<socsId> society0 </socsId>
<contextId> dialoguel4 </contextId>
<sender> computeeb </sender>
<receivers> computee7 </receivers>
<performative> request </performative>
<content> tel(john, X) </content>
<time> 1 </time>

</socsmsg>

A socsId holds the society for which this communicative act is valid. The medium will
convey the message to this society only; if there is no society specified, the message is delivered
as a private message between computees. ContextId is an identifier that represents the context
of the communication. sender is a unique identifier representing the computee that performs
the act, while receivers is a list of intended receivers that can listen to the act. performative
is the performative that characterises the act, whose content kept in the content has been
performed at a specific time held in the time attribute.

To guarantee the safe interactions among computees a default PROSOCS group has also
been created, forming a logical region whose boundaries limit access to non-PROSOCS peers.
The resulting Medium APIT is then implemented as a new service called SocsService in the
PROSOCS group to support sensing and action execution via effectors, see Fig. 8. For instance,
the effector speak is implemented by a method speak (SocsMsg msg), which takes an instance
of a SocsMsg as a parameter and sends it to the computee(s) whose name(s) appear(s) in the
receiver field.

5 Implementation of Societies

As with Section 4.1, we will start this section by presenting some design choices that we made
when implementing the models of D8.

In D5 [66] and subsequent documents, we assume that the society will be aware of “socially
relevant events”, which in particular could be communicative actions that unify with atoms
in the body of integrity constraints. An issue is how to decide which events are relevant, and
how can the society be aware of such events, without being intrusive in the computees’ private
behaviour. Also, a computee being in some physical environment does not necessarily mean it
abiding to some social rules (or it being expected to do so). And, in principle, computees might
be into several virtual societies at the same time. Some of them could be interested in only a
subset of its messages exchanged with other computees.

40

<<Interface>>
Service
(from net.jxtaservice)

@ init (group: net.jxta.peergroup.PeerGroup , ID: netjxtais.|D , adv :net.jxta.document.Advertisement): void

@ statApp (args : javalang.String []): int
@ stopApp ():void
<<Interface>>

SocsService
(from socsMedium)

@ speak(msg: SocsMsg): int
@ listen(): SocsMsg
o ..

Figure 8: PROSOCS Service Interface

The solution that we adopted in the implementation is: computees will explicit direct the
relevance of messages to some society. That is, there is an element in a communication act,
which specifies a society identifier. Messages are dispatched through the medium: the medium
will be in charge of sending the message both to the addressees (computees) and possibly to
the specified society.

In WP2 and subsequent documents, we address the issue of membership and openness of
societies. We report a classification of open societies, due to Paul Davidsson [29], where four
degrees of openness are identified. In PROSOCS, we made the choice of implementing open
societies, which have no intermediate steps that computees require to do before they become
member. In fact, when running the software, the society will consider new members those
who utter messages that are socially relevant for some specific society. We did not implement
other kinds of openness, but we show in the examples document how to implement semi-open
societies, by way of a gatekeeper computee and a protocol to enter the society.

As far as the time, we are aware that it is impossible to implement a global time in a
distributed system, but we make the assumption that some ‘small’ delay in the delivery of
messages does not affect the correct behaviour of the society. For this reason, in the examples
that we test that contain deadlines, we consider large enough time periods. We do not propose
a precise threshold for this.

A couple of noteworthy design choices are about the implementation of the proof. Firstly,
in the current implementation it is not possible to define social integrity constraints with a
negated H predicate in the body, as they are not supported. Such constraints are not used
in the examples of the demo. Secondly, for efficiency reasons, the propagation step of the
implemented SCIFF makes a choice on the constraints containing two atoms that can unify
with each other. For instance, if both H(p(X),T1) and H(p(Y),T3) are in the body of a social

41

integrity constraint, during the propagation step the only branch which is considered is that
resulting by the unification X/Y,T1/T> . Again, this limitation does not affect the currently
implemented examples. Finally, the SCIFF (as well as the IFF), does not open a unification
branch in the unfolding of existentially quantified variables.

5.1 Overall Architecture

The Society Infrastructure software application is realised as a set of modules and sub-modules;
each module is characterised by a specific Application Program Interface (API). All the software
components are implemented by using the Java language. Every module and sub-module is
realised as a set of one or more Java classes.

Only one component is not implemented as a Java class: this module, named “Proof Proce-
dure”, is written in the Prolog language. Due to its features, this module is better implemented
by using a logic programming language. To execute the component, a “run-time” version of a
SICStus Prolog [80] is embedded into the societies.

User Defined
Protocols

Society Infrastructure H

Society
GUI Society Module
[User || | Gl =

Figure 9: Overview of the Society Infrastructure

During the initialization the software prototype receives as input a set of protocols. The
protocols are defined by the user, which specifies them using a protocol definition language.
The proof-procedure later uses the protocols in order to check the compliance of computees to
the society rules. During the initialization the user can also select a different proof procedure,
in order to obtain different features and characteristics.

At runtime, the prototype receives messages from a selected source, it elaborates them and
publishes the results of such elaboration through a Graphic User Interface (GUI).

All the software components are members of two main modules, depicted in Figure 9. The
Society module is the component responsible for elaborating the messages, and for evaluating
the compliance of the computees to the social protocols. The GUI module instead is devoted to
visualizing the results of such elaboration. It also provides the user a suitable way to interact
with the application and to control it.

Thanks to this clear and neat separation between the two parts, it is possible to implement

42

new interfaces as well as new elaboration modules, by implementing the interfaces between them.
Components don’t need to have any knowledge about the internal architecture/implementation
of each other, as long as they implement the interfaces.

5.2 The Society Module

The Society module is realised as a set of independent and collaborating software components.
Some of these components are implemented as “active” components (here by “active” we simply
mean that they are implemented as Java threads). Other modules are instead “passive”, in the
sense that they offer services to components but they are not independent threads.

Fach module is coded into one or more Java classes, but in this section we will describe the
software components from the functionality view point. Technical details are reported in the
SOCSDemo application manual, attached to the present document.

The core of the Society module is composed by three main sub-modules (see fig. 10), namely:

e FEvent Recorder (fetches messages from different sources);

o History Manager (receives events from the Event Recorder and composes them into a
“history”);

e Social Compliance Verifier (checks for compliance of the history of events to social in-
tegrity constraints);

Social
Proof . |]
<== Procedure Compliance 0\ .

Verifier
SICStus Runtime Libraries User
Defined
Protocols
Society ﬁ
GUI Init &

Module Control Protocol

<== History Manager Module Parser

Module

i

<,:f| Event Recorder

) g fr fr

Figure 10: Internal composition of the Society module

43

Init & Control is a fourth module, devoted to initializing the other components in the right
order. It also parses the society protocols defined by the users and stored in a file, by using the
protocol parser module. The protocols are specified using an easily readable protocol definition
language, adapted from D5; they are coded in an internal format. In Appendix 10.1 we describe
the protocol definition language using an EBNF syntax notation.

The Init €& Control module provides also some control methods and act as a proxy ob-
ject, called whenever a GUI component needs to communicate to one of the Society module
components.

The biggest advantage of using this approach is that we can simply use different GUIs
without changing the other modules. Symmetrically, we can realize different proofs and modules
without changing the GUI To keep things simple, this organization has not been depicted in
Figure 10, where the communications between the internal modules of the Society component
and the GUI have been drawn as “direct” arrows, by hiding the proxies.

5.2.1 The Social Compliance Verifier

The Social Compliance Verifier is the software component responsible for the interaction be-
tween all the Java components and the proof-procedure. The proof-procedure is realised as
a program written in SICStus Prolog [80], and it is executed through the SICStus Runtime
libraries. The main task of the Social Compliance Verifier consists on interacting with these
libraries, as it is shown in more detail below. Other tasks of this component are: a) to allow
the proof-procedure to retrieve new happened events; b) to allow the proof to print out the
computational state whenever desired.

The Social Compliance Verifier is implemented as a Java thread: first of all it initialises
the SICStus runtime engine, then it sees to loading and correctly “starting” the proof proce-
dure. The last step means also to “load” the user-defined protocols (already parsed by the
Init&Control sub-module).

From this moment the control of the execution is taken over by the proof-procedure. The
logic program calls back the Social Compliance Verifier for two different services: a) to fetch
new events to elaborate, and b) to communicate through the GUI useful information about the
computation.

All the data exchanged between the Social Compliance Verifier and the proof-procedure
are type String. Regular expressions have been used in order to effectively treat these data
on the Java side. These expressions are stored in a configuration file. It is indeed possible
to change the proof procedure and the data exchanged, provided that the regular expressions
are re-defined properly. No other assumptions are done about the data exchanged between the
Social Compliance Verifier and the proof-procedure.

5.2.2 The History Manager

The History Manager is the software component in charge of keeping track of all the happened
events. It stores internally the set of all the events received by the Society Infrastructure. It
also provides access to this set through different methods. These methods are called by two
other blocks, the Social Compliance Verifier and the Event Recorder. The History Manager is
mainly a passive block, in the sense that it is not realised as a Java thread; it simply provides
services for storing and for retrieving happened events. It can be viewed as a buffer where all
the events are stored.

44

Every time a new happened event is received, the FEvent Recorder sees to it that it gets
stored in the History Manager. As soon as a new event is stored, the GUI module gets notified,
and the graphic interface is updated accordingly.

Similarly, the Social Compliance Verifier fetches the events (one at a time) whenever it
finishes the elaboration of the previous event; again the GUI is properly updated. Please note
that the History Manager contains all the events, both the ones already processed by the Social
Compliance Verifier, and the events still to be elaborated. The messages window in the GUI
shows the content of the History Manager.

The history manager has been introduced because the Social Compliance Verifier has a
very different performance (in terms of execution time) from the Event Recorder. To speed
up the execution and taking advantage of multi-threading environment we needed to have two
asynchronous components. The synchronization with the History Manager is determined by
the availability of events in the buffer.

5.2.3 The Event Recorder

The Event Recorder is the software component that interacts with the external message sources.
This interaction consists of fetching the messages when they arrive and translating them as
events; then each event is stored inside the History Manager, where it becomes available to the
Social Compliance Verifier in order to be processed.

Outside of the Society Infrastructure all the information is exchanged using the concept of
“message” (see Section 4.3). Inside the Society Infrastructure each message is translated in the
concept of “event”.

There is a subtle distinction between message and event: the message represents the infor-
mation exchanged between two computees, while the event represents the fact that a commu-
nication act happened between these two computees.

Whenever a new message arrives (or a new message is read from a file, or the user types a
new message at the prompt), the Event Recorder does the following:

a) it fetches the message,
b) it translates the message into an event object and,
¢) it records the event object in the History Manager.

It is possible to configure the Event Recorder so that it checks if the arrival order of the
messages respects the sending time of the messages itself. In fact, due to the “distributed”
nature of the prototype, it is possible that some message are received in a different order from
the order in which they have been sent. In the current implementation, messages arriving in
the wrong order are discarded.

TheEvent Recorder uses specific software modules to interact with different message sources.
Until now we have identified and implemented three different sources of the messages: the first
source is the communication medium. The second source is a text file with all the events
registered, while the third source (mainly for debugging purposes) is the standard input (the
user keyboard). For each one of these possible sources a suitable and coherent implementation
is provided. Referring to the Java terminology, we can say that the Event Recorder interacts
with the different sources through a common interface (the Recorder Interface of Figure 11).

It is simple to extend the prototype with new message sources, by creating a new class that
implements the specified interface.

45

C::l ‘ Social Compliance Verifier ‘

I}

<::| ‘ History Manager ‘
Event Recorder I .
Init
Society &
GUI [Recorder Interface |

Control

Module ' I Module

Messages/Events ’ Messages Parser & ‘

f

Translator Translator Module

Medium Recorder File Recorder User Input Recorder

\ J
[I'1 I'T

Figure 11: Internal composition of the Event Recorder sub-module

Note that the different sources are interchangeable, but it is not possible to use two different
sources at the same time. Until one source is selected, the Society Infrastructure will reason
about the messages fetched from that source. A brief description of each different source is
given below:

i)

i)

)

The Medium Recorder is the most important source. All the computees communicate
through the communication medium; also the messages exchanged are fetched by the
Society Infrastructure through the same medium. The messages fetched by the Medium
Recorder are already in a “structured” form, and they need only to be translated into
events. This is not true for the other sources, that return a string description of the
messages. For that case a parser component has been added in order to extract the data
from the string representation.

The File Recorder represents another important messages source. An important feature
of the Society Infrastructure, along with the ability to react to dynamic environments, is
the ability to process a static given history of events. This feature implies reading history
data from a text file, where all the messages have been previously saved. So the FEvent
Recorder must be able to retrieve the messages from a simple text file. Note that in this
scenario all the messages are already available, while using the previous source there is
the idea of “suspension” until a new message arrives.

The User Input Recorder is especially important for the early stages of the prototype
development, since it lets the user type in all the desired messages. The same result can
be achieved also through the “file source” (for instance, if we want to repeat the same
experiment twice).

46

5.2.4 Message processing

Computees communicate by exchanging messages. As we mentioned at the beginning of Section
5, in this implementation of SOCSDemo we made the assumption that computees know what
events are socially relevant. Those messages will be visible to both the intended recipient and
the society. A socially relevant message is fetched by the Event Recorder through the specialised
module. Then the message is translated into an event object, and it is registered in the History
Manager. As soon as the event is registered, the GUI is notified and updated. From this
moment the event is available to the proof-procedure.

Until it terminates, the proof-procedure can be in one among several different states: it could
be blocked waiting an acknowledge from the user, or it could be busy processing a previous event,
or it could be waiting for new events.

waiting
for events

One event
fetched;
“step-by-step”
ex-mode

No more SCIFF
transitions are
possible;

3 a branch w/o
violations

One event
fetched;
“auto”
ex-mode

ready
(waiting for
user ack;

User
SCIFF ack
transitions

No more SCIFF

transitions are

possible. .

Al branches contain” \(Lerminated
a violation

Figure 12: Possible states of the proof

running

Starting from either state, at some point the proof-procedure will ask the Social Compliance
Verifier to fetch a new event. The Social Compliance Verifier will forward the request directly
to the History Manager, that will answer with the event and will update the GUIL The proof-
procedure will process the event. Then, the proof-procedure will notify the GUI of the results
of the elaboration (again by using the services offered by the Social Compliance Verifier). The
proof-procedure will then try to fetch a new event through a call to Java. The processing of the
message terminates as a copy of the event is permanently stored by the History Manager. An
exception to this behavior can happen if the elaboration of the event leads to a failure state.
This could be caused by a violation of the society protocols. Depending on the implementation
of the proof-procedure, it is possible that a backtracking is operated. In such a case, the event
can be “re-processed” in order to reach a new success state, if there exists any.

5.3 Proof Procedure

In this section, we describe the implementation of the proof procedure specified in Deliverable
D8 [58].

47

5.3.1 Overview

Technology. In the implementation of the society proof-procedure, we have found the choice
of SICStus Prolog [80] very useful, for the following reasons:

e the Prolog language offers built-in facilities for the implementation of dynamic data struc-
tures and (customizable) search strategies;

e SICStus Prolog allows for state-of-the-art Constraint Logic Programming [54]; in partic-
ular, the CLPB, CLPFD and CHR libraries have been exploited (a brief introduction to
CHR can be found in Sect. 10.2);

e SICStus Prolog features a bidirectional Java-Prolog interface (Jasper), which we need to
interface the proof-procedure with the other modules of the social demonstrator (see Sect.
5.1).

Search strategy. As the IFF proof-procedure [43], the social proof procedure described in
Deliverable D8 [58] specifies the proof tree, leaving the search strategy to be defined at the
implementation level. The implementation described here is based on a depth-first strategy.
This choice enables us to tailor the implementation upon the computational model of Prolog:
in particular, the resolvent of the proof is represented by the Prolog resolvent (see Sect. 5.3.3),
and thus the Prolog stack is used directly for backtracking. However, in this way, only one node
of the proof tree is examined at each computation step, instead of the full frontier of the proof
tree (see [58]).

Success and failure. The proof-procedure returns success when a state of closed fulfillment
is found. In this perspective, not only inconsistency (both with respect to E-Consistency and
—-Consistency, see [58]), but also violation generates a failure, and causes backtracking.

5.3.2 Variables

Variables are represented by attributed SICStus Prolog variables [50, 80]. Attributes are used
to express the quantification of variables, to mark flagged variables and to impose quantifier
restrictions on universally quantified variables.

Flagging, Quantification and Quantifier Restrictions. As explained in Deliverable D8
[58], variables in the resolvent and in abduced atoms are flagged. Flagging of a variable deter-
mines whether it is copied when a new copy of a term in which the variable occurs is made: in
particular, existentially quantified, flagged variables are not copied.

Quantification of variables is represented by a quant/1 attribute, whose attribute can assume
one of the following values :

e exists, for existentially quantified, non-flagged variables;
e existsf, for existentially quantified, flagged variables;
e forall, for universally quantified, non-flagged variables;

e forallf, for universally quantified, flagged variables.

48

Quantifier restrictions for universally quantified variables are expressed by means of attribute
restrictions/1,which has, as argument, the expression representing the quantifier restriction.

Constraints for existentially quantified variables are implemented by means of external CLP
solvers: in particular, by the CLPFD solver of SICStus Prolog, and by an ad hoc constraint
solver implemented in CHR, (an adaptation of the domain solver distributed with the CHR,
library).

Unification. Unification between terms is implemented as reified unification by means of a
CHR constraint solver. The CHR constraint reif _unify(T1,T2,B) means that the terms T1
and T2 unify if and only if B=1.

5.3.3 Data Structures

Each state of the proof (as specified in [58]) is represented by a tuple with the following structure:

T = (R,CS, PSIC,EXP,HAP,FULF, VIOL)

The data structures are implemented by means of Prolog built-in structures and the CHR
constraint store. In particular, the CHR-based representation of PSIC, EXP, HAP, FULF,
and VIOL allowed us to exploit the computational model of CHR (see Sect. 10.2) in order
to apply the appropriate transitions (implemented by means of CHR rules) whenever one of
these data structures changes (which, due to their CHR representation, amounts to insertion or
removal of constraints in the store). In the following, we describe the implementation of each
element of the tuple.

Resolvent R. The resolvent of the proof is represented as the Prolog resolvent. This allows
us to exploit the Prolog stack for depth-first exploration of the tree of states.

Constraint Store C'S. The constraint store of the proof® is represented as the union of the
CLP constraint stores. For the implementation of the proof, the CLPFD and CLPB libraries
of SICStus Prolog, a CHR-based solver on finite and infinite domains, and an ad-hoc solver for
reified unification have been used. However, in principle, it should be possible to integrate with
the proof any constraint solver that works on top of SICStus Prolog.

Partially Solved Integrity Constraints PSIC. Each partially solved integrity constraint
is represented by means of a psic/2 CHR constraint, which has as two arguments:

o the first argument is a list of lists representing the body of the partially solved integrity
constraint. Elements of the lists are Prolog terms representing events, expectations, con-
straints or predicates. Each sub-list contains predicates of the same type (e.g., only events
or only expectations) in order to make the propagation transition more efficient;

o the second argument is a list of lists representing the head of the partially solved integrity
constraint. Each sub-list represents one disjunct of the head, and each element of each
sub-list (a Prolog term which can represent an expectation or a constraint) is a conjunct.

5This constraint store, which contains CLP constraints over variables, should not be confused with the CHR
constraint store, which is used for the implementation of the other data structures.

49

For instance, the following partially solved integrity constraint:

H(tell(A, B, request(P), D), T)
—E(tell(B, A, accept(P), D), To) A To < Ty +10 (1)
VE(tell(B, A, refuse(P), D), T3) A To <T1 + 10

would be represented by the following CHR constraint (where the CLP constraints are repre-
sented in the SICStus Prolog CLPFD notation):

psic([[h(tell(A,B,request(P),D),T1)1,[1,01,01,01,[1,011,
[[e(tell(B,A,accept(P),D),T2),T2#<T1+10],
[e(tell(B,A,refuse(P),D),T2),T2#<T1+101])

History HAP. Each event is represented by means of ah/2 CHR constraint, whose (ground)
arguments are the content and the time of the event. An example of event is:

h(tell(yves,thomas,request(scooter),a_dialogue),10)

Expectations EXP. Expectations that are neither fulfilled nor violated are represented by
means of a pending/1 CHR constraint, whose content is a term (with functor e for E expec-
tations and en for NE expectations) representing the pending expectations. The pending/1
constraint,obviously, does not apply to -E or -INE. An example of pending expectation is:

pending(e(tell(thomas,yves,accept(scooter) ,a_dialogue),T))

The reader should note that the representation of CLP constraints on variable T, such as T#<20,
are represented in the CLP constraint store, rather than in the expectation itself.

Additionally, CHR constraints are used to represent all expectations, either pending, fulfilled
or violated: this is needed because transitions such as propagation apply to pending, fulfilled or
violated expectations in the same way. These constraints are e/2, en/2, note/2 or noten/2, for
E, NE, —-E or ~NE expectations, respectively. The two arguments of these CHR constraints
are the content and the time of the expectation.

Fulfilled Expectations FULF. Each fulfilled expectation is represented by a fulf/1 CHR
constraint, whose argument is a term representing the fulfilled expectation.

Violated Expectations VIOL. Each violated expectation is represented by a viol/1 CHR
constraint, whose argument is a term representing the violated expectation.

5.3.4 Transitions

The implementation of transitions has been designed so to exploit the built-in Prolog mecha-
nisms whenever possible, both for simplicity and for efficiency. This has been made possible by
the choice of a depth-first strategy for the exploration of the proof tree.

50

IFF-like Transitions.

1. Unfolding

According to Deliverable D8 [58], unfolding applies to defined literals in the resolvent and
to defined atoms in the body of social integrity constraints. At the implementation level,
we use two different mechanisms to handle the two cases:

o unfolding for a defined literal in the resolvent is achieved by mere Prolog resolution;

e unfolding for defined atoms in the body of ICs is achieved by replacing the atom
with its definition (by means of the Prolog clause/2 built-in predicate).

2. Abduction

Abducibles (E, NE, -E, -INE) are represented as CHR constraints; thus, abduction can
simply be achieved by calling them.

3. Propagation

Propagation of events and expectations with partially solved integrity constraints exploits
the CHR-based representation of HAP, EXP and PSIC; in this way, propagation of a
given kind of atom can be achieved by means of one CHR rule. For instance, the following
rule implements propagation of H atoms:

propagation_h @
h(Event,Time),
psic(Body,Head) # _psic
==>
find_candidate(H,h(Event,Time),1,N)
|
ccopy (p(Body,Head) ,p(Body1,Headl)),
sub_body_prop(h,Bodyl,Headl,h(Event,Time) ,N)
pragma
passive(_psic).

The rule is activated each time a new h/2 is added to the CHR store; the rule is activated
for all psic/2 CHR constraints present in the store.

The guard of the rule checks whether the body of the partially solved integrity con-
straints contains at least a term that can be propagated with the h/2 atom. This is
achieved by isolating the sublist of the body that contains h terms (H) and applying the
find_candidate/4 predicate which will succeed if the N-th element of H is a candidate
for propagation (if particular, in the functors and arities of the term and the atom are
the same).

If the guard succeeds, a copy is made of the partially solved integrity constraint, which will
be actually propagated: the original partially solved integrity constraint is left unchanged
in the CHR store in order to be possibly propagated with other atoms.

Actual propagation is performed by the sub_body_prop/5 predicate, which will replace
each element of the sublist of the body that can propagate with the h/2 atom with the

51

unification constraint. At the end, the new partially solved integrity constraint is added
to the CHR store.

The psic/2 constraint in the head of the rule is declared as passive, i.e., the rule is not
activated when a psic/2 constraint is added to the CHR store. This is needed to avoid
multiple propagations of the same partially solved integrity constraint with the same set
of atoms.

Rules for propagation of E, NE, =E and —NE atoms are analogous.

. Splitting

The depth-first strategy of the implementation allows for dealing with disjunctions ac-
cording to the following (very common in Prolog practice) schema:

split([Disjunct|_1):-
call(Disjunct).

split([_|MoreDisjuncts]) : -
split(MoreDisjuncts).

This schema is applied to disjunctions in the head of integrity constraints. Disjunctions
in the definitions of atoms (as in IFF) are expressed by writing more than one clause for
each atom, which is dealt with by Prolog. Disjunctions in the constraint store are handled
by the constraint solver(s).

. Case Analysis

Case analysis is not implemented as an independent transition, but its implementation
is integrated in the transitions that can lead to case an analysis (namely propagation,
fulfillment and violation).

. Equivalence Rewriting

As explained in Deliverable D8 [58], equivalence rewriting is delegated to the constraint
solver(s).

. Logical Equivalence Logical equivalence replaces a partially solved integrity constraint
whose body is true with its head. This is implemented by the following CHR rule:

trigger_psic @
psic([[1,0],01,01,[1,[],Atoms] ,Head)
<=>
true
&
call_list(Atoms)
|
impose_head (Head) .

The rule is activated when a partially solved integrity constraints that does not contain
events or expectations in the body is added to the CHR store: the guard imposes Atoms
(constraints or defined atoms) by calling each of them, and if success is returned imposes
the head of the partially solved integrity constraint.

52

Dynamically Growing History.

1. Happening

Happening of events is achieved by imposing a h/2 CHR constraint, whose (ground)
arguments are the content and the time of the event.

2. Closure

Closure of the history of the society is achieved by imposing a close_history/0
CHRconstraint. The presence of this constraint in the store will be checked by other
transitions such as fulfillment of NE expectations.

Fulfillment.

1. E Fulfillment and NE Violation

Fulfillment of E and violation of NE can be detected while the history is still open. The
following CHRs implements fulfillment of E expectations:

fulfillment @
h(HEvent ,HTime),
pending (e (EEvent ,ETime)) # _pending

fn_ok (HEvent ,EEvent)

|

ccopy (p(EEvent ,ETime) ,p(EEvent1,ETimel)),

case_analysis_fulfillment (HEvent ,HTime,EEvent ,ETime,
EEvent1,ETimel,_pending) .

The rule is applied when an event and a pending expectation whose content have the
same functor and arity (this is checked by the \fn/2 predicate in the guard of the
rule) are in the CHR store. In this case, a copy is made of the expectation® and the
case_analysis_fulfillment/7 predicate is called.

case_analysis_fulfillment (HEvent ,HTime,EEvent,ETime,
EEvent1,ETimel,_pending):-
reif _unify(p(HEvent,HTime) ,p(EEvent1,ETimel),1),
fulf(e(EEvent,ETime)),
remove_constraint (_pending) .
case_analysis_fulfillment (HEvent ,HTime,_,_,EEvent1,ETimel,_):-
reif_unify(p(HEvent,HTime) ,p(EEvent1,ETimel),0).

The arguments of this predicate represent, respectively, the content of the event, the time
of the event, the content of the expectation, the time of the expectation, a copy of the
content of the expectation, a copy of the time of the expectation, and the internal constant
representing the pending/1 constraint for the expectation. Two nodes are created by
case_analysis_fulfillment/7:

6 As specified in [58]: this allows for universally quantified variables in NE expectations to remain unbound.

53

e one where unification is imposed between the expectation and the event, the
pending/1 constraint for the expectation is removed and fulf/1 CHR constraint
for the expectation is imposed;

e one where non-unification between the expectation and the event is imposed.

2. E Violation and NE Fulfillment (closed history)

When the history of the society is closed (by means of a closure transitions), all pending
E are marked as violated and all pending NE are declared fulfilled. This is achieved by
the following two rules:

closure_e @
(close_history)
\
(pending(e(Event,Time)) # _pending)
<=>
viol(e(Event,Time))
pragma
passive(_pending) .

closure_en @
(close_history)
\
(pending(en(Event,Time)) # _pending)
<=>
fulf (en(Event,Time))
pragma
passive(_pending) .

In these two rules, the pending/1 constraint for the expectation is declared to be passive:
thus, the two rules are activated only when the close_history/0 constraint is imposed.

3. E-Consistency

E-consistency is implemented by imposing non-unification on the (Content, Time) pairs
of E and NE expectations in the store:

e_consistency @
e(EEvent ,ETime),
en(ENEvent ,ENTime)
==>
reif _unify(p(EEvent,ETime) ,p (ENEvent,ENTime),0).

4. —-Consistency

Analogously to E-Consistency, —-Consistency is implemented by by imposing non-
unification on the (Content, Time) pairs of E and —=E (or NE and —NE) expectations in
the store:

54

not_consistency_e @
e(EEvent ,ETime),
note (NotEEvent ,NotETime)

reif _unify(p(EEvent,ETime) ,p(NotEEvent ,NotETime),0).

not_consistency_en @
en(EnEvent ,EnTime),
noten(NotEnEvent ,NotEnTime)

reif _unify(p(EnEvent,EnTime) ,p(NotEnEvent,NotEnTime),0).

5.4 GUI

The graphic user interface is implemented by using the Swing Java classes: this set of libraries
has been designed by following the “Model View Control” design pattern (MVC). Once we
decided to adopt this set of libraries, we also decided to take advantage of the design pattern
implicitly proposed by the Swing collection. As it is possible to note in fig. 13, three different
groups of components have been created.

(~N
S | Psoy k===
I
GUI
R Events
e e ———
2 GUI
e Control
r Module P o
b < HM Society Module
GUI
:," Updates
d
u
| <= PER e
e
Init
Module
_ J

Figure 13: The GUI Module inside

Three components (Presentation Modules) are labelled with a bold P: they are the part
corresponding to the “Model” in the MVC pattern. The Presentation Modules are responsible
for keeping track of the data. For each one of the Social Compliance Verifier, the History
Manager and the FEvent Recorder, there is a Presentation Module devoted to treating their
data. These components also see to notifying the GUI Control Module whenever the data are
changed or updated.

95

The GUI Control Module is the component devoted to controlling the GUI and to manage
the data part. More precisely, this component has a double role: () it sees to properly updating
the graphic part whenever it is necessary, and (i) it sees to managing the user events on the
GUI, such mouse clicks and selections and button pressed events. These graphics events can
trigger some responses and changes in the graphics. All the elaboration process of these graphic
events is managed by the Init&Control module. This component corresponds to the “Model”
part in the MVC pattern.

The “View” role of the MVC design pattern is taken over by the Graphic Renderer. This
module is implemented as a collection of Java classes; most of them directly extend and inherit
the Swing core classes. A fourth module is implemented, devoted to the initialization of all
the GUI components. It is depicted at the bottom of the GUI module. The main task of
this component is to initialise all the other sub-modules. Symmetrically to the Init module of
the elaboration part, also this module acts as proxy for all the other GUI components. The
interested reader is referred to the SOCSDemo user manual [6] for a detailed description of the
graphic interface, and on how to use it.

56

Part III
THE DEMONSTRATOR IN PROSOCS

6 A Prototype Application

6.1 The Application Scenario

We use the Leaving San Vincenzo scenario to provide the context of the examples implemented
in the demonstrator. To establish the link of these examples to Global Computing, we have
discussed in [7] the relevance of the Leaving San Vincenzo scenario with the context of the
Global Computing programme. We also integrate in the San Vincenzo scenario the Resource
Allocation and Combinatorial Auctions scenaria proposed previously for SOCS, giving rise to
a new and extended San Vincenzo scenario. The simplifying assumptions of the extensions are
further discussed, however, only some of the identified extensions are outlined in this section, as
most of the extensions are discussed in the sections that follow, in the form of concrete examples.
The material presented in section 6.2 and 6.3 is adopted from the examples document [7].

6.2 Summary of the Leaving San Vincenzo scenario

The original Leaving San Vincenzo scenario [85] can be summarised as follows. A Spanish
businessman, called Francisco Martinez, travels for work purposes to Italy and, in order to
make his trip easier, carries a personal communicator, namely a device that is a hybrid between
a mobile phone and a PDA. The application running on this personal communicator provides
the environment for a computee, treated for the purposes of the scenario as a piece of software
that augments the direct manipulation interface of the device with implicit management. By
implicit management we mean that the computee is a personal service agent that provides
proactive information management within the device [87] and flexible connectivity to smart
services available in the global environment the businessman travels within.

Most of the original scenario unfolds in San Vincenzo, an Italian holiday resort, where
Francisco spends the last weekend of his away trip. In this context, the scenario describes a
series of events illustrating the kind of interactions (both physical and virtual) that Francisco’s
computee facilitates via the personal communicator of Francisco. Francisco’s communicator
connects Francisco’s computee with a series of other devices that we assume are available in
the physical environment so that Francisco can access smart electronic services. Here are the
main examples used in the scenario:

o Before leaving Spain, at the airport gate the computee registered Francisco with alocation-
independent smart-service provider in Italy.

e When Francisco arrived in Italy (Rome) it was weekend, but as Francisco was uncertain
whether to stay there or carry on to his destination, the computee advised Francisco to

stay, as there was a jazz festival.

e At the hotel Francisco stayed in the last two days of his visit to Italy, in San Vincenzo,
the computee payed Francisco’s bill, ordered a taxi, and checked for train information.

57

e At the train station of San Vincenzo, the computee advised Francisco how to successfully
buy a train ticket, despite the difficult conditions (ticket office closed, ticket machine out
of order).

Based on the above examples, the scenario seeked to demonstrate how technology can be
used to help people with what they do in their ordinary lives, from going to a business trip, to
staying in a hotel, travelling by train, and ordering a taxi.

6.3 Extending Leaving San Vincenzo

For the purposes of this implementation we extend the original San Vincenzo scenario in two
ways: (a) we make Leaving San Vincenzo the “umbrella” scenario for SOCS by integrating into
it the other two SOCS scenarios ([35, 67]), and (b) we specialise and augment the interactions of
the original scenario so that they can provide examples suitable for the implementation effort.

To achieve (a) we have made the simplified assumption that a piece of information is like
a resource (or in some cases like a product[26]) which can be exchanged between computees.
By making this assumption we can treat interactions supporting the exchange of information
similarly to the negotiations often taking place in resource allocation problems (in this way
we incorporate in the San Vincenzo scenario the resource allocation scenario presented in the
context of SOCS in [35]), with the additional advantage of contextualising these interactions and
present solutions that can be immediately useful to what people do in their everyday activities.

Also for (a) we have interpreted connectivity to smart services as access to resources available
in and managed by societies of computees that “run” on top of a global computing environment
such as the one assumed by the scenario. For this purpose we extend the original scenario,
where Francisco’ computee was ordering a taxi, with the computee now been engaged in a
combinatorial auction [67] but now in order to book taxis for the whole of the return trip, from
San Vincenzo in Italy to Francisco’s home in Madrid.

Finally, we will present (b) by introducing examples of interactions in the Leaving San Vin-
cenzo context as we go along, illustrating how can the D3 criteria these interactions exemplify be
met. As we shall see next, most of these new interactions are specialisations of the interactions
presented in the original Leaving San Vincenzo scenario.

6.4 Running the SOCSDemo

A demonstrator of the scenario discussed in the previous section form part of the prototype
demonstrator of the SOCS project. This demonstrator is based on a set of concrete examples
that have been developed especially to demonstrate the generic functionality of the PROSOCS
platform [7]. In particular, the demonstrator implements a list of representative examples,
which a user can download from the SOCS web-site:

http://www.lia.deis.unibo.it/research/projects/socs/

Apart from the implemented examples the web-site provides additional information about the
system, including the manual of the prototype [6]. The main purpose of the manual is to provide
precise instructions on how to download the demonstrator, how to install it on a host computer,
how to run the implemented examples, and - provided that the user is a logic programmer -
how to write new examples. We give next a flavour of how the prototype runs, by presenting
how the system operates using one of the demonstrating examples.

58

6.5 An Example Run

We show an instance of the San Vincenzo scenario demonstrating the integration of the com-
putee prototype and the society prototype within PROSOCS, to verify the expected behaviour
of computees. The example that we are going to illustrate is the example presented in section
5.1.3 of the examples document [7]. There are two computees in this example setting, Fran-
cisco’s computee f and the San Vincenzo train station manager svs. f requests information
about the arrival of the train to Rome from svs. This message is received by the svs computee
who responds first with a reply to inform f about the arrival of the train, and immediately
afterwords replies refusing to provide this information (that it has just provided). This violates
the protocol of the society, that one cannot give two answers to the same query. Fig.14 shows
the GUI of the svs computee.

File Action Config Tools

Help

-Computees

-
|—|

| Observed Events
B f] Socslds |

Gontedld |

Sender | Receivers |Perf0rmative\ Content | 5. Time \ . Time |_]

1 |[5vs]

|ouery_ref [anval_timey...0 [11 .

a0 @ [

‘| Executed Actions

I Sacslis | comesd | Reeeivers | Periommatie | Cantent \ 5. Time |_!
[l it i infotrn patival_fimeri 23, . <
|0 I il refuse Jarva [

(K]

a0 m | =

[=

Running Info : !step('AE" ((lell(svs,f,refuse(arrwa_time(ﬂ KB: \C:ISUcs-P\atfnrmencs-DemnfexampIesrseclinnﬁfexamp\mIsetting‘,?lsvs.pl \ Time: |

Figure 14: The GUI of the svs computee

The left part of the picture shows the other components that are running in the platform from
the point of view of svs, i.e. the computee f and the society component s0. On the top
right part of Fig.14, under the title Observed Events, the details of the received message are
being depicted. In the lower right part of Fig.14, the communicative actions executed by the
computee are shown.

The behaviour of svs and the communication between computees f and svs can be checked
by the society infrastructure of the platform. The user of the society can examine that state of

59

the society via the society’s user interface as depicted in Fig.15.

& SOCS Demo - Yersion 0,1.00_808

o ||

File Run Config ?

> | ﬂ ﬂ t‘f;,!E Execution mode: | =01 - |

(5] | ctose|

All : - Internal state -
& [Messages psic{[[h{tell| 76691, 76709, inform{_76655, 76673), 76635),_76727)1,01,01,[1.[1.[1,
& [Expectations A |[11.[[_Zz2564>_76727,enitell(76691, 76709, refuse(76655), 76635), Z22256)11)
[Integrity Constraints | || [£52>
& o |psic([[hitell(35690, 35708, query ref(33672), 35632), 33726)1,[1.01.01.[1.[1.[11,
=r A | [[_12507#<_35726+10,e(tell(35708, 35690,inform|_ 35672, l2295), 35652), l2507)1,[_
&[] svs 137798« _35726+10,e(tell(_ 35708, 35690,refuse(35672),_35852),_13779111)
o8- hitell{avs,f,refusejarrival time(trlz3)),.dl),0)
<c2lx hitell(swvas,f,inform{arrival time(trlZ3),10.32),dl),0)
Edaires hitell(f,avs,query ref{arrival time(trlz3)),dl),.0)
<48 fulfie(tell(svs, f,inform{arrival time(tri23),10.32),41),0})
Rl & g viol{en(tell(svs, [, refuse({arrival time(trl23)).dl), 164220))
<£Chlx pendingien(tell{sws,f,inform(arrival time(trl23), 151732),dl), 151520))
Lo3 3 pendingien{tell{sws,f,refusefarrival time|trlz3d)),.dl),_ledzz0))
4 i3]
‘Messages
SocsiDs | contextld Sender | Receivers | Performative | Content | Titne | Local Time |
s0 Ll S5 guery_ref. arrival_timetr1...| 01071071963552
S0 1 f i _ 71564
S0 d1 If 0]1071071978584

Figure 15: The GUI of the Society Infrastructure

In Fig.15 the lower part of the society infrastructure shows all the messages that have been
exchanged by the computees in that society. At the left-hand side of the figure, the presence of
the computees f and svs is also depicted, including interface information about the messages
and the expectations the society has for different stages of their interaction. In the middle of
the society GUI the user can see the details about the expectations and possible violations, as
it is the case with this example. The society infrastructure can also show to the user the tree of
the interactions between the computees. For more details on how to use the Society interface

the interested reader is referred to the manual [6].

7 Evaluation

7.1 Evaluation of WP4

A detailed evaluation of WP4 in the context of the criteria set out in deliverable D3 [60] is
provided in deliverable D11 [17], where the results of the work are evaluated in the context
of GC and SOCS, and the achievements, together with the weaknesses are discussed in detail.

60

We will not reevaluate the work of WP4 here again, in order to avoid unnecessary duplication
in deliverables. Instead, in this section we want to discuss briefly some important aspects of
the system, including the experimentation that we have carried out so far. We also use this
space as the right place to discuss any additional assumptions that were not identified in the
description of the prototype presented in the previous sections.

The experimentation context that we described via the application scenario and the exam-
ple run of part III has been demonstrated using controlled experiments involving three laptops
running PROSOCS, all connected via a LAN (Local Area Network). We have used different
variations of this arrangement. At one end of the spectrum, all the computees and the Society
Infrastructure run on one laptop. At the other extreme we have tried to distribute the compo-
nents of the system by running each of the computees on separate laptops, while on the third
laptop the Society Infrastructure.

Our experiments so far, using the different network arrangements just described, have been
successful in that they have demonstrated the expected functionalities within controlled settings.
Apart from testing the models, a lot of emphasis has been put on the testing of the message
transportation ability of the system. For this purpose, as we have also foreseen in D3, our
experimentation has concentrated on using communicative actions between computees only.
That is, we have not tried physical actions on the environment, a feature which we plan to
investigate in the third year.

Moreover, we have experimented with LANs only. In other words, we have not experimented
with other kinds of networks such as wide area networks or global networks. For this kind of
networks we expect to face the problem of maintaining a global time in network topologies that
are more complex than three laptops connected in a LAN. We also expect to find problems on
the network due to firewalls, or other security measures that may restrict communication and
interaction. Again, these are the kind of issues that we want to explore within the experimen-
tation (WP6) in the final year.

Through the experimentation we have illustrated how to specify computees and how to
prototype their states, including the part that the computee will use to interact with other
computees. A summary of how a user can specify new problems has also been outlined in the
user manual [6]. Although specification of problems has been the primary goal of PROSOCS
at this stage of development (it is certainly a very important consideration from a software
engineering perspective), we have not yet developed any methodologies for building PROSOCS
computees. In particular, we have not adopted the game-based development approach we had
foreseen to use within the Technical Annex. As we state in D11 [17] the reasons why we did
not pursue the game-based methodology was to allow partner sites to focus on functionality. In
addition, in the context of software engineering we have not pursued the idea of ontologies for
building specific kinds of applications, as the focus of this work has been mainly the functional
integration of the models.

We have already stated in D11 [17] that mobility has not been prototyped in PROSOCS.
As mobility is an important aspect of GC, and as the SOCS consortium has foreseen in the
technical annex and D3 [60] to investigate mobility within WP4 in SOCS, to some extent, we
discuss in the next section this topic separately.

7.2 Mobility in (PRO)SOCS: A Feasibility Study

In what follows we briefly discuss what we consider as the main issues related to mobility and
SOCS, which could serve as a starting point for tackling this problem in PROSOCS. To this

61

purpose, we will consider mainly two aspects. First, we will investigate what kind of mobility
is most appropriate for SOCS computees and the Society Infrastructure. Then, we will discuss
how mobility could be embedded in SOCS, and also how mobile agent systems could possibly
take advantage from such an extended SOCS model. In this context, we hope to address typical
problems raised by mobility of software components, such as, for instance, security problems.

From a general perspective, in SOCS we could distinguish between two different forms
of mobility. As a first form, mobility could be intended as the capability of moving com-
putees/societies between physical nodes in the network. As a second form, another more ab-
stract notion of mobility could be given: it could be viewed as the computee capability to access
and exit to/from societies, i.e., virtually moving across societies. This second interpretation
of mobility, can be identified with the openness property of the SOCS computees and society,
that we already discussed in the deliverables D3 [60], D5 [66], and D11 [17]. As explained in
[66], in fact, SOCS deals with open societies of computees: according to [29], in an open society
“there are no restrictions for agents/processes to join/leave the society”. This means that it is
possible for any agent to enter the society simply by starting an interaction with a member of
it. Moreover, each computee is free to move across societies.

In this section we will distinguish between “physical mobility”, referring to the first form of
mobility, and “logical mobility”, referring to societies access. We will concentrate on physical
mobility and only touch on logical mobility, which is already documented elsewhere, as explained
above.

7.2.1 Preliminaries

It is increasingly recognised that software mobility is a fundamental issue in the development
of distributed systems with requirements of efficiency and fault tolerance. This has caused,
in recent years, several proposals of innovative programming paradigms based on mobility, in
particular, that of Mobile Agents (MA) technology [59].

From a general point of view, several different paradigms based on the possibility of dynamic
software migration have been identified and developed (see [42] for a general introduction).
Among these, Client/Server (CS) are perhaps the first and simplest forms of mobility, where
the client asks the server to execute the computation and possibly send back an answer. This
simple case, in which data migrate, illustrates the basic mechanisms and motivation for mobility:
computational resources are not uniformly distributed, indeed the server is able to process a
request on behalf of the client, and data are exchanged from the client to the server, and
backward.

More complex forms of mobility focus on the mobility not only of data, but also of code,
and even of whole computational environments, according to different paradigms that differ in
the distribution of know-how, and resources among the different locations.

For instance, code is daily downloaded in the form of the so-called plug-ins in order to update
capabilities of locally resident programs. Code can also move around to process data that are
locally kept, for instance because of their size or their confidentiality. This kind of code mobility
encompasses the Remote Evaluation (REV) and Code on Demand (CoD) paradigms.

In the REV paradigm [84], a component A exploits the computational resources of another
component B, typically residing on a different location, by sending instructions (code) specifying
how B should perform a service on behalf of A, using its own resources. The component B then
executes the received code.

In the CoD paradigm, instead, component A has resources located in its execution envi-

62

ronment but lacks the proper code to process data and access resources, and hence it needs
to obtain the required code from component B. These code-mobility principles are closely re-
lated to Component Based Software Engineering, where components in the form of independent
pieces of software are deployed by third parties to form dynamically assembled (distributed)
systems.

The MA paradigm is an extension of the previous paradigms, where a whole computational
environment moves. This means that the state of the computation has to be somehow recorded
and transfered to the new location. For instance, a component of a distributed system that
migrates from one location to another, carries its code and its current execution state, and it
may need to keep trace of all the connections, e.g. communications channels, which it had in
the original location, and relocate them in the new one. A mobile agent can hence migrate
autonomously to a different computing node that can offer the required resources, and it is
capable of resuming its execution seamlessly, because it preserves its execution state. It is
quite clear that this process poses difficult problems of modelling and verification, as well as of
domain administration and security.

In its first stages, code relocation was mainly motivated by performance issues, like load bal-
ancing. MA technology for distributed system management has a wider range of motivations,
which encourage its utilization, in a Global Computing setting, by showing some significant
deriving benefits. The most recognised advantages span from the overall reduction of network
traffic by exploiting resource co-locality, to the flexibility of distributing software components
at runtime, from the full decentralization of the monitoring, control and management of net-
works, systems and services, to the increased robustness stemming from decoupling tasks into
distributed autonomous activities that can overcome temporary network/resource unavailabil-
ity.

However, the deployment of MA in GC application domains can be accelerated as soon
as MA systems can provide solutions that respect the opening and closing properties. The
opening property permits to overcome the system boundaries in order to inter-operate with
any necessary external component and to allow any external recognised usage, while the closing
property is the possibility of constraining the system in such a way to identify and exclude any
malicious intrusion. The opening property is granted by interoperability considerations and the
closing property by security mechanisms and policies.

Interoperability is an important property for MA systems and requires to identify the aspects
of the MA technology candidate to become standard. The MA research has promoted inter-
operable and standard interfaces to interact with resources and service components available in
statically unknown hosting environments (compliance with CORBA and MA-specific standards
such as OMG MASIF and FIPA [39] [73]); these interoperability features can help in supporting
the internetworking of mobile users/terminals with previously unknown local resources.

With regard to security, MAs have fostered even more the traditional security issues to
the limit. Indeed, compared to the Client/Server model, the MA paradigm offers greater op-
portunities for attacks to take place because MA systems provide a distributed computing
infrastructure on which applications belonging to different (usually untrusted) users can exe-
cute concurrently. Additionally, the execution sites hosting MAs may be managed by different
authorities with different and possibly conflicting objectives and may communicate across un-
trusted communication infrastructures, such as the Internet.

Another relevant issue for mobility is the level of the so-called local-awareness. The cases
of processes relocated for performance reasons by a distributed operating system, or plug-ins
downloaded for enhancing a local application, are quite different from the case of a mobile agent

63

that autonomously moves from one location to another. In principle, processes and plug-ins do
not need to be aware of where they are executed, and do not autonomously decide to move.
These functionalities are provided by the underlying operating system.

A more complex framework of distributed interaction is the case of the above cited CORBA:
this is a middle-ware which allows distributed components to interact with each other by ref-
erencing a common ORB (Object Request Broker). Such broker provides an abstraction of
the locality topology in the network, by suitably redirecting requests to the correct service
providers, which may be located anywhere, and even move. In this case, components need only
a limited view of locations. The case of MAs is different. Here, in order to autonomously move
through a network of possible execution sites, we need to have both a “correct” representation
of the network, and to be equipped with suitable linguistic constructs for expressing movement
statements, treating locations as first order objects. In other words, mobility must be under
program control.

7.2.2 Mobility in PROSOCS: A Sketch

Currently, PROSOCS does not support mobility. However, many aspects of the SOCS model
and several implementation choices that we have made, are suitable to support a future exten-
sion of the platform with mobile computees. In the rest of this section we will illustrate the
features of the SOCS approach (both at the formal, computational and implementation level)
that can support mobility or need to be extended in order to do so. We will also discuss the
forms of mobility that could be suitable for SOCS computees (and also societies). Informally
speaking, we distinguish between “physical mobility”, when we address the issue of moving
software from one execution site to another, and “logical mobility”, in the context of a more
abstract topology of societies and computees that belong to them.

Physical mobility. In this part we refer to mobility as the physical migration of data, code,
or software, from an execution environment or site to another.

e A first and simple case of mobility for computees consists of code motion, and resembles
the Code-On-Demand or REV scenarios previously introduced. Consider for example
a light-weight computee that requires from a trusted repository some set of capabili-
ties/functionalities it needs at a certain moment. For example, a computee might decide
to use a plan library rather than planning from first principles.

Thanks to the modular design of computees, this could be easily achieved, practically
without any need of moving the state of the computation, since the computee does not
migrate, nor a detailed awareness of the network topology is necessary, but only a reference
to the code repository required. What is needed is a re-loading (or reconsulting in a more
Logic Programming jargon) mechanism.

e A case in between simple code down-loading and proper MA mobility, could be the case
of a computee that is dynamically relocated in a different execution environment, but this
is not under the program control of the computee itself. Consider, for instance, the case
of a user who wants to carry a personal assistant (a computee) from a desktop computer
to a mobile phone, as the user leaves the office and wants to be assisted in a journey by
the computee.

Even if the migration is decided and executed by the user, with an external command, the
execution state of the computee may be required to migrate together with the computee.

64

While the current knowledge K By, the domain dependent and the domain independent
knowledge, which are in general textual information, can be easily moved, the support
interface must be able to resolve the redirection of all the references, like communica-
tion channels, resource accesses, etc., the computee was counting on. Note that this is
already partially supported by means of the underlying JXTA communication infrastruc-
ture, which is able to identify, by means of a unique name, a communication partner,
such as a computee or a society, independently of its physical location on the network.
Clearly, this kind of mobility could be coupled with the previous one, for example because
the mobile phone of the user can only support light-weight computees, that hence have
to often download, and then discard, needed functionalities in terms of code.

e The most general and appropriate form of mobility in our context seems to be represented
by the MA paradigm. In this case, a computee autonomously decides to move from
one location to another, for example because it is searching for new resources, or for
accessing data, or for interacting locally with other computees or resources, or for carrying
out a confidential computation within a trusted firewall. In order to achieve this more
complete form of location-aware program-controlled mobility, the computee model needs a
substantial enhancement, in order to embed location as first order objects of the knowledge
base of a computee. Such an extended computee, for instance, could be able to reason
about a property (fluent) holding not only at a given point in time, as it is currently
able to do, but at a given point in space. By space we mean the execution environment;
typically we would want this environment to be a complex structure such as the Internet.

In principle all these forms of mobility could be achieved in SOCS, because the architecture
of each computee and society infrastructure both provide a clear separation between state and
code, and both state and code are well defined by the computational models in terms of tuple
states of a transition system (see D8 [58]). From a practical point of view, the adopted formal
model greatly facilitates the task of moving the state/code of a computee/society to a remote
node.

Note that the previous scenarios, which have been presented for the perhaps more intuitive
case of computees, may apply to the case of societies as well, in the sense that also societies
could exhibit mobility features (both as code, data and execution environment mobility that
can be location-aware and program-control, or not).

Logical mobility Mobility can be interpreted in the SOCS context, at a logical level, as the
possibility for the computees to access societies. Note that this does not necessarily require any
relocation, since, as already discussed, the underlying JXTA communication infrastructure may
let computee access societies distributed anywhere over the Internet. However, at a different
level, the problems of openness and closure are still valid. Indeed, a computee must be able to
inter-operate with an external society, and the society must be able to preserve itself from the
possibly malicious behaviour of the computee.

In order to accomplish this kind of logical mobility, computees must be equipped with
abstract location-aware capabilities, which for instance allow them to maintain a representation
of the society topology and to locate the more suitable society for their purposes (we have
explored this to some extend in [92]). Societies, on the other hand, must be equipped with
access control mechanisms and policies, which implement some form of suitable closure.

65

Finally, it is worth noting that SOCS could take great advantage from work on mobility
done by related GC projects:

e AGILE [5], where, in particular, a set of language primitives with formal semantics for
expressing code mobility has been defined; these primitives could be incorporated into
computees.

e MIKADO [68] where new formal models for both the specification and programming
of large-scale, highly distributed and mobile systems has been defined; this formal pro-
gramming model, could be possibly exploited to implement a mobility-enabled version of
SOCS.

7.2.3 Which primitives?

As argued above, even if mobility is not currently implemented in SOCS, there is no assumption
in our models that prevents computees to move from one node to another. Moreover, at the
platform level, there is no assumption that restricts computees to reside on specific hardware, so
that they can reside and migrate on mobile devices (such as cellular telephones, palm comput-
ers, etc.).” Future extensions encompassing mobility need to choose the linguistic constructs
to be added to computees and societies. As we have seen, for the complete, location-aware
scenario, locations must become first order objects of the language, let them be physical or log-
ical locations. We briefly discuss how the main approaches to mobility, currently in literature,
might contribute in this sense to SOCS.

There are several well known approaches to process mobility at different levels. Among
formal approaches to mobility, for instance, the one proposed by Gilbert and Palamidessi [47]
is based on an extension of concurrent constraint programming . Another approach is based on
Millner’s pi-calculus [69], which is a formalism for dealing with concurrency and mobility; this
is the approach followed, for instance, in GC projects MIKADO [68] and MyThS [71]. Among
practical approaches, several mobile systems providing a wide range of support facilities have
been developed. In this area, relevant work is available, for instance, at the University of
Bologna [15, 27] and at Imperial College [25].

Most of these mobility frameworks provide a move primitive which can be called by an
agent/process to request its migration to a new node. Using this move call, a computee could
move from a node to another by means of a physical action (consisting of a call to move). This
migration could happen in a totally transparent way for the (external) society, and requires
a proper support from the underlying execution platform. Moreover, the computee could be
equipped with a dedicated capability in order to reason about spatial locality, and, for instance,
deduce from its current knowledge the most suitable location where it has the right to move in
order to accomplish its tasks.

A different technique is the one adopted in the FIPA ACL specification for mobility [40].
Following this approach, the ACL language for interaction between computees could be ex-
tended in order to allow a computee to explicitly express its intention of migrating from a
place to another one. In our case, a performative request of move could be inserted into a tell
predicate, as in [40].

It is worth noticing that this technique would be less invasive in the current SOCS models,
since it could be solely realised by means of new communicative acts (to some appropriate

"We are aware that up to now such hardware platforms are subject to strong limitations that would impose
to implement lighter versions of computees and societies especially tailored to be loaded on these devices.

66

receivers). Moreover, mapping mobility into communicative acts would make also possible for
the Society Infrastructure to control and monitor computees movements among physical nodes.

For these reasons, let us briefly sketch in more detail the requirements that this approach
poses on SOCS computees/societies. As presented in deliverables D4 [57] and D5 [66], SOCS
computees are able to send messages to a (set of) receiver(s) by communicative actions ex-
pressed as utterances in the tell predicate. To support migration we should provide a predicate
move, that should allow migrating computees to explicitly utter tell(Sender, Receiver,
request (move(B))) to perform the migration to the destination node B. In this case, the re-
ceiver could be a system agent as in [40]. In addition, each agent should be equipped with a
suitable agent descriptor [40] containing the agent most relevant attributes for mobility (such as
references to its code and data, its requirements for execution, etc.). In order to allow interop-
erability, the agent descriptor should also enclose one (or more) agent profile(s) [40], describing
the software platform and the operating system supported by the migrating computee.

Use of explicit communication does not define neither how mobile computees operate nor
how they are implemented. Of course, the platform should provide the needed mechanisms to
transfer SOCS computees from one node to another. In our case, since the implementation
approach is based on JXTA, we could take advantage of some existing work [21], where Java
mobile agents are built on top of the JXTA P2P platform.

The previous considerations apply to both physical and logical mobility. The latter poses
interesting issues related to the social level, that is one of the main focus of the SOCS project,
as discussed in the next section.

7.2.4 Can we take advantage of SOCS to support mobility?

As we pointed out earlier on, one open issue related to MA is security. In SOCS we do
not consider explicitly security issues. However, we think that our approach, expressing the
correct behaviour of computees in terms of social integrity constraints and relying on a run-
time compliance verifier, could be smoothly applicable also to the MA security problem. In
particular, entering into a society would be interpreted as entering into a particular execution
environment. Rules for expressing the right behaviour of migrating computees in accessing
resources would be specified by social integrity constraints. Moreover, a computee could be
made compliant with the society by learning the social integrity constraints while accessing the
society, realising both an opening operation that is allowed to enter and interopertate with the
society, and a closing operation that the society imposes its policies on it.

This scenario can be interpreted in a broader sense, if we think of the Society Infrastructure
not at the logical, but at the physical level: a society represents a physical execution location.
In this case, the social compliance verifier could act like an automatic detector of intrusions or
of incorrect behavior of mobile computees. This research line could represent a contribution of
the SOCS project to the general area of security and mobility.

A related approach can be considered the one of the MRG [70] project. This deals with
the problem of security in MA and, in particular, with the problem of preventing a hosting
node from executing an unsafe mobile agent piece of code. Differently from our approach, the
solution in the MRG project aims to detect the safety of the agent code a-priori before agent
execution at the new hosting node. The solution aims to develop an infrastructure needed to
endow mobile code with independently verifiable certificates describing agent behaviour. These
certificates are ”proof-carrying”, since they could independently be verified at the destination
site.

67

One of the implications of proof-carrying certificates at the destination site, however, is that
access is required to the internal structure of the migrating object. Notice that our approach
is, instead, a ”social” approach and therefore does not rely in general on the knowledge of
the internal state of the computee. However, in principle, the logical foundation of the SOCS
computational model and the hypothesis of moving computees as “knowledge bases”, could be
exploited to support a similar form of code-checking. Even if computees do not need to access
the internal structure of each others in order to collaborate, societies could use proof-carrying
techniques in order to inspect computee’s internal state, certify and accept them as “safe”.

7.3 Related work

A plethora of software platforms for building software agents is available, for example see
[62, 34, 76, 28, 77, 4] for more details. This renders the task of reviewing all the related work
available in this area gigantic [34]. As a result, to make our task more manageable, in this
section we identify only a subset of existing platforms that we believe to be most relevant to
PROSOCS. For example, we exclude platforms whose main focus is mobility. Another way to
measure relevance is by selecting platforms that are based on the models that we have already
compared with our work in deliverables D4 [57], D5 [66], and D8 [58], excluding when necessary
proposals that to the best of our knowledge have not been updated recently (e.g. [19]). We
expose the similarities and differences between PROSOCS and what we believe to be the most
relevant proposals, resulting in an evaluation that is based on the relative advantages and
disadvantages of PROSOCS and these chosen platforms.

In many respects, the comparison that we present here is by no means complete, in the sense
that the status of PROSOCS is at an early prototyping stage that does not support an Agent
Development Environment or any methodology, except for a very basic one. As a result we
shall focus the comparison on the general approach taken and the implications of the reference
models and implementation technologies used by PROSOCS and the chosen platforms, rather
than issues such as development methodology and tools provided in the software engineering
sense (e.g. knowledge editors; for a discussion along these lines of a subset of the platforms
discussed here the interested reader is referred to [76]). In addition, we will not compare the
logical or computational models that we use in PROSOCS with the corresponding models used
in the selected platforms as this comparison is already available in [57, 66, 58].

This section is organised as follows. We start the discussion on the differences between
our approach and platforms that use the concept of a directory facilitator component, such
as JADE[16], FIPAOS[74], and ZEUS [72]. We then discuss well-known platforms that, like
PROSOCS, offer reusable implementation of reasoning and communication mechanisms, treat-
ing agents as if they were first class objects. These include proposals such as IMPACT[12, 52],
SIM _Speak [64], and 3APL [49, 1]. We also discuss platforms already used in industry, such as
for instance AgentBuilder [3] and JACK [53]. We continue the discussion by looking separately
at some logic-based approaches that are proposed as programming languages for agents, such
as IndiGolog [46] and Go! [23]. We finally close with a discussion on related work for the
implementation of the Society Infrastructure module.

7.3.1 Platforms based on a Directory Facilitator Approach

In PROSOCS we use P2P computing as the underlying model for the implementation of the
reference model we presented in section 3.1. To deliver this implementation we use at the

68

lower level JXTA [56], a set of open protocols that allow any connected device on the network
ranging from PCs and servers to cell phones and wireless PDAs to communicate and collaborate
in an open but distributed manner. In PROSOCS we have seen how this lower level is linked
with the logical part of the computee, via a mind-body computee architecture that links the
reasoning capabilities of the mind with the physical actions carried out by the computee body
that situates the computee in a networked environment. The motivation behind this approach
has been to keep the link of PROSOCS and GC as close as possible, through the use of P2P
protocols that projects in GC other than SOCS are currently developing.

The P2P approach used in PROSOCS contrasts with the FIPA approach, followed by plat-
forms such as JADE[16], FIPAOS[74], ZEUS[72], and 3APL [1] whose FIPA reference model
relies on specific types of agents such as the Directory Facilitator (DF), Agent Management
System (AMS) and Agent Communication Channel (ACC) to support agent management in
a distributed network. The DF provides “yellow pages” services to other agents. The AMS
and ACC support inter-agent communication. The ACC supports interoperability both within
and across different platforms. The Internal Platform Message Transport (IPMT) provides a
message routing service for agents on a particular platform which must be reliable, orderly and
adhere to the requirements specified in the FIPA standards.

An approach similar to the DF approach is used by the IMPACT platform [52], which relies
on a yellow pages server for keeping information about agents. However, in this approach when
an agent is deployed the registration is done automatically by the roost the agent is deployed
on (a roost is the runtime environment wrapper that houses agents in that platform), and thus
an agent does not have to register explicitly by executing a communicative act.

One implication of our approach using JXTA compared to those that use a DF model is that
when we start a computee in PROSOCS we do not have to make the computee register with a
DF via an explicit communicative action (i.e. similarly to IMPACT). In PROSOCS the body of
a computee uses JXTA protocols, through the platform’s JXTA API, to make itself dynamically
present in the environment (to be more precise we use JXTA’s advertisement features combined
with the notion of peer groups), as is the case with ordinary physical environments, where
being present suffices. At any point in time, a computee can use the JXTA API provided by
PROSOCS to obtain all the peers that are available in the environment. In other words, by
using JXTA we push the presence of an agent in the implementation of the platform’s medium,
so that the developer will not need to think about the use of yellow pages. This is arguably
closer — at least conceptually — to the social organisation of a MAS application.

7.3.2 Platforms that treat Agents as First Class Objects

In PROSOCS a computee is treated as a first-class object in the sense that the developer
can start a computee and inherit a set of tools that support the development of a reasoning
component and the interaction with the environment for free. The computee has a specific mind-
body architecture inspired by the architecture originally developed by Bell [14] and recently
applied to build web-based agents in [51]. The advantage of looking at the mind and the body
of the computee functioning as co-routines is very useful in that a computee can execute an
action, often simultaneously with the activities of reasoning, planning and observation.

Our work with PROSOCS goes one step further from those described in [14, 51], in that, we
are also providing a very specific computational theory for building the mind of an agent, based
on proof—procedures, capabilities, transitions, and cycle theories. This seems to be missing
from platforms such as the ones described in [16, 74, 72] that, when creating an agent they all

69

provide what we call a body without any reusable tools that will allow the developer to build
easily a mind. The latter will have to be supplied by the developer separately, without a lot of
help from the platform.

IMPACT. The IMPACT platform treats agents as first-class objects too[12, 89], facilitating
the creation, deployment, interaction, and collaborative aspects of applications in a heteroge-
neous, distributed environment. We have seen already that IMPACT relies on servers (yellow
pages, thesaurus, registration, type and interface) that facilitate agent inter-operability in an
application independent manner. It also provides an Agent Development Environment for cre-
ating, testing, and deploying agents. In this context the agent’s components are:

o Application Program Interface (API): provides a set of functions which may be used to
manipulate the data structures managed by the agent in question.

o Service Description: specifies the set of services offered by the agent.
o Message Manager: manages the incoming and outgoing messages of the agent.

o Actions, Action Policies, and Constraints: describe the set of actions that the agent can
physically perform, an associated action policy that states the conditions under which the
agent may, may not or must do some actions.

o Meta—knowledge: holds beliefs about the environment and other agents, used to produce
action policies.

o Temporal Reasoning: supports an agent to schedule actions that take place in the future,
which could be interpreted as the commitments of the agent.

o Reasoning with Uncertainty: allows the agent to take into account that a state can be un-
certain. For example, based on its sensors, an agent may have uncertain beliefs about the
properties of the environment’s state, as well as uncertainty about how the environment
is likely to change.

o Security: supports the designer of the agent to enforce security policies according to the
application requirements of the agent.

Although the mind-body architecture of PROSOCS provides a more intuitive separation
between the part of the agent that is required to interact with the environment and the part
that supports the reasoning, from the specification point of view, IMPACT agents are a superset
of PROSOCS agents. As with PROSOCS they are supported by execution mechanisms whose
to their computational features as well as their complexity are well understood. However,
IMPACT provides generic types of agents that the programmer can reuse across applications
which PROSOCS does not provide. On the other hand, IMPACT does not provide a Social
infrastructure like PROSOCS, as this system was originally developed with different aims,
namely, integrating heterogeneous sources of information, where the notion of society plays a
less prominent role.

70

3APL. Similar to the PROSOCS approach, when an agent is started in the 3APL platform
[1] the system provides a set of tools that support the reasoning capabilities of the agent (for
the mind), including a deliberation cycle. This platform also supports a more sophisticated
interface for the agent than in PROSOCS, that allows the developer to edit the different belief,
action and goal bases that are supported. In addition, the system supports communication
amongst agents based on the FIPA DF approach (which - to the best of our knowledge - is not
yet fully implemented). Moreover, the platform provides support for a sniffer agent that can
present the communication that has been exchanged between agents running on the platform
(this feature is a limited version of what is already available in [16]). However, the platform
does not have a Society Infrastructure to test for conformance of protocols such as PROSOCS.
We could not find any additional information about the reference model of a 3APL agent nor
any implementation architecture of agents in 3APL, so that to provide a more detailed the
comparison.

SIM_Speak. This platform [64] results from an implementation of the AgentSpeak(L) lan-
guage [75] and its interpreter using the SIM_AGENT toolkit[82, 81]. In SIM _Speak an agent
state comprises of a set of events E, a set of beliefs B, and a set of intentions I. Events are either
external or internal. The external events correspond to inputs from the agent’s environment.
Internal events are generated during execution of a plan.

As in AgentSpeak(L), an agent executes in a cycle, which is similar to an instance of the
PROSOCS cycle theory, as follows: select some event e from the pending set of events E using
an event selection function SE; look for and choose an applicable plan p for e using a plan
selector function SP; generate a new intention (e,p) if e is external, extend intention i with p if
e is an achieve goal event generated by i; select an intention i from the current set of intentions
I using an intention selector SI; execute the next goal or action of i.

Asynchronously the environment is adding events to the agent’s event store, and it is asyn-
chronously absorbing the agents actions. Each i in I is an execution thread and corresponds to
the stack of plans currently being used to respond to some external event. However, the agent
explicitly time shares between them using SI, viz., it has no internal concurrency. There is also
no inter-agent communication model in the language - no special communication actions. Also,
the three selection functions SE, SP, SI are black boxes, there is no means of programming
them within the AgentSpeak(L) language.

7.3.3 Commercial-grade platforms

Apart from platforms that are freely available, there are also a number of platforms with
commercial-grade interfaces and programming tools, such as AgentBuilder [3] and JACK][2],
that support too the notion of agents as first class objects.

AgentBuilder. AgentBuilder[3] is based on the Agent0 [79] model and the extensions out-
lined for this model in the Placa [91] language. An agent is defined by the developer specifying
behavioural rules, initial beliefs, commitments, intentions and agent capabilities. These are
similar to specifying the different PROSOCS knowledge bases based on a basic agent class.
However, as most agents require more capabilities than the basic agent class, the notion of
Project Accessory Classes (PACs) is introduced. PACs are custom classes coded in Java and
designed to perform specific tasks that augment the basic agent’s behaviour.

71

To interpret the internal state of the agent, AgentBuilder provides a Run-Time Agent En-
gine. This is a high-performance mechanism that interprets the agent program and performs
actions specified in agent action libraries, the user interface, or communication with other agents
supported via a communication module. The Run-Time Agent Engine is similar to providing
an implementation for a normal cycle theory together with a body and a common interface in
PROSOCS.

JACK. JACK][2] is an environment for building, running and integrating commercial-grade
multi-agent systems using a component-based approach. The system is based on the BDI
model dMARS [32]. The developer of an agent in JACK can fully describe the functionality
of an agent by extending an agent class (similar to what we call in PROSOCS an agent body)
with a number of components using the JACK Agent Language. In general, the agent class
allows the developer to add to an agent reasoning, communication, and interaction capabilities
implementing the following conceptual components:

e BeliefSets and Views which the agent can use and refer to;

Events (both internal and external) that the agent is prepared to handle;

Plans that the agent can execute;

Events the agent can post internally (to be handled by other plans);

Events the agent can send externally to other agents.

Unlike PROSOCS, where we use a mixed approach of Computational Logic and Java, the
JACK Agent Language is a super-set of Java - encompassing the full Java syntax while extending
it with constructs to represent agent-oriented features. Each of the Java extensions are included
in JACK along with their expected usage and semantic behaviour. A compiler pre-processes
JACK Agent Language source files and converts them into pure Java. This Java source code can
then be compiled into Java Virtual Machine code to run on the target system. The JACK Agent
Kernel is the runtime engine for programs written in the JACK Agent Language. It provides
a set of classes that give JACK Agent Language programs their agent-oriented functionality.
Most of these classes run behind the scenes and implement the underlying infrastructure and
functionality that agents require, while others are used explicitly in JACK Agent Language
programs, inherited from and supplemented with callbacks as required to provide agents with
their own unique functionality.

7.3.4 Agent Programming Languages

IndiGolog IndiGolog [46] is a high-level programming language for robots and intelligent
agents that supports on-line planning and plan execution in dynamic and incompletely known
environments. Programs may perform sensing actions that acquire information at runtime and
react to exogenous actions. It could be used to write robot control programs that combine
planning, sensing, and reactivity.

IndiGolog supports complex agents that are:

e able to do reasoning and planning;

e able to react to exogenous events;

72

e able to monitor plan execution and sense the environment;
e both reactive and proactive;
e written using very high-level language constructs.

IndiGolog is a member of Golog family of languages. Golog [61] is a language for expressing
high-level programs for robots and autonomous agents. Golog supports program structures
such as sequence, conditionals, loops, and non-deterministic choice of actions and arguments.
It uses a Situation Calculus theory of action to perform the reasoning required in executing the
program.

An extension of Golog called ConGolog [45] was introduced later, adding support for concur-
rent processes with possibly different priorities, interrupts, and exogenous events. These new
constructs were useful for writing controllers that react to environmental events while working
on certain tasks. However, key features of real-world agent and robot applications are that
the environment is dynamic and that the system has incomplete knowledge and must acquire
information at run-time by performing sensing actions. Like earlier planning-based systems,
Golog and ConGolog, assume an off-line search model. That is, the interpreter is taken to
search all the way to a final state of a program before any action is really executed. This can be
a serious problem if, for instance, the program involves a long running application, or if part of
the program depends on information that can only be obtained by doing sensing at run-time.
It is also impractical to spend large amounts of time searching for a complete plan when the
environment is very dynamic.

Although IndiGolog addressed the limitations of Golog and ConGolog, the notion of ex-
ogenous actions in it is based on the assumption that there is a concurrent process executing
these actions outside the control of the agent. In other words, one main difference between
IndiGolog and the language of abductive logic programming that is available in PROSOCS, is
that IndiGolog assumes that it should be the developer of an application that should interface
the language to application domains of a distributed systems nature, while with PROSOCS the
support for distribution comes for free. In addition, IndiGolog is not based on any specific agent
architecture, while in PROSOCS a computee is built with a specific architecture encompassing
a mind and a body.

Go!. The logic programming language Go![23] is descendant of the multi-threaded symbolic
programming language April[38], with influences from IC-Prolog II[22] and L&O[65]. Go! has
many features in common with Prolog, particularly multi-threaded Prologs, however, there are
significant differences related to transparency of code and security. Features of Prolog that
mitigate against transparency, such as the infamous cut (!) primitive, are absent from Go!.
Instead, its main uses are supported by higher level programming constructs, such as single
solution calls, iff rules, and the ability to define ‘functional’ relations as functions.

Go! is strongly typed to reduce the programmer’s burden. The programmer can declare new
types and thereby introduce new data constructors. Go! is also multi-threaded, a feature which
the developers of this system consider essential for building sophisticated agents. Threads pri-
marily communicate through asynchronous message passing. Threads, executing action rules,
react to received messages using pattern matching and pattern based message reaction rules.
A communications daemon enables threads in different Go! processes to communicate trans-
parently over a network. Typically, each agent will comprise several threads, each of which can
directly communicate with threads in other agents.

73

Threads in the same Go! process, hence in the same agent, can also communicate by
manipulating shared cell or dynamic relation objects. Updates of these objects are atomic.
Moreover, threads can be made to suspend until a term unifying with some given term is added
to a shared dynamic relation by some other thread. This enables dynamic relations to be used to
coordinate the activities of different threads within an agent. This is a powerful implementation
abstraction for building multi-threaded agents.

Go! does not directly support any specific agent architecture or agent programming method-
ology, hence the system does not support agents as first class objects. In addition, facilities
such as planning, temporal reasoning, and preference reasoning, the programmer has to build
from scratch (although they could be reused using library modules, once they are developed).

7.3.5 Social Infrastructures

We would also like to discuss briefly two existing implementations of social frameworks.

The social approach to the definition of interaction protocols and semantics of Agent Com-
munication Languages has been documented in several noteworthy contributions of the past
years. Other frameworks are proposed in the literature, aimed at verifying properties about the
behaviour of social agents at design time. Often, such frameworks define structured hierarchies,
roles, and deontic concepts such as norms and obligations as first class entities. Among them,
as we cited in D8, [13], present a formal framework for specifying systems where the behaviour
of the members and their interactions cannot be predicted in advance, and for reasoning about
and verifying the properties of such systems. The authors provide a tool (Society Visualiser) to
demonstrate animations of protocol runs in such systems. The Society Visualiser’s main pur-
pose is to explicitly represent the institutional power of the members and the concept of valid
action. Our work is not based on any deontic infrastructure. For this reason, our framework
can be used for a broader spectrum of application domains, from intelligent agents to reactive
systems.

ISLANDER [36] is a tool for the specification and verification of interaction in complex
social infrastructures, such as electronic institutions. ISLANDER allows to analyse situations,
called scenes, and visualise liveness or safeness properties in some specific settings. The kind
of verification involved is static and is used to help designing institutions. Although our frame-
work could also be used at design time, its main intended use is for on-the-fly verification of
heterogeneous and open systems.

74

Part IV
CONCLUSION

8 Summary

The prototype demonstrator of SOCS is a set of application examples developed using the
PROSOCS platform, a system supporting the programming of autonomous entities called com-
putees, viz., software entities specified in computational logic and operating in global comput-
ing environments, and then societies via a Society Infrastructure. The PROSOCS platform
combines advanced computational logic techniques to build the reasoning capabilities of a com-
putee, with peer-to-peer computing techniques to allow an embodied computee to interact and
communicate with an open and unpredictable environment.

A modular approach allows a user to program computees in terms of components, in par-
ticular a mind and a body. These function as co-routines and in turn consist of additional
components represented as extended logic programs (e.g. the mind’s cycle theory and knowl-
edge) or concurrent objects and their methods (e.g. the body’s control, the sensors, and the
effectors). The advantage of looking at the mind and the body of the computee functioning as
co-routines is that a computee can execute an action, often simultaneously with the activities
of reasoning, planning and observation.

One of the strengths of the platform is that it provides a Social Infrastructure component
that allows interactions amongst computees to be regulated, according to a set of rules that
represent the ideal interactions of computees and their societies. In this context, a society is
represented as a set of protocols and a knowledge base that are different for different applica-
tions.

We have exemplified the use of the PROSOCS platform and we have developed a series of
examples (documented in [7]) showing how to use the resulting generic functionality to build
a simple application for the provision of location-independent smart services. This application
is intended to demonstrate the feasibility of functionalities and computational viability of the
logical models developed in the SOCS project (WP1, WP2, and WP3). It is also intended as
the starting point for the final year of the project, where larger scale experiments are being
planned (WP6).

We have also evaluated the implementation and placed it in the context of what we think
are the most relevant existing works in the literature. Both the evaluation of our work and the
review of related work give rise to the next section, where we discuss our immediate plans for
future work.

9 Future work

We will continue with the experimentation based on the current examples [7] document. In
parallel, additional experimentation will be based on the second example document that we
have developed in [31], which is also attached as part of this deliverable. In this way we hope
to continue with the testing and the debugging of the prototype, to prepare it for the final year
experimentation plans (WP6).

Our immediate plan for future work for improving computees is as follows.

75

e Focus on the scalability of the C-IFF and Gorgias proof-procedures;

e Extend the temporal reasoning capability in order to make it more efficient and relax
the simplifying assumptions made in D8. This would lead to a TR theory able to deal
with non—ground theories, containing narrations with events occurring at existentially
quantified time points within intervals, and able to recover from a given narrative with
inconsistent observations.

o Investigate how to represent and implement variables other than temporal variables and
work alongside with the developments of the computational model of D8 in this direction.

e Incorporate an environment computee that can be reused across applications to support
physical actions and interactions of computees with the environment.

o Investigate the practical problems of incorporating the notion of global time in the system,
so that the system can reason with deadlines.

In our future work about the social infrastructure, we are planning the following tasks.

o Allow for a tighter interaction between societies and computees. We show some motivating
example in an attached document of this deliverable [31].

e Have the society actively communicate expectations to computees so that they can be used
as instances for helping the computees in the goal decision procedure, and for managing
trust and reputation in open societies.

e Try to make the proof of the society more efficient and scalable as the number of social
events increases. In the next year we will do an experimental evaluation of the performance
of the implemented SCIFF, which will help us making choices in this respect.

e Augment SOCSDemo with a set of protocols from the literature, to facilitate integra-
tion with legacy systems and heterogeneity. We already started doing this, taking some
protocols from FIPA/AUML.

Acknowledgments

Thanks to Nicolas Maudet for implementing a first version of the transitions in PROSOCS,
while employed at City University for this project.

76

References

[1] 3APL Platform User Guide. http://www.cd.uu.nl/3apl/download.html, visited Dec. 2003.

[2] Agent Oriented Software (AOS), Carlton, Victoria. 2001. Version 3.0.
http://www.jackagents.com.

[3] The AgentBuilder Web-site. http://www.agentbuilder.com/, visited Dec 2003.

[4] The AgentBuilder Web-site: Agent development tools.
http:/ /www.agentbuilder.com/AgentTools/index.html, visited Dec 2003.

[5] AGILE: Architectures for Mobility IST-2001-32747, 2003.

[6] M. Alberti, A. Bracciali, F. Chesani, N. Demetriou, U. Endriss, A. Kakas,
W. Lu, , K. Stathis, and P. Torroni. Socsdemo user manual. Discussion Note
IST3250/CITY/011/DN/I/a2, SOCS Consortium, Dec. 2003.

[7] M. Alberti, A. Bracciali, F. Chesani, N. Demetriou, U. Endriss, F. Sadri, A. Kakas,
E. Lamma, W. Lu, N. Maudet, P. Mello, M. Milano, K. Stathis, G. Terreni, F. Toni,

and P. Torroni. Examples for the functioning of computees and their societies. Discussion
Note IST3250/ICSTM//DN/1/a2, SOCS Consortium, Dec. 2003.

[8] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Compliance
verification of agent interaction: a logic-based tool. 2004. Submitted.

[9] M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Logic Based
Semantics for an Agent Communication Language. In B. Dunin-Keplicz and R. Verbrugge,
editors, Proceedings of the International Workshop on Formal Approaches to Multi-Agent
Systems (FAMAS), pages 21-36, Warsaw, Poland, Apr. 12 2003.

[10] M. Alberti, D. Daolio, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification
and verification of agent interaction protocols in a logic-based system. In Proceedings of
the 19th Annual ACM Symposium on Applied Computing (SAC 2004). Special Track on
Agents, Interactions, Mobility, and Systems (AIMS), Nicosa, Cyprus, Mar. 14-17 2004.
ACM Press. to appear.

[11] M. Alberti, S. Melchiori, and P. Torroni. A feasibility study for the implementation of a
prototype demonstrator of societies of computees using jade and prolog. Internal document.
attached to deliverable [18], SOCS Consortium, 2003.

[12] K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus. IMPACT:
a Platform for Collaborating Agents. IEEE Intelligent Systems, 14(2):64-72, March/April
1999.

[13] A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational societies.
In C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part
111, pages 1053-1061, Bologna, Italy, July 15-19 2002. ACM Press.

[14] J. Bell. A Planning Theory of Practical Rationality. In Proceedings of AAAI’95 Fall
Symposium on Rational Agency, pages 1-4. AAAT Press, 1995.

7

[15] P. Bellavista, A. Corradi, and C. Stefanelli. A mobile agent infrastructure for the mobility
support. In SAC (2), pages 539-546, 2000.

[16] F. Bellifemine, A. Poggi, and G. Rimassa. JADE: a FIPA2000 compliant agent development
environment. In J. P. Mller, E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the
Fifth International Conference on Autonomous Agents, pages 216-217. ACM Press, May
2001.

[17] A. Bracciali, A. C. Kakas, E. Lamma, P. Mello, K. Stathis, F. Toni, and P. Torroni. D11:
Evaluation and self assessment. Technical report, SOCS Consortium, 2003. Deliverable
D11.

[18] A. Bracciali, T. Kakas, E. Lamma, F. Sadri, K. Stathis, and F. Toni. Wpl-wp4: progress
report. Technical report, SOCS Consortium, 2003. Deliverable D7.

[19] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. DESIRE: Mod-
elling multi-agent systems in a compositional formal framework. International Journal of
Cooperative Information Systems, 6(1):67-94, 1997.

[20] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint solver.
In Proc. Programming Languages: Implementations, Logics, and Programs, 1997.

[21] R. Y. Chen and B. Yeager. Java mobile agents on project jxta peer-to-peer platform. In
36th Hawaii International Conference on System Sciences (HICSS’03). IEEE Computer
Society, 2003.

[22] D. Chu. and K. L. Clark. IC-Prolog II: A Multi-threaded Prolog System. In Proceed-
ings of the ICLP-93 Post-conference Workshop on Concurrent, Distributed and Parallel
Implementations of Logic Programming, Budapest, 1993.

[23] K. Clark and F. McCabe. Go! for multi-threaded deliberative agents. to appear in Annals
of Mathematics and Al also available http://www.doc.ic.ac.uk/ klc/gowp.html, 2003.

[24] K. Clark and P. Robinson. Agents as multi-threaded logical objects. In A. C. Kakas
and F. Sadri, editors, Computational Logic: Logic Programming and Beyond, pages 33—65.
Springer-Verlag, LNAT 2407, 2002.

[25] K. Clark, N. Skarmeas, and F. McCabe. Agents as clonable objects with knowledge base
state. In V. Lesser, editor, Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS’96), Kyoto, Japan, 1996. The MIT Press: Cambridge, MA, USA.

[26] M. Cohen and K. Stathis. Strategic Change stemming from E-Commerce: Implications of
Multi-Agent Systems in the Supply Chain. Strategic Change, 10:139-149, 2001.

[27] A. Corradi, R. Montanari, E. Lupu, and C. Stefanelli. Policy controlled mobility.

[28] P. Dart, E. Kazmierczak, M. Martelli, V. Mascardi, L. Sterling, V. Subrahmanian, and
F. Zini. Combining Logical Agents with Rapid Prototyping for Engineering Distributed
Applications. In Proc. of 9th International Conference of Software Technology and Engi-
neering (STEP’99), Pittsburgh, PA, September 1999. IEEE.

78

[29] P. Davidsson. Categories of artificial societies. In A. Omicini, P. Petta, and R. Tolksdorf,
editors, Engineering Societies in the Agents World II, volume 2203 of Lecture Notes in
Artificial Intelligence, pages 1-9. Springer-Verlag, Dec. 2001. 2nd International Workshop
(ESAW’01), Prague, Czech Republic, 7 July 2001, Revised Papers.

[30] O. deBruijn and K. Stathis. Socio—Cognitive Grids: The Net as a Universal Human
Resource. In Proceedings of Tales of the Disappearing Computer, pages 211-218. CTI
Press, 2003.

[31] N.Demetriou, A. Kakas, and P. Torroni. Further examples of the functioning of computees.
Technical report, SOCS Consortium, 2003. Examples Document.

[32] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS.
In M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent Agents V, Agent Theories,
Architectures, and Languages, 5th International Workshop, ATAL °98, Paris, France, Pro-
ceedings, number 1365 in Lecture Notes in Artificial Intelligence, pages 155-176. Springer-
Verlag, 1998.

[33] M. d’Orazi Flavoni. A qu-prolog implementation of the IFF proof procedure and example
application use for communicating agents. Technical report, Department of Computing,
Imperial College, London, UK, 2002. Advanced MSc project.

[34] T. Eiter and V. Mascardi. A comparison of environments for developing software agents.
AT Communications, 15:169-197, 2002.

[35] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Resource Allocation by Negotiation. Tech-
nical Report IST32530/TCSTM/019/IN/1/a2, 2002.

[36] M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions editor.
In C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part
111, pages 1045-1052, Bologna, Italy, July 15-19 2002. ACM Press.

[37] B. T. et al. The Project JXTA Virtual Network.
http://www.jxta.org/docs/JXTAprotocols.pdf, May 2001.

[38] M. F.G. and C. K.L. April: Agent process interaction language. In W. M. J. and J. N. R,
editors, Intelligent Agents, pages 324-340. LNCS, Vol. 890, Springer Verlang, 1995.

[39] FIPA: Foundation for Intelligent Physical Agents.

[40] FIPA agent management support for mobility specification, Aug. 2001. Published on
August 10th, 2001, available for download from the FIPA website, http://www.fipa.org.

[41] T. Frithwirth. Theory and practice of constraint handling rules. Journal of Logic Program-
ming, 37(1-3):95-138, Oct. 1998.

[42] A. Fuggetta, G. Picco, and G. Vigna. Understanding Code Mobility. Transactions on
Software Engineering, 24(5):342-361, May 1998.

[43] T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic programming.
Journal of Logic Programming, 33(2):151-165, Nov. 1997.

79

[44] Global Computing: Co-operation of Autonomous and Mobile Entities in Dynamic Envi-
ronments.

[45] G. D. Giacomo, Y. Lesperance, and H. J. Levesque. Congolog, a concurrent programming
language based on the situation calculus. Artificial Intelligence, 121(1-2):109-169, 2000.

[46] G. D. Giacomo, H. J. Levesque, and S. Sardia. Incremental execution of guarded theories.
ACM Transactions on Computational Logic, 2(4):495-525, October 2001.

[47] D. Gilbert and C. Palamidessi. Concurrent constraint programming with process mobility.
Lecture Notes in Computer Science, 1861:463—77, 2000.

[48] Gorgias system manual. http://www.cs.ucy.ac.cy/ nkd/gorgias/ (visited 20/12/2003).

[49] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. C. Meyer. Agent programming in
3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357-401, 1999.

[50] C. Holzbaur. Specification of constraint based inference mechanism through extended
unification. Dissertation, Dept. of Medical Cybernetics & AI, University of Vienna, 1990.

[51] Z. Huang, A. Eliens, , and P. de Bra. An Architecture for Web Agents. In Proceedings of
EUROMEDIA’01. SCS, 2001.

[52] Impact Software Library User Documentation. http://www.cs.umd.edu/projects/impact/Docs/,
visited Dec 2003.

[53] Agent Oriented Software Group Web-site. http:/ /www.agent-
software.com.au/shared /home/, visited Dec. 2003.

[54] J. Jaffar and M. Maher. Constraint logic programming: a survey. Journal of Logic Pro-
gramming, 19-20:503-582, 1994.

[55] The JAVA Programming Language. http://www.sun.com/software/java/.
[56] Project JXTA. http://www.jxta.org/, visited Dec 2003.

[57] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. A logic-based approach to
model computees. Technical report, SOCS Consortium, 2003. Deliverable D4.

[58] A. C. Kakas, E. Lamma, P. Mancarella, P. Mello, K. Stathis, and F. Toni. Computational
model for computees and societies of computees. Technical report, SOCS Consortium,
2003. Deliverable D8.

[59] D. Kotz and R. Gray. Agent tcl: Targeting the needs of mobile computers. IEEE Internet
Computing, 1(4), 1997.

[60] E. Lamma, P. Mello, P. Mancarella, A. Kakas, K. Stathis, and F. Toni. Self-assessment:
parameters and criteria. Technical report, SOCS Consortium, 2003. Deliverable D3. Dis-
tribution restricted to the GC programme.

[61] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming, 31(1-3):59—
83, 1997.

80

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]
[71]

[72]

[73]
[74]

[75]

[76]

B. Logan. Classifying agent systems. In J. Baxter and B. Logan, editors, Software Tools
for Developing Agents: Papers from the 1998 Workshop, pages 11-21. AAAI Press, July
1998. Technical Report WS—98-10.

W. Lu, N. Maudet, and K. Stathis. Building socio-cognitive grids by combining peer-
to-peer computing with computational logic. In O. de Bruijn and K. Stathis, editors,
Proceedings of 1st International Workshop on Socio-Cognitive Grids, pages 18-22, 2003.

R. Machado and R. H. Bordini. Running AgentSpeak(l) agents on sim_agent. In
M. d’Inverno and M. Luck, editors, Working Notes of the Fourth UK Workshop on Multi-
Agent Systems (UKMAS 2001), 13-14 December 2001.

F. G. McCabe. Logic and Objects. International Series in Computer Science. Prentice Hall,
1992.

P. Mello, P. Torroni, M. Gavanelli, M. Alberti, A. Ciampolini, M. Milano, A. Roli,
E. Lamma, F. Riguzzi, and N. Maudet. A logic-based approach to model interaction
amongst computees. Technical report, SOCS Consortium, 2003. Deliverable D5.

P. Melo, M. Milano, A. Roli, R. Montanari, M. Gavanelli, E. Lamma, and F. Riguzzi.
Combinatorial Auctions. Technical Report IST32530/UNIBO/0XX/IN/I/a2, 2002.

MIKADO: Mobile Calculus based on Domains (IST-2001-32222), 2003.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Part I and II.,
100(1):1-77, 1992.

MRG: Mobile Resources Guarantees IST-2001-33149, 2003.

MYTHS: Models and Types for Security in Mobile Distributed Systems IST—2001-32617.
Web page, 2001.

H. S. Nwana, D. T. Ndumu, L. C. Lee, and J. C. Collis. ZEUS: a toolkit and approach
for building distributed multi-agent systems. In O. Etzioni, J. P. Miiller, and J. M. Brad-
shaw, editors, Proceedings of the Third International Conference on Autonomous Agents
(Agents’99), pages 360-361, Seattle, WA, USA, 1999. ACM Press.

Object management group: Mobile agent system interoperability facility specification.

S. Poslad, P. Buckle, and R. Hadingham. The FIPA-OS agent platform: Open Source for
Open Sstandards. In Proceedings of PAAM’00, pages 355-368, 2000.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
R. van Hoe, editor, Agents Breaking Away, 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, MAAMAW’96, Eindhoven, The Netherlands,
January 22-25, 1996, Proceedings, volume 1038 of Lecture Notes in Computer Science,
pages 42-55. Springer-Verlag, 1996.

P.-M. Ricordel and Y. Demazeau. From analysis to deployment: A multi-agent platform
survey. In A. Omicini, R. Tolksdorf, and F. Zambonelli, editors, Engineering Societies in
the Agents World, volume 1972 of LNAI pages 93-105. Springer-Verlag, Dec. 2000. 1st
International Workshop (ESAW’00), Berlin (Germany), 21 Aug. 2000, Revised Papers.

81

[77] A. Serenko and B. Detlor. Agent Toolkits: A General Overview of the Market. Technical
Report Working paper 455, McMaster University, Hamilton, Ontario, July, 2002.

[78] M. Shanahan. Prediction is deduction but explanation is abduction. In Proceedings of the
11th International Joint Conference on Artificial Intelligence, pages 1055-1060, 1989.

[79] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51-92, 1993.
[80] SICStus prolog user manual, release 3.8.4, May 2000.

[81] SIM_AGENT Web-Site. http://www.cs.bham.ac.uk/ axs/cog-affect/sim_agent.html, vis-
ited Dec 2003.

[82] A. Sloman and B. Logan. Building cognitively rich agents using the SIM_Agent toolkit.
Communications of the ACM, 42(3):71-73, 75, 1999.

[83] Societies Of ComputeeS (SOCS): a computational logic model for the description,
analysis and verification of global and open societies of heterogeneous computees.
http://lia.deis.unibo.it/Research /SOCS/.

[84] J. Stamos and D. Grifford. Implementing remote evaluation. IEEE Transactions on Soft-
ware Engineering, 16(7), 1990.

[85] K. Stathis. Location-aware SOCS: The Leaving San Vincenzo scenario. Technical Report
IST32530/CITY/002/IN/PP /al, 2002.

[86] K. Stathis, C. Child, W. Lu, and G. K. Lekeas. Agents and Environments. Technical
Report Technical Report IST32530/CITY/005/DN/I/al, 2002.

[87] K. Stathis, O. deBruijn, and S. Macedo. Living memory: agent-based information manag-
ment for connected local communities. Interacting with Computers, 14(6):665-690, 2002.

[88] K. Stathis, W. Lu, N. Demetriou, A. Kakas, U. Endriss, and A. Bracciali. PROSOCS: A
platform for programming software agents in computational logic. In J. Miiller and P. Petta,
editors, Fourth International Symposium from Agent Theory to Agent Implementations, to
appear, Vienna 2004.

[89] V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross. Het-
erogenous Active Agents. MIT-Press, 2000.

[90] P. Tarau. Jinni: Intelligent mobile agent programming at the intersection of java and
prolog. In Proceedings PAAM’99, London, UK, 1999.

[91] S. R. Thomas. The PLACA agent programming language. In M. J. Wooldridge and N. R.
Jennings, editors, Intelligent Agents, Berlin, 1995. Springer-Verlag.

[92] F. Toni and K. Stathis. Access-as-you-need: a computational logic framework for flexible
resource access in artificial societies. In Proceedings of the Third International Workshop
on Engineering Societies in the Agents World (ESAW’02), Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2002.

82

[93] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J. C. Hugly, and E. Pouyoul. Project
JXTA-C:Enabling a Web of Things. In Proceedings of the 36th Hawaii International
Conference on System Sciences (HICSS’03), pages 282-287. IEEE Press, January 2003.

[94] Extensible Mark-up Language - (XML). http://www.w3.org/XML/, visited Dec 2003.

10 Appendices

10.1 Protocol definition language

Ics is a list of integrity constraints. It can be an empty list.

Ics
IC

Syntax of BodyIC

BodyIC

BodyLiteral
HEvent

Event

Time

Literal
CompoundTerm
Term

TermId
List

Syntax of HeadIC

HeadIC

HeadDisjunct

Syntax of Expectations

Expectation
PosExpectation
NegExpectation

Syntax of CLP Constraints

Constraint
CLPConstraint
Expr
AtomicExpr
Relop

Op

UnifConstraint
UnifRelop

(IC H=*
BodyIC ImplSymbol HeadIC FullStopSymbol

[NotSymbol 1(HEvent | Expectation)

(AndSymbol [NotSymbol] BodyLiteral)*

HEvent | Expectation | Literal | Constraint
HappenedSymbol LBracket Event "," Time RBracket
CompoundTerm

Variable | Num

CompoundTerm

TermId [LBracket Term ("," Term)* RBracket]
Num | Variable | CompoundTerm | List |
(LBracket Term ("," Term)* RBracket)
ConstantLiteral

LSquare [Term ("," Term)*] RSquare

HeadDisjunct (OrSymbol HeadDisjunct)* |
BottomSymbol

[NotSymbol] Expectation (AndSymbol [NotSymbol]
(Expectation | Constraint | CompoundTerm))*

PosExpectation | NegExpectation
PosExpSymbol LBracket Event "," Time RBracket
NegExpSymbol LBracket Event "," Time RBracket

CLPConstraint | UnifConstraint

Expr Relop Expr

AtomicExpr [Op AtomicExpr]

Variable | Num

EqualSymbol | NotEqualSymbol | LessThanSymbol |
GreaterThanSymbol | LessEqualSymbol |
GreaterEqualSymbol

PlusSymbol | MinusSymbol | ProductSymbol |
DivSymbol

Term UnifRelop Term

UnifSymbol | NotUnifSymbol

83

Identifiers

Variable 1i= (’A’-°Z’|’_?) (Character)#*
ConstantLiteral 1i= (’a’-’z’) (Character)*
Character = (’a’-’z> | ’2A°-°Z° | °0°-°9° | °_°)
N-um se= IIOII | (()1)_)9)) (’0)_)9))*)
Symbols

AndSymbol ti= AN

BottomSymbol HEE "false"

DivSymbol ti= VA

EqualSymbol HE ==t

FullStopSymbol 1= "

GreaterEqualSymbol ::= "=t

GreaterThanSymbol R "

HappenedSymbol = "H"

ImplSymbol S e

LBracket ri= "

LessEqualSymbol S "=

LessThanSymbol S "

LSquare ti= v

MinusSymbol = "-n

NegExpSymbol = "NE"

NotEqualSymbol S "o

NotSymbol HEE nyn

NotUnifSymbol 1= "=n

O0rSymbol = m\/"

PlusSymbol 1= "y

PosExpSymbol 1= "E"

ProductSymbol = A

RBracket 1= "

RSquare S "y

UnifSymbol HEE ="

10.2 A brief introduction to Constraint Handling Rules

Constraint Handling Rules [41] (CHR for brevity hereafter) are essentially a committed-choice
language consisting of guarded rules that rewrite constraints in a store into simpler ones until
they are solved. CHR define both simplification (replacing constraints by simpler constraints
while preserving logical equivalence) and propagation (adding new, logically redundant but
computationally useful, constraints) over user-defined constraints.

The main intended use for CHR is to write constraint solvers, or to extend existing ones.
However, although ours is not a classic constraint programming setting, the computational
model of CHR presents features that make it a useful tool for the implementation of the social
proof-procedure.

Simplification CHRs. Simplification rules are of the form
Hl,...,Hz'@Gl,...,GﬂBl,...,Bk (2)

with ¢ > 0, j > 0, k > 0 and where the multi-head Hq, ..., H; is a nonempty sequence of CHR
constraints, the guard G, ..., G is a sequence of built-in constraints, and the body Bi, ..., By

84

is a sequence of built-in and CHR constraints.

Declaratively, a simplification rule is a logical equivalence, provided that the guard is true.
Operationally, when constraints Hj, ..., H; in the head are in the store and the guard Gy, ..., G}
is true, they are replaced by constraints Bj, ..., By in the body.

Propagation CHRs. Propagation rules have the form
Hl,...,Hi:>G1,...,Gj|B1,...,Bk (3)

where the symbols have the same meaning and constraints of those in the simplification rules
(2).

Declaratively, a propagation rule is an implication, provided that the guard is true. Opera-
tionally, when the constraints in the head are in the store, and the guard is true, the constraints
in the body are added to the store.

Simpagation CHRs. Simpagation rules have the form
Hl,...,Hl\Hl+1,...,Hi — Gl,...,Gj|Bl,...,Bk (4)

where [> 0 and the other symbols have the same meaning and constraints of those of simplifi-
cation CHRs (2).
Declaratively, the rule of Eq. (4) is equivalent to

Hl,...,Hl,Hl+17...,Hi — Gl,...,Gj|Bl,...,Bk,H1,...,Hl (5)
Operationally, when the constraints in the head are in the store and the guard is true, Hy, ..., H;
remain in the store, and Hi41,. .., H; are replaced by By,..., Bg.

85

