
SOCS
a computational logic model for the description, analysis and verification

of global and open societies of heterogeneous computees

IST-2001-32530

Deliverable D8:

A computational approach to
(societies of) computees

Project number: IST-2001-32530
Project acronym: SOCS
Document type: D (deliverable)
Document distribution: I (internal to SOCS and PO)
CEC Document number: IST32530/DIPISA/012/D/I/b1
File name: 2012-b1[D8].pdf
Editor: P. Mancarella, F. Toni, A. Bracciali
Contributing partners: All
Contributing workpackages: WP3
Estimated person months: 53
Date of completion: 29 January 2004
Date of delivery to the EC: 31 January 2004
Number of pages: 229

ABSTRACT
This document presents the computational counterparts for the abstract models for computees
and their societies presented in deliverables D4 [63] and D5 [94], respectively, during the first
year of the project. The companion deliverable D9 [5] presents a prototype demonstrator
obtained by realising the computational models presented here.

Copyright c© 2004 by the SOCS Consortium.

The SOCS Consortium consists of the following partners: Imperial College of Science, Technology and Medicine,

University of Pisa, City University, University of Cyprus, University of Bologna, University of Ferrara.

Deliverable D8:

A computational approach to
(societies of) computees

ICSTM:
Ulle Endriss, Fariba Sadri, Francesca Toni

DIPISA:
Andrea Bracciali, Paolo Mancarella, Giacomo Terreni

UCY:
Neophytos Demetriou, Antonis Kakas, Pavlos Moraitis

CITY:
Kostas Stathis

UNIBO:
Paola Mello, Paolo Torroni

DIFERRARA:
Evelina Lamma, Marco Gavanelli

ABSTRACT
This document presents the computational counterparts for the abstract models for computees
and their societies presented in deliverables D4 [63] and D5 [94], respectively, during the first
year of the project. The companion deliverable D9 [5] presents a prototype demonstrator
obtained by realising the computational models presented here.

2

Contents

I Introduction and Background 7

1 Introduction 7

2 Computee formal model: short recap (and revisions) 8

3 Society formal model: short recap (and revisions) 11

4 Computational models for computee and society: general approach 12

5 Task allocation 13

6 Background 15
6.1 Abductive logic programming and abductive proof procedures 15

6.1.1 Abductive logic programming . 15
6.1.2 Abductive proof procedures . 17
6.1.3 The IFF proof-procedure . 19

6.2 Logic programming with priorities . 24
6.2.1 The LPwNF framework . 25
6.2.2 Preference reasoning in LPwNF . 27

6.3 Constraint Logic Programming . 27

II Computees 30

7 KGP model: recap 30
7.1 Preliminaries . 30
7.2 State of a computee . 33
7.3 Operations and notations on states . 35
7.4 Other notations . 37

8 Cycle computational model 37
8.1 The cycle theory Tcycle . 39

8.1.1 Syntax . 39
8.1.2 Example of Tcycle . 40

8.2 Operational trace . 44
8.2.1 Generalisation 1: Initial transition and POI controlled by Tbehaviour . . . 45
8.2.2 Generalisation 2: Cycle step with set of alternatives 46

8.3 Computational counterpart of the operational trace 48

9 Computational model for selection functions and transitions 49
9.1 Computational counterparts for the (core) selection functions 50

9.1.1 Action selection function . 51
9.1.2 Goal selection function . 53
9.1.3 Fluent selection function . 54
9.1.4 Precondition selection function . 55

3

9.2 Computational counterparts for the transitions 56
9.2.1 Goal Introduction . 56
9.2.2 Reactivity . 57
9.2.3 Plan Introduction . 58
9.2.4 Sensing Introduction . 60
9.2.5 Passive Observation Introduction . 61
9.2.6 Active Observation Introduction . 61
9.2.7 Action Execution . 62
9.2.8 Goal Revision . 63
9.2.9 Plan Revision . 65

10 Proof Procedures: building blocks for the computational model of the capa-
bilities 67
10.1 C-IFF: IFF with handling of constraint predicates 67

10.1.1 C-IFF: Syntax . 67
10.1.2 New rules for the C-IFF procedure . 68
10.1.3 Extracted answers in C-IFF . 69
10.1.4 Correctness of C-IFF . 70

10.2 C-IFF with dynamic allowedness . 70
10.2.1 Extracted answers in C-IFF with dynamic allowedness 72
10.2.2 Correctness of dynamic C-IFF . 72
10.2.3 C-IFF example . 74

10.3 Proof Procedures for LPwNF . 78
10.3.1 Computing |=pr via argumentation: Argumentation frameworks 78
10.3.2 Logic programming without negation as failure 79
10.3.3 An Example theory of LPwNF . 80
10.3.4 Integrating Abduction . 81
10.3.5 Computing Argumentation . 82
10.3.6 A proof procedure for LPwNF and |=pr 83
10.3.7 Implementation of the Proof Procedure for LPwNF 84

11 Capabilities computational models 84
11.1 Planning . 84

11.1.1 KBplan and specification of |=τ
plan: recap 84

11.1.2 `τ
plan: Computational model for planning 86

11.1.3 Properties of `τ
plan with respect to |=τ

plan 90
11.2 Identification of Precondition . 90

11.2.1 Specification of |=pre . 90
11.2.2 `pre: Identification of Preconditions via C-IFF 91
11.2.3 Example of `pre . 91
11.2.4 Correctness and completeness of `pre wrt |=pre 91

11.3 Reactivity . 91
11.3.1 KBreact and specification of |=τ

react: recap 91
11.3.2 `τ

react: Computational model for reactivity 93
11.3.3 Properties of `τ

react with respect to |=τ
react 95

11.4 Temporal Reasoning . 95
11.4.1 KBTR and specification of |=TR: recap 96

4

11.4.2 `TR: Computing temporal reasoning via ALP proof procedures 99
11.4.3 Reasoning with non-ground queries . 106
11.4.4 Use of TR in the overall computational model for the computee 110
11.4.5 Examples of `TR . 113
11.4.6 Properties of `TR with respect to |=TR (Summary) 115

11.5 Goal Decision . 116
11.5.1 KBGD and specification of |=GD: recap 116
11.5.2 `τ

GD: Computing the Goal Decision capability 118
11.5.3 Example of `τ

GD . 119
11.5.4 Properties of `τ

GD with respect to |=GD 120

12 Correctness of the computational model of selection functions and transitions122

13 Correctness of the cycle computational model 122

14 An example 123

15 Discussion and future work 126

16 Related Work 127
16.1 The BDI model . 129
16.2 AGENT0 . 130
16.3 AgentSpeak . 131
16.4 3APL . 132
16.5 DESIRE . 133
16.6 Computational logic-based approaches . 134

16.6.1 IMPACT . 134
16.6.2 MINERVA . 135
16.6.3 GOLOG . 136

III Societies 137

17 Society formal model: Recap and Update 138
17.1 The Syntax of the Society . 138
17.2 Syntax Update . 140

18 ALP Interpretation of the Society model and declarative semantics 143
18.1 The society and society instance as an Abductive Logic Program 143
18.2 Declarative semantics: update . 145

19 The society proof procedure 147
19.1 Data Structures . 148

19.1.1 Variable quantification . 148
19.1.2 Initial Node and Success . 150

19.2 Transitions . 151
19.2.1 IFF-like transitions . 152
19.2.2 Dynamically growing history . 157

5

19.2.3 Fulfillment and Violation . 160
19.2.4 Consistency . 163
19.2.5 Constraint Solving . 164

19.3 Sample Derivation . 167
19.4 Implementation of SCIFF . 169

20 Correctness Properties of SCIFF Proof Procedure 169
20.1 Soundness and completeness . 169

21 Discussion and planned future activity 171

22 Related work 172

IV Conclusions 174

23 Summary and evaluation 174

V Appendices 187

A Extensions of the TR computational model 187
A.1 Theories with actions that happen within intervals 187

A.1.1 Credulously reasoning with interval actions 188
A.1.2 Skeptically reasoning with interval actions 191

A.2 Reasoning with non-ground queries and interval actions 192
A.3 Inconsistent theories that need extra unknown event occurrences 193
A.4 An example about the use of the extensions of `TR 196

B Proofs for Proof Procedures 198
B.1 Proofs for C-IFF . 198

B.1.1 Auxiliary lemmas . 198
B.1.2 Soundness of success . 201
B.1.3 Soundness of failure . 202

B.2 Proofs for LPwNF . 202

C Proofs for Capabilities 203
C.1 Proofs for Planning . 203
C.2 Proofs for Temporal reasoning . 205
C.3 Proof for Reactivity . 212
C.4 Proofs for Goal decision . 213

D Proofs for Societies 214
D.1 Lemmas . 214
D.2 IFF-like Rewritten Program . 220
D.3 Proof of open soundness . 221
D.4 Proof of closed soundness . 223
D.5 Soundness with universally quantified abducibles 225

6

Part I

Introduction and Background
Abstract. This part of the document sets the scene for the document
and gives the necessary technical background for the computational models
presented in the document. It also summarises the task allocation within
the consortium, that has led to the document itself.

1 Introduction

In deliverable D4 [63] we reported a detailed model for logic-based computees (computational
entities). These are autonomous entities that are situated in a global computing environment
and are equipped with the functionalities necessary for such an environment. They can have
goals that they need to achieve, can plan for their goals, have a repertoire of actions, including
physical, sensing and communication actions. They pursue their goals while being alert to the
environment and adapt their goals and plan to any changes that they perceive. Their behaviour
is governed by logic-based cycle theories allowing a highly modular specification of control,
adaptable to dynamic environments and allowing heterogeneous operational characteristics for
computees with different cycle theories.

In a companion deliverable, D5 [94], we described in detail a model, also logic-based, for
societies of computees. The model allows the society to have its own goals and knowledge bases
for achieving the goals and for recording the events that happen in the society. In addition,
societies have a set of integrity constraints and protocols for governing the behaviour of their
member computees. These constraints and protocols place expectations on the computees
inhabiting the society. The society provides mechanisms for monitoring whether its members
satisfy these expectations or whether they violate them.

The work in the second year of the project concentrated on formulating the computational
model of computees and societies (workpackage WP3) and on building a prototype imple-
mentation for them (workpackage WP4). This document reports the work of the first such
workpackage in the second year. The companion deliverable D9 [5] reports on work on the
second such workpackage in the second year of the project.

The document is organised as follows. In the remainder of this Part I we provide brief
summaries of the formal models of computees and societies of computees useful for setting the
scene for the document. Further details on these models and on extensions and modifications
to them during the second year are discussed extensively within Part II (presenting the compu-
tational model for the individual computee) and Part III (presenting the computational model
for the society). We conclude the introductory part with some background on abductive logic
programming (needed both in Part II and in Part III), on reasoning with dynamic priorities in
logic programming (needed in Part II), and on constraint logic programming (needed both in
Part II and in Part III).

The computational model for the individual computee is presented in Part II. After a recap
of the (revised and updated) formal model from D4, the computational model is illustrated
top-down: starting from the computational model of the main cycle of the computee, up to
the computational models of the single components that are orchestrated by the cycle. The
abductive proof procedures introduced, on which the computational model is based, are also
presented. Then, soundness properties of the overall computational model are stated, building

7

on the properties of the lower layers of the model. Part II is concluded by an example, a
discussion of related work and final remarks.

The computational model for societies of computees is presented in Part III. After a re-
cap of the (revised and updated) formal model from D5, an interpretation of it in terms of
Abductive Logic Programming is given. This leads to the society proof procedure, that is the
society computational model. The introduced proof procedure is explained into details and its
correctness properties stated. Part III is concluded by a discussion of related work and final
remarks.

A summary and evaluation of the work presented in this document appears in Part IV,
while the proofs of all (non-trivial) results in the document are sketched in the appendices in
Part V.

2 Computee formal model: short recap (and revisions)

Here we briefly summarise the main structure of the computee formal model defined in deliv-
erable D4 [63]. The formal model consists of

• an internal (or mental) state of the computee,

• a set of reasoning capabilities of the computee, supporting planning, temporal reasoning,
identification of preconditions of actions, reactivity and goal decision,

• a sensing capability of the computee,

• a set of formal transition rules for the state of the computee defined in terms of the above
capabilities,

• a set of selection functions, to provide appropriate inputs to the transitions,

• a set of execution cycles for the combination of the transitions and the selection functions,
as provided by the cycle theory of the computee.

The internal (or mental) state of a computee is a triple 〈KB,Goals, P lan〉, where:

• KB is the knowledge base of the computee, and describes what the computee knows
(or believes) of itself and the environment. KB consists of modules supporting different
reasoning capabilities:

– KBplan, for Planning and for the Identification of Preconditions of actions,

– KBTR, for Temporal Reasoning,

– KBGD, for Goal Decision,

– KBreact, for Reactivity, and

– KB0, for holding the (dynamic) knowledge of the computee about the external world
in which it is situated and about past (and expected) states of the environment
(including happened communications).

Syntactically, KBplan,KBreact and KBTR are abductive logic programs with constraint
predicates, sharing a kernel set of definitions and integrity constraints, KBGD is a logic
program with priorities over rules, and KB0 is a set of facts (definite clauses) in logic
programming, and it is included in all the other modules.

8

• Goals is the set of properties that the computee wants to achieve, each one is equipped
with a temporal constraint defining when it is expected to hold. There are two types of
goals, mental goal and sensing goal. Mental goals can be observed to hold (or not to hold)
via the Sensing capability or they can be brought about actively by the computee by its
planning and its actions. Sensing goals can only be checked in the environment via the
Sensing capability and cannot be brought about actively by the computee.

Goals form two trees, whose roots are represented by ⊥nr (for the non-reactive goals)
and ⊥r (for the reactive goals). All the top-level (non-reactive) goals are either assigned
to the computee by its designer at birth, or they are determined by the Goal Decision
capability.

The tree structure is updated by appropriate calls to the Planning and Reactivity capa-
bilities.

• P lan is a set of actions scheduled in order to satisfy goals. The actions are partially
ordered. Each is equipped with a temporal constraint about when it is expected to be
executed. Each action is also equipped with the preconditions for its successful execution,
determined by the Identification of Preconditions capability. Actions may be physical
actions, communicative actions, or sensing actions. Actions are added to the tree structure
for Goals by Planning and Reactivity capabilities, which identify their parent in the tree-
structure. Actions always occur as leaves in such a tree structure. Similarly to goals in
Goals, actions in P lan may be reactive or non-reactive, depending on their parents (and
their ancestors).

The model of the computee is called the KGP model, for short. The reasoning capabilities
employed within the KGP model are:

• Planning, which generates partial plans for sets of goals. It provides (temporally con-
strained) sub-goals and actions designed for achieving the input goals. All partial plans
generated are guaranteed to be overall consistent with KB (and the existing Goals and
P lan).

• Reactivity, which reacts to perceived changes in the environment, by replacing reactive
goals in Goals and actions in P lan with (possibly temporally constrained) goals and
actions. A non-empty new set of reactive goals and actions will only be generated if
overall consistent with the non reactive components of the prior 〈KB,Goals, P lan〉.

• Goal decision, which continuously revises the top-most level goals of the computee, adapt-
ing computee’s strategy to changes in its own preferences and in the environment. Differ-
ently form Reactivity, it only modifies the top-level (reactive and non-reactive) goals of
a computee, does not add actions to P lan and does not depend upon the current Goals
and P lan of the computee.

• Identification of Preconditions, which identifies the preconditions for action execution that
can be used by a computee to reason about its Goals and P lan.

• Temporal Reasoning, which reasons about the environment, and makes predictions about
properties holding in the environment, based on the partial information a computee may
acquire.

9

In addition to the reasoning capabilities above, the computee is equipped with a Sensing capa-
bility which links the computee to its environment.

The state of a computee evolves by applying transition rules, which employ capabilities and
a notion of Constraint Satisfaction. The transitions are:

• Goal Introduction, which changes the top-level Goals, and uses Goal Decision.

• Plan Introduction, which changes Goals and P lan, and uses Planning and Introduction
of Preconditions and Constraint Satisfaction.

• Reactivity, which changes Goals and P lan, and uses Reactivity and Constraint Satisfac-
tion.

• Sensing Introduction, which changes P lan by introducing new sensing actions for checking
the preconditions of actions already in P lan, and uses Sensing.

• Passive Observation Introduction, which changes KB0 of KB by introducing unsolicited
information coming from the environment, and uses Sensing.

• Active Observation Introduction, which changes KB0 of KB, by introducing the outcome
of (actively sought) sensing actions, and uses Sensing.

• Action Execution, which executes all types of actions, thus changing KB0 of KB.

• Goal Revision, which revises Goals, and uses Temporal Reasoning and Constraint Satis-
faction.

• Plan Revision, which revises P lan and uses Constraint Satisfaction.

The behaviour of a computee is given by the application of transitions in sequences, which
change the state of the computee. In the KGP model, these sequences are not determined by
fixed cycles of behaviour, as in conventional agent architectures, but rather by reasoning with
cycle theories. These are logic programs with priorities over rules, defining preference policies
over the order of application of transitions, which may depend on the environment and the
internal state of a computee. This provision of a declarative control for computees in the form
of cycle theories is a highly novel feature of the model, which could, in principle, be imported
into other agent systems. Both the state of computees, their reasoning capabilities and their
control (cycle) theories are formulated and realised within computational logic. We envisage
that this will ease the task of formulating and verifying properties of computees in later stages
of the project (WP5).

The main technical revisions to the computee model presented in the D4 submitted to the
Commission [63] will be illustrated when describing the (computational counterparts of the)
various components. Here, let us note that these revisions amount to the following:

• Goals in the state are separated into non-reactive, arising from the Goal Introduction (GI)
transition, and reactive, arising from the Reactivity (RE) transition. Similarly, actions in
the state are separated into non-reactive, if they belong to (partial) plans for non-reactive
goals, and reactive, arising from the Reactivity transition or belonging to (partial) plans
for reactive goals. This allows us to avoid replication of work between GI and RE and
overlapping between KBGD and KBreact.

10

• The capabilities have been rewritten to improve readibility and correct typos. Moreover,
Reactivity has been rewritten, so that it does not make use of Temporal Reasoning any
longer, in order to avoid some unwanted behaviors with the earlier definition and to ease
the implementation in WP4.

• The transitions GI and RE have been rewritten to take into account the changes to the
state (two trees), and the changes to the underlying capabilities. Also, GI has been greatly
simplified, so that i does not keep plans for goals that are kept. In particular, this had
the aim to ease the implementation in WP4 by avoiding the introduction of integrity
constraint checking.

• The transitions of Goal revision (GR) and Plan Revision (PR) have been simplified.

• The core selection functions have been simplified.

• The notion of Operational Trace, defining the behaviour of the computee as given by
reasoning with its Cycle Theory, has been generalised.

Further details on these revisions will be given later on in the document.

3 Society formal model: short recap (and revisions)

The society model developed in the first year of the project and presented in Deliverable D5
[94] is capable of modelling interactions among computees in an open environment, and also
supports goal-directed behaviour of societies of computees.

The model of a society is represented by the following 4-tuple:

〈SOKB,SEKB, ICS,GS〉

where:

• SOKB is the Social Organisation Knowledge Base,

• SEKB is the Social Environment Knowledge Base,

• ICS is the set of Social Integrity Constraints, and

• GS is the set of Goals of the society.

The Social Environment Knowledge Base (SEKB) records occurred events and (positive or
negative) expectations about social events. The SEKB is a dynamic knowledge base for rep-
resenting events perceived by the society, and the expectations on the observable behaviour of
computees at society level. In particular, the SEKB dynamically evolves and is composed of:

• Observable and relevant events for the society (happened events: atoms indicated with
functor H); we name this set HAP ;

• Expectations about the future: events that should (but might not) happen in the future
(atoms indicated with functor E, which we called positive expectations), and events that
should not (but might indeed) happen in the future (atoms indicated with functor NE,
which we called negative expectations); we name this set EXP .

11

The Social Organisation Knowledge Base (SOKB) provides specification for society’s goals. In
SOKB, clauses may contain in their body positive and negative expectations (possibly negated)
about the behaviour of computees, and auxiliary literals (positive and negative), while their
heads are atoms which possibly correspond to society’s goals. Goals (GS) of the society have
the same syntax as the body of SOKB clauses.

Finally, Social Integrity Constraints (ICS) are forward rules, of kind body ⇒ head, which
have in their body literals, (possibly negated) conditions about happened events and ((possibly
negated) positive and negative) expectations, and in their head (disjunctions of) conjunctions
of positive and negative (possibly negated) expectations. Furthermore, CLP-like (Constraint
Logic Programming) constraints can occur in the body of SOKB clauses, and in the body and
head of constraints in ICS. For details about the formal syntax of the society tuple components,
and variable quantification in particular, the reader can refer to D5 [94].

The main features achieved by the society model are:

(i) the use of computational logic to model and give semantics to interactions; and

(ii) the use of a uniform formalism (based upon what we called Social Integrity Constraints)
for expressing both interaction protocols and social semantics of communication lan-
guages.

The society infrastructure is devoted to check compliance of the behaviour of the members
within a society, with respect to expectations of the society as prescribed by the social integrity
constraints and required to achieve the society’s goals. Compliance to the specified protocols
of interactions, communication language semantics and required behaviour to achieve certain
goals can be checked by a suitable computational logic-based proof procedure, as discussed in
part III. We envisage that grounding on computational logic both the society model and its
operational counterpart will ease the task of formulating and verifying properties of societies of
computees in later stages of the project (WP5).

4 Computational models for computee and society: gen-

eral approach

In the second year, two approaches appeared possible and were investigated for the single
computee:

1. to design a unique, extended proof procedure in charge of supporting all the computational
power of a computee, namely its capabilities, transitions and cycle theory,

2. to extend (whenever necessary) and integrate existing proof procedures within a modular
framework, afforded by the KGP and the society models, for coordinating the different
reasoning processes that a computee may exhibit, and also integrating them within the
cycle theory.

After an evaluation of pros and cons of the two approaches, the second one (which indeed is the
one more adherent to the SOCS project original proposal) has been chosen, mainly because of
the following considerations:

12

• Modularity. A design of the computational model of a computee based on the integration
of proof procedures, according to the component based structure of the computee given by
its formal KGP model, is expected to better support modularity than the one based on a
general single proof procedure. Each integrated proof procedure may be more effectively
used and tuned to support the specific reasoning feature for which it has been developed.
Moreover, possible future extensions of the whole model, as, for instance, increasing the
set of computee capabilities, can be easily supported at the computational model level,
by the integration of suitable proof procedures for extensions.

• Possibility of Reuse. A number of different proof procedures have been partially de-
veloped, supporting the reasoning capabilities of a computee. Formal correctness results
for these procedures are available, which could serve as a starting point for correctness
of the computational model with respect to the abstract specification given in D4. Sev-
eral of these computational models are also supported by implementations that are (i)
freely available, since developed by academic institutions, often with the contribution
of members of the SOCS consortium, (ii) provided with code, which can hence be used
as a starting point for the possibly required extensions, and (iii) sometimes, tested and
debugged by experimentation. It appears, therefore, convenient and wise, to try to ex-
ploit as much as possible this large body of existing work, both within WP3 and WP4.
Similarly for the society.

The language of the KGP model for a computee is that of Abductive Logic Programming and
Logic Programming with Priorities. The computational model for computees is then based on
proof procedures that realise the underlying abductive and preference reasoning of these two
frameworks. Based on these we have built the different components (capabilities, transitions,
cycle theory etc) of the KGP model.

The language of societies is also that of Abductive Logic Programming. The computational
model for societies is based on an abductive proof procedure which extends the same core
procedure (IFF [47]) used by the computee. We have considered using a single proof procedure
both for the (abductive components of the) computee and for the society. However, the two
models (computee and society) differ considerably in the kind of abductive tasks that they
encompass (as we will discuss later on), and thus, again for the sake of modularity, we have
opted for two different extensions.

5 Task allocation

The allocation of tasks for WP3 during the second year is shown in the table below. Each
task concerns investigation of the available candidate proof procedures, proposal of the actual
proof procedures to be used and investigation of any modifications and extensions needed to
the chosen proof procedures. The allocation of these tasks has been done coherently with the
WP4 allocation task plan, shown in the companion deliverable D9, as it is reasonable that the
same partners take primary responsibility for both the definition and the implementation of
each computational model they are allocated, as summarised in the table below.

13

ICSTM DIPISA CITY UCY UNIBO DIFERRARA

Planning X X

Identification of X X
Preconditions
Reactivity X X

Goal Decision X

Temporal Reasoning X X

Transitions X X X

Selection Functions X X

Cycle Theory X X

Proof procedure X X
for ALP
Proof procedure X
for LLP
Generator of X X
expectations
Checker X X
of expectations
Society X X
proof procedure

Figure 1: Task Allocation for WP3 in the second year

14

6 Background

6.1 Abductive logic programming and abductive proof procedures

Abduction has been widely recognised as a powerful mechanism for hypothetical reasoning in
the presence of incomplete knowledge [29, 43, 70, 68, 69, 67]. Incomplete knowledge is handled
by labeling some pieces of information as abducibles, i.e., possible hypotheses which can be
assumed, provided that they are “consistent” with the given knowledge base. Abductive Logic
Programming (ALP) enriches with abduction standard logic programming based upon SLD-
resolution. Integrity constraints are often used in ALP to further restrict the set of potential
hupotheses.

The computee model that we have presented in deliverable D4 heavily relies upon ALP for
many of its components (namely its planning, reactivity and temporal reasoning capabilities).
Moroever, the society model we have presented in deliverable D5 also has a natural interpre-
tation in ALP terms, as we will see in part III, section 18. In this section we briefly revise
syntactic and semantic ALP notions, overview a number of existing proof procedures for ALP,
and describe in some detail the IFF procedure that we extend and modify to provide compu-
tational counterparts to the (abductive components of the) computee model and the society
model. Some of the background given below is adapted from deliverables D4, D5 and D7.

6.1.1 Abductive logic programming

An abductive logic program is a triple 〈P,A, IC〉 where:

• P is a normal logic program, namely a set of rules (clauses) of the form

H ← L1, . . . , Ln

with H atom, L1, . . . , Ln (positive or negative) literals, and n ≥ 0. Each negative literal
Li is of the form notBi, where Bi is an atom. The negation symbol not indicates negation
as failure [26, 89, 7]. All variables inH , Li are implicitly universally quantified, with scope
the entire rule. H is called the head and L1, . . . Ln is called the body or the conditions of
a rule of the form above. If H = p(t), for some vector of terms t, the rule is said to define
p.

A definite logic program is a set of definite clauses, namely rules without any occurrence
of negation as failure,

A fact is a clause of the form above but with n = 0.

• A is a set of abducible predicates, p, such that p is a predicate in the language of P which
does not occur in the head of any clause of P (without loss of generality [69]),

• IC is a set of integrity constraints, that is, a set of sentences in the language of P .

In this document, integrity constraints will have the form

L1, . . . , Ln ⇒ false (n > 0)

conventionally called denials, or 1

1If n = 0, then L1, . . . , Ln represents the special atom true.

15

L1, . . . , Ln ⇒ H (n ≥ 0, H 6= false)

or

L1, . . . , Ln ⇒ A1 ∨ . . . ∨ Am (n ≥ 0,m > 1)

that we call implicative integrity constraints or simply implications, where Li are positive
or negative literal, H,Aj are atoms, and false is a special atom in the language of the ab-
ductive logic programs. In these integrity constraints, L1, . . . , Ln is referred to as the body (or
conditions) and H,A1∨ . . .∨Am are referred to as the head (or conclusions) of the constraint. 2

All variables in the integrity constraints are implicitly universally quantified from the outside
(as for rules), except for variables occurring only in the head which are implicitly existentially
quantified with scope the head. In part III, we will define the concept of social integrity
constraints which are implications with a more liberal quantification on variables.

Abductive answers

Given an abductive logic program 〈P,A, IC〉 and a formula (query/observation) Q, which is a
conjunction of literals in the language of the abductive logic program, the purpose of abduction
is to find a (possibly minimal) set of atoms ∆ in the abducible predicates A which, together
with P , “entails” (an appropriate ground instantiation of) Q, with respect to some notion
of “entailment” that the language of P is equipped with, and such that the extension of P
“satisfies” a given set of (consistent) integrity constraints IC (see [69] for possible notions of
integrity constraint “satisfaction”). Here, the notion of “entailment” depends on the semantics
associated with the logic program P (there are many different choices for such semantics, as
well-documented in the Computational Logic literature). More formally and concretely, given
an existentially quantified conjunction of literals (query) Q, a set of abducible atoms ∆, and a
variable substitution θ for the variables in Q, the pair (∆, θ) is an abductive answer for Q, with
respect to an abductive logic program 〈P,A, IC〉, iff

1. P ∪∆ |=LPQθ, and

2. P ∪∆ |=LP IC,

where |=LP is a chosen semantics for logic programming. In deliverable D4, we have left
the choice of |=LP open, and our models of computees and societies could actually work with
any choice for |=LP . In this document we will choose |=LP to be the (three-valued) completion
semantics [26, 84]. This choice is dictated by the choice of the IFF abductive proof procedure
for ALP, which is at the heart of the computational models for the single computee (and the
society) that we will present later on.

Given a logic program P , the completion of predicate p in the language of P , for which there
are k definitions in P (k > 0):

p(t1)← B1

. . .
p(tk)← Bk

is the iff-definition

2Note that commas in the body of integrity constraints and rules represent conjunction, and, in the sequel,
are sometimes written as ∧ instead.

16

p(X)↔ D1 ∨ . . . ∨Dk

where Di is X = ti, Bi. The variables in each Di different from X are implicitly existentially
quantified within Di. The variables X are implicitly universally quantified from the outside.

Moreover, the completion of predicate p in the language of P for which there are no definitions
in P is

p(X)↔ false
The completion of a logic program P , indicated as Comp(P), is the set of all completions

of predicates in P . The selective completion of a logic program P wrt a set of predicates S,
referred to as CompS (P) is the union of the completions of all predicates occurring in P but
not occurring in S.

6.1.2 Abductive proof procedures

We have considered a number of existing abductive proof procedures (see also D7), mentioned
and briefly described in the following, and focused in particular on the IFF proof procedure [47]
(Section 6.1.3), which, among the others, turned out to be most appropriate for our purposes.
For a full survey of the alternative proof procedures we considered, see [91].

In [70] Kakas and Mancarella define a proof procedure (here referred to as KM proof
procedure) for ALP, as an extension of that in [43]. This procedure assumes that the integrity
constraints are in the form of denials, each with at least one abductible literal in the conditions.
The semantics of such integrity constraints within the KM proof procedure requires that at
least one of the literals in the integrity constraint does not hold. The procedure starts from a
query and a set of initial assumptions ∆i and results in a set of consistent hypotheses (abduced
literals) ∆o such that ∆o ⊇ ∆i and ∆o together with the program P entails the query. The proof
procedure uses the notion of abductive and consistency derivations. Intuitively, an abductive
derivation is a standard SLD-derivation suitably extended in order to consider abducibles. As
soon as an abducible atom δ is encountered which does not already occur in the current set
of hypotheses, it is added to the current set of hypotheses, and it must be proved that any
integrity constraint such that δ unifies with an abducible in its is satisfied. For this purpose,
a consistency derivation for δ is started. Since the integrity constraints are denials only (i.e.,
queries), this corresponds to proving that every such query fails to hold. Therefore, δ is removed
from all the denials with which it unifies, and we prove that all the resulting queries fail. In
this consistency derivations, when an abducible is encountered, an abductive derivation for its
complement is started in order to prove the abducible’s failure, so that the initial integrity
constraint is satisfied.

The original KM proof procedure can only deal integrity constraints in the form of denials.
Moreover, it can only deal with abducibles which are ground at selection time, and flounders if a
selected abducible is not ground. Finally, it treats constraint predicates, such as <,≤, 6=, . . ., as
ordinary predicates, thus being unable to use specialised constraint solvers for such predicates.
Some extensions of this procedure have been proposed to (partially) cope with these limitations.

The Active-KM proof procedure [90] is an extension of the KM-procedure that inte-
grates in the original abductive computational scheme a limited but powerful type of implicative-
form integrity constraints. As for the IFF proof procedure (described in the following), it sup-
ports forward reasoning via integrity constraints (implications) which fire when their conditions
(body) are satisfied. However, differently from IFF, this procedure cannot deal with non-ground

17

abducibles. An important aspect of the Active-KM is the lower computational complexity than
the IFF due to its depth-first behaviour (which, on the other hand, requires backtracking and
does not allow a complete view of the frontier of the computation).

Abdual [6] is a systems for performing abduction from extended logic programs adopting
the well-founded semantics. It handles only ground programs, and relies on tabled evaluation
inspired to SLG resolution [25].

Among other abductive proofs existing in literature, we cite here the abductive query eval-
uation method proposed by Satoh and Iwayama in 1992 [106].

Abductive proof procedures dealing with variables in abducibles and constraint
predicates

Some works have proposed abductive proof procedures dealing with non-ground abducibles
and constraint predicates, which are relevant for our purposes as we will need to generate
hupotheses consisting of possibly non-ground actions whose time is constrained (in the single
computee case) and expectations at future times, again constrained (in the society case). In
the following, we survey some of them.

ACLP [72] is a recent abductive proof procedure extending the original KM procedure
to deal with non-ground abduction and with constraints. ACLP programs can contain con-
straints on finite domains. ACLP interleaves consistency checking of abducible assumptions
and constraint satisfaction.

[32] introduces a proof procedure for normal abductive logic programs by extending SLDNF
resolution to the case of abduction. The resulting proof procedure (SLDNFA) is correct with
respect to the completion semantics. A crucial property of this abductive procedure is the
treatment of non-ground abductive queries. [32] does not consider general integrity constraints,
but only constraints of the kind a, not a ⇒ false. To overcome this limitation, a later work
[33] considers the treatment of general integrity constraints but in a quite inefficient way. In
practice, all the integrity constraints are checked at the end of the proof for a query, i.e., only
when the overall set of abductive hypotheses supporting the query has been computed. More
recent work is represented by the SLDNFA(C) system [118] which extends SLDNFA with
constraint handling.

The A-system [76] is a followup of ACLP and SLDNFA(C). A-system differs from the
previous two for the explicit treatment of non-determinism that allows the use of heuristic
search with different types of heuristics. A-system is able to perform non-ground abduction.
But a derivation flounders if universally quantified literals appear in a denial in the derivation.
However, according to [117], the system could be extended in order to perform non-ground
abduction with universally quantified literals by storing Herbrand equalities as constraints. To
date, the A-system lacks a formal semantics and formal correctness results.

Another recent proof-procedure dealing with non-ground abducibles is presented in [47],
referred to as IFF. This uses backward reasoning with the selective completion of the given
logic program (namely its completion, but only with respect to the non-abducible predicates) to
compute abductive explanations for given queries. The queries are conjoined with the integrity

18

constraints at the beginning of the abductive process, and forward reasoning with them is ap-
plied. The integrity constraints do not need to be denials, but can be any (closed) implications.
The authors describe the IFF-procedure as a sort of “hybrid of the proof procedure of Console
et al. [28] and the SLDNFA procedure of Denecker and De Schreye (see [32])” mainly both for
its use of the (selective) Clark completion semantics [26] and for not requiring a safe selection
rule for abducibles and negation.

This procedure is proposed as the engine underlying the reasoning mechanism of intelligent
agents in [80]. An extension of this procedure to deal with constraint predicates is given in
[78]. An extension of this procedure to deal with negation as failure in integrity constraints is
proposed in [104].

Amongst all the abductive proof procedures mentioned above, we decided to use and extend
IFF as the kernel abductive proof procedure for computees and societies, because of its treat-
ment of variables and integrity constraints, as well as for the already existing experimentations
of its use for agents [80, 81, 104, 105].

6.1.3 The IFF proof-procedure

IFF is based upon a simple system of rewrite rules (or rewrite steps or inference rules). Its
computation starts with an initial formula built as the conjunction of the initial query and
the integrity constraints IC. The variables in the initial query are referred to as free. Then it
repeatedly generates (derived) formulas by applying one of the following inference rules:

unfolding, which applies backward reasoning (resolution) with the selective completion with
respect to A of the logic program P (indicated as CompA(P));

propagation, which reasons forward with the integrity constraints IC;

splitting, which distributes conjunctions and disjunctions, putting the resulting formula in a
(sum-of-products) disjunctive normal form;

case analysis, which is applied to an integrity constraint whose body contains an equality
X = t, with certain quantification restrictions, and non-deterministically analyses the
alternative cases X = t and X 6= t, generating a disjunction in the resulting formula;

factoring, which tries to reuse previously made hypotheses;

rewrite rules for equality, which use the inferences in Clark’s Equality Theory (CET) [26];

logical simplifications, which simplify formulas through logical equivalences such as A ∧
false ≡ false, [true⇒ A] ≡ A, etc.

A sequence of rewrite steps can be thought of as building a tree, whose root is the initial
formula, and whose frontier (after the application of splitting) is a disjunction of conjunctions.
The disjuncts in any frontier are referred to as nodes. In general, each node is a conjunction of
atoms and implications. E.g., a frontier can look like:

(A1 ∧ A2 ∧ [B1 ∧ B2 ⇒ A3] ∧ [B3 ∧ B4 ⇒ A4])
∨ (Ai ∧ Aj ∧Ak ∧ [By ⇒ Az] ∧ [B5 ⇒ false])

In general, each conjunction in a node is one of the following

19

• an atom

• an implication, with the same syntax as the integrity constraints, but with some of the
variables occurring in them possibly free or existentially quantified within the node (ex-
istentially quantified variables may be introduced by unfolding with the selective comple-
tion).

[47] assume that their abductive logic programs and queries are allowed, to simplify the treat-
ment of the quantifiers, avoiding to write them explicitly in derivations.

1. IFF-Allowed Definitions. A definition of the form

p(X1, . . . , Xn)↔ D1 ∨ . . . ∨Dk,

in CompA(P) is (IFF) allowed if, for each Di, every variable distinct from X1, . . . , Xn

occurring in Di also occurs in a positive non-equality atom in Di.

2. IFF-Allowed Integrity Constraints. An integrity constraint of the form

L1, . . . , Ln ⇒ A1 ∨ . . . ∨ Am

is (IFF) allowed if every variable occurring in the conclusion A1 ∨ . . . ∨Am occurs in the
conditions L1, . . . , Ln.

3. Queries. A query of the form
L1 ∧ . . . ∧ Ln,

is (IFF) allowed if every variable in any Li occurs in a positive, non-equality atom Lj .

Thanks to these allowedness properties, given a frontier, the quantification of the variables
in it is implicitly given as follows:

if a variable is in the initial query, then it is free;

else if it occurs in an atom, it is existentially quantified with scope the whole frontier;

else (if it occurs only in an implication) it is universally quantified with scope the
implication.

In the IFF, negative literals which are conjuncts in nodes in a frontier are always thought
of and rewritten as implications (e.g., notA is rewritten as A⇒ false). Negative literals in the
body of an implication are moved to the head (e.g., notA∧B ⇒ C is rewritten as B ⇒ A∨C).

A sequence of rewrite steps is referred to as a derivation starting from the initial formula
(frontier) and terminating with the frontier obtained after having applied the last rewrite step
in the sequence. A node in the last frontier in a derivation is referred to as a leaf node if no
further rewrite step can be applied to it. A leaf node is called failure leaf node if it is false,
non-failure leaf node otherwise. A successful derivation is a derivation to a frontier with (at
least) one non-failure leaf node. A (finitely) failed derivation is a derivation to false. Abductive
answers can be extracted from non-failure leaf nodes.

Below, we present the rewrite rules of the IFF in detail, as we will use them and ex-
tend/modify them later on when presenting the computational models for (some of the) capa-
bilities in the computee model and the computational counterpart of the society.

While presenting the set of inference rules of the IFF, we assume that they are applied to
a frontier Fi in a derivation, starting from the frontier F0 which is given by the initial formula
Q ∧ IC. Note that, in F0, variables in IC are renamed so that they are distinct from those in
Q. The application of the inference rules generate a new frontier Fi+1.

20

Unfolding

Given an atom p(t1, . . . , tk) and

p(X1, . . . , Xn)↔ D1 ∨ . . . ∨Dk ∈ CompA (P)

then, given Θ = {X1/t1, . . . , Xn/tn}:

• if the atom is a conjunct in a node in Fi, then Fi+1 is Fi with the atom replaced by
(D1 ∨ . . . ∨Dk)Θ;

• if the atom is a conjunct in the body of an implication p(t1, . . . , tn), B ⇒ C3 which is
a conjunct in a node in Fi then Fi+1 is Fi with the implication replaced by the new
implications:

[D1Θ, B ⇒ C] ∧ . . . ∧ [DnΘ, B ⇒ C].

�

Propagation

Given an atom p(s1, . . . , sn) and an implication p(t1, . . . , tn), B → C both conjuncts in the
same node N in Fi, then Fi+1 is Fi with the new implication

t1 = s1, . . . , tn = sn, B ⇒ C

added as a new conjunct of the node N . The propagation rule cannot be applied if the
latter implication is already in Fi.

�

Splitting

• Given a formula of the form

[C ∨D] ∧ C ′

in Fi, then Fi+1 is Fi with the formula replaced by:

[C ∧ C ′] ∨ [D ∧ C ′].

• In addition, given a formula of the form

[B ⇒ [H ∨ R]] ∧ C

where H is a single atom which contains no universally quantified variables and R can be
empty (equivalent to false), then Fi+1 is Fi with the formula replaced by:

[H ∧ C] ∨ [[B ⇒ R] ∧ C].

�

3The position of p(t1, . . . , tn) in the body of the implication is not important because any atom in a body of
an implication can be selected for unfolding. This is valid also for the other inference rules.

21

Case analysis

Given a node N in Fi, of the form
[B,X = t⇒ A] ∧ C

where X is free or existentially quantified, t does not contain X and t is not an universally
quantified variable, Fi+1 is Fi with the node N replaced by:

[X = t ∧ [B ⇒ A] ∧ C] ∨ [X 6= t ∧ C].

Case analysis can be applied only to equality atoms. Each variable in t which is univer-
sally quantified becomes existentially quantified in the first disjunct (case X = t) and remains
universally quantified in the second disjunct (case X 6= t) 4.

�

Factoring

Given a node N in Fi, of the form
a(t1, . . . , tn) ∧ a(s1, . . . , sn) ∧ C

where a is abducible (namely a ∈ A), then Fi+1 is Fi with the node N replaced by:
[a(t1, . . . , tn) ∧ a(s1, . . . , sn) ∧ [t1 = s1, . . . , tn = sn ⇒ false] ∧ C] ∨
[a(t1, . . . , tn) ∧ t1 = s1 ∧ . . . ∧ tn = sn ∧ C].

�

Rewrite rules for equality

This inference rule is a set of equality rules derived from the unification algorithm of Montanari
and Martelli [92], and can be applied both to an equality atom which occurs as a conjunct in
a node and to an equality atom which occurs in the body of an implication. The rules are the
following:

1. f(t1, . . . , tn) = f(s1, . . . , sn) is replaced by t1 = s1 ∧ . . . ∧ tn = sn.

2. f(t1, . . . , tn) = g(s1, . . . , sn) is replaced by false if f and g are distinct.

3. t = t is replaced by true for any term t.

4. X = t is replaced by false if the term t contains X .

5. t = X is replaced by X = t if X is a variable and t is not.

6. Y = X is replaced by X = Y if X is universally quantified and Y is not.

7. If X = t occurs as a conjunct in a node and t does not contain X then apply the
substitution X/t to the entire node, retaining the conjunct X = t intact.

8. If X = t occurs in the body of an implication, t does not contain X and X is universally
quantified, then apply the substitution X/t to the entire implication, deleting the conjunct
X = t.

�

4Here and in the remainder of this document the disequality a 6= b will stand for a = b⇒ false.

22

Logical equivalences

This last inference rule is a set of logical rules used to simplify the form of a node. The rules
are the following:

1. C ∧ false ≡ false

2. D ∨ false ≡ D

3. C ∧ true ≡ C

4. D ∨ true ≡ true

5. [true⇒ D] ≡ D

6. [false⇒ D] ≡ true

7. notB ≡ [B ⇒ false] (Negative atom elimination)

8. [C ∧ notB ⇒ D] ≡ [C ⇒ B ∨D] (Negative body elimination)

�

Note that a frontier Fi in a derivation F0, . . . , Fi, Fi+1, . . . , Fn, . . . obtained by a step of
unfolding, case analysis or factoring, will be in non-disjunctive normal form. In such cases,
though, to keep the format of frontiers simple, we assume that splitting is applied immediately
to obtain a next frontier Fi+1 which is in disjunctive normal form.

Also, note that the IFF does not rely on any specific selection strategy to build derivations
(e.g. a selection rule can always choose the leftmost node in a frontier giving rise to depth-first
search of the tree), but it assumes that such selection strategy is fair.

Extracted (abductive) answers by IFF

To extract an abductive answer from a non-failure leaf node N in a formula Fn in a derivation,
we build a substitution σ′ such that:

• σ′ replaces all variables in N which are not universally quantified by ground terms and

• σ′ satisfies the equalities and disequalities in N .

Given σ′ (there exists at least one substitution σ′ because the rewrite rules for equality have
been exhaustively applied to N), an extracted (abductive) answer to the given query Q is a
pair (∆, σ) where ∆ is the set of all abducible atoms that are conjuncts in Nσ′ and σ is the
restriction of σ′ to the variables occurring in Q.

By construction, it is trivial to see that Qσ′ = Qσ and ICσ′ = ICσ. Moreover CET
implies all the equalities and disequalities in Nσ′ and all the implications in Nσ′ which are not
disequalities are implied by Comp(∆) because N is a leaf node and so propagation has been
exhaustively applied to it.

Hence, it holds that
1. Comp(∆) ∪ CET |= Nσ′.

Moreover, it is straightforward that CompA (P) ∪ CET |= F0 ↔ Fn by construction, and
so:

23

2. CompA (P) ∪ CET |= N → [Q ∧ IC] and
3. CompA (P) ∪ CET |= Nσ′ → [Q ∧ IC]σ′.

By means of 1. and 3. we have that:
Comp(P ∪∆) ∪ CET |= N → Qσ and
Comp(P ∪∆) ∪ CET |= Nσ′ → IC.

Hence, (∆, σ) is an abductive answer for Q and is the minimal one in the sense that, by
construction, is the smallest set of abducible ground atoms such that CompS(∆)∪CET |= Nσ′,
where S is the set of all non-abducible predicates.

The following theorems state more formally soundness and completeness results obtained
by the IFF-procedure. Their proofs are sketched in [47] and given completely in [46].

Theorem 6.1 (Soundness). Let Q be a given query with respect to an abductive logic program
〈P,A, IC〉.

1. Let (∆, σ) be extracted from a nonfailure node N in a derivation from Q ∧ IC. Then
(∆, σ) is an abductive answer to the query Q. Furthermore, if (∆′, σ) is any answer such
that CompS(∆′) |= Nσ′ where σ′ is the auxiliary substitution used to construct σ, then
∆ is a subset of ∆′.

2. If there exists a derivation from Q ∧ IC to false then

CompA (P) ∪ CET ∪ IC |= Q↔ false.

�

Theorem 6.2 (Completeness). Let Q be a given query with respect to an abductive logic
program 〈P,A, IC〉. If (∆, σ) is an abductive answer to Q, then there exists a derivation from
Q ∧ IC of a frontier containing a nonfailure leaf node from which an answer (∆, σ) to Q can
be extracted such that ∆ is a subset of ∆′.

�

Theorem 6.1 holds both if |= is logical consequence in three-valued logic and if |= is logical
consequence in two-valued logic. Instead, theorem 6.2 holds only if |= is logical consequence
in three-valued logic. To have a completeness result also for two-valued logic, theorem 6.2 is
weakened in [47].

In the reminder of this document, we will define extensions of the original IFF both for
dealing with the abductive components of the single computee model (planning, reactivity,
identification of preconditions, temporal reasoning) and for defining the computational coun-
terpart of the society model. In the context of the single computee (part II), the choice of the
IFF naturally gives the choice of the completion semantics as the underlying logic programming
semantics |=LP . This choice will be further discussed later on.

6.2 Logic programming with priorities

A computee is an autonomous entity that operates in an open and dynamic environment where
it needs to take decisions related to its different capabilities like problem solving, cooperation,
communication, etc, under complex preference policies. As such one of its underlying reasoning
processes is that of preference reasoning |=pr in the context of (a specific framework for) Logic
Programming with Priorities (LPP), where priorities express preferences. This supports directly
the computee’s goal decision capability as well as the definition of cycle theories of the computee.

24

In the KGP model, |=pr is realised in the concrete framework of LPwNF (Logic Programming
without Negation as Failure) of logic programs and priorities.

Reasoning with priorities in logic programming has received a lot of attention over the last
years partly motivated by problems in multi-agent systems as in our case (another major source
of motivation has been legal reasoning). These works include [20, 21, 97, 23, 55, 83, 77]. One
of the main differences btween our approach with LPwNF and approaches in the literature is
that our framework does not contain negation as failure (NF) in its object level language. This
in many cases facilitates a more modular representation since all the non-monotonic reasoning
in the formalism is treated in a uniform way via priorities.

6.2.1 The LPwNF framework

In this section we give a brief overview of LPwNF and motivate its computational model that
will be presented in section 10.3. This section is adapted from the background of D4.

LPwNF [71, 34, 74] is a logic programming framework for preference reasoning with an
argumentation-based semantics. Within this framework we have a powerful form of decision
making under a given preference policy. This policy can, as required by the Global Computing
setting in which we are working, be sensitive to different information in a dynamic environment
allowing the decision making to adapt to the particular circumstances at the time of the decision.

The preference reasoning within LPwNF is based on a model of argumentation where local
priority information, given at the level of the rules of a theory (or policy), is lifted to give a
global preference over sets of rules that compose arguments and counter arguments for a certain
decision. A theory or policy within LPwNF is viewed as a pool of sentences or rules from which
we need to select a suitable subset, i.e. an argument, in order to support a conclusion.

In LPwNF knowledge is represented in a classical background logic (L, |=H) by means of
rules of the form

L← L1, . . . , Ln, (n ≥ 0)

where L,L1, . . . , Ln are positive or negative (classical) literals. A negative literal is a literal of
the form ¬A, where A is an atom. As usual in logic programming a rule containing variables is a
compact representation of all the ground rules obtained from this under the Hebrand universe.
Each ground rule has a unique name.

Note that the symbol ¬ stands for classical negation, and should not be confused with the
symbol not used to represent negation as failure above. Indeed, no negation as failure occurs in
an LPwNF theory 5. Note also that, differently from rules in conventional logic programs as
given above, here the head L of rules may be negative as in the framework of Extended Logic
Programming.

The background derivability |=H relation of the framework is the monotonic Horn logic given
by the single inference rule of modus ponens, treating negative literals as ordinary atoms. In
general, we can separate out an auxiliary part of a given theory from which the other rules can
draw background information in order to satisfy some of its conditions. The reasoning of the
auxiliary part of a theory is independent of the main argumentation-based preference reasoning
of the framework and hence any appropriate logic can be used.

5This is where the framework gets its name: Logic Programming without Negation as Failure but the historical
reasons for this name are not important in this document.

25

Some of the sentences in a LPwNF theory express priorities over the rules of the theory.
These have the same form as the rules above except that their head, L, refers to a higher-priority
relation, h p, and so such a rule has the general form

L = h p(rule1, rule2)← L1, . . . , Ln, (n ≥ 0)

where rule1 and rule2 are the names of two rules in the theory.
A rule of this form then means that under the conditions L1, . . . , Ln, rule1 has priority over

rule2. The role of this priority relation is therefore to encode locally the relative strength of
(argument) rules in the theory. The priority relation given by h p is required to be irreflexive.
The rules rule1 and rule2 can in fact be themselves rules expressing priority between other
rules and hence the framework allows higher-order priorities. For simplicity of presentation we
will assume that the conditions of any rule in the theory do not refer to the predicate h p thus
avoiding self-reference problems.

The preference reasoning of LPwNF uses the priority relation between rules to find out
conclusions that are preferred over their conflicting conclusions. Indeed, an LPwNF theory
might give rise, under its background derivability |=H , to conflicts, namely between a literal L
and its negation ¬L. More generally, we can define other forms of conflict within a given theory
through an auxiliary predicate incompatible and rules of the form

incompatible(L1, L2)← B,

stating that literals L1 and L2 are conflicting under some (auxiliary) conditions B (see sec-
tions 11.5 and 8 for examples of this). Also for any ground atom h p(rule1, rule2), its (unique)
conflicting literal is defined to be h p(rule2, rule1) and vice-versa.

Conflicts together with the priority relation of the theory give rise to a notion of attack
between sets of sentences in the theory T . ∆ attacks ∆′, where ∆,∆′ are sets of sentences in
the T , means that these two sets have conflicting conclusions (under |=H) and that the rules
of ∆ that derive this are rendered by ∆ to have at least the same priority as the priority that
∆′ renders for its own rules that derive the conflicting conclusion. This definition is given as
follows (see [74] for more details when h p is not static).

Let T be an LPwNF theory and ∆,∆′ ⊆ T . Then ∆′ attacks ∆ (or ∆′ is a counter
argument of ∆) iff there exists L, ∆1 ⊆ ∆′ and ∆2 ⊆ ∆ such that:

(i) ∆1 `min L and ∆2 `min L

(ii) (∃r′ ∈ ∆1, r ∈ ∆2 s.t. ∆2 |=H h p(r, r′)) ⇒ (∃r′ ∈ ∆1, r ∈ ∆2 s.t. ∆1 |=H h p(r′, r)),

where L is any literal that conflicts L (e.g. L = ¬L or incompatible(L,L) holds).
Here ∆ `min L means that ∆ |=H L and that L cannot be derived from any proper subset

of ∆. The second condition in this definition states that an argument ∆′ for L attacks an
argument ∆ for the contrary conclusion only if the set of rules that it uses to prove L are at
least of the same strength (under the priority relation h p) as the set of rules in ∆ used to prove
the contrary. Note that the attacking relation is not symmetric.

Given this notion of attack that lifts the priority relation from individual rules to sets of
rules, we define the admissible subsets or arguments of a given theory as follows.

Let T be a theory and ∆ ⊆ T . Then ∆ is an admissible argument iff ∆ is consistent (i.e.
conflict free) and for any ∆′ ⊆ T if ∆′ attacks ∆ then ∆ attacks ∆′.

26

6.2.2 Preference reasoning in LPwNF

Preference reasoning is based on the maximal admissible arguments of a given theory. Usually,
two entailment relations are defined, given an LPwNF theory T :

• T |=cred
pr G means that there is at least one maximal admissible subset of T where G

holds;

• T |=skep
pr G means T |=cred

pr G and, for any G such that incompatible(G,G) holds,

T 6|=cred
pr G.

In the sequel, |=pr will indicate |=skep
pr .

Additional details on |=pr can be found in [71, 34, 74].
As we will see below in section 10.3 it is possible to build a computational model for LPwNF

directly from its argumentation based semantics following a standard method for computing
argumentation. In [34] a specific proof procedure has been give to compute LPwNF in the
special case where the priority relation is static. This interleaves the argumentation reasoning
with the process of computing the attacks from the background theory and hence it is difficult
to generalize. We will see that in order to develop a more general computational model where
the priority relation is dynamic it is easier to abstract the problem and follow a proof theory
approach for argumentation as proposed in [75].

6.3 Constraint Logic Programming

Constraint Logic Programming (CLP) [61] extends logic programming with constraints pred-
icates which are not processed as ordinary logic programming predicates, defined by rules,
but are checked for satisfiability and simplified by means of a built-in, “black-box” constraint
solver. These are typically used to constrain, together with unification which is also treated
via an equality constraint predicate, the values that variables in the conclusion of a rule can
take. For example, constraints can be used to compute the value of time variables, in goals and
actions, under a suitable temporal constraint theory (as is the case in our computee model).

The CLP framework is defined over a particular structure < consisting of domains D< and
a set of constraint predicates which includes equality, together with an assignment of relations
on D< for each such constraint predicate. In CLP, constraints are built as first-order formulae
in the usual way from primitive constraints of the form c(t1, . . . , tn) where c is a constraint
predicate symbol and t1, . . . , tn are terms constructed over the domain, D(<), of values. Then
the rules of a constraint logic program P take the same form as rules in conventional logic
programming given by

H ← L1, . . . , Ln, C

where C is a set of constraints.
A valuation θ of a set of variables is a mapping from these variables to the domain D(<)

and the natural extension which maps terms to D(<). A valuation θ, on the set of all variables
appearing in a set of constraints C, is called an <-solution of C iff Cθ, obtained by applying
θ to C, is satisfied i.e. Cθ evaluates to true under the given interpretation of the constraint
predicates and terms. The set C is called (<-)solvable or (<-)satisfiable iff it has at least one
<-solution.

One way to give the meaning of a constraint logic program P is to consider the grounding
of the program over its Herbrand base and all possible valuations, over D(<), of its constraint

27

variables. In each such rule if the ground constraints C are evaluated to true then the rule is
kept with the condition of C dropped, otherwise the whole rule is dropped. The meaning of P
is then given by the meaning of the resulting logic program.

The frameworks of ALP and LLP described above can be usefully extended with constraints
in the same way that CLP extends logic programming.

In ALP together with this extension of constraining the conclusions of the rules we can
use constraints to constrain abducible assumptions. In fact the link with constraints allows us
to extend an ALP framework to include non-ground abducible hypotheses, an extension that
increases significantly the versatility of applying abductive reasoning to various problems and
that plays an important role within the model we propose in this document.

One such framework of integration of ALP and CLP is that of ACLP [72, 3] and the A-
system [76] that has followed it. In this framework abductive theories are defined as usual but
now over the combined language of a given underlying framework of D(<) and a user given
language for the problem domain that is represented by the abductive logic program. The
essential extension is that now the set of abducible atoms in the predicates of A is extended to
consist of the following formulae:

1. a(d), where a is an abducible predicate and d is a vector of constants in D< (such ab-
ducibles are called ground abducibles)

2. ∃X(a1(X), .., an(X), C(X)), where n ≥ 1, ai is an abducible predicate ∀i.1 ≤ i ≤ n and
C(X) is a (possibly empty) set of constraints.

The subset ∆ of abducibles of an abductive answer can now include also non-ground abducibles,
e.g. ∆ = ∃X(a(X), C(X)). The notion of an abductive answer is build on the previous definition
for (ground) abduction generalising this by considering the different possible groundings of non-
ground elements of ∆ allowed by the constraints C that they involve. Given an abductive logic
program and a query Q then a set ∆ of abducibles is an abductive answer for Q iff:

1. there exists a valuation (or grounding) g such that, for each abducible formula φ in ∆,
the constraints in φg are (<−)satisfied, and

2. for any such grounding g, ∆g is a ground abductive explanation of Q.

Hence ∆ is an abductive solution for a query Q iff there exists (in <) at least one consistent
grounding of ∆ and for any such grounding g, ∆g constitutes a ground abductive solution
of Q. Note that essentially this grounding g gives also the associated variable substitution θ
for the variables in the goals Q, since in CLP the implicit unification of logic programming is
replaced by an explicit equality theory that is always part of the constraint theory < of the
CLP framework.

Operationally, an abductive answer can be computed, in CLP fashion, by interleaving the
generation (and consistency checking with respect to the integrity constraints) of abducible
hypotheses together with the generation of an associated constraint store C of constraints on
these hypotheses and its own check for satisfiability. This constraint store can grow during
the computation provided that it remains satisfiable. A “black box” constraint solver, that is
transparent to the abductive reasoning itself, is used to decide the satisfiability of this store
when necessary and to reduce the constraints accordingly. The satisfiability or not of C in
turn affects the computation of abductive hypotheses and their check of satisfying the integrity

28

constraints. This is the approach that we will take in this document when defining the C-IFF
and SCIFF proof procedures.

In this document, when clear from the context, we will sometimes refer to both integrity
constraints in abductive logic programming and atoms defined in terms of constraint predicates
(also called CLP constraints) simply as constraints.

CLP and the KGP model

In part II, we will denote by |=3
< truth (in three-valued logic) together with solvability over

valuations in <. E.g. Comp(P ∪∆) |=3
< Q, for some set of (ground) abducibles ∆, means that

there exists a valuation θ of the variables in the query Q, such that Qθ is solvable in < and Qθ
is true in (the three-valued completion of) P ∪∆. Moreover, for any given set of constraints C,
|=< C will stand for C is <-solvable. 6

Furthermore, we will assume a correct and complete computational counterpart `< of |=<,
that we will refer to as constraint solver. In particular, we will assume that, for any (set of)
temporal constraints TC, defined as in D4,
`< TC if and only if there exists a (total) substitutionσ such thatσ |=< TC.

6Namely, |=< is |= as we used it in D4.

29

Part II

Computees
Abstract. This part of the document presents the computational coun-
terpart of the computee formal model. This computational model is defined
modularly, reflecting the modularity of the model itself, in terms of the com-
putational models for the capabilities, the transitions, the selection functions
and the cycle components of the model. The computational counterparts of
the capabilities of planning, identification of preconditions, reactivity and
temporal reasoning are defined in terms of a single, novel abductive proof
procedure that extends an existing one. The computational counterparts of
the goal decision capability and of cycle are defined in terms of a single, novel
proof procedure for logic programming with priorities. The computational
counterparts for transitions and selection functions are straightforward map-
pings from the formal definitions, and their correctness is a by-product of
the correctness of the capabilities that are invoked by them.
The computational models for the components are presented as top-down,
from cycle, to the selection functions and transitions, to the capabilities.
The underlying proof procedures are given prior to the capabilities. The
correctness results are then given in reverse, building upon the correctness
of the underlying proof procedures. The proofs for the (non-trivial) results
in this part are given in appendices B and C.

7 KGP model: recap

In this section we give an overview of the state of computees in the KGP model, and operations
on it. Other components (capabilities, transitions, selection functions and cycle) are recapped
later on in the document, within specific sections.

7.1 Preliminaries

In the KGP model we assume (possibly infinite) vocabularies of time constants (e.g., the set
of all natural numbers), time variables (that we will indicate with t, t′, s, . . .), fluents (that we
will indicate with l, l′, . . .), action operators (that we will indicate with a, a′, . . .), and names
of computees that we will indicate with c, c′, Given a fluent l, l and ¬l are referred to as
fluent literals. We will use l, l′, . . . to denote fluent literals as well. Moreover, given a fluent
literal l, by l we will denote its complement, namely ¬f if l is f , f if l is ¬f .

We assume that the set of fluents is partitioned in two disjoint sets: mental fluents and
sensing fluents. Intuitively, mental fluents represent properties such that the computee itself
is able to plan for so that they can be satisfied, but can also be observed. On the other
hand, sensing fluents represent properties which are not under the control of the computee
and can only be observed by sensing the external environment. For example, problem fixed
and get resource may represent mental fluents, namely the properties that (given) problems
be fixed and (given) resources be obtained, whereas request accepted and connection on may
represent sensing fluents, namely the properties that a request for (given) resources is accepted
and that some (given) connection is active.

30

We also assume that the set of action operators is partitioned in three disjoint sets: sensing
action operators, physical action operators and communication action operators. In the sequel,
we will refer to physical and communication action operators jointly as non-sensing action
operators. Intuitively, sensing actions represent actions that the computee performs in order to
establish whether some fluents hold in the environment. These fluents may be sensing fluents,
but they can also represent effects of actions that the computee may need to check in the
environment. On the other hand, physical actions are actions that the computee performs in
order to achieve some specific effect, which typically causes some changes in the environment.
Finally, communication actions are actions which involve communications with other computees.
For example, sense(connection on, t) is a sensing action, aiming at checking whether or not
the sensing fluent connection on holds; do(clear table, t) may be a physical action operator,
and tell(c1, c2, request(r1), d, t) may be a communication action expressing that computee c1
is requesting from computee c2 the resource r1 within a dialogue d, at time t.

Temporal constraints

In the sequel we will use temporal constraints associated with goals and actions of a computee.
Temporal constraints are formulae defined by the following syntax:

TC ::= AtomicTC | TC ∧ TC | TC ∨ TC | ¬ TC
AtomicTC ::= Variable Relop Term
Relop ::= = | 6= | < | > | ≤ | ≥
Term ::= Time Constant | Time Variable | Term Op Term
Op ::= + | − | ∗ | ÷

As mentioned above, time constants are simply natural numbers. Time variables are distin-
guished variables which can be instantiated to time points. Notice that no explicit quantification
is introduced in temporal constraints: indeed, in a temporal constraint occurring in goals and
actions (see below) all variables are implicitly existentially quantified.
In Section 10.1 we will introduce an extension of an existing abductive proof procedure in order
to handle these type of temporal constraints. In that context we will denote the relational
operators of the above syntactic category Relop by prefixing them with the symbol #. For
instance, the equality constraint predicate symbol will be denoted by #=.

Goals

A goal G is a triple of the form 〈l[t], G′, T c〉 where

• l[t] is the fluent literal of the goal possibly referring to the time t; we will refer to l[t] as
a timed fluent literal;

• G′ is the parent of G;

• Tc is a (possibly empty) temporal constraint which typically refers to the time t.

Top-level goals are goals which have no parent. We will denote them by triples of the form
G = 〈l[t],⊥, T c〉, where ⊥ can be either ⊥r or ⊥nr. In the first case the goal will be referred to
as top-level non reactive goal, in the second case it will be referred to as top-level reactive goal.
Whenever it is not important to distinguish between reactiove and non-reactive goals, we will
simply write ⊥ instead of ⊥r and ⊥nr.

31

As an example, we may have a top-level goal G of the form

〈problem fixed(p2, t),⊥, 5 ≤ t ≤ 10〉

and a subgoal G′ of G of the form

〈get resource(r1, t′), G, 5 ≤ t′ ≤ t〉

meaning that to fix problem p2 within a certain time interval, the computee needs to have (or
acquire) a resource r1.

In the sequel mental goals are goals whose fluent is mental, and sensing goals are goals whose
fluent is sensing.

Actions

An action A is a 4-tuple of the form 〈a[t], G, C, T c〉 where

• a[t] is the operator of the action, referring to the execution time t; we will refer to a[t] as
a timed (action) operator;

• G the goal towards which the action contributes (i.e., the action belongs to a plan for the
goal G). G may be a post-condition for A (but there may be other such post-conditions,
as given within the knowledge base of the computee).

• C are the preconditions which should hold in order for the action to take place successfully;
syntactically, C is a conjunction of timed fluent literals;

• Tc is a (possibly empty) temporal constraints which typically refers to the time t of the
action.

In the next Section, we will introduce actions which a computee may perform when reacting to
external stimuli. These actions are named top-level reactive actions and will be denoted by a
4-tuple 〈a[t],⊥r, C, T c〉. The meaning of the second component, ⊥r will be clarified in the next
Section 7.2. Notice however that, differently from ordinary actions where the second component
is a goal, top-level reactive actions are not introduced as part of a plan to achieve some goal.

Note that we are assuming that actions are atomic and do not have a duration. The temporal
constraints specify a time window over which the time of the action can be instantiated, at
execution time. If the temporal constraints are empty then the action can be executed at any
time.

As an example, we may have an action

〈tell(c1, c2, request(r1), d, , t′′), G′, {}, 5 ≤ t′′ ≤ t′〉

where G′ is given as above.

Note that, in practice, actions can be seen as special kinds of goals which are directly executable.
In the sequel sensing actions are actions whose action operator is a sensing action operator,
non-sensing actions are actions whose action operator is a non-sensing action operator. We
distinguish two types of sensing operators, denoted by sense(l[t]) and sense precondition(l[t]).
The latter is a sensing action which a computee may explicitly introduce in its plan in order to
check whether or not a precondition of a certain action holds at the current time.

32

Time variables

In both a timed fluent literal l[t] and a timed operator a[t], the time t may be a time constant (in
which case the associated temporal constraint will be empty) or a time variable. This variable
is treated as an existentially quantified variable, the scope of which is the whole state of the
computee (see Section 7.2). Whenever a goal (resp. action) is introduced within a state, the
time variable associated with the goal (resp. action), is a distinguished, fresh variable. When a
time variable is instantiated (e.g., at action execution time) the actual instantiation is recorded
in the state of the computee. This allows us to keep different instances of the same action (resp.
goal) distinguished.

Finally, note that the temporal constraints of a goal/action might be empty even though
the time of the goal/action is a variable.

7.2 State of a computee

At any given time, the state of a computee is a triple

〈KB,Goals, P lan〉

where Goals is a set of goals and P lan is a set of actions, as defined in section 7.1.

The Goals and P lan components of the state can be represented as a tree where:

• the root is ⊥;

• the nodes of the tree other than the root are labelled by goals in Goals or actions in P lan;

• the children of the root are the top-level goals in Goals;

• actions can label only leaf nodes;

• for each non-leaf node labelled by a goal G, the children of the node are all the actions in
P lan and goals in Goals whose parent is G.

As an example, the tree for the following Goals and P lan of computee c1

Goals = {G,G1, G2}, where

G = 〈problem fixed(p2, t),⊥, 5 ≤ t ≤ 10〉

G1 = 〈get resource(r1, t1), G, 5 ≤ t1 ≤ t〉

G2 = 〈get resource(r2, t2), G, 5 ≤ t2 ≤ t〉

P lan = {〈tell(c1, c2, request(r1), d, t′), G1, {}, 5 ≤ t
′ ≤ t1〉}

is the tree in Figure 2.

It is worth pointing out that all variables occurring in the tree (and in particular the time
variables t, t1, t2 and t′ in the example above) are implicitly existentially quantified with scope
the whole tree.

33

⊥

G : 〈problem fixed(p2, t),⊥, 5 ≤ t ≤ 10〉
P

P
P

P
P

P
P

P
P

P

�
�

�
�

�
�

�
�

�
�

G1 : 〈get resource(r1, t1), G, 5 ≤ t1 ≤ t〉

〈tell(c1, c2, request(r1), d, t′), G1, {}, 5 ≤ t
′ ≤ t1〉

G2 : 〈get resource(r2, t2), G, 5 ≤ t2 ≤ t〉

Figure 2: The tree view of the state of computee c1

In the revised D4, we have introduced two slight extensions of the state, in order to handle
reactivity, i.e. the ability of the computee to react to external stimuli and to its own internal
decisions. Firstly, we distinguish between ordinary top-level goals, introduced by Goal Decision
and reactive top-level goals introduced in the state because of reactions of the computee to
external stimuli and internal decisions as represented within goals and plans. Each of these
reactive goals will be represented as a tuple 〈l[t],⊥r, T c〉. Secondly, we will also have top-level
actions, namely actions which are not introduced as part of a plan for a goal, but instead are
introduced directly in reaction to some external stimuli. Top-level actions will be represented
as tuples 〈a[t],⊥r, C, T c〉.

Given such extension, the state of the computee can be seen as a pair of trees. The first tree is
the non-reactive component of the state and is constructed as sketched above. The second tree
represents the reactive component of the state: the root of this tree is labelled by ⊥r and the
children of the root may be top-level (reactive) goals as well as top-level (reactive) actions.

For simplicity, we will assume that, given a state 〈KB,Goals, P lan〉, all occurrences of vari-
ables in Goals and P lan are time variables (implicitly existentially quantified globally within
the Goals and P lan). In other words, our goals and actions are ground except for the time
parameters. In an extension, variables other than time variables in goals and actions can be
dealt with in the same way as time parameters. We concentrate on time variables as time plays
a fundamental role in our model. We avoid dealing with the other variables to keep the model
simple.

The KB component of the state is the union of various (not necessarily disjoint) knowledge

34

bases. Among them we distinguish KB0 which records the actions which have been executed
and their time of execution as well as the properties (i.e. fluents and their negation) which have
been observed and the time of the observation. Formally, KB0 contains assertions of the form:

executed(a[t], τ) where a[t] is a timed operator and τ is a time constant. This sentence
means that an action a has been executed at time t = τ by the computee.

observed(l[t], τ) where l[t] is a timed fluent literal and τ is a time constant. This fact
means that the property l has been observed to hold at time t = τ .

observed(c, a[τ ′], τ) where c is a computee’s name, different from the name of the computee
whose state we are defining, τ and τ ′ are time constants, and a is an action operator.
This sentence means that the given computee has observed at time τ that computee c has
executed the action a at time τ ′ (of course τ ′ ≤ τ).

Note that assertions in KB0 of the third kind are variable-free. These are intended to represent
reception of communication from other computees. These type of assertions have no variable
as they represent actions executed by other computees, whose (internal) time variables are of
no interest to the computee in question.

Instead, assertions of the first two kinds refer explicitly to the time t. This representation
with explicit variables allows us to link the record in KB0 of observed properties and execution
of actions by the computee with the time of actions in P lan and goals in Goals. Thus, the time
of an action and of a goal serves implicitly as an identifier, uniquely identifying the action or
goal (due to the assumption on the uniqueness of such variables, as indicated in section 7.1).
Note that, as a consequence, the time variables in KB0 are not properly speaking variables as
such. Rather, they can be equated to “named variables” as in [3].

However, since KB0 will be used in all the remaining knowledge bases that form KB, and
these are represented in a logic programming style, we are not allowed to have assertions with
existentially quantified variables. Hence, the various knowledge bases will include a variant of
KB0 containing:

• an assertion executed(a[τ]), for each executed(a[t], τ) ∈ KB0

• an assertion observed(l[τ] for each observed(l[t], τ) ∈ KB0

• all assertions observed(c, a[τ ′], τ) in KB0.

In other words, the variant of KB0, which we still refer to as KB0 by abuse of notation,
contained in each knowledge base contains only variable-free facts, without referring explicitly
to time variables.

Note that at this stage of the development of the KGP model we assume that the computee
trusts its environment absolutely and therefore considers that the information in KB0 is irre-
vocable.

7.3 Operations and notations on states

In D4 and here, we use extensively some useful notations and operations on a state

〈KB,Goals, P lan〉

35

• First of all, we will refer to the union (conjunction) of all temporal constraints in all
actions in P lan and all goals in Goals as TCS.

• Given G ∈ Goals and A ∈ P lan we write:

– parent(G) = G′ if G = 〈 , G′, 〉 (G′ can be ⊥ or ⊥r if G is a top-level goal) 7

– parent(A) = G′ if A = 〈 , G′, , 〉 (G′ can be ⊥r if A is a top-level action).

– children(G,Goals) = {G′ ∈ Goals | G′ = 〈 , G, 〉}

– descendants(G,Goals) = children(G,Goals)∪
{G′ ∈ Goals | ∃G′′ ∈ descendants(G,Goals).G′ ∈ descendants(G′′, Goals)}

– ancestor(G,Goals) = {G′ ∈ Goals|G ∈ descendants(G′, Goals)}.

• We say that GA,GA′ ∈ Goals ∪ P lan are siblings if parent(GA) = parent(GA′).

The following notations are introduced in order to distinguish the non-reactive and the reactive
component of a state 〈KB,Goals, P lan〉.

• Goalsr and P lanr denote the set of goals and actions in Goals and P lan which are either
top-level reactive goals and actions, or descendants of top-level reactive goals, respectively.
Namely,

Goalsr = {G ∈ Goals |G = 〈 ,⊥r, 〉} ∪

{G ∈ Goals |G ∈ descendants(G′, Goals) andG′ ∈ Goalsr}

P lansr = {A ∈ P lan |A = 〈 ,⊥r, , 〉} ∪

{A ∈ P lan | parent(A) ∈ Goalsr}

• Similarly, Goalsnr and P lannr denote the set of non-reactive goals and actions in Goals
and P lan, respectively. Namely

Goalsnr = Goals \Goalsr

P lannr = P lan \ P lanr

Valuation of temporal constraints

Given a state S = 〈KB,Goals, P lan〉, we will denote by Σ(S) the valuation obtained as follows.

Σ(S) = {t = τ | executed(a[t], τ) ∈ KB0} ∪ {t = τ | observed(l[t], τ) ∈ KB0}

When the state S we are referring to is clear from the context, we will write simply Σ instead of
Σ(S). Intuitively, Σ extracts from KB0 the instantiation of the (existentially quantified) time
variables in P lan and Goals, derived from having executed (some of the) actions in P lan and

7We use “ ” to denote a component which is not relevant in the context, inheriting the Prolog tradition of
denoting by “ ” an anonymous variable.

36

having observed that (some of the) fluents in Goals hold (or do not hold). KB0 provides a
“virtual” representation of Σ.

Below, Σ(t), for some time variable t, will return the value of t in Σ, if there exists one,
namely, if t = τ ∈ Σ, then Σ(t) = τ .

The valuation of temporal constraints associated with goals or actions in a state S will
always take Σ into account. Let Tc be a (set of) temporal constraint with (temporal) variables
t1, . . . , tn, tn+1, . . . , tm, m ≥ n ≥ 1, such that:

• for each i = 1, . . . , n, Σ(ti) = τi for some time point τi;

• for each i = n+ 1, . . . ,m, there exists no τi such that Σ(ti) = τi.

Then, a total Σ−valuation σ for Tc is a valuation for the time variables in Tc which are not
evaluated by Σ already, namely σ is a valuation {tn+1 = τn+1, . . . , tm = τm}, for some time
points τn+1, . . . , τm.

Given a temporal constraint Tc and a total Σ−valuation σ for Tc, we will write

σ |=< Tc

if Tc is satisfied by the valuation σ ∪ Σ.
Finally, we will write Fσ to denote the application of the valuation σ ∪ Σ to a formula F .

7.4 Other notations

|=τ
Env as in D4 will represent the sensing capability of computees. We will not provide a

computational counterpart for it, since in practice it is external to the model.

8 Cycle computational model

The operation of computees is dictated by their cycle theory 8, which is a logic program with
priorities. Cycle theories define in a declarative way the possible alternative behaviors of a
computee depending on the particular circumstances of the (perceived) external environment
in which the computee is situated and of the internal state of the computee at the time of the
operation.

In D4, the cycle theory is used to define the operational trace of computees, which is seen
as a sequence of (applications of) transitions, decided via cycle steps, each one dictated by the
cycle theory together with the definition of the selection functions used within the cycle theory.
Each transition may call one or more capabilities (or no capability at all). Transitions are
responsible for changes to the state of computees. Indeed, the operational trace of a computee
gives rise to a sequence of states.

In this section, we provide computational counterparts for the operational trace (section 8.3)
of computees, with respect to suitable computational counterparts of transitions, selection func-
tions (both given in section 9), and of cycle steps whose computational counterpart is provided

8In D4 we have shown that computees with fixed cycles can be obtained as special cases of computees equipped
with cycle theories. Therefore, we will not explicitly deal with the case of fixed cycles here.

37

by the techniques given in section 10.3. Thus, this section provides the “glue” for the com-
putational models described in the remainder of the document, for the remaining components
(selection functions, transitions and capabilities) of the computee model in D4.

Below, we will assume (as in D4) that the computee is equipped with a cycle theory Tcycle

consisting of

• an initial part Tinitial that determines the transitions that the computee should perform
when it starts to operate (initial cycle step),

• a basic part Tbasic that determines the possible transitions (cycle steps) following other
transitions,

• an interrupt part Tinterrupt that specifies the possible transitions (cycle steps) that can
follow a POI (Passive Observation Introduction) transition, i.e. an interrupt with new
information,

• a behaviour part Tbehaviour that determines preferences on the alternative transitions given
in the basic and interrupt parts.

More details on the components of Tcycle are given in section 8.1.1.

Here, differently from D4, we will allow for the behaviour part Tbehaviour to express pref-
erences also on the initial transition. This is a natural extension of the original model in D4,
which exploits the possibility of performing preferential reasoning at all levels.

Note that in D4 we have tacitly assumed that the interrupt part of Tcycle always overrides
the basic part. However, we have pointed out that this (tacit) restriction could be relaxed (see
section 9.2.5 in D4), so that the behaviour part of Tcycle could decide whether the computee
should accept to be interrupted by a POI or not. In this document we will provide a computa-
tional counterpart for the generalisation of the model in D4, where Tbehaviour decides whichever
transitions should follow any other transition, independently on whether there is a potential
POI pending or not. In particular, Tbehaviour might decide to “suspend”, temporarily or even
indefinitely, a passive observation if there are urgent matters (actions to perform or goals to
achieve) to deal with. To get a conservative generalisation of the D4 model, we will assume
that Tbasic contains rules sanctioning that POI is a potential follow-up of any transition if there
is a passive observation pending. Note that we can get the model of D4 as a special instance
of the generalised model by giving higher priority to these latter rules.

Within the generalised model, POI is treated like any other transition, and this allows us
to actually simplify the definition of operational trace. We will give the simplified operational
trace in section 8.2.1.

Finally, note that in D4 we impose that Tcycle satisfies conditions to the effect that a unique
next transition is always concluded by |=pr (see section 6.2) in a single cycle step. Here, we
use |=cred

pr (see section 6.2) instead for |=pr to conclude a set of possible next transitions, and
choose at random one of these as the next transition. The generation of multiple potential next
transitions by |=cred

pr is the first step to extend our computee (formal and computational) model
to allow concurrent execution of transitions, as discussed in D4, in section 11.4. We will give
the generalised operational trace in section 8.2.2.

38

8.1 The cycle theory Tcycle

8.1.1 Syntax

Tcycle is a logic program (given by Tinitial ∪ Tbasic ∪ Tinterrupt) with dynamic priorities (rep-
resented within Tbehaviour), equipped with a notion of entailment |=pr (which, in D4, is based
upon the LPwNF framework for LPP, see section 6.2).

More concretely, Tinitial consists of rules of the form

T (S0, X)← C(S0, τ,X), time now(τ)

sanctioning that, if the conditions C are satisfied in the initial state S0 at the current time
τ , then the initial transition should be T , applied to state S0 and input X , if required. Note
that, here and everywhere in this document, transitions are (implicitly) taken from the set
{GI, PI,RE, SI, POI,AOI,AE,GR, PR}, where:

• GI stands for Goal Introduction

• PI stands for Plan Introduction

• RE stands for Reactivity

• SI stands for Sensing Introduction

• POI stands for Passive Observation Introduction

• AOI stands for Active Observation Introduction

• AE stands for Action Execution

• GR stands for Goal Revision

• PR stands for Plan revision

We will define these transitions formally (recapping from the revised D4) in section 9.
Note also that C(S0, τ,X) may be empty, and Tinitial might simply indicate a fixed initial

transition T1.
Tbasic and Tinterrupt consist of rules of the form

T ′(S′, X ′, τ)← T (S,X, S′, τ ′, τ), EC(S′, τ,X ′), time now(τ)

which we often represent in short as

T ′(S′, X ′)← T (S,X, S′), EC(S′, τ,X ′)

and refer to via the “name” rT |T ′ . These rules sanction that, if at the current time τ , which
is the time at which the current transition T has finished (having started at time τ ′), the
conditions EC evaluated in the resulting state S ′ are satisfied, then transition T ′ should follow
transition T and applied with inputs the state S ′ and the set of items X ′, if required. Note
that evaluating the conditions EC allows us to compute X ′ from S′. In the case of Tinterrupt,
the transition T will be necessarily POI. The conditions EC are called enabling conditions as
they determine when a cycle-step from the transition T to the transition T ′ can be applied. In

39

particular, they determine the input X ′, if any is required, of the next transition T ′. Such input
may be determined by calls to the appropriate core selection functions, when appropriate.
Tbehaviour contains rules describing dynamic priorities amongst rules in Tbasic and Tinterrupt

and Tinitial. Rules in Tbehaviour are of the (abbreviated) form

h p(rT |T ′(S,X ′), rT |T ′′(S,X ′′))← BC(S,X ′, X ′′, τ), time now(τ)

which we often write simply as

h p(rT |T ′(S,X ′), rT |T ′′ (S,X ′′))← BC(S,X ′, X ′′, τ)

where rT |T ′ and rT |T ′′ are (names of) rules in Tbasic ∪ Tinterrupt ∪ Tinitial .
9 We refer to such

rule as RT
T ′|T ′′ . These rules in Tbehaviour sanction that, at the current time τ , after transition

T , if the conditions BC hold, then we prefer the next transition to be T ′ over T ′′, namely doing
T ′ has higher priority (h p) than doing T ′′, after T . The conditions BC are called behaviour
conditions and determine when the preferences apply. These conditions depend on the state
of the computee after T and on the parameters chosen in the two cycle steps represented by
rT |T ′′ and rT |T ′′ . Behaviour conditions are heuristic conditions, defined in terms of the heuristic
selection functions, where appropriate.

Finally, Tcycle contains an auxiliary part including rules of the form

incompatible(T (S,X), T ′(S,X ′))

for all T, T ′ such that T 6= T ′ and for all T, T ′ such that T = T ′ and X 6= X ′. These rules
state that all different transitions are incompatible with each other and that different calls to
the same transition but with different items are incompatible with each other. The auxiliary
part of Tcycle also include definitions for any predicates occuring in the enabling and behaviour
conditions.

8.1.2 Example of Tcycle

As a concrete example for Tcycle, we give the following normal cycle theory, specifying a pattern
of operation where the computee prefers to follow a sequence of transitions that allows it to
achieve its goals in a way that matches an expected “normal” behaviour. Basically, the “normal”
computee first introduces goals (if it has none to start with) via GI, then reacts to them, via RE,
and then repeats the process of planning for them, via PI, executing (part of) the chosen plans,
via AE, revising its state, via GR and PR, until all goals are dealt with (succesfully or revised
away). At this point the computeee returns to introducing new goals via GI and repeating the
process above. Whenever in this process the computee is interrupted via a passive observation,
via POI, it chooses to introduce new goals via GI, to take into account any changes in the
world. Whenever it has actions which are “unreliable”, in the sense that their preconditions
definitely need to be checked, the computee senses them (via SI) before executing the action.
Whenever it has actions which are “unreliable”, in the sense that their effects definitely need
to be checked, the computee actively introduces actions that aim at sensing these effects, via
AOI, after having executed the original actions.

9Note that, with an abuse of notation, and with respect to the generalisation we will discuss in section 8.2.1,
T could be 0 in the case that h p(rT |T ′ (S,X′), rT |T ′′ (S, X′′)) is used to specify a priority over the first transition
to take place in an operational trace, in other words, when the priority is over rules in Tinitial.

40

• Tinitial consists of

r0|GI(S0) : GI(S0)← empty goals(S0)

r0|PI (S0) : PI(S0, Gs)← Gs = cGS(S0, τ), Gs 6= {}

r0|POI (S0)← poi pending(τ)

This last rule is only needed with the generalisation of operational trace that we will give
in the following section 8.2.1 (see theorem 8.1).

• Tbasic consists of the following parts.

– The rules for deciding what might follow an AE transition are as follows:

rAE|PI (S
′, Gs) : PI(S′, Gs)← AE(S,As, S′), Gs = cGS(S′, τ), Gs 6= {}

rAE|AE(S′, As′) : AE(S′, As′)← AE(S,As, S′), As′ = cAS(S′, τ), As′ 6= {}

rAE|AOI (S
′, F s) : AOI(S′, F s)← AE(S,As, S′), F s = cFS(S′, τ), F s 6= {}

rAE|PR(S′) : PR(S′)← AE(S, S′)

rAE|GI(S
′) : GI(S′)← AE(S, S′)

Namely, AE could be followed by another AE, or by a PI, or by an AOI, or by a PR,
or by a GI, or by a POI. Any other possibility, e.g. for GR to follow AE, is excluded
within this particular Tbasic theory.

– The rules for deciding what might follow GR are as follows

rGR|PR(S′) : PR(S′)← GR(S, S′)

Namely, GR can only be followed by PR. Indeed, GR and PR are naturally coupled,
since removing some goals in the state might lead to removing some actions.

– The rules for deciding what might follow PR are as follows

rPR|PI (S
′) : PI(S′, Gs)← PR(S, S′), Gs = cGS(S′, τ), Gs 6= {}

rPR|GI (S
′) : GI(S′)← PR(S, S′), Gs = cGS(S′, τ), Gs = {}

Namely, PR can only be followed by PI or GI, depending on whether there are goals
to plan for or not in the state.

– The rules for deciding what might follow PI are as follows

rPI|AE(S′, As) : AE(S′, As)← PI(S,Gs, S′), As = cAS(S′, τ), As 6= {}

rPI|SI (S
′, P s) : SI(S′, P s)← PI(S,Gs, S′), P s = cPS(S′, τ), P s 6= {}

The second rule is here to allow the possibility of sensing the preconditions of an
action before its execution.

– The rules for deciding what might follow GI are as follows

rGI|RE(S′, Gs) : RE(S′)← GI(S, S′)

rGI|PI (S
′, Gs) : PI(S′, Gs)← GI(S, S′), Gs = cGS(S′, τ), Gs 6= {}

Namely, GI can only be followed by RE or PI, if there are goals to plan for.

– The rules for deciding what might follow RE are as follows

rRE|PI (S
′, Gs) : PI(S′, Gs)← RE(S, S′), Gs = cGS(S′, τ), Gs 6= {}

rRE|SI (S
′, P s) : SI(S′, P s)← RE(S, S′), P s = cPS(S′, τ), P s 6= {}

– The rules for deciding what might follow SI are as follows

rSI|AE(S′, As) : AE(S′, As)← SI(S, Ps, S′), As = cAS(S′, τ), As 6= {}

rSI|PR(S′) : PR(S′)← SI(S, Ps, S′)

41

– The rules for deciding what might follow AOI are as follows

rAOI|AE(S′, As) : AE(S′, As)← AOI(S, Fs, S′), As = cAS(S′, τ), As 6= {}

rAOI|GR(S′) : GR(S′)← AOI(S, Fs, S′)

rAOI|SI (S
′, P s) : SI(S′, P s)← AOI(S, Fs, S′)Ps = cPS(S′, τ), P s 6= {}

– The rules for deciding when POI should take place are as follows

rT |POI (S
′) : POI(S′, τ)← T (S,X, S′, τ ′, τ), poi pending(τ),

for all transitions T , namely POI is always an option if there is an input from the
environment (observation) pending. These rules are needed only for the generalised
version of operational trace given in the following section 8.2.1 (see theorem 8.1),
if we want to enforce that passive observations are always taken into account when
occurring (as in the original notion of operational trace in D4).

• Tinterrupt consists of the following rules

rPOI|GI(S
′) : GI(S′)← POI(S, S′)

rPOI|RE(S′) : RE(S′)← POI(S, S′)

rPOI|GR(S′) : GR(S′)← POI(S, S′)

rPOI|POI (S
′) : POI(S′)← POI(S, S′)

This last rule is only needed with the generalisation of operational trace that we will give
in the following section 8.2.1 (see theorem 8.1).

• Tbehaviour consists of the following rules (besides its auxiliary part, including the defini-
tions for incompatible given above as well as any other definitions for predicates used in
Tbehaviour , such as empty goals, unreliable pre etc):

– GI should be given higher priority if there are no goals in Goals and actions in P lan
in the state: 10

RT
GI|T ′ : h p(rT |GI(S), rT |T ′ (S,X))← empty goals(S), empty plan(S)

for all transitions T, T ′, T ′ 6= GI , and with T possibly 0 (indicating that if there
are no goals and plans in the initial state of a computee, then GI should be its first
transition).

– GI is also given higher priority after a POI:

RPOI
GI|T : h p(rPOI|GI(S

′), rPOI|T (S, S′))

for all transitions T 6= GI .

– After GI, the transition RE should be given higher priority:

RGI
RE|T : h p(rGI|RE(S), rGI|T (S,X))

for all transitions T 6= RE.

– After RE, the transition PI should be given higher priority:

RRE
PI|T : h p(rRE|PI (S,Gs), rRE|T (S,X))

for all transitions T 6= PI .

10Instead of the conditions empty goals(S), empty plan(S) in this rule, we could have these conditions in each
rule in Tbasic which indicates as viable any transition that could be a competitor of GI after any given transition.

42

– After PI, the transition AE should be given higher priority, unless there are actions
in the actions selected for execution whose preconditions are “unreliable” and need
checking, in which case SI will be given higher priority:

RPI
AE|T : h p(rPI|AE(S,As), rPI|T (S,X))← not unreliable pre(As)

for all transitions T 6= AE;

RPI
SI|T : h p(rPI|SI(S, Ps), rPI|T (S,As))← unreliable pre(As)

for all transitions T 6= SI ;

Here we assume that the auxiliary part of Tcycle specifies whether a given set of
actions contains any “unreliable” action, in the sense described above.

– After SI, the transition AE should be given higher priority

RSI
AE|T : h p(rSI|AE(S,As), rSI|T (S,X))

for all transitions T 6= AE.

– After AE, the transition AE should be given higher priority until there are no more
actions to execute in P lan, in which case either AOI or GR should be given higher
priority, depending on whether there are actions which are “unreliable”, in the sense
that their effects need checking, or not:

RAE
AE|T : h p(rAE|AE(S,As), rAE|T (S,X))

for all transitions T 6= AE. Note that, by definition of Tbasic, the transition AE is
applicable only if there are still actions to be executed in the state.

RAE
AOI|T : h p(rAE|AOI (S, Fs), rAE|T (S,X))← BCAE

AOI|T (S, Fs)

for all transitions T 6= AOI , where the behaviour condition BCAE
AOI|T (S, Fs) is de-

fined (in the auxiliary part) by:

BCAE
AOI|T (S, FS)← empty executable plan(S), unreliable post(S)

Similarly, we have:

RAE
GR|T : h p(rAE|GR(S), rAE|T (S,X))← BCAE

GR|T (S)

for all transitions T 6= GR where:

BCAE
GR|T (S)← empty executable plan(S), not unreliable post(S)

Here, we assume that the auxiliary part of Tcycle specifies whether a given set of ac-
tions contains any “unreliable” action, in the sense expressed by unreliable post, and
defines the predicate empty executable plan. Intuitively, empty executable plan(S)
succeeds if all the actions which can be selected for execution have already been
executed.

– After GR, the transition PR should have higher priority:

RGR
PR|T : h p(rGR|PR(S,), rGR|T (S))

for all transitions T 6= PR.

– After PR, the transition PI should have higher priority:

RPR
PI|T : h p(rPR|PI (S,Gs), rPR|T (S))

for all transitions T 6= PI . Note that, by definition of Tbasic, the transition PI is
applicable only if there are still goals to plan for in the state. If there are no actions
and goals left in the state, then rule RT

GI|T ′ would apply.

43

– After any transition, POI is preferred over all other transitions:

RT
PI|T ′ : h p(rT |POI (S), rT |T ′(S,X))

for all transitions T, T ′, T ′ 6= POI , with T possibly 0 (indicating that, if applicable
by Tinitial, POI should be the first transition).

This priority rule is only needed with the generalisation of operational trace that we
will give in the following section 8.2.1 (see theorem 8.1).

– In the initial state, PI should be given higher priority:

R0
PI|T : h p(r0|PI(S,Gs), r0|T (S,X))

for all transitions T 6= PI . Note that PI, by definition of Tinitial, the transition PI
is applicable initially only if there are goals to plan for in the initial state.

Note that this is just an example of cycle theory, and many others are possible. To obtain dif-
ferent patterns of behaviour we can restrict the rules in Tbasic either by adding extra conditions
in the body of its rules or by dropping some rules completely. For example, we could add the
conditions empty goals(S ′), empty plan(S′) in all the rules in Tbasic introducing GI, namely all
rules r∗|GI(S

′, Gs), thus allowing GI only if the state is empty. This would in turn allow us
to drop the conditions empty goals(S ′), empty plan(S′) in the rule RT

GI|T ′ in Tbehaviour . As
another example, we may want to drop the last rule in the definition of what might follow AE
in Tbasic as we may never want to do GI unless we have new observational input.

8.2 Operational trace

In this section, we define the two generalisations of operational trace described earlier on, on
which the computational counterpart will be based.

In D4, the operational trace of a computee is seen as a (typically infinite) sequence

σ1, . . . , σj , . . .

of sequences σi of (applications of) transitions. Each (application of a) transition has the form

T (S,X, S′, τ)

where

• T is a transition name, chosen from within {GI, PI,RE, SI, POI,AOI,AE,GR, PR},

• S, S′ are states of the computee (namely S = 〈KB,Goals, P lan〉, for someKB, Goals and
P lan, and S′ = 〈KB′, Goals′, P lan′〉, obtained from S via the application of transition
T), and

• τ is the time given by the clock of the system when T is applied (namely the current
time).

The first sequence σ1 starts with the transition chosen via |=pr on Tinitial, applied on some
given initial state S0 of the computee. We will refer to this choice as the initial step. All other
sequences starts with a POI transition applied on the state resulting from applying the last
transition in the previous sequence. In each sequence, |=pr is used to decide which transition
should follow any given one, by means of a cycle step.

44

As mentioned earlier, this definition of operational trace assumes that no reasoning is applied
to decide the initial transition and that the POI transition is always executed as soon as there
is a (passive) observation that requires attention. Thus, this definition (tacitly) assumes that
the interrupt part Tinterrupt of Tcycle always overrides the basic part Tbasic. These assumptions
can be dropped to get a less restricted computee behaviour, by allowing the behaviour part
Tbehaviour of Tcycle to decide the initial transition and whether the computee should accept to
be interrupted by a POI or not.

8.2.1 Generalisation 1: Initial transition and POI controlled by Tbehaviour

The (generalised) operational trace given by Tcycle is a (typically infinite) sequence of transitions

T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), Ti+1(Si, Xi+1, Si+1, τi+1), . . .

(where each of the Xi may be empty), such that

• S0 is the given initial state;

• (Generalised Initial Step) Tinitial ∧ Tbehaviour |=pr T1(S0, X1);

• for each i ≥ 1, τi is given by the clock of the system at the time that Ti is applied, namely
time now(τi) holds when Ti is applied, with the property that τi < τi+i, namely time
increases;

• (Generalised Cycle Step) for each i ≥ 1

Tbasic ∧ Tinterrupt ∧ Tbehaviour ∧ Ti(Si−1, Xi, Si, τi, τi+1) |=pr Ti+1(Si, Xi+1, τi+1)

namely each (non-final) transition in a sequence is followed by the most preferred transi-
tion, as specified by Tcycle.

Thus, within the generalised model, POI is treated like any other transition, and this allows us
to simplify the definition of operational trace to just a sequence of transitions (rather than a
sequence of sequences of transitions). 11

Note that, with this generalisation, the delay in executing the transition POI might bring
about a delay in recording observations into KB0, so that the time associated with the ob-
servations in KB0 might actually be later than the actual time of the observation, and that
observations made at different times are recorded as observations made at the same time. This
feature, however, is already present in the original model in D4, as POI cannot interrupt tran-
sitions, but only interrupt their flow in the operational trace.

Note that, for the generalised model to actually generalise the model of D4, we need to make
sure that POI is taken into account as a candidate next transition whenever a passive observa-
tion is lined up. To do so, we need to assume that Tinitial and Tbasic and Tinterrupt contain rules
sanctioning that POI is a potential follow-up of any transition if there is a passive observation
pending. Then, we get the original model of operational trace and computee behaviour of D4
as a special instance of the generalised model by giving higher priority to the aforementioned
added rules. This is formally stated in the following theorem, whose proof is straightforward.

11The generalisation to reason about the initial step is non-controversial, and will be taken for granted in the
sequel.

45

Theorem 8.1. Let

Tcycle = Tinitial ∪ Tbasic ∪ Tinterrupt ∪ Tbehaviour

be a cycle theory and

T g
cycle = T g

initial ∪ T
g

basic ∪ T
g

interrupt ∪ T
g

behaviour

be the extension of Tcycle where

• T g
initial is given by Tinitial extended with the rule

r0|POI (S0)← poi pending(τ)

• T g
basic is given by Tbasic extended with the rules rT |POI :

POI(S′)← T (S,X, S′, τ ′, τ), poi pending(τ)

for all T ,

• T g
interrupt is given by Tinterrupt extended with

rPOI|POI (S
′) : POI(S′)← POI(S, S′)

and

• T g
behaviour is given by Tbehaviour extended with the priority rules:

h p(rT |POI (S), rT |T ′(S,X, τ))

for all T, T ′, T ′ 6= POI.

Then, there is a one-to-one correspondence between any operational trace as in D4, wrt Tcycle,
and the generalised operational trace, wrt T g

cycle.

In the sequel we will refer to the generalised operational trace above simply as operational
trace.

8.2.2 Generalisation 2: Cycle step with set of alternatives

In D4 we impose that Tcycle satisfies conditions to the effect that a unique next transition is
always concluded by |=pr in a single cycle step. One possible pool of such conditions is the
following, given that a family of rules in Tbehaviour is the set of all rules to decide the follow-up
of the same current transition:

1. the conditions of all rules in Tinitial are exclusive, namely no two such conditions can hold
at the same time;

2. the enabling conditions for rules in Tbasic and Tinterrupt are exclusive, as above;

3. the behaviour conditions of rules in Tbehaviour which belong to the same family are exclu-
sive, as above;

4. the conditions of all rules in Tinitial are exhaustive, namely one such condition is always
satisfied;

5. the enabling conditions for rules in Tbasic and Tinterrupt are exhaustive, as above;

46

6. the behaviour conditions of rules in Tbehaviour which belong to the same family are ex-
haustive, as above.

Here, the first three conditions guarantee that there is at most one transition possible at each
time, whereas the last three conditions guarantee that there is at least one transition possible
at each time.

These conditions (and conditions to the same effect) are cumbersome to test and complicate
writing Tcycle. More importantly, enforcing that a unique next transition is always concluded
by |=pr prevents from the onset the concurrent execution of transitions, which can instead be
beneficial in many cases. (For example, it might be useful to be able to plan for one goal,
via PI, while executing actions in a plan for another goal, via AE.) Below, we perform the
first step towards a model of computees where transitions can be executed concurrently, by
allowing a pool of possible next transitions to be returned within the same cycle step, and the
next transition to be chosen randomly. (In order to get a fully-fledged concurrent model for
computees we would need to execute all or some of the transitions in the pool, as well as say
how the state is updated through the concurrent execution of transitions.)

The (further) generalised model is obtained as follows.

• We relax the conditions that all transitions are incompatible, so that Tbehaviour contains
the rules

incompatible(T (S,X), T (S,X ′))

for all X 6= X ′ and rules

incompatible(T (S,X), T ′(S,X ′))

for some T, T ′, T 6= T ′, stating that some transitions are incompatible with some others
(but allowing for some transitions to be compatible).

• We define a (further generalised) operational trace, by modifying the initial step and the
cycle step as follows

– (Further Generalised Initial Step)

if Set = {T (S0, X) | Tinitial ∧ Tbehaviour |=pr T (S0, X)}

then T1(S0, X1) ∈ Set.

– (Further Generalised Cycle Step) for each i ≥ 1,

if Set = {T (Si, X, τi+1) |

Tbasic ∧ Tinterrupt ∧ Tbehaviour ∧ Ti(Si−1, Xi, Si, τi, τi+1) |=pr T (Si, X, τi+1)}

then Ti+1(Si, Xi+1, τi+1) ∈ Set.

Namely, in the initial step, we first take the set of all possible first transitions, and
then choose at random one of these as the initial transition. Also, in the cycle step,
we first take the set of all possible next transitions, and then choose at random one of
these as the next transition. In other words, each (non-final) transition in a sequence
is followed by one of the transitions in the set of the most preferred transitions, as
specified by Tcycle. Note that this set may be empty. In this case the computee
would stay idle.

47

Below we give a computationally more viable reformulation of the above generalised operational
trace, by using the credulous version |=cred

pr of |=pr to conclude a randomly chosen next transition
directly (without having to construct a full set first). This reformulation is not equivalent to
the one above, except in very special cases (see theorem 8.3 below). In this reformulation the
initial and cycle step become, respectively:

• (Reformulation of the Further Generalised Initial Step)

Tinitial ∧ Tbehaviour |=cred
pr T1(S0, X1)

• (Reformulation of the Further Generalised Cycle Step) for each i ≥ 1,

Tbasic ∧ Tinterrupt ∧ Tbehaviour ∧ Ti(Si−1, Xi, Si, τi, τi+1) |=cred
pr Ti+1(Si, Xi+1, τi+1).

Obviously, since every sceptical conclusion can also be obtained credulously, the following the-
orem holds.

Theorem 8.2. Every operational trace wrt the original definition in D4 is a further generalised
operational trace reformulated via |=cred

pr .

However, the converse of this theorem does not hold in general. Thus, this reformulation
of the second generalisation is not a conservative extension of the original operational trace of
D4. Trivially, though, if Tcycle satisfies conditions to the effect that a unique next transition
is always concluded by |=pr in the initial step and each single cycle step, then the further
generalised operational trace (and its reformulation in terms of |=cred

pr) is equivalent to the
earlier operational trace, as stated by the following theorem, whose proof is trivial:

Theorem 8.3. If Tcycle is such that there exists a single transition T1 such that
Tinitial ∧ Tbehaviour |=cred

pr T1(S0, X1)
if and only if
Tinitial ∧ Tbehaviour |=pr T1(S0, X1)

and for each transition T there exists a single transition T ′ such that
Tbasic ∧ Tinterrupt ∧ Tbehaviour ∧ T (S,X, S′, τ, τ ′) |=cred

pr T ′(S′, X ′, τ ′)
if and only if
Tbasic ∧ Tinterrupt ∧ Tbehaviour ∧ T (S,X, S′, τ, τ ′) |=pr T

′(S′, X ′, τ ′)
then there is a one-to-one correspondence between any operational trace and the (reformulation
via |=cred

pr of the) further generalised operational trace.

The computational techniques presented in section 10.3 can be used directly to provide a
computational counterpart of the cycle step in the reformulation in terms of |=cred

pr of the further
generalised operational trace, which we will refer to simply as operational trace in the sequel.

8.3 Computational counterpart of the operational trace

In this section we provide the computational counterpart of the (further generalised) opera-
tional trace. This is obtained simply by replacing |=cred

pr in the initial step and in the cycle

step by a suitable computational counterpart `cred
pr (see section 10.3 for its definition), and

transitions and selection functions by suitable computational counterparts (see section 9 for
their definition). Namely, given Tcycle and suitable computational counterparts of the (core and
heuristic) selection functions, to evaluate conditions in Tcycle, the computational operational
trace is a (typically infinite) sequence of transitions

48

T c
1 (S0, X1, S1, τ1), . . . , T

c
i (Si−1, Xi, Si, τi), T

c
i+1(Si, Xi+1, Si+1, τi+1), . . .

(where each of the Xs may be empty), such that T c
i is the computational counterpart of Ti and

• S0 is the given initial state;

• (Computational Initial Step) Tinitial ∪ Tbehaviour `cred
pr T1(S0, X1);

• for each i ≥ 1, τi is given by the clock of the system at the time that Ti is applied, with
the property that τi < τi+i, namely time increases;

• (Computational Cycle Step) for each i ≥ 1

Tbasic ∧ Tinterrupt ∧ Tbehaviour ∧ Ti(Si−1, Xi, Si, τi, τi+1) `
cred
pr Ti+1(Si, Xi+1, τi+1)

In the sequel we will ignore the initial step, as it can be dealt with similarly to the cycle step.
The following theorem, stating the correctness of the computational operational trace wrt

the (reformulation of the generalised) operational trace given correct computational models for
the cycle step, the selection functions and the transitions, trivially holds.

Theorem 8.4. (Conditional correctness of the computational operational trace)
Let

• `cred
pr be a correct computational model for |=cred

pr ,

• {`GI ,`PI ,`RE ,`SI ,`POI ,`AOI ,`AE,`GR,`PR} be correct computational counterparts
of the transitions {GI, PI,RE, SI, POI,AOI,AE,GR, PR}, and

• ccAS , c
c
GS, c

c
FS , c

c
PS , h

c
AS, h

c
GS , h

c
FS , h

c
PS be correct computational counterparts of the (core

and heuristic) selection functions (for action, goal, fluent and precondition selection).

Then, any computational operational trace, wrt some given cycle theory Tcycle and initial state
S0, is an operational trace, wrt the same cycle theory and initial state.

We will see suitable computational counterparts for `cred
pr in definition 10.14 and for the

transitions and selection functions in section 9.

9 Computational model for selection functions and tran-
sitions

In the previous section 8, we have provided a notion of computational operational trace of
a computee, responsible for its behaviour, parametric on computational models for selection
functions and transitions. We have indicated the computational models for the transitions

{GI, PI,RE, SI, POI,AOI,AE,GR, PR}

as
{`GI ,`PI ,`RE ,`SI ,`POI ,`AOI ,`AE,`GR,`PR}

49

and the computational models for the selection functions

cAS (core action selection)
cGS (core goal selection)
cFS (core fluent selection)
cPS (core precondition selection)
hAS (heuristic action selection)
hGS (heuristic goal selection)
hFS (heuristic fluent selection)
hPS (heuristic precondition selection)

as

ccAS, c
c
GS , c

c
FS , c

c
PS , h

c
AS , h

c
GS, h

c
FS , h

c
PS .

Here, we provide concretely the computational models for selection functions and transitions,
and give conditional results on their correctness, assuming correct computational counterparts
for

1. the capabilities that are “called” from within the selection functions and the transitions
(goal decision, planning, reactivity, temporal reasoning) and

2. the constraint satisfaction |=<, that deals with the temporal constraints.

The computational counterparts for the capabilities (goal decision `τ
GD, planning `τ

plan, reac-
tivity `τ

react, temporal reasoning `TR) are given later on in the document. The computational
counterpart of |=<, referred to as `<, has been described in section 6.3. Here and in the rest of
the document we will assume to have a correct and complete `<. In particular, we will assume
that, for any (set of) temporal constraints TC, defined as in D4,

`< TC if and only if
there exists a (total) substitution σ for the variables in TC such that σ |=< TC

Below, we will ignore the heuristic selection functions and concentrate solely on the core selection
functions. Indeed, the definition of heuristic selection functions is linked to concrete domains
of applications and categories of behaviour, and does not lend itself to a general formulation.

9.1 Computational counterparts for the (core) selection functions

At a high-level of description, the core selection functions can all be seen as returning the set
of all items from a given initial set that satisfy a certain number of conditions. For example,
given a state 〈KB,Goals, P lan〉, the action selection function returns the set of all actions in
P lan that satisfy some conditions; the goal selection function returns the set of all goals in
Goals that satisfy some conditions; the fluent selection function returns the set of all fluents
which are effects of actions already executed (as recorded in KB0) that satisfy some conditions;
the precondition selection function returns the set of all pairs, each consisting of a timed fluent
literal (occurring somewhere in the precondition part of some action in P lan) and a goal in
Goals (the parent of the action), that satisfy some conditions.

50

Below, for each selection function, we will provide a computational counterpart for each of
the given conditions. These computational counterparts of checking the required conditions are
given in terms of appropriate calls to the computational counterparts of the capabilities and
of the constraint solver that are invoked from within the formal specification of the selection
functions.

The fully-fledged computational model for each of the selection functions can then be ob-
tained by identifying a procedure for checking each of the conditions on the set of all candidate
items, until the required (maximal) set of items passing all checks is returned. Below, we will
not commit to any such procedure. However, note that a concrete procedure could perform the
checks sequentially, by incrementally shrinking the set of candidate items by removing one by
one the items that do not pass all the checks, or concurrently, by taking the intersection of all
sets of candidate items separately passing the individual ckecks. Trivially, whichever order of
execution of the checks we adopt, the resulting computational model will be correct with respect
to the specification, provided that the computational counterparts of checking the conditions
are correct.

Note that all items in any given initial set will have to be considered in performing these
checks, and some of them will have to be considered as many times as the number of checks to
be performed (in the case in which all items in the initial set pass the checks, then each item
in the initial set will have been considered as many times as the checks). This may be rather
costly. In the implementation (see deliverable D9 [5]), we have taken the view that the first
item that is found to satisfy all required conditions is returned as the sole selected item, namely
the sets returned are singleton sets. This provides a more (computationally) viable counterpart
of the selection functions, even though an approximation.

Finally, note that below we summarise the specification of all core selection functions as
given in the revised D4. With respect to the original D4:

• we have simplified the action and goal selection functions so that no call to the planning
capability is made within them: calling such capability to simply check the existence of
plans (as in the original specification) amounted to performing planning without actually
keeping any record of it, and so it was wasteful and computationally not viable;

• temporal constraints of individual actions/goals are checked for satisfiability with respect
to the overall set of temporal constraints in the state, rather than in isolation (as in the
original specification): testing temporal constraints in isolation turns out to be insufficient
in practice.

9.1.1 Action selection function

Specification of cAS

Informally, the set of conditions for the core action selection function is as follows. Given a
state S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all actions selected by cAS is the
set of all actions A in P lan such that at time τ :

1. A is executable at τ , e.g. it is not timed out,

2. no ancestor or sibling of A in Goals and P lan is timed out at τ ,

3. no ancestor of A in Goals is already satisfied at τ , given S,

51

4. no precondition of A is known to be false at τ , given S,

5. A has not already been executed.

Formally, given a state S = 〈KB,Goals, P lan〉, with overall set of temporal constraints TCS,
and a time-point τ , the set of all actions selected by cAS is the set of all actions

A = 〈a[t], G, C, T c〉 ∈ P lan

such that:

1. there exists a total valuation σ for the variables in TCS such that σ |=< t = τ ∧ TCS,

2. there exists no action 〈a′[t′], G∗, C ′, T c′〉 ∈ P lan and there exists no goal 〈l[t′], G∗, T c′〉 ∈
Goals such that

• G∗ = G or G∗ ∈ ancestors(G,Goals), and

• there exists no total valuation σ for the variables in TCS such that σ |=< t′ ≥
τ ∧ TCS,

3. there exists no 〈l[t′], G∗, T c′〉 ∈ Goals such that

• G∗ = G or G∗ ∈ ancestors(G,Goals), and

• there exists a total valuation σ for the variables in TCS such that σ |=< t′ ≤ τ∧TCS
and KB |=TR l[t′]σ,

4. let C = l1[t] ∧ . . . ∧ ln[t]; if n > 0, then it is not the case that for some i = 1, . . . , n there
exists a total valuation σ for the variables in TCS such that σ |=< TCS ∧ t = τ and
KB |=TR li[t]σ,

5. executed(a[t], t′) 6∈ KB0.

ccAS: computational counterpart of cAS

The computational counterpart for this selection function can be obtained by having compu-
tational counterparts for the above conditions appropriately combined (either sequentially or
concurrently checked, as discussed earlier).

1. `< t = τ ∧ TCS

2. for each 〈a′[t′], G∗, C ′, T c′〉 ∈ P lan and 〈l[t′], G∗, T c′〉 ∈ Goals such that G∗ = G or
G∗ ∈ ancestors(G,Goals):

`< t′ ≥ τ ∧ TCS,

3. for each 〈l[t′], G∗, T c′〉 ∈ Goals such that G∗ = G or G∗ ∈ ancestors(G,Goals):

`TR (finitely) fails to prove that l[t′] ∧ t′ ≤ τ ∧ TCS

52

4. let C = l1[t] ∧ . . . ∧ ln[t]; if n > 0, then for every i = 1, . . . , n

`TR (finitely) fails to prove that li[t] ∧ TCS ∧ t = τ,

5. executed(a[t], t′) 6∈ KB0.

Trivially, if `TR and `< are correct computational counterparts of |=TR and |=<, then the
given computational counterparts of the checks 1-5 in the specification of cAS are correct wrt
the specification itself, and thus an overall correct computation counterpart of cAS can be
obtained.

9.1.2 Goal selection function

Specification of cGS

Informally, the set of conditions for the core goal selection function is as follows. Given a state
S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all goals selected by cGS is the set of all
goals G in Goals such that at time τ :

1. G is not timed out at τ ,

2. no ancestor or sibling of G in Goals and P lan is timed out at τ ,

3. no ancestor of G in Goals is satisfied in S at τ ,

4. G is not satisfied in S at τ .

Formally, given a state S = 〈KB,Goals, P lan〉 with overall set of temporal constraints
TCS, and a time-point τ , the set of all goals selected by cGS is the set of all goals

G = 〈l[t], G′, T c〉 ∈ Goals

such that:

1. there exists a total valuation σ for the variables in TCS such that σ |=< t > τ ∧ TCS,

2. there exists no 〈a[t′], G′, C, T c′〉 ∈ P lan, and there exists no 〈l′[t′], G∗, T c′〉 ∈ Goals such
that

• G∗ = G′ or G∗ ∈ ancestors(G′, Goals), and

• there exists no total valuation σ for the variables in TCS such that σ |=< t′ ≥
τ ∧ TCS,

3. there exists no G∗ = 〈l′[t′], , T c′〉 ∈ Goals such that

• G∗ ∈ ancestors(G,Goals), and

• there exists a total valuation σ for the variables in TCS such that σ |=< t′ ≤ τ∧TCS
and KB |=TR l′[t′]σ,

4. there exists no total valuation σ for the variables in TCS such that σ |=< t′ ≤ τ ∧ TCS
and KB |=TR l[t]σ.

53

ccGS: computational counterpart of cGS

The computational counterpart for this selection function can be obtained by having compu-
tational counterparts for the above conditions appropriately combined (either sequentially or
concurrently checked, as discussed earlier).

1. `< t > τ ∧ TCS

2. for each 〈a[t′], G′, C, T c′〉 ∈ P lan and 〈l′[t′], G∗, T c′〉 ∈ Goals such that G∗ = G′ or
G∗ ∈ ancestors(G′, Goals):

`< t′ ≥ τ ∧ TCS

3. for each G∗ = 〈l′[t′], , T c′〉 ∈ Goals such that G∗ ∈ ancestors(G,Goals):

`TR (finitely) fails to prove that l′[t′] ∧ t′ ≤ τ ∧ TCS

4. `TR (finitely) fails to prove that l[t] ∧ t′ ≤ τ ∧ TCS.

Trivially, if `TR and `< are correct computational counterparts of |=TR and |=<, then the
given computational counterparts of the checks 1-4 in the specification of cGS are correct wrt
the specification itself, and thus an overall correct computation counterpart of cGS can be
obtained.

9.1.3 Fluent selection function

Specification of cFS

Informally, the set of conditions for the core fluent selection function is as follows. Given a
state S = 〈KB,Goals, P lan〉 and a time-point τ , the set of all (timed) fluents selected by cFS

is the set of all (timed) fluents f [t] such that:

1. f or ¬f is one of the effects of some action A in P lan,

2. this action A has recently been executed.

Note that such f [t] (or ¬f [t]) may not occur in Goals but could be some other (observable)
effect of the executed action which is not necessarily the same as the goal that the action
contributes to achieving.

Formally, given a state S = 〈KB,Goals, P lan〉, with overall set of temporal constraints
TCS, and a time-point τ , the set of all (timed) fluents selected by cFS is the set of all (timed)
fluents f [t] such that:

1. there exists an action 〈a[t], G, C, T c〉 ∈ P lan and a rule in KBplan with head
initiates(a, , f) or terminates(a, , f), and

2. KB0 |=LP executed(a[], τ ′) and τ − ε < τ ′ < τ , where ε is a sufficiently small number.

In this document, we choose |=LP to be truth wrt the completion semantics (see sec-
tion 6.1). Moreover, we integrate constraint satisfiability |=< within this semantics, indicated
as Comp() |=3

< (see section 6.3). Thus, the second condition above can be rewritten as

2. Comp(KB0) |=3
< executed(a[], τ ′) ∧ τ − ε < τ ′ < τ .

54

ccFS: computational counterpart of cFS

The computational counterpart for this selection function can be obtained by having computa-
tional counterparts for the above conditions 1-2, appropriately combined.

1. there exists an action 〈a[t], G, C, T c〉 ∈ P lan and a rule in KBplan with head
initiates(a, , f) or terminates(a, , f), and

2. KB0 ` executed(a[], τ ′) ∧ τ − ε < τ ′ ∧ τ ′ < τ , where ε is a sufficiently small number and
` is some appropriate computational mechanism for Comp() |=3

<.

We will see (in section 10.1) that C-IFF is a correct computational counterpart of Comp() |=3
<

and can be used in place of ` in condition 2 above. Thus, condition 2 above can be rewritten
as

2. 〈KB0, {}, {}〉, executed(a[], τ ′) ∧ τ − ε < τ ′ < τ `ciff ({},), namely there exists a
successful derivation for executed(a[], τ ′) ∧ τ − ε < τ ′ < τ , given the abductive logic
program 〈KB0, {}, {}〉.

The given computational counterparts of the check in the specification of cFS are correct wrt
the specification itself by using (the correct) C-IFF. Thus, an overall correct computation
counterpart of cFS can be obtained from the computational counterparts of checks 1-2 above.

9.1.4 Precondition selection function

Specification of cPS

Informally, the set of conditions for the core precondition selection function is as follows. Given
a state S = 〈KB,Goals, P lan〉 and a time-point τ , the set of preconditions (of actions in P lan)
selected by cPS is the set of all pairs (C,G) of (timed) preconditions C and goals G such that:

1. there exists an action A in P lan such that C is a precondition of A and G is the parent
of A,

2. C is not known to be true in S at τ ,

3. A ∈ cAS(S, τ).

The reasons why this selection function returns pairs, rather then simply preconditions, are
that the transition SI, which makes use of the outputs of this selection function, needs to know
which parent to associate to the sensing actions it will introduce, for each precondition returned.
This parent is the element associated to the precondition in the pair. This will become clearer
later on, in section 9.2.4.

Formally, given a state S = 〈KB,Goals, P lan〉, where TCS is the set of all temporal
constraints in S, and a time-point τ , the set of all preconditions of actions selected by cPS is
the set of all pairs (C,G) of (timed) preconditions C and goals G such that:

1. there exists A = 〈a[t], G, Cs, T c〉 ∈ P lan such that C is a conjunct in Cs,

2. there exists no total valuation σ for the variables in TCS such that σ |=< t = τ ∧ TCS
and KB |=TR Cσ,

3. A ∈ cAS(S, τ).

55

ccPS: computational counterpart of cPS

The computational counterpart for this selection function can be obtained by having computa-
tional counterparts for the above conditions 1-3 appropriately combined (either sequentially or
concurrently checked, as discussed earlier).

1. there exists A = 〈a[t], G, Cs, T c〉 ∈ P lan such that C is a conjunct in Cs,

2. `TR (finitely) fails to prove that C ∧ t = τ ∧ TCS

3. A ∈ ccAS(S, τ).

Trivially, if `TR and `< are correct computational counterparts of |=TR and |=<, and ccAS is
a correct computational counterpart of cAS , then the given computational counterparts of the
checks 1-3 in the specification of cPS are correct wrt the specification itself, and thus an overall
correct computation counterpart of cPS can be obtained.

9.2 Computational counterparts for the transitions

The computational counterparts of the transitions are defined via transition rules themselves,
obtained from the specifications by replacing calls to capabilities appropriately by calls to
their computational counterparts. Below, for each transition, we first summarise the formal
specification, as given in the revised D4, and then provide the computational countertpart.
With respect to the original D4:

• in the new specification of GI and RE we have taken into account the new split of the
state into a non-reactive and reactive parts;

• in the new specification of GI, RE, PI we have taken into account the adjustments to the
capabilities that they rely upon;

• in the new specification of GR and PR we have dropped any condition calling the planning
capability, similarly to the action and goal selection functions.

9.2.1 Goal Introduction

This transition takes no input (except for the knowledge base of the computee) and returns
a completely new set of non-reactive goals, the empty set of reactive goals, and empty sets of
(reactive and non-reactive) actions.

Specification of GI

(GI)
〈KB,Goals, P lan〉

〈KB,Goals′, {}〉
τ

where

(i) If KB |=τ
GD {}, then

– Goals′ = Goalsnr

(ii) otherwise, if KB |=τ
GD Gs and Gs 6= {}, then

56

– Goalsnr′

= {〈g[t],⊥, T c〉 | 〈g[t], T c〉 ∈ Gs}

– Goals′ = Goalsnr′

`GI : computational counterpart of GI

The computational model for GI consists of two components, dealing with cases (i) and (ii) of
the specification, respectively.

KB0 ∪KBTR ∪KBGD `τ
GD Gs

Gs = {}
Goals1 = Goalsnr

1

Goalsnr
1 = Goalsnr

P lan1 = {}

〈KB,Goals, P lan〉 `τ
GI 〈KB,Goals1, P lan1〉

(`τ
GI)

KB0 ∪KBTR ∪KBGD `τ
GD Gs

Gs 6= {}
Goals1 = Goalsnr

1 ∪Goals
r
1

Goalsnr
1 = {〈G,⊥nr, T c〉 | (G, Tc) ∈ Gs}

Goalsr
1 = {}

P lan1 = {}

〈KB,Goals, P lan〉 `τ
GI 〈KB,Goals1, P lan1〉

(`τ
GI)

Clearly, if `τ
GD is correct wrt |=τ

GD, then the computational counterpart `GI is correct wrt GI.
In section 11.5 we will present a correct realisation of `τ

GD.

9.2.2 Reactivity

This transition takes as input the non-reactive part of a state and produces a new state by
calling the computee’s reactivity and identification of preconditions capabilities. The new state
will have a completely new reactive part and the unchanged non-reactive part.

Specification of RE

(RE)
〈KB,Goals, P lan〉

〈KB,Goals′, P lan′〉
τ

where Goals′, P lan′ are defined as follows.

• If KB,Goalsnr, P lannr |=τ
react ⊥,⊥, then

– Goals′ = Goalsnr, and

– P lan′ = P lannr

• otherwise, if KB,Goals, P lan |=τ
react RGs,RAs, then let

NewGsr = {〈g[t],⊥r, T c〉 | 〈g[t], T c〉 ∈ RGs}

57

NewAsr = {〈a[t],⊥r, C, T c〉 | 〈a[t], T c〉 ∈ RAs ∧ KB, a[t] |=pre C}.

Then:

– Goals′ = Goalsnr ∪NewGsr, and

– P lan′ = P lannr ∪NewGsr

`RE: computational counterpart of RE

The computational model consists of two components. The first component deals with the case
in which no consistent set of reactions is returned by the reactive capability represented as
〈⊥ ⊥〉 (first bullet of the specification), whereas the second component deals with the case in
which a (consistent) set of reactions is returned by the reactive capability (second bullet of the
specification).

Goals = Goalsnr ∪Goalsr

P lan = P lannr ∪ P lanr

KB0 ∪KBreact, Goals
nr, P lannr `τ

react 〈⊥,⊥〉
Goals1 = Goalsnr ∪Goalsr

1

P lan1 = P lannr ∪ P lanr
1

Goalsr
1 = {}

P lanr
1 = {}

〈KB,Goals, P lan〉 `τ
RE 〈KB,Goals1, P lan1〉

(`τ
RE)

Goals = Goalsnr ∪Goalsr

P lan = P lannr ∪ P lanr

KB0 ∪KBreact, Goals
nr, P lannr `τ

react 〈Gs,As〉
Gs 6= ⊥
As 6= ⊥
Goals1 = Goalsnr ∪Goalsr

1

P lan1 = P lannr ∪ P lanr
1

Goalsr
1 = {〈G,⊥r, T c〉 | (G, Tc) ∈ Gs}

P lanr
1 = {〈A,⊥r, P, T c〉 | (A, Tc) ∈ As and

KBplan, A `pre P}

〈KB,Goals, P lan〉 `τ
RE 〈KB,Goals1, P lan1〉

(`τ
RE)

Clearly, if `τ
react is correct wrt |=τ

react and `pre is correct wrt |=pre, then the computational
counterpart `RE is correct wrt RE. In sections 11.3 and 11.2 we will present correct realisarions
of `τ

react and `pre, reespectively.

9.2.3 Plan Introduction

This transition takes as input a state and a set of goals in the state (that have been selected by
the goal selection function) and produces a new state by calling the computee’s planning and
identification of preconditions capabilities.

58

Specification of PI

(PI)
〈KB,Goals, P lan〉 SGs

〈KB,Goals′, P lan′〉
τ

where SGs is a non-empty set of goals selected for planning (see section 9.1), and

Goals′ = Goals ∪
⋃

G∈SGs Subg(G)

P lan′ = P lan ∪
⋃

G∈SGs Pplan(G)

where, for each G ∈ SGs, the sets Subg(G) and Pplan(G) are obtained as follows.

(i) Mental goals: let {G1, . . . , Gn} ⊆ SGs, n ≥ 0, be the set of all mental goals in SGs. If
n > 0, let

KB,P lan, {G1, . . . , Gn} |=τ
plan {〈G1,A1s,G1s〉

. . .
〈Gn,Ans,Gns〉}

Then for each i = 1, . . . , n,

(i.1) either Gis = Ais = ⊥ and Subg(Gi) = Pplan(Gi) = {},

(i.2) or Gis 6= ⊥,Ais 6= ⊥ and

Subg(Gi) = {〈l[t], Gi, T 〉|(l[t], T) ∈ Gis}, and

Pplan(Gi) = {〈a[t], Gi, C, T 〉|(a[t], T) ∈ Ais ∧KB, a[t] |=pre C}.

(ii) Sensing goals: for each sensing goal G = 〈l[t], G′, T c〉 ∈ SGs,

– Subg(G) = {}, and

– Pplan(G) = 〈sense(l[t′]), G′, C, t′ ≤ t〉,
where KB, sense(l[t′]) |=pre C.

`PI : computational counterpart of PI

The computational model for PI consists of one component, dealing jointly with mental and
sensing actions.

59

Gi mental goals i = 1, . . . , n
Gi = 〈li[ti], , 〉, i = 1, . . . , n
KB0 ∪KBplan, P lan,Goals `τ

plan New = 〈{(l1[t1], NAs1, NGs1), . . . , (ln[tn], NAsn, NGsn)}〉
Goals1 = Goals ∪NGs
P lan1 = P lan ∪NAs
NGs = {〈G,Gi, T c〉|(li[ti], NAsi, NGsi) ∈ New and

NAsi, NGsi 6= ⊥ and
(G, Tc) ∈ NGsi}

NAs = {〈A,Gi, P, T c〉|(li[ti], NAsi, NGsi) ∈ New and
NAsi, NGsi 6= ⊥ and
(A, Tc) ∈ NAsi and KBplan, A `pre P}

SGj sensing goals j = 1, . . . ,m
SGj = 〈li[ti], G′

i, 〉, j = 1, . . . ,m
P lan2 = {〈sense(li[t

′
i]), G

′
i, Pi, t

′
i ≤ ti)|KBplan, sense(li[t

′
i]) `pre Pi}

〈KB,Goals, P lan〉, {G1, . . . , Gn} ∪ {SG1, . . . , SGm} `τ
PI 〈KB,Goals1, P lan1 ∪ P lan2〉

(`τ
PI)

Clearly, if `τ
plan is correct wrt |=τ

plan and `pre is correct wrt |=pre, then the computational
counterpart `PI is correct wrt PI. In sections 11.1 and 11.2 we will provide correct realisations
of `τ

plan and `pre.

9.2.4 Sensing Introduction

This transition takes as input a state and a set of fluent literals that are preconditions of
some actions in the state (these fluent literals have been selected by the precondition selection
function) and produces a new state by adding sensing actions to its P lan component. To each
sensing action is associated its preconditions obtained by calling the computee’s identification
of preconditions capability.

Specification of SI

(SI)
〈KB,Goals, P lan〉 SPs

〈KB,Goals, P lan′〉
τ

where SPs is a non-empty set of preconditions of actions, associated with the parent of these
actions, selected for sensing (see section 9.1), and

P lan′ = P lan ∪ {〈sense precondition(c[t′], G,D, T c〉 | (c[t], G) ∈ SPs}

where, for each (c[t], G),

(i) Tc = (t′ < t), and

(ii) KB, sense precondition(c[t′]) |=pre D.

60

`SI : computational counterpart of SI

P lan1 = P lan ∪As
As = {〈sense precondition(l1[nt1]), G1, P1, {nt1 < t1}〉,

. . .
〈sense precondition(ln[ntn]), Gn, Pn, {ntn < tn}〉}

KBplan, sense precondition(li[nti]) `pre Pi

〈KB,Goals, P lan〉{(l1[t1], G1) . . . , (ln[tn], Gn)} `τ
SI 〈KB,Goals, P lan1〉

(`τ
SI)

Clearly, if `pre is correct wrt |=pre, then the computational counterpart `SI is correct wrt SI.
In section 11.2 we will provide a correct realisation of `pre.

9.2.5 Passive Observation Introduction

This transition updates KB0 by adding new observed facts reflecting changes in the environ-
ment.

Specification of POI

(POI)
〈KB,Goals, P lan〉

〈KB′, Goals, P lan〉
τ

where, if |=τ
Env l1 ∧ . . .∧ ln, c1 : a1[τ1]∧ . . .∧ ck : ak[τk], n, k ≥ 0, either n > 0 or k > 0, each

li being a fluent gi[] or the negation of a fluent ¬gi[], each cj being the name of a computee
and each aj [τj] being a timed action operator,

KB′
0 = KB0 ∪ {observed(l1, τ), . . . , observed(ln, τ)}

∪{observed(c1, a1[τ1], τ), . . . , observed(ck, ak[τk], τ)}.

`POI : computational counterpart of POI

|=τ
Env l1, . . . , ln
|=τ

Env c1 : a1[τ1], . . . , cm : am[τm],
n ≥ 0,m ≥ 0, n+m > 0,

KBnew
0 = {observed(l1, τ), . . . , observed(ln, τ),

observed(c1, a1[τ1], τ), . . . , observed(cm, am[τm], τ)}

〈KB,Goals, P lan〉 `τ
POI 〈KB ∪KB

new
0 , Goals, P lan〉

(`τ
POI)

Clearly, as this transition relies upon no capability or other functionality (such as constraint
solving) except for the sensing capability, and since we assume that the sensing capability serves
as its computational counterpart (being external to the model anyway), then the computational
counterpart `POI is trivially correct wrt POI.

9.2.6 Active Observation Introduction

This transition updates KB0 by adding new facts deliberately observed by the computee, which
seeks to establish whether some given set of fluents hold or not at a given time. These fluents
are selected by the fluent selection function and given as input to the transition.

61

Specification of AOI

(AOI)
〈KB,Goals, P lan〉 SFs

〈KB′, Goals, P lan〉
τ

where SFs = {f1, . . . , fn}, n > 0, is a set of fluents selected for being actively sensed (by the
fluent selection function)

KB′
0 = KB0 ∪

⋃

i=1,...,n

Si

where, for each i = 1, . . . , n:

• Si = {observed(fi[ti], τ)} if |=τ
Env fi[τ]

• Si = {observed(¬fi[ti], τ)} if |=τ
Env ¬fi[τ]

• Si = {} if neither |=τ
Env fi[τ] nor |=τ

Env ¬fi[τ]

and each ti is a fresh time variable.

`AOI : computational counterpart of AOI

Fs = {f1, . . . , fn}
Si = {observed(fi[ti], τ)} if |=τ

Env fi[τ]
Si = {observed(¬fi[ti], τ)} if |=τ

Env ¬fi[τ]
Si = {} if neither |=τ

Env fi[τ] nor |=τ
Env ¬fi[τ]

KBnew
0 =

⋃

i=1,...,n Si

〈KB,Goals, P lan〉, F s `τ
AOI 〈KB ∪KB

new
0 , Goals, P lan〉

(`τ
AOI)

Clearly, as this transition relies upon no capability or other functionality (such as constraint
solving) except for the sensing capability, and since we assume that the sensing capability serves
as its computational counterpart (being external to the model anyway), then the computational
counterpart `AOI is trivially correct wrt AOI.

9.2.7 Action Execution

This transition updates KB0 recording the execution of actions by the computee. The actions
to be executed are selected by the action selection function prior to the transition, and given
as input to the transition.

Specification of AE

(AE)
〈KB,Goals, P lan〉 SAs

〈KB′, Goals, P lan〉
τ

where SAs is a non-empty set of actions selected for execution (by the action selection function)
and for each A ∈ SAs

62

(i) If A is not a sensing action then

KB′
0 = KB0 ∪ {executed(a[t], τ)}.

(ii) if A is a sensing action, namely if A = p(l[t]) where p = sense or p = sense precondition,
then:

KB′
0 = KB0 ∪ {executed(p(l[t]), τ)} ∪ S

where:

– S = {observed(l[t], τ)} if |=τ
Env l[τ]

– S = {observed(l[t], τ)} if |=τ
Env l[τ]

– S = {} if neither |=τ
Env l[τ] nor |=τ

Env l[τ]

`AE: computational counterpart of AE

As = {A1, . . . , An} ∪ {SA1, . . . , SAm}
Ai = 〈ai[ti], , , 〉(non-sensing action), i = 1, . . . , n
SAj = 〈p(lj [sj]), , , 〉, p = sense or p = sense precondition(sensing action), j = 1, . . . ,m
Ki = {executed(ai[ti], τ)}, i = 1, . . . , n
Hj = {executed(sense(lj[sj]), τ)} ∪ Sj , j = 1, . . . ,m
Sj = {observed(lj [sj], τ)} if |=τ

Env lj [τ]

Sj = {observed(lj [sj], τ)} if |=τ
Env lj [τ]

Sj = {} if neither |=τ
Env lj [τ] nor |=τ

Env lj [τ]
KBnew

0 =
⋃

i=1,...,nKi ∪
⋃

j=1,...,mHj

〈KB,Goals, P lan〉, As `τ
AE 〈KB ∪KB

new
0 , Goals, P lan〉

(`τ
AE)

Clearly, as this transition relies upon no capability or other functionality (such as constraint
solving) except for the sensing capability, and since we assume that the sensing capability
serves as its computational counterpart (being it external to the model anyway), then the
computational counterpart `AE is trivially correct wrt AE.

9.2.8 Goal Revision

This transition revises the state by modifying its Goals component so that only goals that
are still worth achieving and are not achieved yet are kept. It calls the computee’s temporal
reasoning capability and also the constraint solver.

Specification of GR

(GR)
〈KB,Goals, P lan〉

〈KB,Goals′, P lan〉
τ

where Goals′ is the biggest subset of Goals consisting of all goals G = 〈l[t], G′, T c〉 ∈ Goals
such that, given that TCS is the set of all temporal constraints in Goals′ and P lan,

63

(i) either G′ = ⊥ or G′ ∈ Goals′, and

(ii) there is no total valuation σ such that σ |=< Tc ∧ TCS ∧ t ≤ τ and KB |=TR l[t]σ, and

(iii) there exists a total valuation σ such that σ |=< Tc ∧ TCS ∧ t > τ .

`GR: computational counterpart of GR

TCSPlan is the set of all temporal constraints in P lan
there exists a GR-derivation computing Goals1 from Goals, TCSPlan, at time τ

〈KB,Goals, P lan〉 `τ
GR 〈KB,Goals1, P lan〉

(`τ
GR)

where a GR-derivation computing Gs′ from Gs, TCSPlan, at τ , with

• Gs (and thus Gs′) a set of goals in the state of a computee,

• TCSPlan a set of temporal constraints (the set of all temporal constraints in the actions
in the state), and

• τ a ground time,

is defined as a sequence

(Gs1, TCS1) . . . , (Gsi, TCSi) . . . , (Gsn, TCSn) n ≥ 1

such that

• Gs1 = {〈G[t], G′, T c〉 ∈ Gs|G′ = ⊥nr or G′ = ⊥r,
`TR (finitely) fails to prove G[t] ∧ Tc∧ TCSPlan ∧ t ≤ τ and
`< Tc ∧ TCSPlan ∧ t > τ},

TCS1 = TCSPlan,

• Gsi = {〈G[t], G′, T c〉 ∈ Gs|G′ ∈ Gsi−1,
`TR (finitely) fails to prove G[t] ∧ Tc ∧ TCSi−1 ∧ t ≤ τ and
`< Tc ∧ TCS ∧ t > τ},

TCSi = TCSi−1 ∪ TCS(Gsi), where TCS(S) is the set of all temporal constraints in the
set S of goals,

• for each i < n, Gsi 6= {}, and Gn = {},

• Gs′ =
⋃

i=1,...,nGsi.

64

Basically, a derivation extracts from the given (reactive and non-reactive) goal-trees Gs all the
goals that are not achieved yet (condition calling `TR) and that can still be achieved (condition
calling `<), starting from the roots of the goal-trees, down the trees layer by layer, till reaching
the leaves or finding a sub-tree whose root should not be kept. In this process, temporal
constraints of goals which are being kept are taken into account as the goals are looked at.

It is easy to see that, if `TR is correct wrt |=TR and `< is correct wrt |=<, then the
computational counterpart `GR is correct wrt GR. In section 11.4 we will present a correct
realisation of `TR.

9.2.9 Plan Revision

This transition revises the state by modifying its P lan component so that only actions that are
still relevant and executable are kept. It calls the constraint solver.

Specification of PR

(PR)
〈KB,Goals, P lan〉

〈KB,Goals, P lan′〉
τ

where P lan′ is the biggest subset of P lan consisting of all actions 〈a[t], G, C, T c〉 ∈ P lan such
that, given that TCS is the set of all temporal constraints in Goals and P lan′,

(i) either G ∈ Goals or G = ⊥, and

(ii) there exists a total valuation σ such that σ |=< Tc ∧ TCS ∧ t > τ , and

(iii) if a[t] = sense precondition(C) then Tc = t < t′ and there exists an action

〈a′[t′], G′, Cs, T c′〉 ∈ P lan′

such that C is a conjunct of Cs.

`PR: computational counterpart of PR

TCSGoals is the set of all temporal constraints in Goals
there exists a PR-derivation computing P lan1 from P lan,Goals, TCSGoals, at time τ

〈KB,Goals, P lan〉 `τ
PR 〈KB,Goals, P lan1〉

(`τ
PR)

where a PR-derivation computing As′ from As,Gs, TCSGoals, at τ , with

• Gs a set of goals in the state of a computee,

• As (and thus As′) a set of actions in the state of a computee,

• TCSGoals a set of temporal constraints (the set of all temporal constraints in the goals
in the state), and

• τ a ground time,

65

is defined as a sequence

(As1, TCS1) . . . , (Asi, TCSi) . . . , (Asn, TCSn) n ≥ 1

such that

• As1 = As∗1 \As
sp
1 where

– As∗1 = {〈A[t], G, P, T c〉 ∈ As|G = ⊥r,
`< Tc ∧ TCSGoals ∧ t > τ}

– Assp
1 = {〈A[t], G, P, T c〉 ∈ As|G = ⊥r,

A = sense precondition(C[t]),
T c = t < t′,
there exists no 〈A[t′], G, P, T c′〉 ∈ As∗1 such that
C[t′] is a conjunct of P},

TCS1 = TCSGoals,

• Asi = As∗i \As
sp
i where

– As∗i = {〈A[t], G, P, T c〉 ∈ As|G ∈ Gs and G has level i− 1,
`< Tc ∧ TCSi−1 ∧ t > τ}

– Assp
i = {〈A[t], G, P, T c〉 ∈ As|G ∈ Gs and G has level i− 1,

A = sense precondition(C[t]),
T c = t < t′,
there exists no 〈A[t′], G, P, T c′〉 ∈ As∗i such that
C[t′] is a conjunct of P},

TCSi = TCSi−1 ∪ TCS(Asi), where TCS() is defined as for GR,

• for each i < n, Asi 6= {}, and Asn = {},

• As′ =
⋃

i=1,...,nAsi.

Basically, a derivation extracts from the given (reactive and non-reactive) trees all the actions
that are still executable and still relevant (namely whose parent goal is still in the state) starting
from the roots of the trees, down the trees layer by layer, till reaching the leaves or finding a
sub-tree whose root should not be kept. In this process, temporal constraints of actions which
are being kept are taken into account as the actions are looked at.

It is easy to see that, if `< is correct wrt |=<, then the computational counterpart `PR is
correct wrt PR.

66

10 Proof Procedures: building blocks for the computa-

tional model of the capabilities

The language of the KGP model comprises of the language of Abductive Logic Programming
(ALP, see section 6.1) and the language of Logic Programming with Priorities (LPP, see sec-
tion 6.2). All components of the KGP model are specified within these two extensions of Logic
Programming. Hence any computational model of this will be based on computational models
of these two underlying frameworks.

In this section, we present a study of the proof theory for each of ALP and LLP with
emphasis on the particular proof theory and procedure that we will adopt in the development
of the computational models of the different components of the model. We will adopt an
extension of the IFF proof procedure (see section 6.1.3) for the ALP components of the model,
and an argumentation proof procedure extending [75] for LPwNF (see section 6.2), our chosen
framework for the LPP components of the model.

10.1 C-IFF: IFF with handling of constraint predicates

An important feature of the model of the individual computee as given in D4 and of all the
components of this model (as well as the society model given in D5) is the need to handle
temporal constraints, which are defined by means of constraint predicates.

There are several solutions for handling constraint predicates in abductive logic program-
ming. Among these, one is to see temporal constraints as abducible atoms and to handle them
as usual in abductive logic programming using a set of integrity constraints which allow to sim-
plify and solve such constraints. An example of this treatment has been implemented in [78],
which is an extension of the IFF-procedure. Another one is the use of an underlying constraint
solver seen as a black box by the abductive proof procedure and called during a computation.
This solution has been implemented in the ACLP system [66] using the theory of CLP (see Sec-
tion 6.3). This is the solution which we have opted for while extending the IFF proof procedure
for our purposes.

10.1.1 C-IFF: Syntax

The syntax of an abductive framework suitable for the C-IFF procedure must take constraint
predicates into account. In principle, the exact specification of the constraint language is
independent from the definition of the C-IFF procedure, because we are going to use the
constraint solver as a black box component. However, we are going to restrict ourselves to
binary constraint predicates. The constraint language has to include a relation symbol for
equality (we are going to write t1#= t2) and it must be closed under complements. A suitable
set of constraint predicate symbols would be {# =,# 6=,#<,#≤,#>,#≥}12. The range
of admissible arguments to constraint predicates again depends on the specifics of the chosen
constraint solver `< (see Section 6.3). For the above set of predicates, any (arithmetic) term
built from variable names, integers, and the function symbols +, − and ∗ would be appropriate.
Note that we distinguish the constraint atom t1#= t2 from the equality atom t1 = t2.

13 Below,
we refer to the given set of constraint predicates as C.

12Notice that this language is conformant to the one introduced in the KGP model in Section 7
13Note that the predicate symbol = is understood as in CET (in practice, t is a Herbrand term) and is distinct

from the predicate #= which is is a constraint atom, interpreted wrt the constraint theory <.

67

Atoms are equality atoms, constraint atoms, and atoms “in the usual sense of the word”
(e.g. a formula such as p(X)). The set of literals is the set of atoms (also called positive literals)
together with the set of negated atoms (also called negative literals). Where necessary, we are
going to use the terms non-constraint or non-equality atoms or literals to refer to atoms and
literals where the predicate symbol is not a constraint predicate or not =, respectively.

As with the original IFF procedure, we start from an abductive framework 〈P,A, IC〉 where
P is now a normal logic program where clauses of P and integrity constraints in IC may also
contain constraint atoms. However, differently from IFF, we transform the program P into
CompA∪C (P), indicated with P c, rather than simply CompA (P) (see Section 6.1).

Due to the presence of constraint predicates, a new set of allowedness restrictions must be
defined to handle constraint predicates correctly. Indeed, the allowedness restriction for the
IFF-procedure given in Section 6.1 is not enough if we take into account constraint predicates.
Let us consider the following simple example.

P c q(X)↔ X#> 3
IC q(X)⇒ p(X)

Then, in a derivation, e.g. for the empty query, we can obtain
X#> 3⇒ p(X)

by the application of the unfolding rule. The problem is that X is universally quantified with
scope the whole implication. In such a way we obtain an “active rule” meaning “for all values of
X such that X#> 3, p(X) must hold”. Considering that constraints predicates are handled by
the underlying constraint solver and thus are not treated as ordinary, non-abducible predicates,
the IFF is not able to handle this kind of implication properly. Simply, we can modify the
allowedness condition given for the IFF-procedure in Section 6.1 as follows.

Definition 10.1 (Allowedness restriction for C-IFF).
The allowedness of predicate definitions, integrity constraints and queries is:

1. CIFF allowed definitions. A definition of the form

p(X1, . . . , Xn)↔ D1 ∨ . . . ∨Dk,

is allowed if for each Di, every variable distinct from X1, . . . , Xn occurring in Di must
also occur in a positive non-constraint/non-equality atom in Di. Moreover, every variable
in a constraint literal must also occur in a positive non-constraint/non-equality atom in
Di.

2. CIFF allowed integrity constraints. An integrity constraint is allowed if every vari-
able occurring in an equality atom, in a constraint atom, in a negative literal in the body
or anywhere in the head also occurs in a positive non-constraint/non-equality atom in the
body.

3. CIFF allowed queries. A query is allowed if every variable in it occurs in a non-
constraint/non-equality atom of the query itself.

10.1.2 New rules for the C-IFF procedure

With respect to the IFF-procedure, we need two new rules to handle constraint atoms: Case
Analysis for Constraints and Constraint Solving. The first rule handles constraints occurring
in the body of an implication and it is in direct correspondence with the original Case Analysis

68

rule of the IFF procedure. The second rule handles constraints occurring as atoms in a node and
checks their consistency using the underlying CLP solver `<. The new rules, as the IFF original
ones, are equivalence preserving in the sense that a frontier Fi+1 obtained from a frontier Fi by
the application of a rule is logically equivalent to Fi, in the underlying P c∪CET . This feature,
crucial for the soundness, will be discussed in the Appendix (see Section B.1.)

Case Analysis for Constraints

Let Fi be a frontier and let

Rest ∧ [(C ∧ B)⇒ A]

be a node of Fi where C is a constraint atom. with all variables existentially quantified (or
free), B is the rest of the body of the implication and Rest is the rest of the node.14 Then the
new frontier Fi+1 is Fi with the node being replaced by:

[Rest ∧ C ∧ [B ⇒ A]] ∨ [Rest ∧ C]

where C is the complement of C, e.g. if C is (X#> 3) then C is (X#≤ 3). �

Constraint Solving

Let N be a node in the form of a conjunction (i.e. splitting is not applicable to N), in a frontier
Fi and let

• CN be the set of all constraint atoms which are conjuncts of N , and

• EqN = {t1#= t2 | t1 = t2 is a conjunct of N} ∪
{t1#6= t2 | t1 = t2 → false is a conjunct of N}.

Then the frontier Fi+1 is Fi with the node N replaced by false if CN ∪EqN is unsatisfiable by
the application of the constraint solver `<. �

10.1.3 Extracted answers in C-IFF

We use the same notion of (failure and non-failure) leaf node as in IFF (see Section 6.1.3). Given
an abductive logic program 〈P,A, IC〉, a query Q and a non-failure leaf node N (obtained from
a derivation for Q), we can extract from N an answer (∆,Γ) where:

• the set ∆ composed of all the (possibly non-ground) abducible atoms occurring as con-
juncts in N ;

• the set Γ composed of all the (possibly non-ground) constraint literals occurring as con-
juncts in N and by all the elements of the set EqN as defined in the Constraint Solving
Rule.15

14Note that for the allowedness restriction we have that all the variables in C are free or existentially quantified.
15With an abuse of notation, we will denote by Γ both the set and the conjunction of the elements of the set.

69

10.1.4 Correctness of C-IFF

The correctness of C-IFF is stated as follows.

Theorem 10.1 (Success Soundness). Given an abductive framework 〈P,A, IC〉, a query Q
and a non-failure leaf node N (obtained from a derivation for Q). Let (∆,Γ) be a computed
answer for Q extracted from N and let V be the set of all the variables which occur in Q, ∆
and Γ. Then

1. there exists a substitution σ over V such that:

σ |=< Γ, and

2. for each such substitution σ:

• CompC (P ∪∆σ) ∪ CET |=3
< Qσ

• CompC (P ∪∆σ) ∪ CET |=3
< IC

The proof of this theorem is a direct consequence of the soundness of IFF , which carries
through with respect to the new notion of allowedness, the correctness and the completeness of
the constraint solver and thus the equivalence preserving of the newly introduced rewrite rules.
We will not give this proof explicitly in this document, as we will use another version of CIFF
with dynamic allowedness, introduced in the next section.
We also state another type of soundness in the case that all the leaf nodes of a derivation are
failure nodes.

Theorem 10.2 (Failure Soundness). Given an abductive framework 〈P,A, IC〉 and a query
Q, if there is a finite derivation for Q terminating with no success leaf node, then there exists
no answer for Q, namely:

CompC (P) ∪ CET ∪ IC |=3
< Q↔ false.

10.2 C-IFF with dynamic allowedness

The C-IFF procedure defined in section 10.1 handles constraints and, hence, it caters for a large
portion of the abductive event calculus as defined in D4, and used in KBplan, KBreact and
KBTR. Nonetheless, some parts of the abductive event calculus are not allowed according to
the definition given earlier. For example, the following clause

holds at(G, T2)← happens(A, T1), initiates(A, T1, G), T1 < T2, not clipped(T1, G, T2)
is not allowed and therefore cannot be handled by the C-IFF procedure. Fortunately, the
allowedness restriction can be relaxed. The original allowedness for the IFF-procedure was
proposed with the purpose of avoiding floundering, which happens if universally quantified
variables are introduced in atomic conjuncts in nodes within a derivation. In the IFF-procedure
the problem of floundering may occur (for non-allowed programs) due to the fact that a negative
literal is moved as a positive disjunct into the head of an integrity constraint, or the fact that
an equality atom may occur in the body of an integrity constraint with universally quantified
variables. In both cases, the allowedness restriction ensures that variables which may cause
floundering occur also in a positive literal in the body of the integrity constraint. In the C-IFF
procedure, the same must be done for the constraint atoms which may cause floundering in the
same way as equality atoms.

70

Instead of defining a more relaxed notion of syntactic allowedness we relax the allowedness
restriction in a dynamic way, i.e. we check the allowedness of an integrity constraint during a
computation. This dynamic use of the allowedness restriction extends the class of logic programs
handled by the procedure and in particular covers the abductive event calculus used in D4.

The dynamic allowedness that we propose avoids the floundering which can occur due to equality
or constraint atoms but it does not avoid the floundering negation problem. To deal with this
problem, we still impose a (limited form of) static allowedness, by modifying the allowedness
restriction given in Definition 10.1, imposing a less restrictive condition on the definitions
occurring in P c. In particular, we keep the parts about Integrity Constraints and Queries in
the definition and we modify the part about Definitions in the following way:

Definition 10.2 (Allowedness restriction for dynamic C-IFF).
The allowedness of predicate definitions, integrity constraints and queries is obtained by re-

placing case 1. of definition 10.1 by the following:

1′. A definition of the form

p(X1, . . . , Xn)↔ D1 ∨ . . . ∨Dk,

is allowed if for each Di, every variable distinct from X1, . . . , Xn occurring in a negative
literal in Di also occurs in a positive non-equality atom in Di.

In C-IFF the rules which handle variables in an integrity constraint and consider their
quantification are the Case Analysis rules (the original one and that for constraints) and the
Rewrite Rules for Equality (in particular case 8).

Both Case Analysis rules are applied only to equality/constraint atoms X = t where X is
an existentially quantified variable and so we can trivially argue that such rules are safe and
we do not need to modify them.

The only rule that handles universally quantified variables in the condition of an integrity
constraint is the Rewrite Rule for Equality (Case 8). This rule states:

If X = t occurs in the body of an implication, t does not contain X and X is
universally quantified, then apply the substitution X/t to the entire implication,
deleting the conjunct X = t.

As explained above, the original allowedness condition for the IFF-procedure ensures that
this rule is never applied to an integrity constraint of the form:

X = t ∧ B ⇒ H
where X occurs only in the atom X = t. With a non-allowed theory we are not able to ensure
such a safety condition and we could apply, for example, the Rewrite Rule for Equality (Case
8) to an integrity constraint of the form:

X = Y ⇒ r(X)
where X,Y are universally quantified variables and r is an abducible predicate, obtaining as
result the sentence ∀Y.r(Y) which causes a soundness problem when extracted from a node.

The safety condition obtained by the original allowedness can be also obtained in a dynamic
way modifying the Rewrite Rule for Equality (Case 8) as follows:

If X = t occurs in the body of an implication, t does not contain X , each universally
quantified variable in t also occurs in a positive non-constraint/non-equality atom
in the body of the implication, and X is universally quantified, then apply the
substitution X/t to the entire implication, deleting the conjunct X = t.

71

Now, we do not apply the Rewrite Rule for Equality (Case 8) in the example above because
Y is universally quantified and does not occur in a positive non-constraint/non-equality atom
elsewhere in the body of the implication.
In addition to incorporating this dynamic allowedness condition, for the purpose of sound
answer extraction, we need to define a third type of leaf node.

Definition 10.3 (Don’t know node). A don’t know node is a leaf node which contains an
implication with only equality/constraint atoms in the body (except when there is just a single
equality atom in the body and false in the head).

The concept of Don’t know node is not present in the original IFF-procedure. Intuitively, don’t
know nodes represent computations with abductive frameworks which are not allowed with
respect to the IFF allowedness condition of Section 6.1.3. In summary, we distinguish now
three types of leaf nodes:

1. Don’t know leaf node - as defined in Definition 10.3

2. Failure leaf node - a leaf node which coincides with false

3. Success leaf node - a leaf node which is not of type 1. or type 2.

10.2.1 Extracted answers in C-IFF with dynamic allowedness

Using the C-IFF procedure with dynamic allowedness, abductive answers must be extracted
only from success leaf nodes, rather than non-failure leaf nodes as in static C-IFF, to cater for
the presence of don’t know nodes.

Formally, given an abductive logic program 〈P,A, IC〉, a query Q and a success leaf node
N (obtained from a derivation for Q), we can extract a computed answer (∆,Γ) for Q where
∆ and Γ are defined as in Definition 10.1.3.

10.2.2 Correctness of dynamic C-IFF

The following theorems are the analogous of theorems 10.1 and 10.2 for static C-IFF.

Theorem 10.3 (Success Soundness). Given an abductive framework 〈P,A, IC〉, a query Q
and a success leaf node N (obtained from a derivation for Q), let (∆,Γ) be a computed answer
for Q extracted from N and let V be the set of all the variables which occur in ∆, Γ and Q.
Then

1. there exists a substitution σ over V such that:

σ |=< Γ

2. for each such substitution σ:

• CompC (P ∪∆σ) ∪ CET |=3
< Qσ

• CompC (P ∪∆σ) ∪ CET |=3
< IC

Notice that the only difference between the above Theorem and Theorem 10.1 is that “success
leaf node” in the former replaces “non-failure leaf node” in the latter. Similarly, the next
Theorem is the analogous of Theorem 10.2. Here we talk about finite derivations terminating
in leaf nodes which are all failre nodes, as opposed to Theorem 10.2 where we talk about finite
derivations terminating with no success leaf node.

72

Theorem 10.4 (Failure Soundness). Given an abductive framework 〈P,A, IC〉 and a query
Q, if there is a finite derivation for Q terminating in leaf nodes all of which are failure leaf
nodes, then there exists no answer for Q, namely:

CompC (P) ∪ CET ∪ IC |=3
< Q↔ false.

Finally, we must deal with the final don’t know nodes. Given an abductive framework 〈P,A, IC〉
and a query Q, if there is at least a don’t know leaf node, we can safely say that the input
is not allowed in the sense of the original static allowedness for C-IFF. Nevertheless, if there
is a success leaf node in the derivation, the answer extracted from that node is still a correct
answer.

The other case to be considered is the case in which, given an abductive framework 〈P,A, IC〉
and a query Q, in a derivation for Q there is:

• at least a don’t know leaf node

• no success leaf node and

• at least a non-leaf node.

In such case we can say that the input is not allowed in the sense of the original static
allowedness for C-IFF but we are not able to say if there is a correct answer or not.

The following theorem shows that if an abductive framework is allowed in the sense of definition
10.1, dynamic C-IFF coincides with static C-IFF, in the sense that no don’t know leaf nodes
are ever generated.

Theorem 10.5. Given an abductive framework 〈P,A, IC〉 and a query Q which are allowed
according to Definition 10.1, then any dynamic C-IFF derivation is a static C-IFF derivation
and viceversa.

10.2.2.1 Using C-IFF: notations
In the rest of this document, we will use the C-IFF procedure to realize (part of) some of the
computational models of the capabilities of a computee. Given an abductive logic program
〈P,A, IC〉 and a query Q, we will denote as follows the possible outcomes of (finite) C-IFF
derivations.

• 〈P,A, IC〉, Q `ciff(∆,Γ)
denotes that (∆,Γ) is an extracted answer for Q, i.e. there exists a derivation for Q with
a success leaf node N such that (∆,Γ) is the answer extracted from N .

• 〈P,A, IC〉, Q `cifffail
denotes that there is a derivation for Q terminating in leaf nodes all of which are failure
leaf nodes.

• 〈P,A, IC〉, Q `ciffflounder
denotes that there is a derivation for Q with no success leaf nodes and at least one don’t
know node.

73

10.2.2.2 Implementation of C-IFF

We have implemented C-IFF in SICStus Prolog, using a labeling technique for the constraint
solving step. The implementation is described in detail in deliverable D9 [5]. Here, it is worth
pointing out that in the implementation we have taken into account some heuristics which help
in reducing as much as possible the number of don’t know leaf nodes encountered in a derivation.
In particular, propagation is given priority with respect to unfolding of atoms in the body of
an integrity constraint, so that potential universally quantified variables are instantiated by
constants or existentially quantified variables. Some of the benefits of this technique is clarified
by the following example of using C-IFF.

10.2.3 C-IFF example

We illustrate C-IFF using the following example, by considering a subset of the abductive
event calculus theory used for planning (see Section 11.1). First, we consider the following
domain independent rules.

holds at(G, T2)← happens(A, T1), T1 < T2, initiates(A, T1, G), not clipped(T1, G, T2)
holds at(¬G, T2)← happens(A, T1), T1 < T2, terminates(A, T1, G), not declipped(T1, G, T2)
clipped(T1, G, T2)← happens(A, T), terminates(A, T, G), T1 ≤ T < T2

declipped(T1, G, T2)← happens(A, T), initiates(A, T, G), T1 ≤ T < T2

Moreover we also consider the following integrity constraint of the abductive event calculus
used in D4.

holds at(F, T), holds at(¬F, T)⇒ false

To get a more readable C-IFF derivation we simplify the above rules and integrity constraints
in the following way.

P :
h(G, T2)← ei(T1, G), T1 < T2, not c(T1, G, T2)
h(¬G, T2)← et(T1, G), T1 < T2, not d(T1, G, T2)
c(T1, G, T2)← et(T, G), T1 ≤ T < T2

d(T1, G, T2)← ei(T, G), T1 ≤ T < T2

IC :
h(F, T), h(¬F, T)⇒ false

Now we transform the logic program P into a completed logic program PC suitable for the
C-IFF procedure accomplishing the semantics given by CompA∪C (P).

PC :
h(X,Y)↔ ei(T1, G), T1 < T2, not c(T1, G, T2), X = G, Y = T2

h(X,Y)↔ et(T1, G), T1 < T2, not d(T1, G, T2), X = ¬G, Y = T2

c(X,Y, Z)↔ et(T, G), T1 ≤ T < T2, X = T1, Y = G, Z = T2

d(X,Y, Z)↔ ei(T, G), T1 ≤ T < T2, X = T1, Y = G, Z = T2

74

Note that the above completed program is not allowed with respect to definition 10.1. Hence,
we need to use the C-IFF with dynamic allowedness. We start a C-IFF derivation from the
starting query [h(p, 4), ei(1, p), et(2, p)] conjoined with the IC given above (variables in IC are
renamed before to conjoin them with the starting query).

G0 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false]

by Unfolding:

G1 = h(p, 4), ei(1, p), et(2, p),
[ei(T1, G), T1 < T2, not c(T1, G, T2), F s = G, Ts = T2,
h(¬Fs, Ts)⇒ false]

by Unfolding:

G2 = h(p, 4), ei(1, p), et(2, p),
[ei(T1, G), T1 < T2, not c(T1, G, T2), F s = G, Ts = T2,
et(T3, G1), T3 < T4, not d(T3, G1, T4), F s = G1, T s = T4 ⇒ false]

by Rewrite Rules for Eq (twice):

G3 = h(p, 4), ei(1, p), et(2, p),
[ei(T1, F s), T1 < T2, not c(T1, F s, T2), T s = T2,
et(T3, F s), T3 < T4, not d(T3, F s, T4), T s = T4 ⇒ false]

by Rewrite Rules for Eq (twice):

G4 = h(p, 4), ei(1, p), et(2, p),
[ei(T1, F s), T1 < Ts, not c(T1, F s, T s),
et(T3, F s), T3 < Ts, not d(T3, F s, T s), ⇒ false]

by Negation Elimination (twice):

G5 = h(p, 4), ei(1, p), et(2, p),
[ei(T1, F s), T1 < Ts, et(T3, F s), T3 < Ts⇒
c(T1, F s, T s) ∨ d(T3, F s, T s)]

by Propagation:

G6 = h(p, 4), ei(1, p), et(2, p),
[ei(T1, F s), T1 < Ts, et(T3, F s), T3 < Ts⇒
c(T1, F s, T s) ∨ d(T3, F s, T s)],
[T1 = 1, F s = p, T1 < Ts, et(T3, F s), T3 < Ts⇒
c(T1, F s, T s) ∨ d(T3, F s, T s)]

by Rewrite Rules for Eq (twice):

G7 = h(p, 4), ei(1, p), et(2, p),
[ei(T1, F s), T1 < Ts, et(T3, F s), T3 < Ts⇒
c(T1, F s, T s) ∨ d(T3, F s, T s)],
[1 < Ts, et(T3, p), T3 < Ts⇒
c(1, p, T s) ∨ d(T3, p, T s)]

75

by Propagation:

G8 = h(p, 4), ei(1, p), et(2, p),
[ei(T1, F s), T1 < Ts, et(T3, F s), T3 < Ts⇒
c(T1, F s, T s) ∨ d(T3, F s, T s)],
[1 < Ts, et(T3, p), T3 < Ts⇒
c(1, p, T s) ∨ d(T3, p, T s)],
[1 < Ts, T3 = 2, p = p, T3 < Ts⇒
c(1, p, T s) ∨ d(T3, p, T s)]

by Rewrite Rules for Eq (twice):

G9 = h(p, 4), ei(1, p), et(2, p),
[ei(T1, F s), T1 < Ts, et(T3, F s), T3 < Ts⇒
c(T1, F s, T s) ∨ d(T3, F s, T s)],
[1 < Ts, et(T3, p), T3 < Ts⇒
c(1, p, T s) ∨ d(T3, p, T s)],
[1 < Ts, 2 < Ts⇒
c(1, p, T s) ∨ d(2, p, T s)]

As we can see, in the frontier G9 (consisting of a single node) there is an implication with
only constraint atoms in the body which contain a universally quantified variable, namely Ts.
The node will eventually lead to a ”Don’t know” leaf node due to the fact that the completed
program PC is not allowed according with the definition 10.1.
Now, we show another derivation which terminates with a ”success” leaf node.

G0 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false]

by Propagation:

G1 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[Fs = p, T s = 4, h(¬Fs, Ts)⇒ false]

by Rewrite Rules for Eq (twice):

G2 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[h(¬p, 4)⇒ false]

by Unfolding:

G3 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, G), T1 < T2, not d(T1, G, T2), G = p, T2 = 4⇒ false]

by Rewrite Rules for Eq (twice):

G4 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, p), T1 < 4, not d(T1, p, 4) ⇒ false]

76

by Negation Elimination:

G5 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, p), T1 < 4 ⇒ d(T1, p, 4)]

by Propagation

G6 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, p), T1 < 4 ⇒ d(T1, p, 4)],
[T1 = 2, p = p, T1 < 4 ⇒ d(T1, p, 4)]

by Rewrite Rules for Eq (twice):

G7 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, p), T1 < 4 ⇒ d(T1, p, 4)],
[2 < 4 ⇒ d(2, p, 4)]

by Case Analysis for Constraints:

G8 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, p), T1 < 4 ⇒ d(T1, p, 4)],
[2 ≥ 4 ∨ d(2, p, 4)]

by Splitting:

G9 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, p), T1 < 4 ⇒ d(T1, p, 4)],
2 ≥ 4

∨
h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, p), T1 < 4 ⇒ d(T1, p, 4)],
d(2, p, 4)

by Constraint Solving:

G10 = false
∨

h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, p), T1 < 4 ⇒ d(T1, p, 4)],
d(2, p, 4)

by Logical Simplification:

77

G11 = h(p, 4), ei(1, p), et(2, p),
[h(Fs, Ts), h(¬Fs, Ts)⇒ false],
[et(T1, p), T1 < 4 ⇒ d(T1, p, 4)],
d(2, p, 4)

This time, the frontier G11 (consisting of a single node) does not contain any implication with
only constraint atoms in the body and universally quantified variables and the frontier G9 will
eventually lead to a ”success” leaf node.
This oversimplified example shows the importance of using an appropriate order of application
of the rewrite rules for C-IFF with dynamic allowedness.

10.3 Proof Procedures for LPwNF

This subsection studies the computational model of the framework of LPwNF which in turn
will provide computational counterparts of (a) the cycle operation of computees (see section 8)
and (b) the goal decision capability of a computee (see section 11.5). Its purpose is to define a
sound and complete derivability relation, `pr, for the preference reasoning |=pr of LPwNF as
defined in [63].

We will build `pr for LPwNF directly from its argumentation based semantics following
a standard method for computing argumentation. To do so we first develop, following [75],
an abstract argumentation based computational framework that can be realized via different
parametric variations of a simple proof theory. This proof theory is given in terms of derivations
of trees where each node in a tree contains an argument against its corresponding parent
node. The abstract proof theory forms the basis for developing concrete proof procedures
for query evaluation, obtained by adopting specific ways of computing attacks in the particular
argumentation framework. This then gives us a way to realize `pr. The proposed argumentation
framework (and its integration with abduction) has been implemented in the Gorgias system
(see [5]). From this an implementation for `pr is obtained.

The original LPwNF framework and its computational model are extended with dynamic
priorities as required by the computee model. We also incorporate abduction within LPwNF ,
despite the fact that this is not required to realise the basic computee model as currently
specified in [63], since it can provide a useful extension of the model to cope more fully with
the demands of the Global Computing environment in which computees operate.

10.3.1 Computing |=pr via argumentation: Argumentation frameworks

We first recap some of the basic theory of abstract argumentation and show how we can extend
the existing framework of LPwNF with dynamic priorities (and abduction) as required by the
KGP model.

Argumentation has recently been shown to be a useful framework for formalizing non-
monotonic reasoning and other forms of reasoning (see e.g. [10, 22, 36, 71, 95, 96]). In its
abstract form, argumentation can be seen as a form of preference reasoning under some given
relative strength of the arguments.

In general, an argumentation framework is a pair of a set of arguments and a binary attacking
relation between conflicting arguments. Here, an argument is defined as a set of sentences whose
role is primarily determined by its relations to other arguments.

Definition 10.4 (Abstract Argumentation Framework). An argumentation framework

78

is a pair (T ,A) where T is a theory in some background (monotonic) logic, and A is a binary
attacking relation on 2T , i.e. A ⊆ 2T × 2T .

We require that no set of sentences attacks the empty set and that the attacking relation is
monotonic and compact [75]. The basic notion of an admissible subset of a theory within the
abstract argumentation framework is given as follows.

Definition 10.5 (Admissibility). Let (T ,A) be an argumentation framework. A subset ∆ of
T is admissible iff ∆ is not self-attacking and for all sets of sentences A, if A attacks ∆, then
∆ attacks A.

A theory may admit several admissible sets which may be incompatible with each other.
Any proof theory for the admissibility extension semantics would therefore need to allow a
non-deterministic choice among such sets.

One way to realize the attacking relation is via a notion of conflict together with a notion
of strength of an argument. Conflicting arguments, i.e. arguments that have incompatible (e.g.
negative) conclusions between them, may coexist in a given theory. A concrete scheme of the
abstract attacking relation can employ an irreflexive strength (or qualification) relation that
specifies the scope of the conflict and the strength of the arguments under the given logical
framework.

We will study argumentation frameworks which can be formulated in this way via conflicts
and strength of arguments, as follows:

Definition 10.6 (Abstract Attacking Relation). Given φ, ψ ⊆ T and a strength relation

Q ⊆ 2T × 2T , φ attacks ψ with respect to Q, denoted by φ
Q
−→ ψ, iff conflict(φ, ψ) and

(φ, ψ) ∈ Q, denoted by φ �Q ψ or ψ �Q φ.

Furthermore, we can consider the problem of recovering the strength relation in terms of
a given priority relation < on the individual sentences in a theory, whose sets make up the
arguments, where r < r′ means that r has lower priority than r′. The role of this priority
relation is to encode locally the relative strength of rules in the theory. As we will see in the
next section, the priority relation can be reasoned about, just like any other predicate, and thus
it can be classified as either static or dynamic and first- or higher-order.

10.3.2 Logic programming without negation as failure

The framework of LPwNF can be seen as an argumentation framework of the form described
above. We will extend the original framework in two ways: (a) generalize the attacking relation
to be dynamic, and (b) integrate abduction. The first extension allows the strength of the
arguments to be non static depending on factors that can change and that themselves can
form part of the argumentative reasoning. The second extension allows us to deal with missing
information that can prevent us from constructing fully supported arguments. The integration
of abduction is done by extending the sets of arguments to include assumptions on abducible
predicates as additional arguments and assigning them an appropriate strength with respect
to the other arguments in the theory.

The background logic of LPwNF is given as follows.

Definition 10.7 (Background Logic). Formulae in the background logic L of the LPwNF
framework are defined as labelled rules of the form, label : l ← l1, ..., ln, where l, l1, ..., ln are

79

positive or explicit negative literals and label is a functional term. The derivability relation,
`, of the background logic is given by the single inference rule of modus ponens. This is also
denoted by |=H in some places.

Its strength relation extended so that it can capture dynamic priorities is defined as follows:

Definition 10.8 (Strength Relation via Priorities). Let φ, ψ ⊆ T be two conflicting argu-
ments16. Then, ψ �DY N φ iff (∃r ∈ φ, r′ ∈ ψ : φ ` r′ < r)⇒ (∃r ∈ φ, r′ ∈ ψ : ψ ` r < r′).

Note that in many cases we define the conflict relation between two sets of sentences via
an incompatibility relation between predicates, that extends explicit negation, so that two sets
are in conflict for every pair of incompatible conclusions that they derive respectively. More
specific details of this extension to dynamic priorities can be found in [73, 74] together with
some general computational properties and examples.

10.3.3 An Example theory of LPwNF

Consider the following part of the goal decision knowledge base KBGD of a computee describing
its simple policy for deciding how to respond to requests. This has two object-level generation
rules one for responding yes and the other for responding no (we are using here some of the
notation of the KGP model as described in deliverable [63]):

ry(Asker,RequestedNeed, yes) :
respond(Myself, Asker, need(RequestedNeed), yes)[ResponseT ime]←
holds at(request(Asker,Myself, need(RequestedNeed), RequestT ime), Tnow),
currently satisfiable(Myself,RequestedNeed),
response time(RequestT ime, Tnow, ResponseT ime).

rn(Asker,RequestedNeed, no) :
respond(Myself, Asker, need(RequestedNeed), no)[ResponseT ime]←
holds at(request(Asker,Myself, need(RequestedNeed), RequestT ime), Tnow)
incompatible current needs(Myself,RequestedNeed),
response time(RequestT ime, Tnow, ResponseT ime).

Here the ResponseTime in both rules can be either ground or an existentially quantified time
with some constraint to respond within a certain time from the request time. Note that we have:

incompatible(respond(M,A, need(RN), yes)), respond(M,A, need(RN), no)).

Left as it is this theory will be unable to decide how to respond when
for a particular request both currently satisfiable(Myself,RequestedNeed) and
incompatible current needs(Myself,RequestedNeed) hold. Both responses will be equally
admissible. In the original LPwNF framework we can express static (i.e. unconditional)
priorities on the rules and so we could include in the theory:

p1(A,RN) : rn(A,RN, no) > ry(A,RN, yes)

16Arguments in LPwNF are taken to be closed: i.e. a subset ∆ of T is closed iff it contains no rule whose
conditions are not derived (by the background logic) in ∆.

80

to express the policy of ”always refuse if you currently need the requested need yourself”.
This though would be too inlfexible and so dynamic priorities could be employed. For

example, we can condition the above with the urgency of the need for the requested need. So
we would have:

p1(A,RN) : rn(A,RN, no) > ry(A,RN, yes)← urgent(Myself,RN).
p2(A,RN) : ry(A,RN, yes) > rn(A,RN, no)← urgent(A,RN).
p3(A,RN) : ry(A,RN, yes) > rn(A,RN, no)← ¬urgent(Myself,RN).

expressing the policy to ”prefer to refuse requests for needs that you urgently need and prefer
to accept requests for needs that you do not need urgently or that are urgently needed by the
asker”. When the requested need is urgent for both the asker and yourself then the preference
to refuse is stronger unless the asker is your manager. This is captured with the higher-order
priorities:

c1(A,RN) : p1(A,RN) > p2(A,RN).
c2(A,RN) : p2(A,RN) > p1(A,RN)← manager(Asker,Myself).
d1(A,RN) : c2(A,RN) > c1(A,RN).

Note that the same admissibility semantics is applied for arguments that involve the priority
rules where for any pair of rule names Rule1 and Rule2 we have: incompatible(Rule1 >
Rule2, Rule2> Rule1).

Finally, consider the above example where the computee does not know if a requested need
is urgent for the asker who is its manager. Then the computee would decide, given that it knows
that this is urgent to it to refuse the request. But it maybe interested in finding out if there
is some possible situation under which he should accept. This can be done by incorporating
abduction on some predicates, such as urgent(Asker,RN), for which the computee cannot be
expected to have complete information. In the example, the computee would then derive that
under the condition (or hypothesis) that this is an urgent need for its manage, it should accept
the request. It can then check if this condition holds in the world.

10.3.4 Integrating Abduction

As we have illustrated above with the example, in several cases the admissibility of an argument
depends on whether we have or not some background information about the specific case in
which we are reasoning. However, this information may be just unknown (or incomplete)
and thus we need to find assumptions related to the unknown information under which we can
build an admissible argument. Furthermore, this type of information may itself be dynamic and
change while the rest of the theory remains fixed. To address this problem we can incorporate
abductive reasoning within our argumentation framework.

As usual for abduction in logic programming, we separate a distinguished set of predicates
in the language of the theory, called abducible predicates, that carry the incomplete information
of the given domain of discourse. Then, given a goal, abduction extends the theory with ground
abducibles so that it can satisfy the goal.

To integrate abduction with argumentation, we can consider the abducible facts (ground
literals) as a special type of sentences in our theory with the following strength relation on
abductive arguments:

81

Definition 10.9 (Strength Relation via Assumptions). Let α be an abducible fact and
φ, ψ ⊆ T . Then, φ �ABD ψ iff α ∈ ψ for some ¬α ∈ φ.

This clearly is a symmetric relation thus showing that amongst them the abducible argu-
ments have equal strength.

Furthermore, we extend the framework to allow us to split the theory into a definitional part
consisting of the logic program and an assertional part consisting of a set of integrity constraints
on the abducible predicates. These are rules in the same form as any other rule, but with an
abducible literal in its head. Then the arguments that are given by the integrity constraints
are stronger than any individual opposing abductive literal. This is expressed by extending the
strength relation as follows.

Definition 10.10 (Strength Relation via Integrity Constraints). Let α be an abducible
literal and φ, ψ ⊆ T such that α 6∈ ψ. Then, φ �IC ψ if and only if ψ ` α for some ¬α ∈ φ.

10.3.5 Computing Argumentation

In this section we develop, following closely [75], a proof theory for the abstract argumentation
framework introduced in the previous section. A proof theory can be used to decide whether
a given (variable-free or existentailly quantified with a time variable over some constraints)
query holds with respect to the given semantics. The different proof theories are based upon a
common computational framework, parametric with respect to the attacking relation. Different
instances of the attacking relation correspond to different semantics.

The proof theory then aims to detect whether a given query admits solutions. In this section
we will assume that an argument ∆0 for G is given and we will concetrate on the questions “Is
∆0 admissible?”, “If not, can ∆0 be made admissible?”, or “Is there an admissible superset ∆
of ∆0?”.

The proof theory is based upon the construction of admissible trees via derivation of partial
trees. In the trees we will consider, nodes are sets of sentences with each node labelled as
’attack’ or ’defence’. In the sequel, we will use the term node to refer both to a location in the
tree and to the set of sentences at this location.

Let us now define the notion of derivation of partial trees formally. In this definition we
assume a selection strategy identifying a node (in the current partial tree) to be handled next,
and we mark nodes that should not be selected further. Moreover, we record culprits chosen in
selected (and marked) attack nodes.

Definition 10.11 (Derivation). A derivation for a set of sentences ∆0 is a sequence of partial
trees T0, ..., Tn such that T0 consists only of the (unmarked) root ∆0 labelled as defence, and,
given Ti(i ≥ 0), if N is the selected (unmarked) node in Ti then Ti+1 is obtained as follows:

(α) if N is an attack node, choose a culprit c ∈ closure(N) and a minimal argument D against
c such that D attacks N with respect to some qualification relation. Then Ti + 1 is Ti

where N is marked, c is recorded as the culprit of N , and D is added as the (unmarked)
defence node child of N .

(δ) if N is a defence node, closure(N)∩ culprits(Ti) = ∅, then Ti+1 is Ti where N is marked,
the root is extended by N , and if A1, ..., Am(m ≥ 0) are all minimal attacks against N
then A1, ..., Am are added as additional (unmarked) attack nodes children of the root.

82

Definition 10.12. A successful derivation for a set of sentences ∆0 is a derivation of trees
T1, T2, ..., T for ∆0 such that all nodes in T are marked and all leaves in T are labelled as
defence. If the root of T is ∆, then we say that the derivation computes ∆ from ∆0.

Theorem 10.6 (Soundness). Let ∆0 be a closed set of sentences. If there exists a successful
derivation computing ∆ from ∆0, then ∆ is admissible and ∆0 ⊆ ∆.

Theorem 10.7 (Completeness). Let ∆0 be a closed set of sentences. If ∆ is an admissible
set of sentences such that ∆0 ⊆ ∆, then there exists a successful derivation computing ∆′ from
∆0, such that ∆0 ⊆ ∆′ ⊆ ∆ and ∆′ is admissible.

Sketch proofs of these results can be found in Appendix B.2.

10.3.6 A proof procedure for LPwNF and |=pr

The proof theory developed in the previous section can be specialized to give a proof procedure
for LPwNF by incorportating a specific way of computing minimal attacks.

The construction of an admissible set ∆ is done incrementally, starting from a given set of
sentences ∆0, by adding to ∆0 suitable defences for it. The existence of several admissible sets
reflects itself on the existence of several defences for a given ∆0, and imposes a non-deterministic
choice among defences in the proof procedure. However, not every potential defence can be
promoted to ∆0 as shown in [75].

We will assume that, actual nodes result from reducing (by resolution) a query G into a
closed and minimal set that concludes G. Moreover, during computation, we use the special
predicate “not” to record the non-existence of a priority constraint between rules in an argument
and its counterargument. This permits the monotonic growth of the admissible set ∆ during
the computation. We construct a counterargument for a given node, as formalized below:

Definition 10.13. Given an argument N , a counterargument N ′∪S′∪N ′′∪S′′ of N is obtained
as follows:

Basis: Choose a literal c ∈ closure(N) and construct a closed and minimal set N ′ such
that N ′ ∪ S′ ` c′ where c′ is in conflict with c and S ′ is a minimal set of assumptions.

Qualification: Choose any of the following such that N ′′ ∪ S′′ is a non-empty set:

– If there exists an abducible α ∈ N then S ′′ = {¬α}.

– If there exists an abducible α ∈ N then N ′′ is a closed and minimal subset of T
such that N ′′ ∪ S′′ ` ¬α where S′′ is a minimal set of assumptions, ¬α 6∈ N ′′, and
¬α 6∈ S′′.

– If there exist rules r ∈ N and r′ ∈ N ′ such that N ` r′ < r then N ′′ is a closed
and minimal subset of T such that N ′′ ∪ S′′ ` τ < τ ′′, where S′′ is a minimal set of
assumptions, τ ∈ N , and τ ′′ ∈ N ′. Otherwise, N ′′ = {not(r′ < r) | r ∈ N and r′ ∈
N ′}.

– If there exists not(L) ∈ N for some functional term L then N ′′ is a closed and
minimal subset of T such that N ′′∪S′′ ` L, where S′′ is a minimal set of assumptions.

Note that, the first three options in the qualification step correspond to the definitions of
�ABD,�IC , and �DY N .

83

Definition 10.14 (Derivability relations in LPwNF). Let T be a theory in LPwNF .
Then T `cred

pr L iff there exists a subset ∆0 of T such that ∆0 ` L and there is a successful
derivation of the above proof procedure for ∆0. The skeptical derivability relation, T `pr L, for
LPwNF is defined by T `cred

pr L and T 6`cred
pr L for any L such that incompatible(L,L) holds

from T under the background logic, `, of LPwNF .

The soundness and completeness of these derivability relations for theories of LPwNF whose
ground rules that they represent are finite, follow from the equivalence of the above definition
of attack with the original attacking relation in LPwNF and the Theorems 10.6 and 10.7 17.

Theorem 10.8 (Soundness and completeness of `cred
pr and `pr). Let T be a finite theory of

LPwNF . Then derivability relation `cred
pr is sound and complete with respect to |=cred

pr . Hence
the skeptical relation `pr is also sound and complete with respect to |=pr.

10.3.7 Implementation of the Proof Procedure for LPwNF

The proposed argumentation-based computational model for LPwNF has been implemented
in a general system, namely Gorgias, for argumentative deliberation and is available at
http://www.cs.ucy.ac.cy/ nkd/gorgias/. The computation of an argument in the Gor-
gias system can be seen as an interleaving of two phases: (a) the reduction of the query to
an initial set of rules18 together with hypotheses on the abducible predicates, and (b) the in-
cremental growth of the initial set to defence against all attacking arguments according to the
proof procedures presented above. Details of this implementation and the system can be found
in [5].

11 Capabilities computational models

Here we specify the computational models for the capabilities. Proofs of theoretical results
regarding these computational models are given in the Appendix.

11.1 Planning

11.1.1 KBplan and specification of |=τ
plan: recap

As the knowledge base KBplan used to represent the knowledge required for partial planning
we adopt (a variant of) the abductive event calculus, namely KBplan = 〈Pplan, Aplan, Iplan〉.
In the following specification of KBplan we adopt the notational conventions of the abductive
event calculus. In particular, an atom of the form holds at(G, T) stands for the fluent G holds
at time T and an atom of the form happens(A, T) stands for the action A takes place at time
T . In order to link these event calculus formulation to our time fluent and timed operators, we
extend the basic theory, originating from the conventional event calculus, with suitable bridge
rules.

• Pplan consists of two parts: domain-independent rules and domain-dependent rules. In
the sequel, we assume that 0 is the initial time.

17We are also assuming here that we are using with the above proof procedure for `cred
pr a sound and complete

realization, `, of the background monotonic relation |=H of LPwNF .
18The rules are identified by their labels and a partial valuation of the variables for each label.

84

Domain independent rules

holds at(G, T2)← happens(A, T1), T1 < T2, initiates(A, T1, G), not clipped(T1, G, T2)

holds at(¬G, T2)← happens(A, T1), T1 < T2, terminates(A, T1, G), not declipped(T1, G, T2)

holds at(G, T)← holds initially(G), 0 < T, not clipped(0, G, T)

holds at(¬G, T)← holds initially(¬G), 0 < T, not declipped(0, G, T)

clipped(T1, G, T2)← happens(A, T), terminates(A, T, G), T1 ≤ T < T2

declipped(T1, G, T2)← happens(A, T), initiates(A, T, G), T1 ≤ T < T2

clipped(T1, G, T2)← observed(¬G[], T), T1 ≤ T < T2

declipped(T1, G, T2)← observed(G[], T), T1 ≤ T < T2

holds at(G, T2)← observed(G[], T1), T1 ≤ T2, not clipped(T1, G, T2)

holds at(¬G, T2)← observed(¬G[], T1), T1 ≤ T2, not declipped(T1, G, T2)

happens(A, T)← executed(A[T ′], T), T ′ = T

happens(A(C), T)← observed(C,A[], T)

happens(A, T)← assume happens(A, T)

Domain dependent rules

Pplan also contains domain-dependent rules defining the predicates holds initially,
initiates, terminates, and precondition e.g.

holds initially(at(c, (1, 1)))

initiates(go(X,L1, L2), T, at(X,L2))← holds at(mobile(X), T)

terminates(go(X,L1, L2), T, at(X,L1)← holds at(mobile(X), T), L1 6= L2

precondition(go(X,L1, L2), at(X,L1))

• Aplan consists of the predicate assume happens.

• Iplan contains the following domain-independent integrity constraints:

holds at(F, T), holds at(¬F, T)⇒ false

assume happens(A, T)∧ precondition(A,P)⇒ holds at(P, T)

Given a plan P lan, we denote by EC(P lan) its representation in the event calculus formu-
lation, that is the conjunction

∧

〈a[t], , ,T c〉∈Plan

(happens(a, t) ∧ Tc)

Similarly, given a set of goals Goals, we denote by EC(Goals) its representation in the event
calculus formulation, that is the conjunction

∧

〈l[t], ,T c〉∈Goals

(holds at(l, t) ∧ Tc)

85

11.1.1.1 Specification of |=τ
plan

Let S = 〈KB,Goals, P lan〉 be a state, and Gs be the (non-empty) set of mental goals
{〈G1, G

′
1, T1〉, . . . , 〈Gn, G

′
n, Tn〉}. Then:

KB,P lan,Goals,Gs |=τ
plan {〈G1,A1s,G1s〉,

. . . ,
〈Gn,Ans,Gns〉}

where, for each j = 1, . . . , n

• either Ajs = Gjs = ⊥,

• or

Ajs = {(aj
1[t

j
1], T

j
1), . . . , (aj

mj
[tjmj

], T j
mj

)}, mj ≥ 0, each aj
i [t

j
i] is a timed operator and T j

i

are temporal constraints and

Gjs = {(lj1[s
j
1], S

j
1), . . . , (l

j
kj

[sj
kj

], Sj
kj

)}, kj ≥ 0, each lji [s
j
i] is a timed literal, and Sj

i are
temporal constraints,

such that:

(i) if T is the set of all temporal constraints in Gs,A1s, . . . ,G1s, . . ., Ans, . . ., Gns, together
with additional constraints ensuring that each new action must be executable in the fu-
ture, namely
T =

⋃

j=1,...,n Tj ∪
⋃

j=1,...,n,Ajs6=⊥,Gjs6=⊥

⋃

i=1,...mj
T j

i ∪
⋃

j=1,...,n,Ajs 6=⊥,Gjs 6=⊥
⋃

i=1,...kj
Sj

i ∪
⋃

j=1,...,n, i=1,...mj
tji > τ

then there exists a total Σ−valuation σ such that σ |=< T ∪ TCS

(ii) for each j = 1, . . . , n, with Gj = lj [tj], such that the sets Ajs,Gjs are not ⊥,

Pplan∧[
∧

i=1,...,mj
assume happens(aj

i , t
j
i)∧EC(P lan)∧

∧

`=1,...,kj
holds(lj` , s

j
`)∧EC(Goals\

Gs)]σ |=LP holds at(lj , tj)σ

(iii) Pplan ∧ [
∧

j=1,...,n,Ajs6=⊥,Gjs6=⊥

∧

i=1,...,mj
assume happens(aj

i , t
j
i) ∧ EC(P lan)]σ

∧[
∧

j=1,...,n,Ajs6=⊥,Gjs6=⊥

∧

i=1,...,kj
holds at(lji , s

j
i) ∧ EC(Goals)]σ |=LP Iplan

(iv) for each j = 1, . . . , n, such that Ajs = ⊥ and Gjs = ⊥, there exists no sets Xj , Yj with
Xj 6= ⊥, Yj 6= ⊥ such that the assignment Ajs = Xj and Gjs = Yj satisfies (i), (ii) and
(iii) above.

11.1.2 `τ
plan: Computational model for planning

The computational model for planning amounts at devising how an abductive proof procedure
can be used to generate partial plans for given goals. The basic proof procedure that we are
going to use is the C-IFF proof procedure introduced earlier in this document (see Section 10.1).
We need to properly state here what is the abductive framework which is going to be used by
C-IFF for planning.

Given KBplan as above, we first construct the abductive logic program KB+
plan as follows:

86

KB+
plan = 〈P+

plan, A
+
plan, I

+
plan〉

where:

• P+
plan is obtained from Pplan by adding the following rules:

holds at(G, T)← assume holds(G, T)

holds at(not G, T)← assume holds(not G, T)

• A+
plan = Aplan ∪ {assume holds} ∪ {time now}

• I+
plan is obtained from Iplan by adding the following constraints:

(i) holds at(G, T), assume holds(not G, T)→ ⊥

(ii) assume holds(G, T), holds at(not G, T)→ ⊥

(iii) assume happens(A, T), not executed(A, T), time now(T ′)→ T > T ′

The purpose of adding the constraints (i) and (ii) is to make sure that no fluent is assumed
to hold at a time when the contrary of the fluent holds. The addition of (iii) ensures that the
actions in the resulting plan that have not been executed yet will be executable in the future.

11.1.2.1 `τ
plan for a single goal

For clarity sake, we start from the case in which the set of goals to plan for is a singleton. In
this case, the computational model for planning amounts at running the C-IFF procedure using
the above abductive logic program KB+

plan, starting from an initial query which depends on:

• the goal to plan for, and

• the current state 〈KB,Goals, P lan〉

Initial query

Let S = 〈KB,Goals, P lan〉 be a state, τ be a time point and G = 〈l[t], , T c〉 be a mental goal.
Then, in order to compute the sets As,Gs such that

KB,P lan,Goals, {G} |=τ
plan {〈G,As,Gs〉 }

we run the C-IFF proof procedure with an initial query composed of the following conjuncts:

1. holds at(l, t) ∧ Tc ∧ not assume holds(l, t)

2. time now(τ)

3. assume holds(l′, t′) ∧ Tc′

for all goals 〈l′[t′], , T c′〉 in Goals \ {G}

4. assume happens(a′, t′) ∧ Tc′

for all actions 〈a[t], , T c〉 in P lan.

5. an equality t′ = τ ′ for each assertion in KB0 of the form:

87

executed(a[t′], τ ′), or

observed(l′[t′], τ ′).

The conjunct 1. represents the goal we are planning for, along with its temporal constraints.
Notice that the sub-conjunct not assume holds(l, t) ensures that the naif plan for G consisting
of assuming it is not returned (though this is not strictly needed given the specification of
|=τ

plan). The conjunct 2. represents the current time at which the capability takes place. The
conjuncts 3. and 4. represent the current state: notice that in 4. the goal G we are planning
for is not assumed to hold.
Finally, the conjuncts in 5. introduce the explicit bindings of the temporal variables corre-
sponding to actions which have already been executed and fluents which have already been
observed. These bindings can be retrieved from the KB0 component of the current knowledge
base.
Given a state S and a goal G, we denote by

Qplan(S,G)

the query constructed as above.

Application of C-IFF

Let S = 〈KB,Goals, P lan〉 be a state and G be a goal.

(i) if KB+
plan,Qplan(S,G) `cifffail or KB+

plan,Qplan(S,G) `ciffflounder then

{G} `τ
plan ⊥,⊥

(ii) if KB+
plan,Qplan(S,G) `ciff(∆,Γ), then:

{G} `τ
plan Gs,As

where

– Gs = {〈p[t], T c〉 | assume holds(p, t) ∈ ∆ ∧ Tc = Γ ↓ t}
\ {assume holds(p, t) ∈ ∆ | 〈p[t], , 〉 ∈ Goals}

– As = {〈a[t], T c〉 | assume happens(a, t) ∈ ∆ ∧ Tc = Γ ↓ t}}
\ {assume happens(a, t) ∈ ∆ | 〈a[t], , , 〉 ∈ P lan}

where Γ ↓ t is obtained as follows.

Γ ↓ t =
⋃

i≥0

Γi

where

– Γ0 = {c ∈ Γ | c is atomic and t occurs in c}

– Γi+1 = {c ∈ Γ | c is atomic and c contains a variable t′ occurring in Γi}

88

11.1.2.2 `τ
plan for multiple goals

When the planning capability is requested to plan for a set of goals {G1, . . . , Gn}, we run in turn
the C-IFF procedure for each goal Gi by taking into account, at each stage i, the partial plans
already constructed for the goals up to i− 1. More precisely, given a state 〈KB,Goals, P lan〉,
a time point τ and a set of goals {G1, . . . , Gn},

{G1, . . . , Gn} `
τ
plan {PP1, . . . , PPn}

where each partial plan PPi is obtained as follows:

(i) if KB+
plan,Q

i
plan(S,Gi) `cifffail or KB+

plan,Q
i
plan(S,G) `ciffflounder then

PPi = 〈⊥,⊥〉

(ii) if Qi
plan(S,Gi) `ciff (∆,Γ), then:

PPi = Gsi,Asi

where

– Gis = {〈p[t], T c〉 | assume holds(p, t) ∈ ∆ ∧ Tc = Γ ↓ t}
\ {assume holds(p, t) ∈ ∆ | 〈p[t], , 〉 ∈ Goals ∪

⋃

j<i Gs
j}

– Ais = {〈a[t], T c〉 | assume happens(a, t) ∈ ∆ ∧ Tc = Γ ↓ t}}
\ {assume happens(a, t) ∈ ∆ | 〈a[t], , , 〉 ∈ P lan ∪

⋃

j<iAs
j}

where Γ ↓ t is defined as in the previous section.

The above specification of `τ
plan for multiple goals refers to queries Qi

plan(S,Gi) which we define
as follows.

Initial query at stage i

The initial query Qi
plan(S,Gi) that we use to run C-IFF at stage i, depends on the current state

〈KB,Goals, P lan〉 and on the partial plans already constructed at the previous stages. Each
such query contains a fixed subquery which is obtained as in the case of a single goal, namely
Qplan(S,Gi). The further conjuncts of the query are constructed as follows.

6. assume holds(l′, t′) ∧ Tc′

for all goals 〈l′[t′], , T c′〉 in
⋃

j<i Gs
j

7. assume happens(a′, t′) ∧ Tc′

for all actions 〈a[t], , T c〉 in
⋃

j<iAs
j .

where, for each j < i, PPj = 〈Gsj ,Asj〉 is the partial plan already constructed for Gj . Notice
that, whenever PPj = 〈⊥,⊥〉, in 6. and 7. above we implicitly view ⊥ as the empty set of
goals and actions, respectively.

89

11.1.3 Properties of `τ
plan with respect to |=τ

plan

We give here the statement of the main theorem which provides us with the soundness of `τ
plan

with respect to the specification of |=τ
plan in the case of a single goal (for multiple goals the

theorems and proofs are similar). We can prove that, whenever `τ
plan returns an answer which

is not ⊥,⊥, this answer is correct with respect to the specification of planning (see Section
11.1.1).

Theorem 11.1 (Soundness of `τ
plan). Given a state 〈KB,Goals, P lan〉 and a mental goal

G ∈ Goals, if

{G} `τ
plan Gs,As

(with Gs 6= ⊥ and As 6= ⊥), then

〈KB,Goals, P lan〉, {G} |=τ
plan {〈G,As,Gs〉}.

The proof of this theorem can be found in the Appendix (see Section C.1).

11.2 Identification of Precondition

The capability |=pre supports the reasoning capability of identifying (observable) preconditions
for the executability of actions in P lan. This capability is used when an action has to be inserted
in the plan of the computee, namely within the PI and RE transitions, when they insert into
the state the outputs (goals and actions) of |=τ

plan (for mental goals) and |=τ
react, within the PI

transition, when it inserts into the state sensing actions for sensing goals, within SI, when it
inserts into the state actions for sensing the preconditions of other actions.

As presented in D4, this capability does not require a separate part of the knowledge base
KB. It is instead defined in terms of the knowledge base for planning, KBplan.

Below, in section 11.2.1, we give the specification of the Identification of Preconditions
capability with respect to (a part of) KBplan. More details and motivations about the contents
of this section can be found in D4. Then, in section 11.2.2, we define `pre in terms of C-IFF.
`pre is illustrated in section 11.2.3. Finally, in section 11.2.4, we state (and prove) soundness
and completeness results for `pre, wrt |=pre as specified in D4.

Note that the Identification of Preconditions capability is not specified abductively. We are
however using C-IFF to provide a computational counterpart to it in order to use the same tool
uniformely for as many capabilities as possible. However, note that we could even have used
SLD resolution for it.

11.2.1 Specification of |=pre

Given a state 〈KB,Goals, P lan〉 and a timed action operator a[t],

KB, a[t] |=pre Cs iff

• either there exists c such that Pplan |=LP precondition(a, c) and Cs =
∧
{c[t] | Pplan |=LP

precondition(a, c)}

• or, otherwise, Cs = true. 19

19We assume that true is a formula which is always entailed by KB.

90

11.2.2 `pre: Identification of Preconditions via C-IFF

This capability, as we have concretely defined it, involves hardly any reasoning. Indeed, the
presence within the event calculus formulation of KBplan of explicit precondition statements
greatly facilitates the realisation of this capability. Any proof procedure, even SLD-resolution,
would work as a computational counterpart of |=pre. We use C-IFF instead, as we are already
using it for other capabilities.

Let us first define as Ppre the set of all domain-dependent rules in Pplan defining the predicate
precondition. Note that Ppre is a set of logic programming facts.

Then, the computational counterpart `pre of |=pre can be defined as follows:

a[t] `pre Cs iff Cs =
∧

{c[t] |〈Ppre, {}, {}〉, precondition(a,X) `ciff ({}, {X = c})}

11.2.3 Example of `pre

Let us consider KBplan with

precondition(write(a, Y), have(connection))
precondition(write(a, Y), know address(Y))

and the timed operator write(a, b, t). Then, `pre will return

have(connection, t) ∧ know address(b, t)

since

〈Ppre, {}, {}〉, precondition(write(a, b), X) `ciff ({}, {X = have(connection)})
〈Ppre, {}, {}〉, precondition(write(a, b), X) `ciff ({}, {X = know address(b)})

11.2.4 Correctness and completeness of `pre wrt |=pre

Trivially, `pre is correct and complete wrt |=pre if C-IFF is correct and complete wrt |=LP .
In the specific case of 〈Ppre, {}, {}〉 C-IFF actually amounts at ordinary IFF, which in turns
actually amounts to SLD. Thus, the soundness and completeness results trivially hold.

11.3 Reactivity

11.3.1 KBreact and specification of |=τ
react: recap

The capability |=τ
react supports the reasoning capability of reacting to stimuli from the external

environment as well as to decisions taken while planning. 〈KB,Goals, P lan〉 |=τ
react Gs,As

stands for “the set of goals Gs and set of actions As are introduced in order to react to some
observation recorded in (the KB0 part of) the given KB or to some goals in Goals and actions
in P lan”.

As the knowledge base KBreact used to represent the knowledge required for reactivity we
adopt an extension of the knowledge base KBplan as follows.

KBreact = 〈Preact, Areact, Ireact〉
where

91

• Preact = Pplan

• Areact = Aplan = {assume happens}

• Ireact = Iplan ∪ RR

where RR is a set of reactive constraints, of the form

Body → Reaction ∧ Tc

where

• Body is a non-empty conjunction of items of the form

– observed(l[T]),

– observed(c, a[T ′], T ′′),

– executed(a[T ′]),

– holds at(l, T ′), where l[T ′] is a timed fluent literal,

– happens(a, T ′), where a[T ′] is a timed action operator, and

– temporal constraints;

• Reaction is either holds at(p, T), p being a fluent literal, or assume happens(a, T), a
being an action, and

• Tc are temporal constraints.

All variables in Body are implicitly universally quantified over the whole implication. All
variables in Reaction ∧ Tc not occurring in Body are implicitly existentially quantified on the
righthand side of the implication.

Intuitively, a reactive constraint Body ⇒ Reaction ∧ Tc is to be interpreted as follows: if
(some instantiation of) all the observations in Body hold in KB0 and (some corresponding
instantiation of) all the remaining conditions in Body hold, then (the appropriate instantiation
of) Reaction, with associated (the appropriate instantiation of) the temporal constraints Tc,
should be added to Goals or P lan (depending on the nature of Reaction).

11.3.1.1 Specification of |=τ
react

Given a state 〈KB,Goals, P lan〉,

KB,Goals, P lan |=τ
react Gs,As

where

• either Gs is a (possibly empty) set of pairs of the form 〈l[t], T c〉, l[t] being a timed fluent
literal and Tc being a temporal constraint, and As is a (possibly empty) set of pairs of
the form 〈a[t], T c〉, a[t] being a timed action operator and Tc being a temporal constraint,

• or Gs = As = ⊥.

If there exist sets X s and Ys satisfying the following conditions:

92

(i) X s is a (possibly empty) set of pairs of the form 〈l[t], T c〉, l[t] being a timed fluent literal
and Tc being a temporal constraint, and Ys is a (possibly empty) set of pairs of the form
〈a[t], T c〉, a[t] being a timed action operator and Tc being a temporal constraint,

(ii) there exists a total Σ-valuation σ such that σ |=< TCSnr ∧ T , where TCSnr is the
conjunction of all temporal constraints in Goalsnr and P lannr, and T is the conjunction
of all temporal constraints in X s and Ys, namely

TCSnr =
⋃

〈l[t], ,T c〉∈Goalsnr Tc ∪
⋃

〈a[t], , ,T c〉∈Plan(Tc ∧ t > τ)

and

T =
⋃

〈h[t],T c〉∈Xs Tc ∪
⋃

〈a[t],T c〉∈Ys(Tc ∧ t > τ), and

(iii) Preact ∧ EC(P lannr)σ ∧ EC(Goalsnr)σ ∧
∧

〈l[t], 〉∈Xs holds at(l, t)σ ∧∧

〈a[t], 〉∈Ys assume happens(a, t)σ |=LP Ireact

then Gs = X s and As = Ys.
Otherwise, if there exist no such sets X s and Ys, then Gs = As = ⊥.

11.3.2 `τ
react: Computational model for reactivity

Given KBreact, we first construct the abductive logic program KB+
react as follows:

KB+
react = 〈P+

react, A
+
react, I

+
react〉

where:

• A+
react = Areact ∪ {assume holds} ∪ {time now}

= {assume happens, assume holds, time now}

• I+
react is obtained from Ireact by making three changes:

(I1) replacing the constraint
assume happens(A, T) ∧ precondition(A,P)→ holds at(P, T)
with
assume happens(A, T) ∧ precondition(A,P)→ assume holds(P, T)

(I2) adding three additional integrity constraints:

holds at(G, T), assume holds(not G, T)→ ⊥

assume holds(G, T), holds at(not G, T)→ ⊥

assume happens(A, T), not executed(A, T), time now(T ′)→ T > T ′

(I3) replacing every reactive constraint of the form

Body(terms1)→ Reaction(terms2) ∧ Tc(terms3)

where terms1, terms2 and terms3 are vectors of terms, and terms2 or terms3
possibly contain existentially quantified variables, with a new constraint

Body(terms1)→ P (vars′),

where vars′ are all the variables occurring in terms1 which also occur in terms2 or
terms3, namely vars′ = (vars(terms2) ∪ vars(terms3)) ∩ vars(terms1) and P is a
new predicate not occurring anywhere else in Preact or Areact. The new predicates
P introduced in this way for such reactive constraints must all be distinct from one
another.

93

• P+
react is obtained from Preact by adding the following rules:

(P1) holds at(G, T)← assume holds(G, T)

(P2) holds at(not G, T)← assume holds(notG, T)

(P3) P (vars′)← Reaction(terms2) ∧ Tc(terms3)
for each reactive constraint of the form

Body(terms1)→ Reaction(terms2) ∧ Tc(terms3)
that has been replaced in I+

react by
Body(terms1)→ P (vars′).

In I+
react the purpose for the change in (I1) is to avoid planning in the reactivity capability. The

purpose of the rewriting in (I3) is that C-IFF (as well as the original IFF) does not deal with
existentially quantified variables in the heads of integrity constraints, and it does not deal with
conjunctions in the heads of integrity constraints. The simple rewriting of (I3) together with
the addition (P3) sin P+

react converts the reactive constraints to a form suitable for C-IFF. This
is illustrated in the following example.
Consider the reactive rule

happens(a, T), holds at(p, T)→ happens(b, T ′) ∧ T ′ > T
This is rewritten to give a new constraint

happens(a, T), holds at(p, T)→ P (T)
and a new rule

P (T)← happens(b, T ′) ∧ T ′ > T .

The computational model for reactivity amounts at running the C-IFF procedure starting from
an initial query which depends on the current state 〈KB,Goals, P lan〉.

Initial query

Given a state 〈KB,Goals, P lan〉, and a time point τ , to compute Gs, As such that

KB,Goals, P lan |=τ
react Gs,As

the initial query to the C-IFF proof procedure will be the conjunction of

1. time now(τ)

2. assume holds(l, t) ∧ Tc
for all non-reactive goals 〈l[t], , T c〉 in Goals.

3. assume happens(a, t) ∧ Tc
for all non-reactive actions 〈a[t], , TC〉 in P lan.

4. an equality t′ = τ ′ for each assertion in KB0 of the form:

executed(a[t′], τ ′), or

observed(l′[t′], τ ′).

The previous query will be referred to as Qreact(S).

94

Application of C-IFF

Let S = 〈KB,Goals, P lan〉 be a state.

(i) if KB+
react,Qreact(S) `cifffail or KB+

react,Qreact(S) `ciffflounder then

`τ
react ⊥,⊥

(ii) if KB+
react,Qreact(S) `ciff(∆,Γ),

then:
`τ

react Gs,As

where

– Gs = {〈p[t], T c〉 | assume holds(p, t) ∈ ∆ ∧ Tc = Γ ↓ t}
\ {assume holds(p, t) ∈ ∆ | 〈p[t], , 〉 ∈ Goals}

– As = {〈a[t], T c〉 | assume happens(a, t) ∈ ∆ ∧ Tc = Γ ↓ t}}
\ {assume happens(a, t) ∈ ∆ | 〈a[t], , , 〉 ∈ P lan}

where Γ ↓ t is defined as in Section 11.1.2.

11.3.3 Properties of `τ
react with respect to |=τ

react

We give here the statement of the theorem which provides us with the soundness of `τ
react with

respect to the specification of |=τ
react. We can prove that, whenever `τ

react returns an answer
which is not ⊥,⊥, this answer is correct with respect to the specification of reactivity (see
Section 11.3.1).

Theorem 11.2 (Soundness of `τ
react). Given a state 〈KB,Goals, P lan〉, if

`τ
react Gs,As

(with Gs 6= ⊥ and As 6= ⊥), then

〈KB,Goals, P lan〉 |=τ
react Gs,As.

The proof of this theorem can be found in the Appendix (see Section C.3).

11.4 Temporal Reasoning

This section studies the Temporal Reasoning capability |=TR of the KGP model for computee
and proposes a computational model for it. This model is based on the “standard” compu-
tational model of abductive reasoning in ALP and can be implemented, for an appropriately
restricted class of temporal reasoning knowledge bases, by any sound and complete proof pro-
cedure on this class of ALP theories. In particular, we will adopt the C-IFF proof procedure
presented in Section 10.1. Formal properties of the computational model are stated and sketch
proofs of these are provided in Appendix C.2.

The computational model for Temporal Reasoning is introduced in several steps of increas-
ing complexity. First, the form of the temporal reasoning theories and the specification of this
reasoning is recapped and some examples of use are provided. We then introduce a set of

95

assumptions on the temporal theories which we relax gradually as we develop further the com-
putational model. Some of these extensions are used by other components of the computational
model. Others are not used in the current simplified (with respect to the original KGP model in
D4) computational model, but represent a valuable support for future extensions, as envisaged
in Deliverable D4. For the ease of reading, the latter are detailed in Appendix A. Examples
are provided, explaining the different aspects of TR supported by the developed computational
model. Finally, the results obtained are summarised.

Our approach is based on the property, which we can call the desert property. This property
was introduced in [65] to implement the language E. We follow this approach by exploiting the
translation of the temporal reasoning theories of computees from the language E. A desert is
a time interval without significant events, i.e., in the basic case, without action occurrences.
According to the interpretation of the Abductive Event Calculus [107, 42, 108, 72] on which
Temporal Reasoning is based, within a desert the theory and the facts that hold in any time
point of the desert, are identical at all the time points in the desert. This allows us to restrict
our attention to a finite set of time points called oasis points,20 which typically are those points
in which changes occur. Exploiting this property the ALP computation becomes ground and
thus can be implemented easily through any ALP proof procedure.

11.4.1 KBTR and specification of |=TR: recap

Temporal reasoning theories KBTR are ALP theories of an extended form of abductive event
calculus translated from the language E. A KBTR theory is an abductive logic program
〈PTR, ATR, ITR〉 where:

• PTR contains the following domain independent rules, which determine how properties
(fluents) are caused by events and how they persist forwards in time (here we assume that
0 is the initial time point, as we have done in Section 11.1, F, F1, . . . Fk are fluent literals,
A is an action, and C a computee name. T, T1, ... are time variables.):

holds at(F, T2)← happens(A, T1), T1 < T2, initiates(A, T1, F), not clipped(T1, F, T2)

holds at(¬F, T2)← happens(A, T1), T1 < T2, terminates(A, T, F), not declipped(T1, F, T2)

holds at(F, T2)← observed(F, T1), T1 ≤ T2, not clipped(T1, F, T2)

holds at(¬F, T2)← observed(¬F, T1), T1 ≤ T2, not declipped(T1, F, T2)

holds at(F, T)← assume holds(F, 0), not clipped(0, F, T)

holds at(¬F, T)← assume holds(¬F, 0), not declipped(0, F, T).

clipped(T1, F, T2)← happens(A, T), terminates(A, T, F), T1 ≤ T < T2

declipped(T1, F, T2)← happens(A, T), initiates(A, T, F), T1 ≤ T < T2

happens(A, T)← executed(A, T) (T 6= 0)

happens(A(C), T)← observed(C,A[T],) (T 6= 0)

We also have the rules:

20We will see below that this static separation of oasis points can be further refined depending on the query
at hand.

96

observed(F, T)← happens(A, T), precondition(A,F)

observed(¬F, T)← happens(A, T), precondition(A,¬F)

We have assumed that no events occur at time 0. The predicates executed/2, observed/2
and observed/3 are evaluated from the theory KB0. Note that the execution of all events
is assumed to have been successful (though their initiation or termination of fluents may
not be so).

• PTR also contains domain dependent rules for observed(F, 0), which replace
holds initially, and for initiates, terminates and precondition. Given an action
A and a fluent F the user can include either a strict effect rule of the form:

initiates(A, T, F)← holds at(L1, T), . . . , holds at(Lk, T)

or (but not both) a default effect rule of the form:

initiates(A, T, F)← holds at(F1, T), . . . , holds at(Fk, T), not contrary(F, T)

Similarly, for terminates.

The domain-independent axioms for contrary are:

contrary(F, T)← evidence(¬F, T1), T1 > T, not clipped(T, F, T1)

contrary(¬F, T) ← evidence(F, T1), T1 > T, not declipped(T, F, T1)

with evidence given by:

evidence(F, T)← observed(F, T)

evidence(¬F, T)← observed(¬F, T)

The rules for precondition take the simple form:

precondition(A,F)

• ATR consists of the all the ground instances of assume holds(F luentLiteral, 0)

• ITR contains the following integrity constraints

holds at(F, T), assume holds(¬F, T)⇒ false

holds at(¬F, T), assume holds(F, T)⇒ false

holds at(F, T), holds at(¬F, T)⇒ false

97

We refer to the temporal reasoning theory as KBTR. It includes the domain depen-
dent part of the theory, e.g. initiates/3 predicate, and the dynamic part of the knowledge
(observed/2, observed/3, executed/3 predicates), which we specifically refer to as KB0, and
call a narrative or scenario. Note that we use for Temporal Reasoning a simplified representa-
tion with respect to the model in Deliverable D4. For instance, we represent the observation
observed(a[t], t′), as observed(a, t), since we do not reason about the “update” time, i.e. the
time at which facts are perceived. Given an abductive logic programKBTR as presented above,
containing a specific databaseKB0 of observations and event occurrences, and a (ground) timed
fluent literal fl[t], |=TR can be defined in two alternative ways.

credulous |=TR (|=cred
TR): KBTR |=cred

TR fl[t]

iff there exists a set ∆ of (ground) atoms in the predicates in ATR such that

1. PTR ∪∆ |=LP holds at(fl, t),

2. PTR ∪∆ |=LP ITR.

Intuitively, condition 1 says that the timed fluent under consideration is entailed by ap-
propriately “completing” the logic program in KBTR by means of a set of assumptions
∆ from ATR and condition 2 says that the “completed” PTR ∪ ∆ satisfies the integrity
constraints in KBTR.

skeptical |=TR (|=skep
TR): KBTR |=

skep
TR fl[t] iff

• KBTR |=cred
TR fl[t], and

• KBTR 6|=cred
TR fl[t],

where, if fl is a (positive) fluent literal f , then fl = ¬f , and, if fl is a (negative) fluent
literal ¬f , then fl = f .

In the sequel we will assume that |=TR, if not differently specified, amounts to |=skep
TR .

This specification can be extended for the case where KBTR ∪KB0 is inconsistent as given
in deliverable D4 [63]. This is also discussed briefly in Section A.3.

11.4.1.1 Examples of |=TR

A simple first example is as follows. Consider the following domain specific knowledge of a
computee:

initiates(switchOn(Bulb), T, light)←
holds at(¬broken(Bulb), T).

together with the particular scenario knowledge in KB0 of:

executed(switchOn(bulb), 2).
observed(¬light, 4).

98

From this we can derive (skeptically) that light does not hold at any time and broken(bulb)
holds at all times.

A second example is as follows. A computee has the domain specific knowledge:

initiates(email(Bob,Message), T, has(Bob,Message))←
holds at(¬at meeting(Bob), T),
not contrary(has(Bob,Message), T).

initiates(email(secretary(Bob),Message), T, has(Bob,Message))←
holds at(urgent(Message), T),
holds at(at meeting(Bob), T),
not contrary(has(Bob,Message), T).

and the scenario knowledge in KB0:

executed(email(bob,message), 2).
executed(email(secretary(bob),message), 2). The email is cced to the secretary.
observed(urgent(message), 0).

Then we should conclude (skeptically) that has(bob,message) holds true for any time after 2
despite the fact that we do not know if bob is at a meeting or not. Continuing this example
suppose that the computee subsequently finds out that:

observed(at meeting(bob), 1).
observed(¬has(bob,message), 4).

Then the computee will change its conclusion to ¬has(bob,message) holds for any time after 2
recognizing that its email actions have failed to produced their (default) effect.

11.4.2 `TR: Computing temporal reasoning via ALP proof procedures

The computational model for |=TR relies on the idea of considering the time line according to
its significant points, i.e. a minimal set of points which will guarantee a correct and complete
interpretation of what happens and what holds as time passes by. Such points depend on the
working hypotheses adopted. As the hypotheses become less restrictive, the computational
model becomes less efficient. Intuitively speaking, the temporal reasoning proof procedure
restricts its attention to a “projection” of the theory over significant points, which are finite
in number (the more restrictive the assumptions the fewer the number of these points, and of
the possible projections). The computation can then be restricted to this projected theory that
can be explored by means of an abductive proof procedure, such as the C-IFFproof procedure
presented in Section 10.1.

We first present the assumptions adopted and how these can be relaxed gradually so that
we can develop a “hierarchy” of computational models alongside these.

The full set of initial assumptions on the KBTR theories and queries are as follows.

99

1. All queries KBTR |=TR fl[t] are fully ground.

2. All the observations (of fluents and actions) in KB0 have associated a ground known time.

3. The theory KBTR ∪KB0 is consistent, i.e. there is at least one set of abducibles ∆ such
that KBTR ∪KB0∪∆ satisfies the constraint holds(FL, T), holds(¬FL, T)⇒ false and
the other domain specific integrity constraints if they exist.

4. The number of observed events, i.e. observed and executed facts in KB0, is finite (and
time flows in discrete steps from the initial time instant 0).

5. The theoryKBTR∪KB0 does not contain the concurrent execution of actions that initiate
and terminate the same fluent.

As explained above the theory will be developed gradually in order to relax some of these
assumptions. In particular, Section 11.4.3 shows how Assumption 1 can easily be relaxed to
allow for more expressive queries. Assumption 2 will also be relaxed in Section A.1 in order to
allow events whose occurrence cannot be assigned at a single known time point but at a time
point within an interval. This in turn will help up relax Assumption 3 and also allow us to
reason with the Plan that the computee is currently committed to execute in the future, as
shown in Section A.3. The following hierarchy informally illustrates the above mentioned cases.

Ground Narrative and Ground Queries. Both the narrative part of the theory (i.e. KB0)
and the queries are ground.

This assumption allows us to know exactly the time points at which actions occur, and
hence, to be able to “project” and check the universally quantified integrity constraints
needed by the theory over a finite number of time points.

Under these initial (relatively strong) assumptions the temporal reasoning capability is
suitable for its current use in Goal Decision and simplified forms of the Revision Transi-
tions.

Example 1. Let us consider a computee in charge of maintenace, having in its Goal
Decision theory a rule for repairing broken bulbs. The rule, that will be subject to a
given priority not shown here, requires that if a bulb is known to be broken, it has to be
changed/repaired. According to the model, the following rule refers to the current time
when Goal Decision is applied by means of the special term now.

rrepair bulb(bulb) :

repair(bulb)[RT] ← holds at(broken bulb, now),

repair time(now,RT).

Goal Decision capability relies on the Temporal Reasoning capability in order to check
whether the predicate holds at(broken bulb, now) of the rule, which refers to the ground
time now, does or does not hold with respect to KBTR and the current narrative in KB0.
Supposing that

initiates(switch on, T, light) ← holds at(neg(broken bulb), T).

100

is a domain dependent rule in KBTR, then a ground narrative containing the observations

executed(switch on, 10).
observed(neg(light), 20).

will imply, via Temporal Reasoning, the ground fact holds at(broken bulb, now), for any
time now bigger or equal to 20.

Ground Narrative, Quantified queries. It is easy to relax from the previous case of as-
sumptions the assumption that queries are ground, and deal with queries that refer to
time variables which may be existentially or universally quantified over an interval. Ac-
cording to the same principle, such a quantified query can be proved by proving the query
in one significant ground time point of the interval, in the case of existential quantification,
and in all the significant ground points of the interval, in case of universal quantification.

This step of extension allows a more general form of the rules in Cycle and Goal Decision
and stronger forms of the Revision Transitions.

Example 2. Let us consider again the example about the maintenace computee, having
a more elaborate rule. The rule requires that a broken bulb has to be changed/repaired if
a room has been booked in the next five hours. Moreover, the rule fixes the deadline for
changing the bulb to within a reasonable time (again, according to the model, when the
rule is applied the special term now refers to the ground current time).

rrepair bulb(bulb) :

repair(bulb)[RT]←

holds at(broken bulb, now),

holds at(booked room, T), now < T, T < now + 300,

repair time(now,RT).

Goal Decision, in this case, relies on Temporal Reasoning in order to check whether the
existential quantified predicate holds at(booked room, T), now < T, T < now + 300 does
or does not hold. The predicate refers to a time point between now and the next five hours.

Consider at time now = 30 the computee has in its KB0 the following ground narrative:

executed(switch on, 10).
observed(neg(light), 20).
observed(booked room, 40).

Then the existential query holds at(booked room, T), 30 < T, T < 30 + 300, that will be
generated in the computation of Goal Decision for Temporal Reasoning, will succeed (note
that the query holds skeptically, since any explanation for holds at(neg(booked room), T),
with 30 < T < 330, would clash with the observation observed(booked room, 40).).

Note here that the last observation observed(booked room, 40) means that the computee
knows that the room is booked at time 40. It has observed this at some time before now
(which is 30), say at 25. As said, the proper D4 syntax would require this to be recorded
as observed(booked room[40], 25), but we will use the above representation as we do not
reason about the “update” times.

101

Narrative with existential actions, ground (and quantified) queries. This is the more
complex case, where the theory allows for actions which may occur at existentially quan-
tified time points. These times of the actions may be constrained but they are not known
precisely. The problem is known to be difficult, because of all the consequences that
all the possible interleaving of such actions can induce on what is entailed and what is
not entailed by the theory. Our approach consists of suitably projecting the quantified
variables of the theory, according to their possible temporal constraints, over significant
points of the time line. A suitable combination of the techniques used in this and in the
previous case, allows quantified queries to be used together with quantified actions in the
theory.

We expect that the computational complexity, mainly due to the combinatorial nature of
the problem, can be controlled by means of syntactical analysis of the (domain dependent)
theory. For instance, we are currently investigating “query relevancy” functions used to
prune away from the computation fluents and actions that are independent from the
current query.

Example 3. Let us consider the computee in charge of maintenace facing new informa-
tion coming from its environment. The new information has been acquired by a Passive
Observation (PO) step. Then, after that it has been decided in the previous step to repair
the bulb, the cycle may prompt the computee to perform Goal Decision, and consider again
the same rule (but now at now = 50):

rrepair bulb(bulb) :

repair(bulb)[RT]←

holds at(broken bulb, now),

holds at(booked room, T), now < T, T < now + 300,

repair time(now,RT).

Now, the Temporal Reasoning capability is required to prove (skeptically) the query
holds at(booked room, T), 50 < T, T < 50 + 300, being at the moment now = 50. The
narrative currently is

executed(switch on, 10).
observed(neg(light), 20).
observed(booked room, 40).

observed(neg(booked room), 60).

which is clearly inconsistent, implying that the fluent booked room and the fluent
neg(booked room) hold at the same time, for instance at the time 60 (the former by
persistence, the latter by direct observation). We assume that this inconsistency has been
detected (see Section A.3 how this could be done).

The inconsistency of the theory arises from the lack of the knowledge of an action,
cancel reservation say, which terminated booked room, and could have occurred in be-
tween 40 and 60. Let us suppose, for the moment, that the Planning capability, or Tem-
poral Reasoning itself, can provide such an explanation, and therefore the (full) narrative

102

of the computee now becomes:

executed(switch on, 10).
observed(neg(light), 20).
observed(booked room, 40).

observed(neg(booked room), 60).
executed(cancel reservation, T), 40 ≤ T, T < 60.

where T is an existentially quantified variable. The above query
holds at(booked room, T), 50 < T, T < 50 + 300, is not anymore skeptically en-
tailed by KBTR. Indeed, the action cancel reservation could have been executed (could
be assumed to occur, equivalently) either before or after 50, and, consequently, there can
be or cannot be instants between 50 and 350 in which the room is booked. Therefore, the
computee does not have anymore (skeptically speaking) the goal of repairing the bulb.

Given this extension, Temporal Reasoning can be used for the full specification of the
Revision Transitions where it is required to test fluents in the future. More importantly
perhaps, this will allow the computee to reason with narratives that otherwise would make
its temporal knowledge base inconsistent. The computee can resolve the inconsistency by
assuming that some such existentailly quantified events have occurred. It would then have
a consistent theory and will be able to reason with this to draw conclusions.

Resolving Persistence Inconsistency In this final phase we study how to generate, ex-
ploiting planning techniques, existentially quantified actions to resolve inconsistency in
the temporal theory. We study how to detect persistence inconsistency of the theory and
how it can be resolved via such minimal assumptions of events.

This aims to weakening the assumption of consistency of the initial theory to simply
classical consistency, i.e. inconsistency of the KB0 alone together with the integrity
constraints ITR (see [64] for a study of the different forms of inconsistency in a temporal
reasoning theory).

11.4.2.1 A computationally viable interpretation of |=TR

The formal definition of |=TR can be reformulated via an entailment-preserving transforma-
tion that makes it computationally viable. This entailment-preserving transformation is based
on the idea that changes are only possible at specific time points, namely when an action is
executed. Under the assumptions from 1 through 5 made in Section 11.4.2, there are no actions
in the theory that occur at a non-ground time. This allows us to focus our analysis, in par-
ticular as far as (universally quantified) integrity constraints satisfaction is concerned, to those
significant points only, which are finite in number. In particular, each derivation is preceded by
a preprocessing phase, which instantiates the integrity constraints to a finite number of ground
time values, thus making universal quantification over time variables manageable.
The following definition determines the time points of interest.

Definition 11.1. Given a narrative, KB0 (or, more generally, a theory KBTRcontaining
KB0), with executed/2, observed/2 and observed/3 predicates, and a ground fluent literal
fl[tn+1] (corresponding to the query holds at(fl, tn+1)), the relative time line TL is the (max-
imal) totally ordered sequence of ground instants

TL = [0 = t0, t1, ..., tn, {tn+1}],

103

where ∀ i ∈ [1, . . . , n] (∃ observed(c, a[ti], τi) ∈ KB0 ∨ ∃ executed(a, ti) ∈ KB0), and {tn+1}
means that the time instant of the query may need to be added to the sequence if tn+1 is a time
instant beyond the last observation in KB0.

Example 4. Considering the narrative in KB0 presented in the Example 1:

executed(switch on, 10).
observed(neg(light), 20).

and the query happens(broken bulb), 30), the relative time line is

[0, 10, 30].

Informally speaking, the last condition about the time point of the query is due to the lack
of backward persistence of observations, in general, and of the fluent of the query in particular.
Even if the theory is consistent in the sense of Assumption 3, the query may be inconsistent
with the theory. Considering, if necessary, the query point in the time line, guarantees that
the compatibility of the query fluent with the other fluents, possibly holding at previous time
instants, is checked at that specific point. (Note that forward persistence guarantees that all the
fluents holding after the last observation in KB0 still hold at the query time point). Otherwise,
there would not be a significant point where the fluent of the query is checked against previous
fluents, since it does not back persist.

Proposition 11.1. Given the theory 〈PTR, ATR, ITR〉, a fluent literal fl[t], the relative time
line TL = [t0, ..., tn+1], and a set ∆ ⊂ ATR of abducibles then:

∀ i = 0, ..., n ∀ t ∈ [ti+1, ti+1] PTR∪ ∆ |=LP holds at(fl, t) ⇔ PTR∪ ∆ |=LP holds at(fl, ti+1).

Consequently, each interval [ti + 1, ti+1] is called a desert, where nothing changes, and, hence,
the point ti + 1 is an oasis.

Proposition 11.2. Given the theory 〈PTR, ATR, ITR〉, a fluent literal fl[t], the relative time
line TL = [t0, ..., tn+1], and a set ∆ ⊂ ATR of abducibles then:

∀ i = 0, ..., n ∀ t ∈ [ti + 1, ti+1] PTR ∪∆ |=LP ITR(t) ⇔ PTR ∪∆ |=LP ITR(ti + 1),

where ITR(ti+1) is obtained from ITR by grounding all the universally quantified (time) variables
of the integrity constraints to the value ti + 1.

Proposition 11.3. Given the theory 〈PTR, ATR, ITR〉, a fluent literal fl[t], the relative time
line TL = [t0, ..., tn+1], and a set ∆ ⊂ ATR of abducibles then:

PTR |=
cred
TR holds at(fl, t) ⇔ ∃ ∆ PTR ∪∆ |=LP holds at(fl, t) ∧

∀ i = 0, ..., n PTR ∪∆ |=LP ITR(ti + 1).

11.4.2.2 A computational model for credulous reasoning over deserts and oases

Proposition 11.3, which can be read as

〈PTR, ATR, ITR〉 |=
cred
TR fl[t]⇔ 〈PTR, ATR, ITR(t0 + 1) ∧ · · · ∧ ITR(tn + 1)〉 |=cred

TR fl[t],

104

provides us with a viable computational model for |=cred
TR , by permitting us to check the uni-

versally quantified integrity constraints, such as holds(FL, T), holds(¬FL, T) ⇒ false and
possibly other user defined similar constraints, at oases points only.

Notice that the left hand side of the implication, where the query and the integrity con-
straints are ground, straightforward corresponds to a computational model once that |=cred

TR is
replaced by its definition in term of abductive logic programming, and hence by the correspond-
ing computational model, i.e.

〈PTR, ATR, ITR(t0 + 1) ∧ · · · ∧ ITR(tn + 1)〉 `ALP fl[t],

The following specification provides an operational counterpart of this approach by embed-
ding the underlying Abductive Logic Program computational model, and performing the trans-
formation of the theory consisting in appropriately making ground the integrity constraints.
This schema will be followed also for the extensions of this core computational model, pre-
sented in the rest of this document.

query credulous TR(〈PTR, ATR, ITR〉,KB0, f l[t], A) ←
extract oases(KB0, O),
instantiate constraints(ITR, O,OITR),
prove credulously TR(〈PTR, ATR, OITR〉,KB0, f l[t], A).

extract oases(KB0, O) ←
Works as expected, extracting the time line O from the narrative KB0.

instantiate constraints(ITR, [t0, . . . , tn+1], ITR(t0 + 1) ∧ · · · ∧ ITR(tn + 1)).

prove credulously TR(〈PTR, ATR, OITR〉,KB0, f l[t], [Delta, Theta]) ←
prove ALP (〈PTR, ATR, OITR〉,KB0, holds at(fl, t), Delta, Theta).

prove ALP (〈PTR, ATR, OITR〉,KB0, holds at(fl, t), Delta, Theta) ←
This predicate calls an abductive proof procedure21, which works on
the program 〈PTR ∪KB0, ATR, OITR〉 and the query holds at(f, t).
It succeeds or fails according to the behaviour of the called procedure.
In particular, the procedure chosen in the overall computational model is the
C-IFF proof procedure, which, in case of success, returns a set of abducibles Delta,
and a set Theta of constraints over the (time) variables of the computation.

Definition 11.2 (`cred
TR). Given the abductive logic program KBTR, which includes the dy-

namic knowledge KB0 and implements the event calculus based temporal reasoning capability,
as described in Section 11.4.1, the computational model for |=cred

TR , indicated as `cred
TR , is defined

as follows:

KBTR `
cred
TR fl[t] ⇔ query credulous TR(KBTR,KB0, f l[t], A).

Theorem 11.3 (|=cred
TR ⇔ `cred

TR). Assuming that the abductive proof procedure used in the
definition of the predicate query credulous TR/4 is correct and complete, the computational
model `cred

TR is correct and complete with respect to the formal model |=cred
TR :

KBTR |=
cred
TR fl[t] ⇔ KBTR `

cred
TR fl[t].

21Note that a simple ALP proof procedure for ground abduction suffices here.

105

11.4.2.3 A computational model for skeptically reasoning over deserts and oases

The definition of a computational model for |=skep
TR can be straightforwardly derived by its

definition, as illustrated by the query skeptically TR/4 predicate definition.

Definition 11.3 (`skep
TR). Given the abductive logic program KBTR, which includes the dy-

namic knowledge KB0 and implements the event calculus based temporal reasoning capability,
as described in Section 11.4.1, the computational model for |=skep

TR , indicated as `skep
TR , is defined

as follows:

KBTR `
skep
TR fl[t] ⇔ query skeptically TR(KBTR,KB0, f l[t], A).

where the predicate query skeptically TR/4 is given by

query skeptically TR(KBTR,KB0, f l[t], A) ←
query credulously TR(KBTR,KB0, f l[t], A),
negate fluent(fl[t], Nfl[t]),
not query credulously TR(KBTR,KB0, Nfl[t],),

where, if fl[t] is a positive fluent f [t], then Nfl[t] = ¬f [t], and, if fl[t] is a negative fluent
literal ¬f [t], then Nfl[t] = f [t].

Theorem 11.4 (|=skep
TR ⇔ `skep

TR). Assuming that the abductive proof procedure used in the
definition of the predicate query credulous TR/4 is correct and complete, the computational

model `skep
TR is correct and complete with respect to the formal model |=skep

TR :

KBTR |=
skep
TR fl[t] ⇔ KBTR `

skep
TR fl[t].

11.4.3 Reasoning with non-ground queries

In this section we show how Assumption 1 of Section 11.4.2 can be relaxed. Given KBTR as
defined in Section 11.4.1, and a ground time interval [a, b], with a ≤ b, we define the following
entailment relations:

KBTR |=
credngq

TR ∃ T ∈ [a, b] fl[T], (1)

KBTR |=
credngq

TR ∀ T ∈ [a, b] fl[T], (2)

KBTR |=
credngq

TR fl[t], (3)

where (1) is read as

∃ t ground t ∈ [a, b] ∧ KBtr |=cred
TR fl[t],

(2) is read as

∀ t ground t ∈ [a, b] KBtr |=cred
TR fl[t],

and (3) is read as

KBtr |=cred
TR fl[t].

106

11.4.3.1 Credulously reasoning with non-ground queries

A simple entailment-preserving transformation, based on the same idea of deserts and oases,
provides a computational model to deal with such extended queries with respect to the core
ground theory previously discussed. In order to prove that exists a time point in an interval in
which a given fluent literal holds, it is sufficient to prove that the fluent literal holds in some
desert which intersects the interval, and hence in some of the oases of such deserts, as stated
by the following proposition.

Proposition 11.4. Given the theory KBTR, a fluent literal fl[t], the relative time line TL =
[t0, ..., tn+1], and a ground time interval [a, b], it holds

∃ t ground t ∈ [a, b] ∧ KBtr |=cred
TR fl[t]

⇔
∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=cred

TR fl[ti + 1].

Similarly, in order to prove that for all the time points in an interval a given fluent literal
holds, it is sufficient to prove that the fluent literal holds in all the deserts which intersect the
interval, and hence in all the oases of such deserts, as stated by the following proposition.

Proposition 11.5. Given the theory KBTR, a fluent literal fl[t], the relative time line TL =
[t0, ..., tn+1], and a ground time interval [a, b], it holds

∀ t ground t ∈ [a, b] KBtr |=cred
TR fl[t]

⇔
∀ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ KBtr |=cred

TR fl[ti + 1].

Propositions 11.4 and 11.5 directly provide a computational model for the extended theory
to non-ground queries, as formalised by the following program.

query ngq credulous TR(〈PTR, ATR, ITR〉,KB0, exists([a, b], f l[t]), A) ←
extract oases(KB0, O),
instantiate constraints(ITR, O,OITR),
get intersecting oases([a, b], O, List of oases),
member(T i, List of oases),
prove credulously TR(〈PTR, ATR, OITR〉,KB0, f l[T i+ 1], A).

query ngq credulous TR(〈PTR, ATR, ITR〉,KB0, forall([a, b], f l[t]), A) ←
extract oases(KB0, O),
instantiate constraints(ITR, O,OITR),
get intersecting oases([a, b], O, List of oases),
foreach member prove credulously TR(List of oases, 〈PTR, ATR, OITR〉,KB0, f l[t], A).

query ngq credulous TR(〈PTR, ATR, ITR〉,KB0, f l[t], A) ←
query credulous TR(〈PTR, ATR, ITR〉,KB0, f l[t], A).

foreach member prove credulously TR([], 〈PTR, ATR, OITR〉,KB0, f l[t], A).

foreach member prove credulously TR([T i|Rest T is], 〈PTR, ATR, OITR〉,KB0, f l[t], [A1, A2]) ←

107

prove credulously TR(〈PTR, ATR, OITR〉,KB0, f l[T i+ 1], A1),
foreach member prove credulously TR(Rest T is, 〈PTR, ATR, OITR〉,KB0, f l[t], A2).

get intersecting oases([a, b], O, List of oases) ←
Works as expected. Given the interval [a, b] and the time line O,
it returns the list of oases [t1, .., tn], such that ∀ i [ti + 1, zi] ∩ [a, b] 6= ∅,
with zi the end of the desert started at ti + 1.

Definition 11.4 (`credngq

TR). Given the abductive logic program KBTR, which includes the
dynamic knowledge KB0 and implements the event calculus based temporal reasoning capability,
as described in Section 11.4.1, the computational model for |=credngq

TR , indicated as `credngq

TR , is
defined as follows:

KBTR `credngq

TR ∃ T ∈ [a, b] fl[T] ⇔ query ng credulous TR(KBTR,KB0, ∃ T ∈ [a, b] fl[T], A)
KBTR `credngq

TR ∀ T ∈ [a, b] fl[T] ⇔ query ng credulous TR(KBTR,KB0, ∀ T ∈ [a, b] fl[T], A)
KBTR `credngq

TR fl[t] ⇔ query ng credulous TR(KBTR,KB0, f l[t], A)

Theorem 11.5 (|=credngq

TR ⇔ `credngq

TR). Assuming that the abductive proof procedure used in
the definition of the predicate query credulous TR/4 is correct and complete, the computational
model `credngq

TR is correct and complete with respect to the formal model |=credngq

TR :

KBTR |=credngq

TR ∃ T ∈ [a, b] fl[T] ⇔ KBTR `credngq

TR ∃ T ∈ [a, b] fl[T]
KBTR |=credngq

TR ∀ T ∈ [a, b] fl[T] ⇔ KBTR `credngq

TR ∀ T ∈ [a, b] fl[T]
KBTR |=credngq

TR fl[t] ⇔ KBTR `credngq

TR fl[t]

Note that at this stage it is easy to produce an answer substitution to existential
queries. For the credulous query ∃ T ∈ [a, b] fl[T] for every oasis point A computed by
query ngq credulous TR(〈PTR, ATR, ITR〉,KB0, exists([a, b], f l[t]), A) we return as the answer
substitution the intersection of the desert interval that contains the oasis point A with the inter-
val [a, b] of the query. For each such computed oasis point A these answer substitution intervals
can be given separately or they can be joined together to give one answer.

11.4.3.2 Skeptically reasoning with non-ground queries

The definition of skeptically reasoning with non-ground queries follows the intuition that
a fluent literal skeptically proved must hold irrespectively of any set of assumption that can
be used to prove it, or its negation. The following definition formalises this intuition. A
computational model will then be provided, exploiting, as usual, the deserts and oases approach.

Given KBTR as defined in Section 11.4.1, and a ground time interval [a, b], with a ≤ b, the
skeptical entailment relations, defined over ground and non-ground queries as follows,

KBTR |=
skepngq

TR ∃ T ∈ [a, b] fl[T], (4)

KBTR |=
skepngq

TR ∀ T ∈ [a, b] fl[T], (5)

KBTR |=
skepngq

TR fl[t], (6)

108

have, respectively, the following semantics

∃ t ground t ∈ [a, b] ∧ KBtr |=skep
TR fl[t],

∀ t ground t ∈ [a, b] KBtr |=skep
TR fl[t],

KBTR |=
skep
TR fl[t].

In order to prove that exists a time point in an interval in which a given fluent literal
skeptically holds, it is sufficient to prove that the fluent literal skeptically holds in some desert
which intersects the interval, and hence in some of the oases of such deserts, as stated by the
following proposition.

Proposition 11.6. Given the theory KBTR, a fluent literal fl[t], the relative time line TL =
[t0, ..., tn+1], and a ground time interval [a, b], it holds

∃ t ground t ∈ [a, b] ∧ KBtr |=skep
TR fl[t]

⇔

∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=skep
TR fl[ti + 1].

Similarly, in order to skeptically prove that for all the time points in an interval a given
fluent literal holds, it is sufficient to prove that the fluent literal skeptically holds in all the
deserts which intersect the interval, and hence in all the oases of such deserts, as stated by the
following proposition.

Proposition 11.7. Given the theory KBTR, a fluent literal fl[t], the relative time line TL =
[t0, ..., tn+1], and a ground time interval [a, b], it holds

∀ t ground t ∈ [a, b] KBtr |=skep
TR fl[t]

⇔

∀ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ KBtr |=skep
TR fl[ti + 1].

Propositions 11.6 and 11.7 directly provide a computational model for the extended theory,
as formalised by the following programs.

query ngq skeptically TR(〈PTR, ATR, ITR〉,KB0, exists([a, b], f l[t]), A) ←
extract oases(KB0, O),
instantiate constraints(ITR, O,OITR),
get intersecting oases([a, b], O, List of oases),
member(T i, List of oases),
query skeptically TR(〈PTR, ATR, OITR〉,KB0, f l[T i+ 1], A).

query ngq skeptically TR(〈PTR, ATR, ITR〉,KB0, forall([a, b], f l[t]), A) ←
extract oases(KB0, O),
instantiate constraints(ITR, O,OITR),
get intersecting oases([a, b], O, List of oases),
foreach member prove skeptically TR(List of oases, 〈PTR, ATR, OITR〉,KB0, f l[t], A).

query ngq skeptically TR(〈PTR, ATR, ITR〉,KB0, f l[t], A) ←
query skeptically TR(〈PTR, ATR, ITR〉,KB0, f l[t], A).

109

foreach member prove skeptically TR([], 〈PTR, ATR, OITR〉,KB0, f l[t], A).

foreach member prove skeptically TR([T i|Rest T is], 〈PTR, ATR, OITR〉,KB0, f l[t], [A1, A2]) ←
query skeptically TR(〈PTR, ATR, OITR〉,KB0, f l[T i+ 1], A1),
foreach member prove skeptically TR(Rest T is, 〈PTR, ATR, OITR〉,KB0, f l[t], A2).

get intersecting oases([a, b], O, List of oases) ←
Works as expected (as above for the case of `credngq

TR).

Definition 11.5 (`skepngq

TR). Given the abductive logic program KBTR, which includes the
dynamic knowledge KB0 and implements the event calculus based temporal reasoning capability,
as described in Section 11.4.1, the computational model for |=skepngq

TR , indicated as `skepngq

TR , is
defined as follows:

KBTR `
skepngq

TR ∃ T ∈ [a, b] fl[T] ⇔ query ng skeptically TR(KBTR,KB0, ∃ T ∈ [a, b] fl[T], A)

KBTR `
skepngq

TR ∀ T ∈ [a, b] fl[T] ⇔ query ng skeptically TR(KBTR,KB0, ∀ T ∈ [a, b] fl[T], A)

KBTR `
skepngq

TR fl[t] ⇔ query ng skeptically TR(KBTR,KB0, f l[t], A)

Theorem 11.6 (|=skepngq

TR ⇔ `skepngq

TR). Assuming that the abductive proof procedure used in
the definition of the predicate query credulous TR/4 is correct and complete, the computational

model `credngq

TR is correct and complete with respect to the formal model |=skepngq

TR :

KBTR |=
skepngq

TR ∃ T ∈ [a, b] fl[T] ⇔ KBTR `
skepngq

TR ∃ T ∈ [a, b] fl[T]

KBTR |=
skepngq

TR ∀ T ∈ [a, b] fl[T] ⇔ KBTR `
skepngq

TR ∀ T ∈ [a, b] fl[T]

KBTR |=
skepngq

TR fl[t] ⇔ KBTR `
skepngq

TR fl[t]

11.4.4 Use of TR in the overall computational model for the computee

The theory presented up to now supports the use of TR within the overall computational
model for the computee developed in this deliverable. The use of TR consists hence of a mix of
the presented proof procedures, according to the needs of the other components of the model
that use it. Here we define the overall `TR, and we link its definition to the use of C-IFF as
underlying proof procedure. TR is used

• by the Goal Decision capability, for which TR is part of the background logic. This
component of the overall computational model calls TR with a ground query, exploiting
the `skep

TR computational instance of TR, defined in Definition 11.3.

• by the Cycle theory, in the enabling conditions (which contain the core selections func-
tions) and the behaviour conditions (which contain the heuristic selections functions),
and by the Selection Functions and the Goal Revision transition, which call TR with an
existentially quantified query, and a set of temporal constraints. The query is dealt with
by the `skepngq

TR computational instance of TR, defined in Definition 11.5,22 exploiting the
C-IFF proof procedure for dealing with the temporal constraints.

22Actually, the definition of `skepngq

TR
includes that of `skep

TR
, but for sake of clarity, we have preferred to

separate the two cases.

110

Note that both the uses of TR refers to the skeptical case.
The call to the generic underlying proof procedure has been defined in Section 11.4.2 as

〈PTR, ATR, ITR(t0 + 1) ∧ · · · ∧ ITR(tn + 1)〉 `ALP fl[t].

Using the C-IFF proof procedure (Section 10.2), it becomes

〈PTR, ATR, ITR(t0 + 1) ∧ · · · ∧ ITR(tn + 1)〉, f l[t] `ciff Answer,

with Answer equal to (∆,Γ), failure or flounder in case of a successful, failure or floundering
derivation, respectively. Note that, moreover, the C-IFF may also not terminate.

Correspondingly, the predicate query credulously TR(KBTR,KB0, f l[t], Answer), which
defines `cred

TR (Definition 11.2), returns the answer Answer computed by C-IFF, as above de-
scribed. In this section we refer with `cred

TR to the instance of computational model based on
C-IFF as now described.

The predicate query skeptically TR(KBTR,KB0, f l[t], A), given in Definition 11.3 as

query skeptically TR(KBTR,KB0, f l[t], A) ←
query credulously TR(KBTR,KB0, f l[t], A),
negate fluent(fl[t], Nfl[t]),
not query credulously TR(KBTR,KB0, Nfl[t],),

was used to define `skep
TR under the assumption that the underlying proof procedure was correct

and complete. It must hence be reconsidered in the C-IFF settings, where only soundness holds
in general. Interpreting not query credulously TR(KBTR,KB0, Nfl[t],) as finite failure, the
previous definition can be recast in

query skeptically TR(KBTR,KB0, f l[t], (∆,Γ)) ←
query credulously TR(KBTR,KB0, f l[t], (∆,Γ)),
negate fluent(fl[t], Nfl[t]),
query credulously TR(KBTR,KB0, Nfl[t], fail).

query skeptically TR(KBTR,KB0, f l[t], fail) ←
query credulously TR(KBTR,KB0, f l[t], fail).

query skeptically TR(KBTR,KB0, f l[t], fail) ←
query credulously TR(KBTR,KB0, f l[t], (∆,Γ)),
negate fluent(fl[t], Nfl[t]),
query credulously TR(KBTR,KB0, Nfl[t], (∆

′,Γ′)).

Under this new definition, the query for fl[t] skeptically succeeds returning an answer (∆,Γ),
when the query for fl[t] credulously succeeds and the query for Nfl[t] credulously finitely fails.
On the other hand, it skeptically fails when either the query for fl[t] credulously finitely fails,

or both the queries for fl[t] and Nfl[t] credulously succeed. In this section we refer with `skep
TR

to the instance of the computational model based on C-IFF as now described.
Now, `TR can be specified with respect to the use of C-IFF as the underlying proof proce-

dure.

Definition 11.6 (`TR). Let KBTR be the abductive logic program that implements the event
calculus based temporal reasoning capability (including the dynamic knowledge KB0), as de-
scribed in Section 11.4.1. The computational model for |=TR, indicated as `TR, is defined as
follows:

111

1. Let fl[t] be a ground fluent and Answer the answer returned by the above redefined pred-
icate

query skeptically TR(KBTR,KB0, f l[t], Answer),

which now defines `skep
TR . Then

KBTR `TR fl[t] iff KBTR `
skep
TR fl[t],

with Answer = (∆,Γ)

KBTR `TR (finitely) fails to prove fl[t] iff KBTR `
skep
TR fl[t]

with Answer = fail

2. Let fl[T] be a fluent containing the existentially quantified variable T , and TCS(T) a
conjunction of temporal constraints over T (which is, at least, constrained in an interval
[a, b]) and possibly over other existentially quantified variables. Let Answer be the answer
returned by the predicate, defined in Definition 11.5,

query ngq skeptically TR(〈PTR, ATR, ITR〉,KB0, exists(TCS(T)23, f l[t]), Answer),

which now defines `skepngq

TR . Then

KBTR `TR fl[T] ∧ TCS(T) iff KBTR `
skepngq

TR exists(TCS(T)24, f l[t])
with Answer = (∆,Γ)

KBTR `TR (finitely) fails to prove iff KBTR `
skepngq

TR exists(TCS(T), f l[t])
fl[T] ∧ TCS(T) with Answer = fail

According to this definition, `TR returns an answer only when the query is successfully
proved by means of C-IFF, or in case of the finite failure of C-IFF, given the query. The success
and failure soundness results for C-IFF given in Section 10.1 allow the soundness of `TR to be
proved for the relative success and finite failure.

Theorem 11.7 (`TR soundness). Let KBTR be the abductive logic program that implements
the event calculus based temporal reasoning capability, as described in Section 11.4.1 (including
the dynamic knowledge KB0). Let fl[t], f l[T] and TCS(T) be a ground fluent literal, a fluent
literal and a set of temporal constraints, respectively. Then

24Slightly abusing the notation, the constraint T ∈ [a, b] has been replaced by a set of constraints
TCS(T), which is dealt with by means of the C-IFF proof procedure. This is obtained by adding the
other constraints C, possibly appearing in TCS(T), as a conjunct to the query fl[Ti + 1] in the predicate
query skeptically TR(〈PTR, ATR, OITR〉,KB0, fl[Ti +1]∧C,Answer). This predicate, occurring in the defini-
tion of query ngq skeptically TR/4 for the existential case (Definition 11.5), will ultimately pass the so-extended
query to the C-IFF, and the constraints C will be taken into consideration when resolving the query. The same
strategy has been implemented in Prototype Demonstrator developed within WP4 (see Deliverable D9, [5]).

112

KBTR `TR fl[t] ⇒ KBTR |=TR fl[t]

KBTR `TR (finitely) fails to prove fl[t] ⇒ KBTR 6|=TR fl[t]

KBTR `TR fl[T] ∧ TCS(T) ⇒ ∃ σ. KBTR |=TR fl[T]σ ∧ σ |=< TCS(T)

KBTR `TR (finitely) fails to prove ⇒ 6 ∃ σ. KBTR |=TR fl[T]σ ∧ σ |=< TCS(T)
fl[T] ∧ TCS(T)

(where |=TR, according to its definition, is based on the semantical entailment of the underling
ALP proof procedure, i.e. |=3

< for the case of C-IFF).

Remark I (Correctness): We are currently working at the conjecture that the TR theory
can guarantee (or could guarantee under weak syntactic restrictions) the completeness of the
underlying ALP proof procedure in general. In this respect, we are exploring the definition of
a suitable level mapping induced by time on the TR theory, combined with the approach that
makes integrity constraints ground, with the aim of avoiding floundering and non-termination.
In this case, we expect to extend the proved completeness results to the case in which C-IFF is
used as underlying proof procedure. Similar conditions have been studied in [122]. This point
is currently under further investigation.

Remark II (Extensions): After having set the computational counterpart of TR that
supports the definition of the overall computee computational model, other open issues are
worth being investigated. As explained above we have started our study with a set of simplifying
assumptions that allowed us to define a simple computational model for ground queries and
ground narratives. Then we have relaxed the hypothesis of groundness for the query and
obtained the current computational model. We have further extended the model by allowing
actions happening within intervals and by means of them, theories with inconsistent narratives
as required by the KGP model of computees proposed in [63]. For simplicity of presentation,
since these further extensions are not exploited in the current version of the computational
model of the computee, they are presented in Appendix A, and intended for future extensions.

11.4.5 Examples of `TR

In this section we outline how the Temporal Reasoning capability computes some of the exam-
ples shown above. Other examples, illustrating the extensions of Temporal Reasoning presented
in Appendix A, can be found in the same Appendix.

Example 5 (Ground narrative, ground queries). In Example 1, we had the following do-
main dependent knowledge, partially in the narrative in KB0, partially in the domain dependent
part of KBTR:

executed(switch on, 10).
observed(neg(light), 20).

initiates(switch on, T, light) ← holds at(neg(broken bulb)), T).

113

and the query holds at(broken bulb, 30). According to the basic computational model introduced
in Section 11.4.2, integrity constraints are grounded in the set

{ holds at(F, 1), holds at(neg(F), 1)⇒ false.
holds at(F, 11), holds at(neg(F), 11)⇒ false.
holds at(F, 31), holds at(neg(F), 31)⇒ false. }

since [0, 10, 30] is the relative time line. It easy to verify that the constraint

holds at(F, 31), holds at(neg(F), 31)⇒ false

is violated when we abduce assume holds(neg(broken bulb), 0), since it would cause
holds at(light, 31) against the fact that holds at(neg(light), 31) which can be proved because
of the observation observed(neg(light), 20). None of the constraints is instead violated by ab-
ducing assume holds(broken bulb, 0). Hence, the credulous query

query credulous TR(KBTR,
[executed(switch on, 10).observed(neg(light), 20).],
holds at(broken bulb, 30),
Answer).

with KBTR equal to the union of the domain dependent and independent theory, succeeds by
successfully calling, after the necessary transformation of the theory, the underlying ALP proof
procedure.

Similarly, there is no abducible set which can be used in credulously proving
holds at(neg(broken bulb, 30)) (because of the same constraint), hence the skeptical query for
holds at(broken bulb, 30) also holds.

Example 6 (Ground narrative, existentially quantified queries). In Example 2, with
the slightly more complex narrative

executed(switch on, 10).
observed(neg(light), 20).
observed(booked room, 40).

Temporal Reasoning was required to check whether holds at(broken bulb), T)
holds with 30 < T, T < 330 . Therefore we are interested in the query
exists([30, 330], holds at(broken bulb, T)). According to the computational model defined
in Section 11.4.3 the relative time line is [0, 10, 30, 330], and one of the possible ways to make
the query ground, is to assign to T the time value 11:

holds at(broken bulb, 11),

i.e. an oasis which intersects the interval of the query (i.e. [30, 330]). It is straightforward
to check, after having appropriately grounded the integrity constraints, that the now ground,
query can be proved skeptically. Since the query is existentially quantified, the success in a
single grounding point implies that the original query holds (there are also other possibilities,
for instance to ground the query in the point 31).

114

Example 7 (Ground narrative, universally quantified query). Consider again the nar-
rative and the domain dependent theory of Example 1:

executed(switch on, 10).
observed(neg(light), 20).

and the universally quantified query forall([0, 50], holds at(broken bulb, T)). The time line
is [0, 10, 30, 50], and the intersecting point of interest with the interval of the query are
[1, 11, 31, 51]. Analogously with what done in the previous example, it is easy to verify that
all the ground queries

holds at(broken bulb), 1),
holds at(broken bulb), 11),
holds at(broken bulb), 31),
holds at(broken bulb), 51),

are skeptically entailed by the theory (where the integrity constraints have been grounded
in the usual way). Indeed, again, the assumption assume holds(broken bulb, 0), that
is a valid explanation for holds at(broken bulb, T)), where T is any oasis point, is
compatible with the subsequent observation observed(neg(light), 20), while the assumption
assume holds(neg(broken bulb), 0), which would explain holds at(neg(broken bulb), T)), is
not, for instance, because it violates the constraints

holds at(broken bulb, 31), holds at(neg(broken bulb), 31)⇒ false.

It follows that the the original query forall([0, 50], holds at(broken bulb, T)) skeptically holds.

11.4.6 Properties of `TR with respect to |=TR (Summary)

We summarize here the various properties of the computational model for Temporal Reasoning
that we have shown above and in Appendix A in the gradual development of this model.

We have shown how the computational model for Temporal Reasoning can be defined over
a (Constraint) ALP proof procedure by means of simple program transformations of the given
temporal reasoning theory that operate only on the user-defined part of the theory. For both the
credulous and the skeptical case, we have defined a computational model that can be based on
any ALP proof procedure, taking in our case the C-IFF procedure, `cred

TR and `cred
TR respectively.

We sketched how the relative soundness and completeness with respect to the formal model can
be proved building on the soundness and completeness of the ALP proof procedure adopted
(Theorem 11.3 and Theorem 11.4).

We have extended this core computational model to queries which may have existentially
or universally quantified variables, with derivability relations `credngq

TR and `skepngq

TR respectively,
and sketched again the relative soundness and completeness proofs (Theorem 11.5 and Theo-
rem 11.6).

A third extension deals with the possibility of having non-ground narratives, encompassing
actions with existentially quantified time variables, and this is presented in Section A.1. The
extended computational model both for credulous `cred

TRint and skeptical `skep
TRint reasoning is

shown to be sound in Theorem A.1 and complete in Theorem A.2, in the same sense as above.
We have also studied in Section A.2 how the two previous extensions can be combined in a

simple way to to deal with quantified queries in domains with quantified actions.

115

Finally, in Section A.3 we have analyzed the problem of how to deal with theories that are
(frame) inconsistent using the ability to reason with quantified actions to generate explanations
with unknown events that can resolve the inconsistency.

The various cases of the computational model developed support the functioning of the com-
putee for its Temporal Reasoning, and a subset of them have been implemented and integrated
in the Prototype Demonstrator (see Deliverable D9 [5]).

11.5 Goal Decision

The computee Goal Decision capability selects, at a given instant, the top level goals to be
pursued. These goals are preferred by the computee at the time of their selection, but this may
change over time. Some of these goals may be direct reactions to new information that arrives
at the computee and as such these goals may simply be realizable by a single action.

This section proposes a simple computational model for |=τ
GD that is based directly on the

general computational model of the preference relation |=pr of LPwNF as described in 10.3.
Formal properties of the computational model are stated (under some assumptions of simplifi-
cation) and sketch proofs are provided.

11.5.1 KBGD and specification of |=GD: recap

The knowledge from which Goal Decision draws its conclusions is a LPwNF theory, called
KBGD, which contains the goal preference policy of the computee. With KBGD it uses also in
its background logic as auxiliary information the knowledge of KBTR ∪KB0.

The knowledge base KBGD contains three main parts: the auxiliary part with rules defining
auxiliary predicates, the lower-level part with rules to generate goals and the higher-level part
with rules that specify priorities between other rules of the theory. We assume that a subset of
the fluents in the language of the knowledge base of the computee is separated out as the set
of goal fluents of the computee.

The lower-level part of KBGD consists of rules in LPwNF of the form

g[t], T g← L1, . . . , Ln, TC (n ≥ 0)

where

• L1, . . . , Ln are either time-dependent conditions of the form holds at(l, t), where l[t] is
a timed fluent literal, or time-independent conditions, formulated in terms of auxiliary
predicates defined within KBGD. TC are temporal constraints on the time variables in
the body of the rule.

• g is a goal fluent, Tg is a (possibly empty) set of temporal constraints and the time
variable t is existentially quantified with scope the conclusion of the rule.

All variables except t in the rules are implicitly universally quantified from the outside and
a rule then represents all its ground instances in the Herbrand universe of the program and
under any total valuation of the time variables in the body that satisfies TC . The time variable
t in g[t], T g not occurring in the body of the rule (if it exits) is implicitly existentially quantified
with scope the conclusion of the implication.

116

The auxiliary part, KBaux
GD , of KBGD is simply a set of LPwNF rules defining, via the

background logic |=H , any auxiliary predicates occurring in the remaining part of KBGD. In
particular, it contains statements of incompatibility such as:

incompatible(l1, l2)

expressing that the (possibly timed) goal fluent literals l1 and l2 are incompatible. In some
cases this incompatibility could hold only under some conditions B (a conjunction of auxiliary
literals), expressed by the rule

incompatible(l1, l2)← B.

We will assume that this incompatibility relation is defined only for fluent literals at the same
time.

The conditions of the rules are evaluated in KBGD together with KB0 ∪ KBTR by
combining the background derivability |=H of the LPwNF framework with the Temporal
Reasoning capability |=TR. With abuse of notation we will denote in this subsection this
combined derivability simply by |=H assuming that KB0 ∪KBTR is contained in the auxiliary
part of KBGD.

The higher-level part of KBGD consists of rules in LPwNF of the form:

h p(rule1, rule2)← L1, . . . , Ln, TC

where rule1, rule2 are (parameterised) names of other rules in the knowledge base KBGD (but
not in the auxiliary part of KBGD) and L1, . . . , Ln, TC are as above for the rules in the lower-
level part. These rules in the higher-level part of KBGD represent the (local) priorities amongst
rules in the lower-level part or other priority rules in the higher-level part.

Rules in KBGD may have in their body a special time variable, denoted by Tnow that refers
to the (current) time τ at which the capability of goal decision is applied by the computee. We
will denote by KBGD(τ) the knowledge base obtained from KBGD by instantiating in this the
time variable Tnow with τ .

Specification of |=τ
GD

Formally, the capability of |=τ
GD is defined, using the admissibility semantics for LPwNF

and its preference entailment relation, as given in [63], in the following way. Given a state
〈KB,Goals, P lan〉, and a time point τ ,

KB |=τ
GD Gs

iff Gs is a maximal set, Gs = {〈g1[t1], T g1〉, . . . , 〈gn[tn], T gn〉}, n ≥ 0, where gi are goal fluent
literals and Tgi are temporal constraints on ti, such that:

• KBGD(τ) |=pr (g1[t1], T g1), ..., gn[tn], T gn) for i = 1, . . . , n.

This means that a new (possibly empty) set of goals Gs is generated that is currently (scepti-
cally) preferred under the policy in KBGD and the current information in KB0 as used by the
Temporal Reasoning capability to evaluate conditions in these policy rules.

117

More explicitly, following the definition of the sceptical preference entailment |=pr of
LPwNF , the above definition of KB |=τ

GD Gs holds iff Gs is a maximal set of goals such
that there exists a subset ∆ of rules in KBGD(τ) such that for each G = 〈g, Tg〉 ∈ Gs

1. ∆ contains an instance Rσ of a rule R in KBGD(τ) of the form L, TL ← B, TC such that
σ is a valuation of the temporal constraints TC , Lσ = g, TLσ = Tg and KB |=H Bσ,25

2. ∆ is admissible in KBGD(τ)

3. no such ∆ satisfying the first two conditions can be constructed for any goal G that is
incompatible with G.

Note that any two goals in Gs are necessarily compatible with each other. Note also that
|=τ

GD may return an empty set of goals when there are no sceptically preferred goals at the time
τ of application of this capability.

11.5.2 `τ
GD: Computing the Goal Decision capability

As seen from the specification of Goal Decision this relies directly on the underlying preference
reasoning within the LPwNF framework. It simply uses this form of reasoning with its specific
theory of KBGD. The theories KBTR ∪KB0 are used as auxiliary background theories for the
computation of conditions in the rules of KBGD(τ).

Hence the derivability relation `τ
GD and the computational model for Goal Decision can be

drawn directly from the general derivability relations `cred
pref and `pref of the LPwNF framework

as presented in 10.3. A simple but relatively inefficient way to compute `τ
GD would then be

to generate one by one sceptical goals, via `pref , adding the most recently generated goal to
the previous goals and re-checking, again via `pref , that the whole set remains a sceptical
conclusion.

A more efficient algorithm for computing `τ
GD that exploits some of the special features of

the goal decision knowledge base KBGD is as follows.

Let T denote the theory KBGD(τ) ∪ KBTR ∪ KB0 at the given current time τ . Then
T `τ

GD Gs iff Gs is given by:

• generate the set Gs′ of all atomic goals G such that T `cred
pref G

• Gs is a maximal set such that Gs = {G′ ∈ Gs′ | 6 ∃G′′ ∈ Gs′ : incompatible(G′, G′′)}

Hence this algorithm relies only on the credulous derivability relation of LPwNF to generate
in the first step a set of candidate goals and then, using checks of incompatibility, it filters from
this the required goals. The soundness (and completeness) of this algorithm will rest on the
assumption that the set Gs′ is finite and will follow from the special form of the goal decision
knowledge base KBGD.

25We remind the reader that here in KB |=H Bσ the auxiliary part KBaux
GD

of KBGD is used alongside
KBTR ∪KB0 and |=TR to evaluate the conditions Bσ of the rules.

118

11.5.3 Example of `τ
GD

Let us illustrate the goal decision capability and the main steps of computation of `τ
GD by

considering the example of a KBGD theory as given earlier in section 10.3. We reproduce part
of the example here to help its readability.

Consider the following part of the goal decision knowledge base KBGD of a computee
describing its simple policy for deciding how to respond to requests. This has two object-level
(or lower-level) generation rules one for responding ”yes” and the other for responding ”no”:

ry(Asker,RequestedNeed, yes) :
respond(Myself, Asker, need(RequestedNeed), yes, ResponseTime), C(ResponseTime)←
holds at(request(Asker,Myself, need(RequestedNeed), RequestT ime), Tnow)
currently satisfiable(Myself,RequestedNeed),
response time(RequestT ime, Tnow, ResponseT ime).

rn(Asker,RequestedNeed, no) :
respond(Myself, Asker, need(RequestedNeed), no,ResponseT ime), C(ResponseTime)←
holds at(request(Asker,Myself, need(RequestedNeed), RequestT ime), Tnow)
incompatible current needs(Myself,RequestedNeed),
response time(RequestT ime, Tnow, ResponseT ime).

where respond is the only goal fluent. All other predicates are auxiliary and their definition is
not important for the purposes of the example. Here the ResponseT ime in both rules can be
either ground or an existentially quantified time with some constraints, C(ResponseT ime), to
respond within a certain time from the request time. Note that we also have the incompatibility
statement between a yes and a no reply for the same request:

incompatible(respond(M,A, need(RN), yes, RT), respond(M,A, need(RN), no,RT)).

The knowledge base also contains a higher-level part with priorities as follows:

p1(A,RN) : h p(rn(A,RN, no), ry(A,RN, yes))← urgent(Myself,RN).

p2(A,RN) : h p(ry(A,RN, yes), rn(A,RN, no))← urgent(A,RN).

p3(A,RN) : h p(ry(A,RN, yes), rn(A,RN, no))← ¬urgent(Myself,RN).

expressing the policy to ”prefer to refuse requests for needs that you urgently need and prefer
to accept requests for needs that you do not need urgently or that are urgently needed by the
asker”. When the requested need is urgent for both the asker and yourself then the preference
to refuse is stronger unless the asker is your manager. This is captured with the higher-order
priorities:

c1(A,RN) : h p(p1(A,RN), p2(A,RN)).

c2(A,RN) : h p(p2(A,RN), p1(A,RN))← manager(Asker,Myself)

d1(A,RN) : h p(c2(A,RN), c1(A,RN)).

Now suppose that a computee receives a request for some need, req need, for which both
currently satisfiable and incompatible current needs hold true. Given this information alone

119

`τ
GD will return the empty set as the preferred current goals. This is computed as follows:

• `cred
pref will first produce as the current credulous set of goals:

– 〈respond(myself, asker, need(req need), yes, t1), C(t1)〉,

– 〈respond(myself, asker, need(req need), no, t2), C(t2))〉

where C(t1) and C(t2) are (the same) temporal constraints on the response time set by
the response time condition in the above rules.

• as these goals are incompatible with each other they will both be deleted by the second
step of filtering of the credulous goals produced in the first step. Hence, `τ

GD {}.

Suppose instead that the computee also knows that urgent(myself, req need) holds then
the first step of generation of `τ

GD will produce only the second goal of refusal shown above as
the first goal of acceptance is not generated now by `cred

pref . Hence now we have that:

• `τ
GD {< respond(myself, asker, need(req need), no, t2), C(t2)) >}

Finally, let us consider the case where the requested need is known by the computee to be
urgent for both itself and the asker. In this case the first step of generation of `τ

GD will generate
both goals as with the starting scenario of this example. In this case though these goals are
supported by higher priority rules, namely the first one by the rule p1(asker, new need) and
the second one by the rule p2(asker, new need). The second step of `τ

GD will again filter out
both these goals and so again `τ

GD will return the empty set of goals. The computee is again
in a dilemma.

Note that the difference of this case with the starting scenario is the fact that the generated
goals are necessarily supported by the priority rules, mentioned just above, which in fact are
incompatible with each other (they have negative conclusions). Hence if the two generated
goals themselves were compatible with each other then the algorithm for `τ

GD will return them
both giving an unsound answer. We will see below in the next subsection where we study
the properties of this algorithm how it can be extended to overcome this. We will see that
the filtering second step can be extended to look for incompatibility not only of the top level
goals generated but also for incompatibility between the admissible sets (of priority rules) that
support these goals.

11.5.4 Properties of `τ
GD with respect to |=GD

Let us assume that the knowledge base, KBGD(τ), for any given current time, τ , together
with its auxiliary use of KBTR ∪ KB0 is such that only a finite number of goals G can be
entailed from T = KBGD(τ) ∪KBTR ∪KB0 via the background logic |=H of LPwNF . This
is guaranteed for example if the rules in KBGD(τ) when grounded produce a finite number of
ground rules. We will call this assumption the goal finiteness assumption.

We can then show the following result.

Theorem 11.8. Let T denote the theory KBGD(τ) ∪KBTR ∪KB0 and suppose that a sound
and complete derivation `H of |=H is used within `cred

pref . If T `τ
GD Gs then, Gs is a maximal

set such that for each Gi ∈ Gs, T |=
scept
pref Gi.

120

To satisfy the specification of |=GD fully we need to show that the conjunction of the goals
in Gs, generated by T `τ

GD Gs, is also a skeptical conclusion of the theory T . To do this we
exploit the property of the theory T that incompatibility can only arise at the level of the goal
fluents together with the assumptions that:

• the auxiliary part of T , namely KBaux
GD (τ) ∪KBTR ∪KB0, is consistent.

• there is only one maximally admissible subset of the higher-level part of KBGD(τ), i.e.
for any pair of (ground) rules R1 and R2 in the higher-level part of KBGD(τ) that are
inconsistent with each other and whose conditions currently hold there exists a priority
rule C1 (whose conditions also currently hold) that assigns to one of R1 and R2 higher
priority 26.

Given these additional assumptions which we will call the deterministic assumptions we can
easily show as a corollary of the above theorem the soundness and completeness of `τ

GD.

Corollary 11.1. Let T denote the theory KBGD(τ) ∪KBTR ∪KB0 and suppose that T has
the goal finiteness property and satisfies the above deterministic assumptions. Then T `τ

GD Gs
iff T |=GD Gs.

While the first condition of the above deterministic assumption is reasonable the second
condition can be restrictive in some cases especially within an open environment and so we
may want to relax it or delete it completely.

In such a case we have two possibilities. The first one is to use directly a sceptical derivation,
denoted by `scep−all

pref G, that extends `scep
pref G, by checking not only that it is not possible to

derive credulously (via `cred
pref) any goal incompatible to the top-level goal G but also checking

the same is true for any other subsidiary (non-auxiliary) goal that is part of the admissible set

∆ computed for G by `scep−all
pref . We can then collect together in Gs all the goals G computed

by `scep−all
pref in this way. This set will satisfy the specification of |=GD.

Although such an extension would be necessary for general theories in LPwNF for the
special case of KBGD we have an alternative way which would be more effective as this can
exploit the special features of such theories. We can extend the above algorithm for computing
goal decision, which first computes all the goals that credulously follow from the theory, in the
following way.

Let T denote the theory KBGD(τ) ∪ KBTR ∪ KB0 at the given current time τ . Then
T `τ

GD Gs iff Gs is given by:

• generate the set Gs′ of all atomic goals G and admissible sets ∆ computed for G via
T `cred

pref G. Each member of Gs′ is a tuple 〈G,SG〉, where SG is the set of all the
admissible ∆ computed for G.

• Gs is a maximal set such that Gs = {G′ | 〈G′, SG′〉 ∈ Gs′ and 6 ∃〈G′′, SG′′〉 ∈ Gs′ s.t.
incompatible(G′, G′′) and there exists ∆′ ∈ SG′ s.t. for any 〈G′′, SG′′〉 ∈ Gs′ 6 ∃∆′′ ∈ SG′′

s.t. incompatible(∆′,∆′′) i.e. for any δ′ ∈ ∆′ and δ′′ ∈ ∆′′ incompatible(δ′, δ′′) does not
hold }

26Note if there exists also a rule C2 (whose conditions currently hold) that assigns higher priority the other
way around then this condition implies that there will be a rule D1 that will assign priority to one of C1 and
C2 and so on until we reach at a finite level where only one such rule exists.

121

We can then show that this computes correctly the goal decision capability.

Theorem 11.9. Let T denote the theory KBGD(τ)∪KBTR∪KB0 which has the goal finiteness
property and KBaux

GD (τ) ∪KBTR ∪KB0 is consistent. Suppose also that a sound and complete
derivation `H of |=H is used within `cred

pref . If T `τ
GD Gs then T |=GD Gs.

Proof (Sketch): There exists a union of the admissible sets of the separate goals in Gs
that is consistent (by construction of Gs) and therefore this is an admissible set that satisfies
all the requirements of the specification of |=GD. �

Another condition under which the first (non-extended) algorithm for `τ
GD will be sound and

complete is to assume that in the higher-level part of KBGD(τ) any priority rule amongst two
rules of the lower part of KBGD(τ) is such that these two lower-level rules have goal fluent
conclusions that are incompatible with each other. This condition although relatively simple is
not always appropriate as in several cases we may want part of the preference policy to apply
between compatible goals. In this case we will need the extended algorithm for `τ

GD.

12 Correctness of the computational model of selection

functions and transitions

In section 9, we have provided computational models for selection functions and transitions,
which are trivially correct given a correct constraint solver `< for |=<, a correct computational
model for |=LP (for fluent selection), and correct computational models for |=TR and |=τ

plan.
Having provided, in the earlier section 11, such computational counterparts for |=TR and |=τ

plan,
and proven correctness results for them, we can now give the following trivial correctness result
for the computational selection functions and transitions.

Theorem 12.1. (Correctness of computational selection functions and transitions)
Let the computational counterparts for |=TR and |=τ

plan be the ones given in section 11. More-
over, let `< be a constraint solver correct and complete wrt |=<, Finally, let `LP be a correct
computational counterpart for |=LP . Then

• the computational selection functions ccAS , c
c
GS , c

c
FS , c

c
PS given in section 9 are correct with

respect to the corresponding selection functions given in D4;

• the computational models {GIc, P Ic, REc, SIc, POIc, AOIc, AEc, GRc, PRc} given in
section 9 are correct with respect to the corresponding transitions given in D4.

13 Correctness of the cycle computational model

In section 8, we have provided a notion of computational operational trace of a computee,
responsible for its behaviour. In that section we have also provided a conditional correctness
result for the computational operational trace (Theorem 8.4), parametric on correct computa-
tional models for |=pr, selection functions and transitions. Having proven, in the the earlier
section 10.3 a correctness result of `pr (given by definition 10.14) wrt |=pr, and, in the ear-
lier section 12, correctness results for the computational counterparts of the transitions and
selection functions given in section 9, we can now give the following corretness result for the
computational operational trace, which trivially follows from the earlier results.

122

Theorem 13.1. (Correctness of the computational operational trace)
Let

• `cred
pr be the one given in definition 10.14 in section 10.3 for the general framework of
LPwNF ;

• {`GI ,`PI ,`RE ,`SI ,`POI ,`AOI ,`AE,`GR,`PR} be the computational counterparts of
the transitions {GI, PI,RE, SI, POI,AOI,AE,GR, PR}, given in section 9, and

• ccAS , c
c
GS, c

c
FS , c

c
PS be the computational counterparts of the (core and heuristic) selection

functions (for action, goal, fluent and precondition selection) given in section 9.

Then, any computational operational trace, as in section 8.3, wrt some given cycle theory Tcycle

and initial state S0, is an operational trace, as in section 8.2.2, wrt the same cycle theory and
initial state.

14 An example

In this section we give a simple example of the computational operational trace of a computee,
which exemplifies how all the components of the computational model that we have provided
work together, from operational trace, to transitions, to capabilities and proof procedures. In
particular, we will show how the cycle theory decides the next transition and then how the
state changes as the transition is executed. The example is adapted from [4].

For the purposes of this example we assume that the computee, here called Francisco (see
[111]), which has inspired this example), has the normal cycle theory as described earlier in
this section. Also the only other part of its static knowledge base that plays a role is its KBGD

and KBTR. For the latter we assume that the computee has the standard theory KBTR given
in D4, that we will revise in section 11.4. Its KBGD is given below (for syntax and semantics
of goal decision see section 11.5).

Intuitively, in this example we examine how Francisco’s computee can assist Francisco to
leave San Vincenzo. To illustrate this we assume that Francisco’s computee contains in its goal
decision theory, KBGD, a personality theory on needs and motivations of the kind discussed
in [74] and re-interpreted in [121]. Following the re-interpretation proposed in [121] the com-
putee has its possible goal decisions labelled (or separated) into five major categories based
on the needs each goal decision contributes to fulfill: operational, self-benefit, peer-interaction,
community-interaction, and non-utilitarian (see [121] for an explanation).

In our example, Francisco’s computee, has to take into consideration, in addition to the
goal (or need) of Francisco to leave San Vincenzo, the needs of Francisco as part of his
peer-interaction motivations, for example, Francisco’s everyday needs. These include context-
independent and recurring needs, such as reading daily news, and context-dependent needs, such
as leaving San Vincenzo at 14:00h. The computee also has to take into consideration its own
needs, for example, its operational needs dictate to take appropriate action when Francisco’s
PDA is running out of battery power. Possible goal decisions contributing to the fulfillment of
all these needs are encoded in Francisco’s computee’s knowledge base for goal decision, KBGD.

In KBGD, a low-battery alert from the PDA has higher priority over all other needs, such
as aggregation of news feeds and context-dependent needs, like catching a train. Similarly,
context-dependent needs are ranked higher than context-independent and recurring needs like
reading of news. In other words, the context-dependent need of Francisco to catch the 14:00h

123

train to leave San Vincenzo has higher priority than aggregating news feeds on the day of the
departure. However, a low-battery alert from the PDA is always preferred in order to avoid
loosing all the PDA data.

• KBlow
GD: There are three possible goals: (a) Leaving San Vincenzo (lsv), (b) aggregation

of news feeds (nfa), and (c) low-battery alert (lba). The knowledge base has the following
low-level generation rules:

gd(lsv) : lsv(T), T < T ′ ←

holds at(finished work, Tnow),

time now(Tnow), T ′ = Tnow + 6.

gd(nfa) : nfa(T), T < T ′ ←

holds at(away, Tnow),

time now(Tnow), T ′ = Tnow + 3.

gd(lba) : lba(T), T < T ′ ←

holds at(low battery, Tnow),

time now(Tnow), T ′ = Tnow + 2.

• KBaux
GD : Each goal is assigned a category, respectively, required, optional, and

operational, and priority relationships amongst these categories are specified, i.e.:

typeof(lsv, required)

typeof(nfa, optional)

typeof(lba, operational)

more urgent wrt type(required, optional)

more urgent wrt type(operational, required)

more urgent wrt type(operational, optional)

Note also that the three goals are pairwise incompatible, i.e. that the computee can only
do one of these goals at a time.

• KBhigh
GD : The following preferences apply:

gd pref(X,Y) : gd(X) < gd(Y) ← typeof(X,XT),

typeof(Y, Y T),

more urgent wrt type(Y T,XT).

Starting initially, at time Tnow = 0, with a state S0 where Goals and P lan are empty and
KB0 contains only the observation that finished work holds at time 0, we have the following
computational operational trace.

• If time now(1), a GI transition is preferred by the normal cycle theory as both Goals
and P lan are empty. No other transition is entailed credulously (via `cred

pr) by the cycle
theory. The first element in the trace is therefore:

124

`GI (S0, S1, 1)

where the execution of `GI calls the (computational counterpart of the) goal decision
capability at τ = 1, giving KB `τ

GD 〈lsv(T), {T < 7}〉 and hence the new state S1 of the
computee will change so that now Goals is given by:

Goals = {g1 = 〈(lsv, T),⊥nr, {T < 7}〉}

• Next, we suppose that a Passive Observation Introduction (POI) occurs when
time now(2) as again the normal cycle theory would choose this when indeed new ob-
sevations have arrived in the meantime. We assume that this is the case when the new
observation is that the battery is low. At the same time Francisco’s computee observes
that Francisco has finished work. The second element in the trace is therefore:

`POI (S1, S2, 2)

where the execution of the `POI transition simply changes the state into a new state with:

KB0 = {observed(finished work(T), 0), observed(low battery(T ′), 2)}

• Then the computee’s normal cycle theory will choose at time now(3) again a GI transition
as the next transition. Now, because of the extra information acquired, the goal decision
capability returns a low-battery alert (lba) as the only preferred goal and hence executing
the GI transition will replace the previous goal with this. The third element in the trace
is therefore:

`GI (S2, S3, 3)

where the new state S3 has as Goals:

Goals = {g2 = 〈lba(T ′′),⊥nr, {T ′′ < 5}〉}

.

• The cycle theory will then choose as the next transition a Plan Introduction (PI) transition
for the (only) goal of lba. No other transition is credulously derived via `cred

pr by the cycle
theory (note here we have assumed that no new observation has arrived at the computee).
The fourth element in the trace is therefore:

`PI (S3, S4, 4)

where the new state S4 differs from S3 in Goals and/or P lan where a valid plan consisting
of subgoals and/or actions for the goal g2 is added.

• Depending on this plan the computee continues with further PI transitions in order to
end up to executable actions, or if such actions already exist with AE transitions.

125

15 Discussion and future work

In this part of the document, we have described the computational model for the KGP formal
model, obtained by integrating, as dictated by the KGP model, the computational counter-
parts of the various components of the model, namely its capabilities, transitions, selection
functions, and cycle theories. We have defined the overall computational model top-down, from
the operational traces, using cycle theories, to the transitions, invoked within the operational
trace, and the selection functions, invoked within cycle theories to compute appropriate inputs
for the transitions, to the capabilities, invoked by the transitions and selection functions. The
capabilities, the fluent selection function and the cycle steps within the operational trace have
been defined by relying upon two abductive proof procedures, one for abductive logic program-
ming, to deal with the abductive tasks/capabilities underlying the model, the other for logic
programming with priorities, to deal with the preferential reasoning tasks within the model.
The proof procedures are C-IFF and Gorgias for LPwNF , respectively.

Here, we point out some limitations of the computational models we have defined and of the
formal correctness results we have provided for them, as well as some possible future extensions
of the computational model.

Limitations

• The computational counterparts for the planning and reactivity capability are proven
correct in the case in which globally consistent sets of actions and goals are returned by
C-IFF.

• The computational counterpart of the temporal reasoning capability is defined under
some simplifying assumptions on the specification of temporal reasoning, namely that the
computee makes no inconsistent observations and that no concurrent actions are recorded
affecting the same fluents in a contradictory way.

• The computational counterparts of the temporal reasoning and goal decision capabilities
are proven correct conditionally on the correctness and completeness of the underlying
abductive proof procedure C-IFF. However, we have not proven completeness of C-IFF,
and actually believe that C-IFF is not complete in general. However, we believe that
C-IFF might be complete in the special case it is used within goal decision. Indeed, in
that case C-IFF is used with a ground abductive logic program which seems to be acyclic,
in the sense of [122], and the completeness result for IFF proven for acyclic abuctive logic
programs in [122] might carry through to C-IFF.

Extensions

The computational model could be extended to remove some of the limitations above, in par-
ticular those related to temnporal reasoning. Moreover, it could be extending to incorporate
the following extensions to the KGP model.

• Both the formal KGP model and its computational counterpart only deal with temporal
variables, and assume that no other variables occur in actions and goals in the state of a
computee. So, for example, an action of the form

〈move(a, L, T), G, free(L, T), {T < T ′}〉

126

indicating to move an object a to some unspecified but free location L at some time T
before another time T ′, cannot be represented within the model. Similarly, a goal of the
form

〈at(a, L, T ′),⊥, {T ′ < 10, L 6= c}〉

indicating the intention to have a at some location L different from location c, cannot be
represented within the model.

We have restricted the models in this way to simplify them and concentrate with the issues
involved in reasoning with temporal variables and constraints. However, the extension to
the more general case is possible and seemingly not very difficult. This extension would
amount to associating non-temporal constraints to goals and actions, alongside temporal
ones, and non-temporal variables to fluent literals and action operators, alongside tempo-
ral ones. Moreover, this extension would require extending Σ to deal with instantiations of
non-temporal variables and |=< and `< to establish and check their satisfiability. Finally,
AE, AOI and POI would have to be modified in order to possibly instantiate non-temporal
variables when interacting with the environment via the sensing capability.

• We have assumed that temporal constraints are kept locally with goals and actions in the
state. However, when using these constraints, we always consider all the other constraints
in the state (indicated with TCS). Thus, we could have used the global constraint store
TCS directly. This is the solution we have adopted within D9 [5], in the PROSOCS
platform.

• We have assumed that observations are just recorded within KB0, and no (credulous)
explanation for their occurrence can be stored and used within the models. In some cases,
it might be useful to generate and use such explanations, to cope with the incompleteness
of information available to the computee. We have started investigating this extension
within temporal reasoning, with the possibility to reason with actions whose time is
existentially quantified within an interval (see appendix A).

16 Related Work

During the past few years we have witnessed an explosion of proposed models and architectures
for individual agents. In deliverable D4, we have identified a number of such models and
architectures mostly relevant to the KGP computee model proposed in D4. Here, we compare
the computational counterpart for the KGP model that we have proposed earlier on in this
deliverable with the computational counterpart for the models and architectures for agents
proposed in the literature, where applicable. We identify similarities and differences between
the computational counterpart of the KGP model and the computational counterparts of the
relevant proposals. We only briefly report on the features of the approaches we compare ours
with, and do not compare the approaches with the KGP model (as we have already done this
in deliverable D4).

We will also stress the “distance” between abstract models and computational counter-
parts and, if applicable, any system built as a directly usable counterpart of the abstract and
computational models. We will throughout refer to the prototype system that we have built

127

as a practical counterpart to the KGP (abstract and computational) model, as given in the
companion deliverable D9.

As in D4, we start with a number of existing proposals that are popular in modelling agents
and multi-agents systems, most notably, the classical BDI model [102], the modelling features of
the agent-programming languages: Agent0 [109], AgentSpeak [99] and its variants, 3APL [57],
and the agent-modelling framework DESIRE [17]. Then we compare KGP with existing com-
putational logic-based approaches that use, as we do here, non-monotonic logic programming
frameworks and techniques to model, specify and implement software agents. These include
the work developed by the IMPACT project [8], the logic-based systemMINERVA [87], the
agent specification language GOLOG [88] and its variants.

We believe the existence of a clearly identified and provably correct computational counter-
part for the KGP model, on which the implemented system is soundly grounded, to be one of
the strenghts of the KGP model with respect to other agent models in the literature. Thus,
through the comparison of computational counterparts of existing systems, we also implicitly
stress the significance of the KGP model.

Throughout this section we advocate a number of advantages of the (computational coun-
terpart of the) KGP model, which we summarise here as follows:

• The KGP model is equipped with a clearly identified, and provably correct computa-
tional counterpart, which synthesises within a single setting an abductive proof proce-
dure in abductive logic programming (ALP) and a proof procedure for reasoning with
dynamic priorities in logic programming (LP), both appropriately extended by means of
a constraint solver (as in Constraint Logic Programming - CLP).

• In order to provide the features required by the KGP model, which are necessary to
cope with the Global Computing challenges, we have defined novel extensions of existing
computational logic techniques and proof procedures, thus pushing forward the state
of the art within computational logic, rather than simply transferring know-how from
computational logic to the Multi-Agent-Systems and Global Computing communities.

• The computational counterpart of the KGP model is defined modularly, by appropriately
integrating computational counterparts of the different components of the KGP model
(capabilities, transitions, selection functions, cycle theory). Different components might
use the same underlying proof procedure, but adjusting it to their needs. The overall
correctness result is obtained as a by-product of the correctness results for the individual
components, modularly.

• The computational model we have proposed is flexible in that the concrete proof proce-
dures that are at the heart of our model could in principle be replaced by other proof
procedures.

• The prototype for the single computee that we have developed in the companion deliver-
able D9 is strongly coupled with the computational model for the KGP model proposed
earlier on in this deliverable, and the gap between the computational model and the pro-
totype is rather narrow. As a consequence of this and of the correctness results we have
proved earlier on, the gap between the KGP model and the existing prototype is rather
narrow.

128

16.1 The BDI model

Following [15], Cohen and Levesque [27] have formalised some philosophical aspects of Brat-
man’s Beliefs, Desires, and Intentions theory [14]. In their formalism, intentions are defined in
terms of temporal sequences of an agent’s beliefs and goals, i.e. intentions depend on what is
believed as time progresses, and what is desired to be achieved at specific times. In related work,
Rao and Georgeff have developed a modal logic framework for agent theory based on the three
primitive modalities of beliefs, desires, and intentions [101, 102]. Their formalism (referred to
as BDI) is based on a branching model of time in which belief-, desire-, and intention-accessible
worlds are themselves branching time structures.

To establish the link between the BDI theory and practice, Rao and Georgeff have also
presented an architecture [98, 100] that focuses on practical/computational concerns (unlike
that of Bratman et al), also illustrating how a BDI system can be designed to have data
structures that correspond to beliefs, desires, and intentions, together with update and query
operations on these structures. This design is advantageous, Rao and Georgeff argue, when an
agent has to communicate with humans and other agents, and can be expected to simplify the
building, maintenance, and verification of application systems.

However, the architecture does not rely on the use of modal-logic theorem provers, as
one might have expected. The reason for this is that by using such computational tools
the time taken to reason, and thus the time taken to act, is potentially unbounded, thereby
destroying reactivity that is essential in the agent’s survival. Instead, the update operations
on the beliefs, desires, and intentions structures are controlled by an interpreter as shown below:

BDI-interpreter
initialise-state();
repeat

options:= option-generator(event-queue);
selected-options := deliberate(options);
update-intentions(selected-options);
execute();
get-new-external-events();
drop-successful-attitudes();
drop-impossible-attitudes();

end repeat

At the beginning of every cycle, the option-generator() reads an event-queue structure and
returns a list of options. The deliberate() selects a subset of selected-options to be adopted and
adds these to the intentions structure. If there is an intention to perform an atomic action at
this point in time, the agent then executes it by calling execute(). Any external events that
have occurred during the interpreter cycle are then added in the event-queue by calling get-new-
external events(). Internal events are added as the occur. Next, the agent modifies the intention
and desire structures by calling drop-successful-attitudes() and drop-impossible-attitudes() to deal
with successful as well as unrealisable (or impossible) intentions and desires.

The ideas behind this new, computing-centric, abstract architecture is to bridge the gap,
between BDI theory - presented in terms of the BDI architecture and the modal logics on
the one hand, and a number of existing BDI implementations - most notably the work on the
systems PRS [51, 49, 50, 60] and dMARS [52] on the other.

129

One major difference between BDI and KGP is that KGP is not based on a modal-logic
approach to represent an agent’s beliefs but instead it is based on a non-monotonic computa-
tional logic language which is certainly less expressive. This language choice allows us to have
a provably correct computational model on which the prototype system of D9 is strictly based.
Thus, the correspondence between agent specification and executable implementations is closer
for our KGP model than for classical BDI.

Rao [99] argues that the complexity of the code written for classic BDI implementations such
as PRS and the simplifying assumptions made by them have meant that these implementations
have lacked a strong theoretical underpinning, and that the specification logics for BDI have
shed very little light on the practical problems and, as a result, the two streams of work on
theory and practice seem to have been diverging:

“. . . due to its abstraction this work was unable to show a one-to-one correspondence between
the model theory, proof theory, and the abstract interpreter”

“. . . the holy grail of BDI agent research is to show a one-to-one correspondence with a
reasonably useful and expressive language”.

The development of our KGP model has been motivated by similar observations. We
believe that our provision of computational counterpart in D8 and prototype based on it in D9
do provide a strong theoretical underpinning for the prototype and a practical counterpart for
the model.

16.2 AGENT0

AGENT0 [109] is as an agent-oriented programming language that extends the AI language
Lisp. It is probably one of the first attempts to promote a social view of computation based on
the interaction of different co-operating agents. The approach is grounded on a multi-modal
logic with an explicit representation of time, with modalities such as beliefs and commitments,
and communication primitives, such as REQUEST and INFORM.

Using the AGENT0 architecture an agent has four component data structures: a set of
capabilities – specifying what an agent can or is able to do; a set of beliefs – stating what an
agent believes at certain times and about certain times; a set of commitments – representing the
actions that the agent ought to do at specific times; and a set of commitment rules – describing
how new commitments can be introduced or old commitments can be dropped.

An agent cycle interprets commitment rules in AGENT0 roughly as follows: a new incoming
message may update the beliefs and will be matched against the agent’s message conditions of
the commitment rules set. These conditions are then matched against the beliefs of the agent.
If the commitment rule fires (i.e. both the message and the conditions of the commitment rule
are satisfied), then the agent becomes committed to the action. The execution of an action
then may update the commitments and the beliefs of the agent.

AGENT0 was only intended as a prototype, to illustrate the principles of agent-oriented
programming, and was refined by Thomas in the Planning Communicating Agents (PLACA)
language [114]. Despite the improvements of PLACA over AGENT0, the language still inherits
the gap that there is in AGENT0 between the high-level concepts such as beliefs and commit-
ments and the implementable architecture. In contrast, the computational model that we have
provided in this deliverable serves to bridge the gap between the formal KGP model and its
implementation (see deliverable D9). Moreover, the formal way in which the KGP model is
defined facilitates the concrete computational counterpart we have provided here. For example,
the notion of how beliefs persist in AGENT0 is described in terms of informal guidelines, which

130

need to be followed at the agentification (implementation) stage. Instead, in KGP , the way the
knowledge persists and changes is described by means of concrete event calculus axioms that
are precisely given and whose semantics is precisely specified and so can be directly executed
by adopting a suitable abductive proof procedure.

16.3 AgentSpeak

The first version of AgentSpeak [120] attempted to provide an agent-oriented programming
language with BDI–like modelling capabilities such as PRS [60] and appropriate language con-
structs, influenced by work in object-based programming languages.

Like with PRS, however, there was a large gap between AgentSpeak programs and the theory
of the BDI model. To bridge this gap, Rao in [99] proposes AgentSpeak(L), a programming
language that can be viewed as an abstraction of the BDI implemented systems (such as PRS -
described in [49] and dMARS - in the way formalised in [35]) and allows agent programs to be
written in a restricted first-order language with events and actions. In this context, Rao argues
that the shift in perspective of taking a simple specification language as the execution model
of an agent and then ascribing the mental attitudes of beliefs, desires and intentions, from an
external viewpoint is likely to have a better chance of unifying theory and practice. It is worth
saying here that KGP has been constructed very much in this spirit.

In AgentSpeak(L), an agent contains, besides beliefs, plans, and intentions, also events, ac-
tions, selection functions. The selection of plans, their adoption as intentions, and the execution
of these intentions are described via an operational semantics in terms of an interpreter that
runs the agent programs specified in AgentSpeak(L). The beliefs, desires and intentions are not
defined as modal formulas, but instead as a set of base beliefs (or, as Rao puts it: facts in the
logic programming sense).

The proof theory of AgentSpeak(L) language is given by a labelled transition system. The
notion of configuration is a labelled description of the events, beliefs, intentions, and actions
of an agent. Proof rules define how the agent moves from one configuration to the next. It
is argued that these transitions have a direct relationship to the operational semantics of the
language and hence help to establish the strong correspondence between the interpreter and
the proof theory, although no formal proofs are provided. AgentSpeak(L) also suffers from
proof–rules being embedded in the cycle algorithm, that is, they are not defined separately
and modularly, as in the KGP model and in the computational counterpart we provide in this
document. In any case, undoubtedly the AgentSpeak(L) work has opened up an alternative,
restricted, first–order characterisation of BDI agents, which somewhat bridges the gap between
theory and practice.

Up until recently, there was no implementation of the AgentSpeak(L) interpreter. Bor-
dini et al [11, 12] have implemented an extended AgentSpeak(L) interpreter which they call
AgentSpeak(XL). This extended interpreter allows the programmer to handle extensions of the
original AgentSpeak(L) (e.g. plan failures), by means of a quantitative model of goals, plans,
and the environment. In a broad sense, the approach supporting these extensions is similar to
the KGP cycle approach, in its preference-based orchestration of the various capabilities, and
in the representation of goals and plans. However, the lack of a semantics of the quantitative
model integrated within the overall semantics, makes difficult to prove the correspondence of
the model with its computational counterpart (which is only informally sketched), and hence,
any relative (correctness) property.

131

16.4 3APL

Another programming language for agent programming relevant to KGP is 3APL, presented
in a number of articles by Hindriks et al [56, 57, 59, 58]. Unlike KGP which is based purely
on declarative logic programming, the 3APL language is a combination of imperative and logic
programming. From the imperative programming viewpoint, 3APL inherits the full range of
regular programming constructs, including recursive procedures and state-based computation.
States of agents in 3APL, however, are belief (or knowledge) bases, which are not characterised
by the usual variable assignments of imperative programming. From the computational logic
perspective, also taken by our KGP model, answers to queries in the beliefs of a 3APL agent
are proofs in the logic programming sense.

At run–time an agent program in 3APL is viewed as consisting of a set of Beliefs, a set of
Basic Actions, a set of (Achievement and Test) Goals, and a set of Practical Reasoning Rules.
Although the beliefs in [57] are exemplified in a logic programming like (first-order) language
with integrity constraints, any logical language, even a modal language could in principle be
used. In KGP , however, we have already seen that the representation language is fixed to
be a combination of ALP, CLP, and LP with dynamic priorities. Achievement goals act like
procedures in imperative programming and have a procedural meaning for things that agent
has to do. Test goals allow the agent to query its beliefs, and are evaluated relative to the
current beliefs of the agent. Together, the basic actions, achievement goals and test goals
are the basic goals of the 3APL language. Complex goals are then composed from basic goals
by using imperative programming constructs for sequential composition and non-deterministic
choice. There are many similarities between Practical Reasoning Rules in 3APL and some parts
of the KGP model, as we discuss in D4.

The operational semantics of 3APL is specified in terms of transition rules, which – similarly
to AgentSpeak(L) – are relations on so-called configurations. Two distinct classes of transition
rules are defined. The first type defines what it means to execute a single goal given the
current belief base of an agent and the current computational state (which include the variable
bindings). At this level, transition rules provide a formal specification for 3APL basic actions,
achievement goals, test goals, complex goals, and practical reasoning rules. The second type of
transitions is defined in terms of the first type and defines what it means to execute an agent
in terms of executing multiple goals.

To deal explicitly with selection mechanisms for goals and actions, 3APL introduces a sep-
arate formal specification for the control structures of the agent language. A second transition
system is introduced, called the meta-transition system, which includes features for referring to
the object level language, as well as operators for programming control structures for the object
(agent) level. The meta-transition system also supports a set of basic actions that allow the
agent to select, apply rules, and execute goals. For this purpose four actions are introduced:
(1) an action for selecting an applicable rule, (2) an action for the application of a number of
rules, (3) an action for selecting an enabled goal, and (4) an action for the execution of a set
of goals. Finally, constructs for expressing the preference order over goals and rules (such as
those in the practical reasoning rules base) are also provided.

The control structure that is proposed by 3APL [30] is a specialisation of a one-size-fits-all
update-act interpreter [109, 99, 79] as follows:

Update-Act Cycle
1 Select a rule R to fire

132

2 Update the goal base by firing R
3 Select a goal G
4 Execute (part of) G
5 Goto 1

In [30] an extension of the meta-language is discussed, whose aim is to make the cycle of
3APL programmable. Within theKGP model, we share the 3APL aim to make the behaviour of
agents/computees programmable and the selection mechanisms explicit [30]. The programmable
meta-language, which is based on control constructs that are in the style of the imperative
programming languages, differs from the programmable “control layer” of the KGP model,
which instead is based on computational logic. Moreover, while the programmable cycle of
3APL is based on tests (entailment relations of the underlying logic), set-like selection operations
and control structures, the KGP one orchestrates a versatile set of modular components that
exhibit more complex reasoning capabilities.

These differences are reflected also at the computational level. In the case of 3APL, the
semantics prescribe how to integrate computational logic and imperative control structures,
in the case of KGP the semantics more directly corresponds to the computational model,
as shown in this document, and the computational model defines, almost straightforwardly,
the implementation. According to the general aims of the project, we expect that our use of
declarative control theories with a clear and provably correct computational counterpart will
give us a solid base on which to formally reason about the properties and the behaviour of a
computee.

16.5 DESIRE

DESIRE (DEsign and Specification of Interacting REasoning components) is a high–level mod-
elling framework that explicitly models the knowledge, interaction, and coordination of complex
tasks and reasoning capabilities in agent systems [18, 17, 16]. The framework views both individ-
ual agents and the overall system in terms of a compositional architecture – where functionalities
are given by interacting, task-based, hierarchically structured components.

Tasks are characterised in terms of their inputs, their outputs and their relationship to
other tasks. Interaction and co–ordination between components, between components and the
external world, and between components and users is specified in terms of informational ex-
change, sequencing information and control dependencies. The components themselves can be
of any complexity, from simple functions and procedures up to whole knowledge-based sys-
tems, and can perform any domain function (e.g. numerical calculations, information retrieval,
optimisations, etc).

In [17], DESIRE has been extended to define a generic BDI model to incorporate beliefs,
desires and intentions. The result is a more specific BDI agent where an agent’s task control
is capable of six tasks: the own process control deals with how the agent determines its own
beliefs, desires and intentions, the agent specific tasks deals with the agent performing its own
tasks, the world interaction management deals with managing interaction with the environment,
the agent interaction management deals with communication with other agents, the maintenance
of world information deals with modelling the world, and the maintenance of agent information
deals with modelling other agents.

The formal specification of DESIRE is based on a many–sorted predicate logic [37], which
distinguishes between object-level and meta-level descriptions of components. The dynamics

133

of the overall compositional system in DESIRE is modelled through temporal models based on
temporal logic [19].

In this perspective, the approach of DESIRE is mainly oriented to the verification of the
properties of the overall system, given the specification of the agents which compose it and
their interactions. The computational behaviour of each agent, responsible for a (sub-)task,
is based on a if-then conditional rule model (which may be further specified). The temporal
logic analysis is carried out to verify properties of interest of the compound system, as resulting
from the interaction of the agents. In this sense, DESIRE is more relevant to the prosecution
of our project, concerned with the definition and verification of properties of societies of com-
putees, than to the computational model of the KGP model, which relies on slightly different
assumptions.

16.6 Computational logic-based approaches

16.6.1 IMPACT

The principal goal of the IMPACT (Interactive Maryland Platform for Agents Collaborating
Together) project [8, 39, 38, 40, 41, 113], has been to develop both a logic-based theory as well
as a software implementation that facilitates the creation, deployment, interaction, and col-
laborative aspects of software agents in a heterogeneous, distributed environment, representing
hence a complete framework which covers many aspects of agent development and execution
support.

The IMPACT project proposes a unifying approach for many different features of agent be-
haviour based on the adoption of computational logic as the underlying methodology for system
development and analysis. It provides a set of servers (yellow pages, thesaurus, registration,
type and interface) that facilitate agent inter-operability in an application independent manner.
It also provides an Agent Development Environment for creating, testing, and deploying agents.

IMPACT is centered on the integration, based on agentification, of heterogeneous, possi-
bly legacy, information sources, and in their cooperation in order to successfully accomplish a
coordinated task. Agents encapsulates information sources via a logical representation, mix-
ing classical execution of code with logical-based reasoning: their behaviour consists of the
execution of actions (code), as prescribed by the agent program. Such a program is defined
upon the logical representation in a computational logic declarative style (e.g. preconditions,
integrity constraints, postconditions...), featuring also modal operators, like deontic constructs
(e.g. possible and necessary actions, ...). The underlying architecture supports the interaction
with other agents, for instance by allowing communications. Semantics prescribes which actions
are feasible, permitted, required, forbidden to be (concurrently) executed in the current state,
and it can be sometimes mapped onto classical non-monotonic reasoning semantics.

The different motivations of KGP and IMPACT make apparent the different ways agents
are modelled in the two systems, most notably differences in the treatment of beliefs and actions
(for instance, KGP has not modal operators), and also in the treatment of temporal reasoning,
planning, goals, communication, and control (see Deliverable D4 for a more precise comparison
of the two models, [63]). These differences are reflected on the computational level.

The computational model of IMPACT is based on specialised, sound, iterative, fix-point
computational procedures that compute the behaviour of the agent, as fix-point sets of ac-
tions to be executed, according to the agent program and the current state. This determines a
state-transformation cycle that depends on the current state and the received messages. Com-

134

putational procedures are also complete, and polynomial–time under certain conditions, even
if the more expressive ones are generally NP.

The KGP model does not deal with modal operators and concurrency in action execution,
and with mechanisms to guarantee a correct course of actions in this sense (this is subject
for future extensions). The computational counterpart of the KGP model hence consists of
an orchestration of a set of modular proof procedures, which might in principle be selected
according to the problem at hand, and are subject to a “programmable” control cycle. Moreover,
while the notion of agentification makes the distinction of the implementation of an agent from
its abstract model not always so clear, our work keeps the separation of the computational
model from the formal model (and the implementation) as a main concern.

Overall, the KGP model, and its computational counterpart, focus on building autonomous
agents by integrating existing logic programming techniques and their extensions in order to
cope with highly dynamic nature of open and global computing environments.

16.6.2 MINERVA

MINERVA is an agent framework which exploits computational logic as a means for integrat-
ing diverse non-monotonic formalisms within a unique (dynamic) model, [87, 86]. The basic
architecture consists of a structured knowledge base encompassing both the knowledge of the
agent, i.e. its representation of the environment and other agents, and (BDI-like) features such
as capabilities, intentions, goals, and plans. The knowledge base is controlled by a varying
set of modules, each of which is devoted to a specific task, like, for instance, a communicator,
a sensing and reacting module as interface with the environment, a planner, a learner, and a
scheduler module. All of these components update the agent’s knowledge base. The architec-
ture is modular in that it is composed of functional sub-agents, which may add and remove
functionality to the single agent.

MINERVA relies on the Multidimensional Dynamic Logic Programming (MDLP)
model [85] and Knowledge and Behaviour Update Language (KABUL) [86], in order to represent
the dynamic evolution of an agent’s knowledge. MDLP is a non–monotonic LP–based model
which allow representation of (modules in) the knowledge base of agents by means of (gener-
alised) logic programs, and it is equipped with both an answer-set-based declarative semantics
and an operational semantics. KABUL is a declarative representation of state transitions,
namely behaviours.

TheMINERVA project is more recent than the longer running projects previously cited.
Some of its components are provided with a clear semantics, and implementations of the up-
dating languages are also provided as meta-interpreters (and pre-processors) over Prolog and
DLV [1] systems. However, the definition of a model for the overall agent computational part,
which emerges from the interaction of the separate sub-agents, seems not determinant in the
passage from the semantics to the implementation. Indeed, the definition of a computational
model, (formally) proved to correspond to the semantics, is less emphasised in this approach
than it has in ours.

Anyway, given the similarities between the two projects, e.g. the declarative and operational
use of computational logic for representing agent knowledge, the modularity of agent architec-
ture, and the interest for open and dynamic environments that evolve non-monotonically, we
argue that the comparison of the forthcoming advances of the KGP andMINERVA models,
and also of their computational counterparts, will be interesting for both projects.

135

16.6.3 GOLOG

GOLOG, after alGOl LOGic, [88] is another approach to a logic-based modelling of multi-agent
systems. As the name suggests, GOLOG is a language which tries to import the programming
paradigm of a procedural language like Algol into the realm of logic. In particular, it is based
on the situation calculus [93], which represents a sophisticated logic of actions.

GOLOG is provided with procedural constructs like sequencing, choice and iteration of
situation transforming actions, and it has a computational implementation based on Logic Pro-
gramming. An explicit representation of the dynamic world being modelled evolves according
to actions, which are characterised by (user supplied) axioms about their preconditions and
effects. This allows programs to reason about the state of the world and consider the effects of
various possible courses of action before committing to a particular behaviour.

A concurrency-based extension of the original language [53] provides a high-level agent
control based on facilities for prioritising the concurrent execution, interrupting the execution
when certain conditions become true, and dealing with exogenous actions. This sort of high-
level agent control constitutes an alternative to planning, being the course of actions of a plan
determined by the concurrent synchronisations that actions and conditions induce on each other.
A distinguishing feature with respect to other procedural formalisms for concurrency, which is
valuable when modelling open systems, is the possibility of dealing with incompletely specified
states, which represent a partially accessible environment. However, the original research line
of GOLOG is based on off-line planning the course of actions to be executed.

This logic-based approach to modelling the evolutions of a dynamic world shares with our
work here many motivations, and in particular the interest in a representation of the agent’s
state which allows for reasoning about changes occurring over time.

To evaluate programs in an open world setting, an extension of Golog and ConGolog is
specified in [54], and is known as IndiGolog (Incremental deterministic Golog). This system
allows a programmer to specify guarded action theories, that can determine, by dynamically
checking conditions, the on-line (and off–line) execution of programs. In the on-line execution
case, a sensing capability affects the current state of the computation, which is obtained by
incrementally executing programs represented as guarded theories. Such implementation is
provably correct under certain conditions, and is reminiscent of theKGP combination of sensing
capability combined with the knowledge revision obtained by event calculus theories.

However, the GOLOG family, being based on the quite sophisticated situation calculus,
requires computational counterparts that are closer to full-fledged theorem-provers than to
classical computational logic, as exploited by the KGP model, and are typically less computa-
tionally effective.

136

Part III

Societies
Abstract. In this part we present the operational counterpart, as a proof
system based on rewriting, for the society infrastructure, and in particular
for the part devoted to checking goal achievement and compliance to the
protocols specified at society level of (computees’) interactions, expressed,
in their turn, as socially relevant events. We start by recalling the abductive
interpretation of the society, and by restating its declarative semantics (up-
dated with respect to Deliverable D5 [94]). We then present the social level
proof procedure, that is inspired by, and extends the C-IFF proof procedure.
The extension allows accepting new events, producing a set of expectations,
and detecting violation. It deals with constraints, involving both existen-
tially and universally quantified variables. Finally, we state the desirable
properties of the Society Constrained IFF proof Procedure (SCIFF in the
following). In particular, we state soundness and completeness properties
with reference to the (declarative) semantics given in Deliverable D5 [94] for
the society model.

The society model envisaged in the first year of the project and presented in Deliverable D5
[94] is capable of modelling interactions among computees in an open environment, and also
supports goal-directed behaviour of societies of computees.

The main features achieved by the society model are:

(i) the use of Computational Logic (CL, for short) to model and give semantics to interac-
tions; and

(ii) the use of a uniform formalism (based upon what we named Social Integrity Constraints)
for expressing both interaction protocols and “social” semantics of communication lan-
guages.

The society infrastructure is devoted to checking the compliance of a society member’s
behaviour, with respect to the expectations of the society, as by the integrity constraints and
required to achieve a goal of the society. Compliance to the specified protocols of interactions,
communication language semantics and required behaviour to achieve certain goals can be
checked by a suitable CL-based proof procedure.

In the second year of the project, in Workpackage 3, the Consortium aims at providing a
computational counterpart for both the single computee model and the society model. In the
following, we focus on this latter.

To this purpose, this part is based on the abductive interpretation of the society model
(introduced in D5), since this interpretation smoothly allows for re-using existing proof proce-
dures for Abductive Logic Programming (ALP). These proof procedures need to be extended, of
course, due to the richer syntax of the society knowledge bases and social integrity constraints,
the need for assimilating new events coming interactively and the need for dynamically checking
fulfillment and violations.

In Section 17 we recap the formal society model defined in the Deliverable D5, [94], together
with some updates done in the context of Workpackage 3.

137

In Section 18 we present the society model as ALP and its revised declarative semantics.
In Section 19 we show the modifications we considered necessary to the IFF proof procedure,

to take into account the society model defined in Section 18.
In Section 20, we state desirable properties (in terms of soundness and completeness) of the

society proof procedure under definition. In particular, for stating these properties we refer to
the (declarative) semantics given for the society model. Proofs for soundness properties are
given in Section 20.

17 Society formal model: Recap and Update

17.1 The Syntax of the Society

The society knowledge consists of the following 4-tuple [94]:

〈SOKB,SEKB, ICS ,G〉

where:

• SOKB is the Social Organization Knowledge Base,

• SEKB is the Social Environment Knowledge Base,

• ICS is the set of Social Integrity Constraints (ICS), and

• G is the set of Goals of the society.

Social Environment Knowledge Base. The SEKB dynamically evolves and is composed
of:

• Happened events: atoms indicated with functor H

• Expectations on the future: events that should (but might not) happen in the future
(atoms indicated with functor E), and events that should not (but might indeed) happen
in the future (atoms indicated with functor NE).

The happened events are not all the events that happen, but only those observable and relevant
for the society, as discussed in deliverable D5 [94]. These events make up the history HAP of
the society, and are represented as ground atoms

H(Event [,Time]).

The expectations can be
E(Event [,Time])

NE(Event [,Time])

and can contain variables, with the following scope rules and quantifications:

• variables in E atoms are always existentially quantified with scope the entire set of ex-
pectations

• the other variables, that occur only in NE atoms are universally quantified (the scope
of universally quantified variables is not important, as ∀X.p(X) ∧ q(X) is equivalent to
∀X.p(X) ∧ ∀Y.q(Y)).

138

Social Organization Knowledge Base. The SOKB is a logic program, consisting of clauses

Clause ::= Atom←Body
Body ::= ExtLiteral [∧ ExtLiteral]?

ExtLiteral ::= Literal | Expectation | Constraint
Expectation ::= [¬]E(Event [, T]) | [¬]NE(Event [, T])

(7)

In a clause, the variables are quantified as follows:

• Universally, if they occur only in literals with functor NE (and possibly constraints), with
scope the body;

• Otherwise universally, with scope the entire Clause.

We call definite the predicates for which there exists a definition; i.e., a predicate that occurs
in at least the head of a clause.

Goal. The goal G of the society has the same syntax as the Body of a clause in the SOKB.
Notice that the variables occurring in G are considered free by the IFF proof procedure. In
the devised proof procedure for the society infrastructure (named SCIFF in the following),
for ease of presentation and without loss of generality, they will be considered as existentially
(or where appropriate as universally) quantified variables. Coherently with the SOKB, the
variables occurring in G are quantified

• existentially if they occur in a definite literal, or literals with functor E;

• universally if they occur only in literals with functor NE.

Any variable in G must occur in at least a literal E or NE.

Social Integrity Constraints are in the form of implications. We report here, for better
readability, the characterizing part of their syntax (the full syntax is given in document D5):

ic ::= χ→ φ
χ ::= (HEvent|Expectation) [∧BodyLiteral]?

BodyLiteral ::= HEvent|Expectation|Literal|Constraint
φ ::= HeadDisjunct [∨HeadDisjunct]?|⊥

HeadDisjunct ::= Expectation [∧ (Expectation|Constraint)]?

Expectation ::= [¬]E(Event [, T]) | [¬]NE(Event [, T])
HEvent ::= [¬]H(Event [, T])

(8)

Given a ICS χ → φ, χ is called the body (or the condition) and φ is called the head (or the
conclusion).

The rules of scope and quantification are as follows:

1. Any variable in an ICS must occur in at least an Event or in an Expectation.

2. The variables that occur both in the body and in the head are quantified universally with
scope the entire ICS .

3. The variables that occur only in the head must occur in at least one Expectation, and

139

(a) if they occur in literals E or ¬E are quantified existentially and have as scope the
disjunct they belong to;

(b) otherwise they are quantified universally.

4. The variables that occur only in the body are quantified inside the body as follows:

(a) if they occur only in conjunctions of ¬H, NE, ¬NE or Constraints are quantified
universally;

(b) otherwise are quantified existentially.

5. Of course, the order of the quantifiers is, in general, significant. In our syntax, the
quantifier ∀ cannot be followed by ∃.

17.2 Syntax Update

The syntax proposed in document D5 [94] has been restricted, concerning Workpackage 3. We
list the introduced restrictions together with the motivation.

Quantification of negative literals The IFF proof procedure imposes syntactic restrictions
on the integrity constraints, on the clauses and on the goal. These restrictions are due to the
treatment of negation and quantifiers (that are implicit, rather than explicit). In the IFF proof
procedure, all atoms are given the standard Herbrand interpretation of logic programming.

Our language gives a specific meaning to some of the atoms; as in CLP, we give interpretation
to some atoms called constraints. Moreover in atoms H, E, and NE the quantifiers are treated
explicitly. It is reasonable that, for variables that do not occur in the interpreted atoms, we
inherit the same syntactic restrictions of the IFF proof procedure; while for the other variables
we have a specific treatment (see Section 19). We extend the IFF proof procedure allowedness
condition, as follows.

Definition 17.1. A clause Head←Body is allowed if every variable that occurs in a negative
literal of a definite predicate

• occurs in at least a positive literal or in the head (as in the IFF)

• or it occurs in atoms E or ¬E.

A Goal is Allowed if every variable that occurs in a negative literal of a definite predicate

• occurs in at least a positive literal (as in the IFF)

• or it occurs in atoms E or ¬E

The aim of these definitions is to ensure that the quantification of variables in negative
literals in the resolvent cannot be universal.

The IFF also imposes a condition on the integrity constraints:

An integrity constraint is allowed if (and only if) every variable in the conclusion
occurs in the condition.

140

We do not need this condition, because we can always convert a non allowed integrity constraint
by adding a new predicate. E.g., the integrity constraint:

E(p(X))→ E(q(Y))

can be converted into

E(p(X))→ r.

r←E(q(Y)).

Notice that, due to the syntactic restrictions already in document D5, a variable cannot occur
in a Social Integrity Constraint only in negative, definite literals, but it must always appear in
literals with predicates H, E, NE.

Quantification of E atoms The rules of quantification given in deliverable D5, explain that

variables in E atoms are always existentially quantified, and their scope is the entire
set of expectations.

On the other hand, universally quantified variables may occur in NE atoms. Consider the
example:

NE(p(X))→ E(q(X)). (9)

Since variable X is universally quantified with scope the whole social integrity constraint, if the
current set of expectations contains (∀Y) NE(p(Y)), it should also contain (for the satisfaction
of ICS 9):

∀Y E(q(Y))

which is not in the syntax of the SEKB. A similar consideration can be done for ¬H literals;
the ICS :

¬H(p(X))→ E(q(X))

entails that

(∀X) E(q(X))

if the history is empty.
Also, as explained in the definition of the society’s proof procedure (Section 19), the negative

literals of defined predicates are handled as by the IFF proof procedure. Thus, when occurring
in the body of an implication, they are moved to the head. We must ensure that no defined
atom is invoked with universally quantified variables.

For these reasons, we define the following allowedness condition:

Definition 17.2. A Social Integrity Constraint is Quantifier Allowed if any variable occurring
in the head in literals of type E, ¬E, or (in the body) in a negative, defined literal

• either does not occur in the body

• or it occurs in the body in a literal of type H, E, ¬E.

The society knowledge is quantifier allowed if all the Social Integrity Constraints are quantifier
allowed.

141

Constraints and quantifier restrictions In document D5, CLP constraints can be ap-
plied to universally quantified variables. During Workpackage 3 we refined the concept, and
introduced quantifier restrictions [24], distinguished from constraints.

For this reason, in the equations defining the BNF of SOKB and Social Integrity Constraints
(Equations 7 and 8 in Section 17.1), one should read “quantifier restrictions” instead of “con-
straints”. The two concepts coincide for existentially quantified variables, but are different for
universally quantified ones.

For example, the sentence
(∀X) NE(p(X)), X > 0

should be interpreted as
(∀X>0) NE(p(X))

which means
(∀X) X > 0→ NE(p(X))

or “for all X greater than zero, p(X) is expected not to happen”. Quantifier restrictions will be
discussed in greater detail in the operational semantics of the society (Section 19.1.1).

Quantifier restrictions occurring in the body of Social Integrity Constraints From
the syntax in document D5, we have that variables occurring only in NE, ¬NE and ¬H literals
in the body of a Social Integrity Constraint are universally quantified with scope the body of
the ICS .

Propagation of Quantifier Restrictions (QR in the following) for these variables would
be very difficult to manage, and computationally expensive. For example, checking that
∀X<Y NE(p(X,Y)) is not trivial, in general.

Moreover, implementing a constraint solver that efficiently deals with general quantifier
restrictions would be very complex. We restrict ourselves to quantifier restrictions that are
unary, i.e., in which only one variable is involved (except for variables occurring in H, which
will become ground when they are unified with a corresponding atom). We leave as a possible
extension for future work the treatment of general quantifier restrictions.

For these reasons, we give the following definition:

Definition 17.3. A Social Integrity Constraint is Constraint Allowed if

• all the variables that are universally quantified with scope the body do not occur in quan-
tifier restrictions;

• the other variables (that occur only in the head, or both in the head and in the body) can
occur in quantifier restrictions. For each quantifier restriction c occurring in the Social
Integrity Constraint,

– either c only involves variables that also occur in E, ¬E, H atoms

– or it involves one variable that also occurs in at least one NE atom and possibly
other variables each of which occurs in H atoms.

Notice that the C-IFF and SCIFF proof procedures have different syntactic restrictions,
concerning CLP constraints occurring in Integrity Constraints. In SCIFF, variables in a CLP
constraint must occur also in expectations or happened events, thus, all the variables in a CLP
constraint will eventually occur in an abduced atom or become ground.

142

Variable quantification problems can also happen due to unfolding; e.g.,

E(a(X)), p(X)→ E(b(X))

p(X)←NE(d(X,Y)), Y > 1.

In this case, Unfolding is applicable (see Section 19.2.1), and would give the following situation
(we skip the copy phase for the sake of simplicity):

E(a(X)),NE(d(X,Y)), Y > 1→ E(b(X)).

so the partially-solved integrity constraint would not be Constraint Allowed. For this reason,
we give a similar definition also for clauses:

Definition 17.4. A Clause is Constraint Allowed if the variables that are universally quantified
with scope the body do not occur in quantifier restrictions, and each variable that occurs in a
quantifier restriction also occurs in at least one atom E in the body.

Definition 17.5. A Society Knowledge is Constraint Allowed if all its social integrity con-
straints and all its clauses in the SOKB are Constraint Allowed.

18 ALP Interpretation of the Society model and declara-
tive semantics

Abduction has been widely recognized as a powerful mechanism for hypothetical reasoning in the
presence of incomplete knowledge [29, 43, 70]. Incomplete knowledge is handled by labeling some
pieces of information as abducibles, i.e., possible hypotheses which can be assumed, provided
that they are consistent with the current knowledge base. More formally, given a theory T
and a formula G, the goal of abduction is to find a (possibly minimal) set of atoms ∆ which
together with T “entails” G, with respect to some notion of “entailment” that the language of
T is equipped with.

Operationally, the idea is to exploit abduction for generating expected behaviour on the part
of computees inhabiting the society. For our purposes, abduction smoothly allows for modeling
hypotheses about expected/forbidden events, and a suitably extended abductive proof proce-
dure can be used for (social) integrity constraint checking. In the sequel, we often refer to the
latter function together with the function of detecting fulfillment and violation of expectations,
as compliance check, for the sake of brevity.

18.1 The society and society instance as an Abductive Logic Program

In the following, we recall the society model as Abductive Logic Program, presented in D5 [94],
and refine it. In particular, we introduce the notion of instance of a society as an Abductive
Logic Program in order to capture the dynamic aspects of a society.

The (static) model of a society, S, is represented as the following triple:

〈SOKB, E , ICS〉

where:

143

• SOKB is the Social Organization Knowledge Base,

• ICS is the set of Social Integrity Constraints, and

• E is the set of abductive predicates.

E consists of expectations. Expectations are events that should (but might not) happen
(atoms indicated with functor E, which we called positive expectations), and events that should
not (but might indeed) happen (atoms indicated with functor NE, which we called negative
expectations). Expectations can also be negated (by negation ¬).

The Social Organization Knowledge Base (SOKB) provides specifications for society goals.
In SOKB, clauses may contain in their body positive and negative expectations (possibly
negated) about the behaviour of computees, and auxiliary literals (positive and negative) too,
while their heads are atoms which possibly correspond to society’s goals.

Finally, Social Integrity Constraints (ICS) are forward rules, of kind body → head, which
have in their body literals, conditions about happened events (possibly negated) and (positive
and negative) expectations (possibly negated), and in their head (disjunctions of) conjunctions
of positive and negative (possibly negated) expectations. Happened events are atoms indicated
with functor H.

Furthermore, CLP-like constraints (and quantifier restrictions) can occur in the body of
SOKB clauses, and in the body and head of ICS constraints.

For details about the formal syntax of the society tuple components, and variable quantifi-
cation in particular, the reader can refer to Section 17 and to D5 [94].

In the following, we introduce the notion of instance of a society as an Abductive Logic
Program (ALP), where abducible predicates correspond to E and NE (and their negation ¬).

In our framework, abducibles are positive and negative expectation literals. In fact, we
represent the literals E, NE and their negation ¬E and ¬NE as positive abducible atoms, in
accordance with the usual way abduction can be used to deal with negation [43, 72]. In this
case, the additional constraint ∀X A(X),¬A(X)→ ⊥ is implicitly considered.

In the proof procedure, we will use three types of negation, depending on the type of negative
literal.

• For expectations (i.e., abducibles), we adopt the same viewpoint as in ACLP [72]: for
each abducible predicate A, we have also the abducible predicate notA for the negation
of A together with the integrity constraint (∀X)notA(X), A(X)→ ⊥. Following [72], we
assume that Negation As Failure (NAF) will not be used on abducibles, as it would be
not appropriate to apply this type of negation on expectations, which have no definition.
The usual constraint ∀X A(X) ∨ ¬A(X) adopted in NAF has in fact no meaning in an
open world, where we can have no expectation at all.

• For definite predicates, we will use the same rules as the IFF proof procedure.

• For happened events (indicated by the functor H), we will use a sort of Constructive
Negation [112]. In particular, we allow for variables in ¬H() literals.

In the following, we formally define the notion of instance of a society, and extension and
closure of an instance of a society.

Definition 18.1. An instance SHAP of a society S is represented as an ALP, i.e., a triple
〈P, E , ICS〉 where:

144

• P is the SOKB together with the history of happened events HAP;

• E is the set of abducible predicates of S;

• ICS are the social integrity constraints of S.

The set HAP characterizes the instance of a society, and represents the set of observable
and relevant events for the society which have already happened. Note that we assume that
such events are always ground.

In this way, our social framework (and its dynamic counterpart, as instance of a society) has
been smoothly given an abductive interpretation. This is interesting in its own right, and plays
a role in Workpackage 3, in order to exploit well-known proof-theoretic techniques to generate
expectations about social behaviour of members, and to check members’ compliance to these
expectations.

If the society is goal driven, then there exists a goal G at the society level (which is simply
true if the society is not goal driven).

Definition 18.2. Given two instances, SHAP and SHAP′ , of a society S, SHAP′ is a proper
extension of SHAP if and only if HAP ⊂HAP′.

Definition 18.3. Given an instance, SHAP, of a society S, the instance is closed iff it has no
proper extensions. We denote a closed instance as S

HAP
.

In the following, we indicate a closed history by means of an overline: HAP. Notice that
in a closed instance, we assume that no further event might occur (i.e., the instance has no
further extensions and the history is closed under CWA).

18.2 Declarative semantics: update

In the following we give semantics to a society instance by identifying sets of expectations which,
together with the society’s knowledge base and the happened events, imply an instance of the
goal - if any - and satisfy the integrity constraints.

For notion of integrity constraint satisfaction we rely, in the following, upon a notion of
entailment in a three-valued logic, since more general and capable of dealing with both open
and closed society instances. Therefore, in the following, the symbol |= has to be interpreted
as the notion of entailment in a three-valued setting.

Furthermore, in this section, we consider negative literals of the kind ¬H() as new positive
literals that have no definition in each open society instance. For closed society instances, we
use Clark’s completion of the history, Comp(HAP), and negation is interpreted in the Closed
World Assumption (CWA).

Throughout this section, for the sake of simplicity, we always consider a ground version of
society’s knowledge base and integrity constraints, and do not consider CLP-like constraints.

We first introduce the concept of ICS-consistent set of social expectations (previously called
“admissible” in deliverable D5 [94]). Intuitively, given a society instance, a ICS-consistent set
of social expectations consists of a set of expectations about social events that are compatible
with P (i.e., the SOKB and the set HAP), and with ICS .

Definition 18.4. (ICS-consistency) Given a (closed/open) society instance SHAP, an ICS-
consistent set of social expectations ∆ is a set of expectations such that:

SOKB ∪HAP ∪∆ |= ICS (10)

145

In definition 18.4 (and in the following definitions 18.7, 18.8, 18.9 and 18.10), for open
instances we refer to a three-valued completion where only the history of events has not been
completed. Therefore, for open instances,

SOKB ∪HAP ∪∆ |= ICS

is a shorthand for:
Comp(SOKB ∪∆) ∪HAP ∪ CET |= ICS

where Comp() is three-valued completion [84] and CET Clark’s equational theory.
For closed instances, instead,

SOKB ∪HAP ∪∆ |= ICS

is a shorthand for:
Comp(SOKB ∪∆ ∪HAP) ∪ CET |= ICS

since also the history of events (closed) needs to be completed.
ICS-consistent sets of expectations can be self-contradictory (e.g., both E(p) and ¬E(p)

may belong to a ICS-consistent set). In particular, among ICS-consistent sets of expectations,
we are interested in those which are also consistent with respect to E-consistency (previously
called “coherence” in D5) and ¬-consistency (previously called “consistency” in D5).

Definition 18.5. (E-consistency) A set of social expectations ∆ is E-consistent if and only
if for each (ground) term p:

{E(p),NE(p)} 6⊆ ∆

Definition 18.6. (¬-consistency) A set of social expectations ∆ is ¬-consistent if and only
if for each (ground) term p:

{E(p),¬E(p)} 6⊆ ∆

and
{NE(p),¬NE(p)} 6⊆ ∆

Given a closed (respectively, open) society instance, a set of expectations is called closed
(resp. open) admissible if it satisfies Definitions 18.4, 18.5 and 18.6, i.e. if it is ICS-, E- and
¬-consistent.

Definition 18.7. (Fulfillment) Given a (closed/open) society instance SHAP, a set of social
expectations ∆ is fulfilled if and only if for each (ground) term p:

HAP ∪∆ ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} 6� ⊥ (11)

Notice that Definition 18.7 above requires, for a closed instance of a society, that each
positive expectation in ∆ has a corresponding happened event in HAP, and each negative
expectation in ∆ has no corresponding happened event. This requirement is weaker for open
instances, where a set ∆ is not fulfilled only when a negative expectation occurs in the set, but
the corresponding event happened (i.e., the implication NE(p)→ ¬H(p) is false).

Symmetrically, we define a violation:

146

Definition 18.8. (Violation) Given a (closed/open) society instance SHAP, a set of social
expectations EXP is violated if and only if there exists a (ground) term p such that:

HAP ∪∆ ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} � ⊥ (12)

Finally, we give, in the following, the notion of goal achievability and achievement.

Definition 18.9. Goal achievability Given an open instance of a society, SHAP, and a
ground goal G, we say that G is achievable (and we write SHAP |≈∆ G) iff there exists an
(open) admissible and fulfilled set of social expectations ∆, such that:

SOKB ∪HAP ∪∆ � G (13)

(which, as explained earlier, is a shorthand for Comp(SOKB ∪∆) ∪HAP ∪ CET |= G).

Definition 18.10. Goal achievement Given a closed instance of a society, S
HAP

, and a
ground goal G, we say that G is achieved (and we write S

HAP
�∆ G) iff there exists a (closed)

admissible and fulfilled set of social expectations ∆, such that:

SOKB ∪HAP ∪∆ � G (14)

(i.e., Comp(SOKB ∪HAP ∪∆) ∪ CET |= G).

19 The society proof procedure

In the previous section, we have defined a society S as a triple 〈SOKB, E , ICS〉 where

• SOKB is the social organization knowledge base

• E is the set of abducible predicates (E, NE and their negation ¬E, ¬NE)

• ICS is the set of social integrity constraints

Given a history HAP of events, we have defined an instance SHAP of a society S as the
triple

SHAP ≡ 〈SOKB ∪HAP, E , ICS〉.

The syntax of ICS of the society model is strictly related to that of integrity constraints in
the IFF proof procedure [47] enriched with constraints (C-IFF). This leads to the idea of using
an extension of the C-IFF proof procedure for generating expectations on social behavior of
members, and checking for their fulfillment or violation.

A first, obvious difference stands in the fact that our framework requires more dynamics.
New facts (H events) continuously occur in the knowledge of the society, and must be taken
into account by the proof procedure.

The proof procedure of the society, called SCIFF (Society C-IFF) should have the following
features [94]:

• it should accept new events as they happen

• it should produce sets of expectations

147

• it should detect fulfillment of expectations

• it should detect violations as soon as possible.

In this section we describe the proof procedure for the society as a transition system. In doing
this, we draw inspiration from the IFF proof procedure [47], which we have briefly described in
Section 6.1.3, and in particular the C-IFF extension, presented in Section 10.1, that also deals
with constraints.

19.1 Data Structures

The SCIFF proof procedure is based on a rewriting system transforming one node to another
(or to others). A node can be either the special node false, or defined by the following tuple

T ≡ 〈R,CS, PSIC,EXP,HAP,FULF,VIOL〉

where

• R is a conjunction (initially set to the goal G), the conjuncts can be atoms or disjunctions
(of conjunctions of atoms)

• CS is the constraint store

• PSIC is the set of partially solved integrity constraints

• EXP is the set of (pending) expectations

• HAP is the history of happened events

• FULF is a set of fulfilled expectations

• VIOL is a set of violated expectations

If one of the elements of the tuple is false, then the whole tuple is the special node false,
which cannot have successors.

We have seen that a society instance can be open or closed, depending on whether more
events can happen or not, i.e., whether HAP is an open set or a closed set. We assume that
we can rely on a predicate closed/1, which holds true if its argument represents a closed set.

19.1.1 Variable quantification

In the IFF proof procedure, the variable quantification is easily determined syntactically. There
are three possible quantifications: a variable can be free, existentially quantified or universally
quantified. The variables occurring in the initial goal are free; in our proof procedure we drop
this distinction without loss of generality. In particular, in the IFF, a variable occurring in an
abduced atom or in an atomic conjunct is existentially quantified (or free). Our proof procedure
has to deal with universally quantified variables in the abducibles and in R (see also Table 1).
Conversely, in the IFF proof procedure, variables in an implication are existentially quantified
(or free) only if they also appear in an abducible (or, in general, in an atomic conjunct). In the
society knowledge [94], we can have existentially quantified variables in the integrity constraints
even if they do not occur elsewhere.

148

IFF SCIFF

Variable in abduced atom ∃ or free ∃ or ∀
Variable occurring only in an implication ∀ ∃ or ∀

Table 1: Variable quantification in the IFF and in SCIFF

For all these reasons, we need to distinguish, among the variables, those that appear in
abduced literals (or occur in R) and those that occur only integrity constraints. The variables
in abduced literals and in the conjunction R have the whole tuple T as a scope. The others
have as scope the implication in which they appear. We call the variables that appear in the
conjunction R or in abduced literals flagged.

Definition 19.1. All the variables that appear in R, EXP, FULF, and VIOL are flagged.
Variables that are flagged in a node N are flagged in all the nodes descendant of N . Flagged
variables have the entire node as scope.

With respect to our terminology, the IFF proof procedure only has existentially, flagged
variables (those occurring at least in an atomic conjunct) and universally, non flagged variables
(appearing only in implications).

In the following, when we want to make explicit the fact that a variable X is flagged (when
it is not clear from the context), it will be indicated with X̂, while if we want to highlight that
it is not flagged, it will be indicated with X̌.

Variables can be associated with quantifier restrictions [24]. Quantifier restrictions limit the
applicability of a quantifier; in the case of universally quantified variables, they represent an
implication, while in the case of an existentially quantified variable they are a conjunction. We
restrict ourselves to quantifier restrictions that are unary, meaning that they involve only one
variable.

Definition 19.2. A quantifier restriction for a universally quantified variable X is a (unary)
constraint c(X) indicating the values that the variable X represents. If QR(X) is the set of
quantifier restrictions of X, then the following formula:

∀XQR(X)F

holds iff the following holds:
∀X.QR(X)→ F.

Note the difference between quantifier restrictions and CLP constraints. A constraint would
mean that

∀X.c(X) ∧ F

which is false if c(X) is not satisfied for every possible X .
In the case of existentially quantified variables, quantifier restrictions coincide with the

concept of CLP constraint.

Definition 19.3. A quantifier restriction for an existentially quantified variable X is a (unary)
constraint c(X) indicating the values that the variable X represents. If QR(X) is the set of
quantifier restrictions of X, then the following formula:

∃XQR(X)F

149

holds iff the following holds:
∃X.QR(X) ∧ F.

In the tuple, the quantifier restrictions QR(X) are recorded in the constraint store CS, and
will be handled by the constraint solver.

19.1.2 Initial Node and Success

A derivation D is a sequence of nodes

T0 → T1 → · · · → Tn−1 → Tn.

Given a goal G and a set of integrity constraints ICS , we build the first node in the following
way:

T0 ≡ 〈{G}, ∅, ICS , ∅, ∅, ∅, ∅〉

i.e., the conjunction R is initially the query (R0 = {G}) and the partially solved integrity
constraints PSIC is the set of integrity constraints (PSIC0 = ICS).

The other nodes Tj , j > 0, are obtained by applying the transitions that we will define in the
next section, until no further transition can be applied (we call this last condition quiescence).

Every arc in a derivation is labelled with the name of a transition.
Let us now give the definition of successful derivation, both in the case of an open society

instance (where new events may be added to the history) and of a closed society instance.

Definition 19.4. Starting with an open society instance SHAPi there exists an open successful
derivation for a goal G iff the proof tree with root node 〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉 has at least
one leaf node

〈∅, CS, PSIC,EXP,HAPf ,FULF, ∅〉

where HAPf ⊇ HAPi and CS is consistent (i.e., there exists a ground variable assignment
such that all the constraints are satisfied). In that case, we write:

SHAPi |∼HAP
f

EXP∪FULF G

Definition 19.5. Starting with a society instance SHAPi there exists a closed successful deriva-
tion for a goal G iff the proof tree with root node 〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉 has at least one
leaf node

〈∅, CS, PSIC,EXP,HAPf ,FULF, ∅〉

where HAPf ⊇ HAPi, CS is consistent, and EXP contains only negative literals ¬E and
¬NE. In such a case, we write:

SHAPi `HAPf

EXP∪FULF G.

From a non-failure leaf node N , answers can be extracted in a very similar way to the IFF
proof procedure. Answers of the SCIFF proof procedure are called expectation answers. To
compute an expectation answer, first, a substitution σ′ is computed such that

• σ′ replaces all variables in N that are not universally quantified by a ground term

• σ′ satisfies all the constraints in the store CSN .

150

If the constraint solver is (theory) complete [62] (i.e., for each set of constraints c, the solver
always returns true or false, and never unknown), then there will always exist a substitution σ ′

for each non-failure leaf node N . Otherwise, if the solver is incomplete, σ′ may not exist. The
non-existence of σ′ is discovered during the answer extraction phase. In such a case, the node
N will be marked as a failure node, and another leaf node can be selected (if it exists).

Definition 19.6. Let σ = σ′|vars(G) be the restriction of σ′ to the variables occurring in the
initial goal G. Let ∆ = (FULFN ∪ EXPN)σ′. The pair (∆, σ) is the expectation answer
obtained from the node N .

The society’s proof procedure performs some inferences based on the semantics of time. We
make the following hypothesis (that was already in document D5):

Definition 19.7. Hypothesis of full temporal knowledge. We assume that all the socially
significant events that have happened are known to the society at all times after occurrence.

The proof procedure is based on the following transitions. They are repeated until quies-
cence.

19.2 Transitions

The transitions are based on those of the IFF proof procedure, augmented with those of CLP
[61], and with specific transitions accommodating the concepts of fulfillment, dynamically grow-
ing history and consistency of the set of expectations with respect to the given definitions
(Definitions 18.4, 18.5, and 18.6).

We first give the definition of copy of a formula.

Definition 19.8. Given a formula F , we call copy of F a formula

F ′ = copy(F)

where the universally quantified variables and the non flagged variables are renamed.

Notice that, by Definition 19.8, if F contains only flagged existentially quantified variables,
then copy(F) ≡ F .

Notation In this section we adopt the following conventions. The letter k will indicate the
level of a node, with 0 indicating the level of the initial node. Each transition will generate one
or more nodes from level k to k + 1. We will not explicitly report the new state for items that
do not change; e.g., if a transition generates a new node from the node

Tk ≡ 〈Rk, CSk, PSICk,EXPk,HAPk,FULFk,VIOLk〉

and we do not explicitly state the value of Rk+1, it means that Rk+1 = Rk.

Let vars(t) be the set of variables in the term t. Let vars∀(t) (respectively, vars∃(t)) be
the set of universally (resp. existentially) quantified variables in t and varsflag(t) be the set of
flagged variables in t.

151

19.2.1 IFF-like transitions

Unfolding Since the variables in the head of a clause in the SOKB are all universally quanti-
fied with scope the entire clause, the unfolding step is basically the same as in many abductive
proof procedures. It is defined as follows.

Let Li be the selected literal in Rk = L1, . . . , Lr. Let Li be a defined predicate. Unfolding
replaces it with (one of) its definition. If H1← B1, . . . , Hn← Bn are the clauses in the SOKB
such that H1, . . . , Hn unify with Li, unfolding generates n nodes. In the j-th node:

• firstly, a renaming of the clause is obtained H ′
j ←B′

j ;

• then, all the variables in B′
j (that do not occur in the head) are flagged;

• the constraints of unification are added to the constraint store CSk+1 = CSk∪{H ′
j = Li}

(where H ′
j = Li is a shorthand for the conjunction of equations between corresponding

arguments of H ′
j and Li);

• B′
j is substituted for Li in the new conjunction R, i.e.,

Rk+1 = L1, . . . , Li−1, B
′
j , Li+1, . . . , Lr.

Moreover, as in the IFF proof procedure, unfolding can also be applied to atoms in the body
of an implication. In that case, if

PSICk = {Atom,BodyIC → HeadIC} ∪ PSIC ′,

unfolding replaces (copies of) Atom with all its definitions; i.e., if the clauses H1←B1, . . . ,
Hn←Bn belong to the SOKB and H1, . . . , Hn unify with Atom,

PSICk+1 = {Atom1 = H1, B1, BodyIC
1 → HeadIC1,

. . . ,
Atomn = Hn, Bn, BodyIC

n → HeadICn} ∪ PSIC ′

where, for all i, Atomi, BodyICi → HeadICi is a copy of Atom,BodyIC → HeadIC. The
equalities in the body of implications will be dealt with by Case Analysis.

Abduction In the IFF the abduced atoms are kept with all other conjuncts in each node. In
our approach, we have kept the set of expectations distinct from the other conjuncts in R, thus
we need to introduce a transition of abduction. The Abduction step is defined as follows.

If Rk = L1, . . . , Lr, the selected literal Li is of type E, NE, ¬E, ¬NE, then Rk+1 = L1,
. . . , Li−1, Li+1, . . . , Lr and EXPk+1 ≡ EXPk ∪ {Li}.

Propagation Let L1, . . . , Ln → H1 ∨ · · · ∨Hj be an integrity constraint, belonging to the set
PSICk, and let A be an atom,

• either belonging to HAPk (in which case A is an H event),

• or an expectation belonging to EXPk, FULFk or VIOLk,

such that A unifies with Li. Then, by Propagation, we perform the following steps:

152

• we make a copy of A, copy(A); this new atom is inserted in the same element of the tuple
identifying the atom (e.g., if A is an H event, i.e. A ∈ HAPk, then copy(A) ∈ HAPk+1,
and if A ∈ EXPk, then copy(A) ∈ EXPk+1). Notice that if A is an H event, it is ground,
thus copy(A) ≡ A. Moreover, since HAP, EXP, FULF and VIOL are sets, duplicating
one of their elements does not change them.

• PSICk+1 = PSICk ∪ {A = L′
i, L

′
1, . . . , L

′
i−1, L

′
i+1 . . . , L

′
n → H ′

1 ∨ · · · ∨ H
′
j}, where

L′
1, . . . , L

′
i, . . . , L

′
n → H ′

1 ∨ · · · ∨H
′
j = copy(L1, . . . , Li, . . . , Ln → H1 ∨ · · · ∨Hj)

Again, A = L′
i is a shorthand for a conjunction of equalities between corresponding arguments.

This transition does not have any effect on the constraint store, since – as we will see soon
– case analysis will take care of the equality in the body of the implication.

Splitting Given a node with

• Rk = L1, . . . , Li−1, (L
1
i ∨ L

2
i), Li+1, . . . , Lr

splitting produces two nodes, N 1 and N2 such that in node N1

• R1
k+1 = L1, . . . , Li−1, L

1
i , Li+1, . . . , Lr

and in node N2

• R2
k+1 = L1, . . . , Li−1, L

2
i , Li+1, . . . , Lr

In the SCIFF proof procedure, disjunctions may appear also in the constraint store (see
rule 1 in Section 19.2.5). Disjunctions can be dealt with by the constraint solver itself (e.g., by
means of constructive disjunction [116] or cardinality operator [115]), or by splitting. In the
latter case, given a node with

• CSk = L1, . . . , Li−1, (L
1
i ∨ L

2
i), Li+1, . . . , Lr

splitting produces two nodes, N 1 and N2 such that in node N1

• CS1
k+1 = L1, . . . , Li−1, L

1
i , Li+1, . . . , Lr

and in node N2

• CS2
k+1 = L1, . . . , Li−1, L

2
i , Li+1, . . . , Lr

Case Analysis Given a node with an implication

PSICk = PSIC ′ ∪ {A = B,L1, . . . , Ln → H1 ∨ · · · ∨Hj}

the node is replaced by two nodes, as follows:
Node 1:

• PSIC1
k+1 = PSIC ′ ∪ {L1, . . . , Ln → H1 ∨ · · · ∨Hj}

• CS1
k+1 = CSk ∪ {A = B}

Node 2:

• PSIC2
k+1 = PSIC ′

153

• CS2
k+1 = CSk ∪ {A 6= B}

where 6= stands for the constraint of non-unification.
Since our proof procedure also needs to deal with (CLP) constraints in the body of impli-

cations, we also extend case analysis to the following situation (as in the C-IFF):
Given a node with an implication

PSICk = PSIC ′ ∪ {c, L1, . . . , Ln → H1 ∨ · · · ∨Hj}

where c is a constraint, if all the variables in vars(c) are flagged, then case analysis can be
applied. We distinguish three cases.

1. If all the variables in vars(c) are existentially quantified, then case analysis generates two
nodes.

Node 1:

• PSIC1
k+1 = PSIC ′ ∪ {L1, . . . , Ln → H1 ∨ · · · ∨Hj}

• CS1
k+1 = CSk ∪ {c}

Node 2:

• PSIC2
k+1 = PSIC ′

• CS2
k+1 = CSk ∪ {¬c}

2. If all the variables in vars(c) are universally quantified, then only one node is generated,
in which

• CSk+1 = CSk ∪ {∀X∈vars(c):c}

• PSICk+1 = PSIC ′ ∪ {L1, . . . , Ln → H1 ∨ · · · ∨Hj}

Example 8. For example, if we have:27

∀
X̂
, NE(p(Y̌)), Y̌ > 0→ NE(q(Y̌))

EXPk = {NE(p(X̂))}

we can apply Propagation and obtain (after applying Case Analysis to the resulting equality
in the body)

∀
X̂
, ∀

X̂′ NE(p(Y̌)), Y̌ > 0→ NE(q(Y̌))

EXPk+2 = {NE(p(X̂)),NE(p(X̂ ′))}

X̂ ′ > 0→ NE(q(X̂ ′))

Now we can apply Case Analysis to handle the constraint X̂ ′ > 0 in the body of an
implication, and obtain:

∀
X̂
, ∀

X̂′>0 NE(p(Y̌)), Y̌ > 0→ NE(q(Y̌))

EXPk+3 = {NE(p(X̂)),NE(p(X̂ ′))}

true→ NE(q(X̂ ′))

from which we will reach (through futher transitions, see Logical Equivalence) a node with
the intuitive meaning: “p(X) is expected not to happen for all X, and q(X ′) is expected
not to happen for all X ′ > 0”.

27Remember that we use Â to denote flagged variables, and Ǎ to denote non-flagged ones. We show explicitly
that X is universally quantified and flagged, even if it should be clear from the context.

154

3. If vars(c) contain both universally and existentially quantified variables, case analysis
will not be applied. However, we have assumed that the society knowledge is Constraint
Allowed (Definition 17.5), so we do not need to deal with this case.

Factoring In the IFF proof procedure, transition factoring distinguishes answers in which
abducible atoms are merged from answers in which they are distinct. That is, it generates two
nodes: in one node two hypotheses unify, in the other one a constraint is imposed in order to
avoid the unification of the hypotheses.

In the SCIFF proof procedure, abducibles can contain universally quantified variables; it
is not reasonable to unify atoms with universally quantified variables, because we would lose
some of the information given by the abduced atoms. Another possibility would be to copy the
atoms before trying to join them, but we would only obtain redundant information.

Example 9. Suppose that the set of expectations, in a node Nk, is the following:

∀X̂, Ŷ EXPk = {NE(p(1, X̂)),NE(p(Ŷ , 2))}.

By unifying the two hypotheses, we would obtain

EXPk+1 = {NE(p(1, 2))}

which has a different meaning from the union of the two previous hypotheses: in EXPk+1,
p(1, 7), for example, is no longer expected not to happen.

The second possibility would be to perform a copy of the two abduced atoms before unifying
them:

∀X̂, Ŷ EXPk+1 = {NE(p(1, X̂)),NE(p(Ŷ , 2)),NE(p(1, 2))}

but this is not very informative.

For this reason, we apply factoring only if all the variables in the two atoms are existentially
quantified. Notice that this coincides with the factoring transition of the IFF proof procedure.

Formally, factoring can be applied in a node Nk, in which:

• EXPk ∪ FULFk ∪VIOLk ⊇ {A1, A2}

where A1 and A2 are (unifiable abducible) atoms in which all the variables are existentially
quantified (and, of course, flagged). Factoring generates two children nodes; N 1 is the following:

• CS1
k+1 = CSk ∪ {A1 = A2}

and N2 is:

• CS1
k+1 = CSk ∪ {A1 6= A2}

Equivalence Rewriting The equivalence rewriting operations are delegated to the constraint
solver. Note that a constraint solver works on a constraint domain which has an associated
interpretation. In addition, the constraint solver should handle the constraints among terms
derived from the unification. Therefore, beside the specific constraint propagation on the con-
straint domain, we need further inference rules for coping with the unification. In other words
we will assume that:

155

• the constraint theory contains rules for the equality constraint

• the constraint solver contains the same rules that are in the IFF proof procedure, i.e.,
the function infer(CS) (see Section 19.2.5) performs the following substitutions in the
constraint store:

1. Replaces f(t1, . . . , tj) = f(s1, . . . , sj) with t1 = s1 ∧ · · · ∧ tj = sj .

2. Replaces f(t1, . . . , tj) = g(s1, . . . , sl) with false whenever f and g are distinct or
j 6= l.

3. Replaces t = t with true for every term t.

4. Replaces X = t by false whenever t is a term containing X .

5. (a) Replaces t = X with X = t if X is a variable and t is not

(b) Replaces Y = X with X = Y whenever X is a universally quantified variable
and Y is not.

6. If X = t ∈ CSk, applies the substitution X/t to the entire node.

Note that the symbol = is overloaded since it is used both for representing the equality constraint
in the constraint domain and for representing the unification among terms. As it is usual in
CLP [62], we distinguish between the two by means of types. Some predicates, the so called
constraints, do not have a definition in the program, but their semantics is embedded in the
constraint solver. Also, some of the functor symbols are not simply Herbrand terms, but are
associated with symbols in the constraint domain (e.g., the symbol + represents the addition,
etc.), and variables can be associated with domains. In this way, the terms that are built from
CLP functors and variables can be distinguished, and the correct = can be applied.

Moreover, we also have to consider that our language is more expressive than that of the IFF
proof procedure, as we can abduce atoms with universally quantified variables. For this reason,
we introduced flagged variables, and we need to deal with them in the theory of unification. We
therefore add the following rules:

5. (c) If X̌ = t ∈ CSk, X̌ is and universally quantified in the body of an implication and is not
flagged, then replace X̌ = t with false.

5. (d) If X = Y̌ ∈ CSk, Y̌ is and universally quantified in the body of an implication and is not
flagged, and X has some (non trivially true) quantifier restrictions, then replace X = Y̌
with false.

Thus, a variable which is universally quantified with scope the body of a ICS , unifies only with
universally quantified variables that do not have quantifier restrictions. For example, consider
the following ICS :

NE(p(X̌))→ NE(q(Y̌))

which means [94]:
[∀X̌NE(p(X̌))]→ ∃Y̌ E(q(Y̌)).

Variable X̌ may be unified (through Propagation and Case Analysis) to an abduced atom
∀

Ẑ
NE(p(Ẑ)). Note that it would not be correct to Propagate the ICS with an atom NE(p(a)) or

with ∃
Â
NE(p(Â)): thus, only universally quantified variables unify with a non-flagged variable

universally quantified in the body of a ICS .
The IFF proof procedure also contains the following rule (called 6b in [47]):

156

If X = t occurs in the condition of an implication, X does not occur in t and X
is universally quantified, then apply the substitution X/t to the implication deleting
the equality

In our proof procedure, this rule is not necessary, as it is dealt with by case analysis. Case
analysis will create two nodes, one of which will perform the unification, and the other will
trivially fail.

Logical Equivalence The rule

“true→ A is equivalent to A”

of the IFF proof procedure is translated as follows. If PSICk = PSIC ′ ∪ {true → A}, we
generate a new node such that:

• PSICk+1 = PSIC ′

• Rk+1 = Rk, A
′

where A′ is obtained from A by flagging all the variables that were not already flagged.
We also have the following rules, as in the IFF proof procedure:

A ∧ false ↔ false
A ∨ false ↔ A
A ∧ true ↔ A
A ∨ true ↔ true

false→ A ↔ true
¬A ↔ A→ false

¬A,B → C ↔ B → A ∨ C

The last two rules are used only when applied to negation of definite predicates; the im-
plications are inserted in the set PSICk+1. The negation of atoms E or NE are dealt with
through abduction, i.e., for a negative literal ¬E we have an abducible (positive) literal nonE
that cannot be true together with the corresponding literal E (see rules in Section 19.2.4), and
symmetrically, the negative literal ¬NE is represented by an abducible nonNE. Concerning
the negation of atoms H, they are dealt with by a transition non-Happening (Section 19.2.2).

19.2.2 Dynamically growing history

A set of transitions deals with a dynamically growing history HAP. The transitions deal with
the happening (or non-happening) of events.

Happening of Events The happening of events is considered by a transition Happening. We
assume that the happened events are recorded in an external set (e.g., a buffer that links the
proof procedure to the external world). Transition Happening takes an event H(Event) from
the external set and puts it in the history HAP. The transition Happening is applicable only
if an Event such that H(Event) 6∈ HAP is in the external set.

Given a node Nk in which the history is closed28

28We assumed in Section 19.1 that there is a closed predicate that is true if the history is closed.

157

• closed(HAPk) = false

the transition Happening produces a single successor

HAPk+1 = HAPk ∪ {H(Event)}.

Otherwise, given a node in which

• closed(HAPk) = true

the transition Happening produces a single successor

false

Note that transition happening should be applied to all the non-failure nodes (in the frontier).

Non-happening Considering ¬H literals in the body of a PSIC, we apply a transition Non-
happening, that can be considered as an application of constructive negation. Constructive
negation is preferred to Negation as Failure since this latter one only allows ground negative
goals to execute. This would be too constraining in our case, where some variables appearing
in a derivation never become ground. In [112], Stuckey has described a scheme for construc-
tive negation in constraint logic programming, so to obtain a sound and complete operational
model for negation in this class of languages. Constructive negation was first formulated for
logic programming in the Herbrand Universe and involves introducing disequality constraints.
Constraint logic programming thus provides a much more natural framework for describing
constructive negation, as proposed in [112], where constructive negation for constraing logic
programming is considered over arbitrary structures, and proved sound and complete with
respect to the three-valued consequences of the completion of a program.

Therefore, constructive negation is a powerful inference that is particularly well suited in
CLP [112]; since our proof procedure deals with constraints, it is reasonable to exploit the same
inferences.

Rule non-happening applies when a literal ¬H is in the body of a PSIC, and the history is
closed:

¬H(E1), L2, . . . , Ln → H1 ∨ · · · ∨Hm. (15)

Given a node:

• PSICk = {¬H(E1), L2, . . . , Ln → H1 ∨ · · · ∨Hm} ∪ PSIC ′

• closed(HAP) = true

non-happening produces a new node. Intuitively, we hypothesize that all the events matching
E1 that are not in the history, do not happen at all.

The child node is produced as follows; we first give the intuition, then formalize the def-
inition. We hypothesize that every event that would be able to match with E1, and is not
in the current history, will not happen. This can be seen as abducing an atom nonH(E ′

1).
E′

1 is E1 with all variables replaced with universally quantified variables. We impose that the
hypothesis holds in all cases except those already in the HAP; we can state this by means of
the quantifier restrictions, i.e., we impose that the hypothesis nonH(E ′

1) does not unify with
any of the happened events. This is equivalent to imposing a conjunction (for all the events

158

in the history that match E ′
1) of a disjunction (for all the variables appearing in E ′

1) of non
unification restrictions (written 6=).

Notice, however, that the event E1 in the PSIC (15) may contain existentially quantified,
non flagged variables. Indicating by X̌ such variables, the meaning of PSIC (15) is [94]:

[∀X̌¬H(E1), L2, . . . , Ln]→ H1 ∨ · · · ∨Hm.

Suppose that there is an event E in the history that matches E1 through some substitution θ
(i.e., E1θ = E). If the history contains another event E ′ that is identical except for variable
X̌ (i.e., E′ unifies with E1θ

′, where θ′ = θ|vars(E1)\{X̌}), E
′ and E will have the same effect,

concerning propagation of the PSIC in question. For example, if

¬H(p(X̌, Y̌))→ NE(q(Y̌))

and the history HAP = {H(p(1, 1)),H(p(2, 1))}, the result should be ∀
Ŷ ′ 6=1NE(q(Ŷ ′)). We

would have obtained the same result if the history contained only one of the two events.
For this reason, there is no point in imposing the quantifier restrictions also on the variables

that are renaming of existentially, non flagged, variables. This issue will be clarified with an
example in the following.

We now give a formal definition. Let E ′
1 be a renaming of E1 (i.e., all the variables in

E1 are substituted with fresh new variables). Let all the new variables in E ′
1 be universally

quantified and flagged. For each variable Xj ∈ vars(E1), let ren(Xj) be the corresponding,
renamed variable in vars(E ′

1). For all atoms H(E) ∈ HAP that unify with H(E ′
1), we impose

the quantifier restrictions on the variables in E ′
1 given by the following disjunction:

∧

H(E) ∈ HAP
s.t.unifies(E,E′

1)




∨

Xj∈vars∀(E1)∪varsflag(E1)

ren(Xj) 6= tj





where tj is the term in E corresponding to Xj in E1.
The child node, k + 1, is then defined by:

• PSICk+1 = {E1 = E′
1, L2, . . . , Ln → H1 ∨ · · · ∨Hm} ∪ PSIC ′

Example 10. From D5:

¬H(tell(Ǎ, B̌, propose(Ǐ)), Ťp)→ NE(tell(B̌, Ǎ, accept(Ǐ)), Ťa) (16)

Remember [94] that variable Ťp is universally quantified with scope the body, or, equivalently,
existentially quantified with scope the whole ICS.

Suppose that the history contains H(tell(yves, thomas, propose(nail)), 1). The condition in
the body of the ICS (16) is true, thus the ICS triggers and the head is evaluated.

HAPk = {H(tell(yves, thomas, propose(nail)), 1)}

∀
Â′ 6=yves∨B̂′ 6=thomas∨Î′ 6=nail

EXPk+1 = {NE(tell(B̂′, Â′, accept(Î ′)), T̂a)}

159

Notice that we did not impose a quantifier restriction on variable T̂ ′
p, that is, we do not

impose the quantifier restriction ∀
Â′ 6=yves∨B̂′ 6=thomas∨Î′ 6=nail∨T ′

p 6=1. Variable T̂ ′
p is a renaming of

an existentially quantified, non-flagged variable. The fact that we do not impose restrictions on
T̂ ′

p is sound, because we are making a more restrictive hypothesis: we are supposing that nobody
will propose anything to anybody in any time, except Yves that proposes a nail to Thomas at
some time. This is more restrictive than hypothesizing that even Yves will not propose a nail
to Thomas at another time, different from 1.

If we imposed the quantifier restriction also on T̂ ′
p we would not have the desired behavior.

Suppose that Thomas accepts the nail offered by Yves: H(tell(thomas, yves, accept(nail)), 3).
Of course, this is perfectly acceptable and should not raise violations. But, if we check for a
possible violation of the imposed NE (see transition Violation NE), we will try the unification:
B̂′ = thomas ∧ Â′ = yves ∧ Î ′ = nail ∧ T̂a = 3 hoping that the derivation will fail (in order
not to detect a wrong violation). However, this unification does not clash with the quantifier
restrictions: Â′ 6= yves∨ B̂′ 6= thomas∨ Î ′ 6= nail∨ T̂ ′

p 6= 1. In fact, it is enough that T̂ ′
p is not

unified with 1; thus we would wrongly detect a violation.

Closure This transition enforces the closure of the history. It nondeterministically imposes
that no more events will happen.

Transition Closure is not applicable until there is no other transition applicable (and Nk 6=
false). In other words, it is only applicable at the quiescence of the set of the other transitions.

Given a node:

• closed(HAPk) = false

in which no other transition is applicable, transition Closure produces two nodes. Node N 1 is
the following:

• HAPk+1 = HAPk

and node N2 is identical to its parent. In order to avoid infinite loops, transition Closure cannot
be again applied to the node N2 before a Happening transition has been applied.

19.2.3 Fulfillment and Violation

Violation NE Given a node Nk as follows:

• EXPk = EXP′ ∪ {NE(E1)}

• HAPk = HAP′ ∪ {H(E2)}

violation NE produces two nodes N 1
k+1 and N2

k+1, where N1
k+1 is as follows:

• VIOLk+1 = VIOLk ∪ {NE(E1)}

• CSk+1 = CSk ∪ {E1 = E2}

and N2
k+1 is as follows:

• VIOLk+1 = VIOLk

• CSk+1 = CSk ∪ {E1 6= E2}

160

Example 11. Suppose that HAPk = {H(p(1, 2))} and ∃X̂∀Ŷ EXPk = {NE(p(X̂, Ŷ))}. Vio-
lation NE will produce the two following nodes:

∃X̂∀Ŷ EXPk = {NE(p(X̂, Ŷ))}
HAPk = {H(p(1, 2))}

�
�

�
�

��

H
H

H
H

HH

X̂ = 1 ∧ Ŷ = 2
VIOLk+1 = {NE(p(1, 2))}

X̂ 6= 1 ∨ Ŷ 6= 2

X̂ 6= 1

where the last simplification in the right branch is due to the rules of the constraint solver (see
Section 19.2.5).

Fulfillment E Starting from a node Nk as follows:

• EXPk = EXP′ ∪ {E(Event1)}

• HAPk = HAP′ ∪ {H(Event2)}

Fulfillment E builds two nodes, N1
k+1 and N2

k+1, that are identical to their parent except for
the following.

In node N1
k+1 we assume that the expectation and the happened event unify:

• EXPk+1 = EXP′

• FULFk+1 = FULFk ∪ {E(Event1)}

• CSk+1 = CSk ∪ {Event1 = Event2}

In node N2
k+1 we assume that the two will not unify:

• EXPk+1 = EXPk

• FULFk+1 = FULFk

• CSk+1 = CSk ∪ {Event1 6= Event2}

Violation E Given a node Nk such that:

• closed(HAPk) = true

• EXPk = EXP′ ∪ {E(Event1)}

• ∀Event2 : H(Event2) ∈ HAPk, Event2 does not unify with Event1

transition Violation E creates a successor node in which

• VIOLk+1 = VIOLk ∪ {E(Event1)}.

• EXPk+1 = EXP′

161

With does not unify we mean here that unification leads to failure; in CLP this means that
trying to unify the two terms triggers CLP propagation of constraints, and this propagation
gives a failure. For example, we mean that p(X̂) does not unify with p(10) if the constraint
store contains X̂ < 5. Stated otherwise,

∀H(Event2)∈HAPk
, CSk ∪ {Event2 = Event1} |= ⊥.

The condition “Event1 should not unify with any event in the history” seems rather ex-
pensive to check. Operationally, this expensive check can often be avoided. For example, the
SCIFF proof procedure can be used both for on-line or for a posteriori check of compliance.
In the on-line check, the starting history is often empty, then some events will happen, transi-
tion closure will be eventually applied, and other transitions will be finally applied. A typical
derivation will have the following structure:

N0 −→ · · ·
closure
−→ Nc −→ . . . −→ Nf

Transition Violation E can be applied only when the history is closed, thus after Nc. In this
situation, the check is redundant: in fact, since transition closure can be applied only if no
other transition is applicable, the transition Fulfillment E has been already tried for each event
in the history before node Nc, and has moved all the fulfilled expectations in the set FULF.
The expectations of type E remaining in the set EXP are, thus, violated.

Other types of closure can be done; e.g., by considering the semantics of time. Even in an
open history, if we make the hypothesis of full temporal knowledge (Definition 19.7), we can
infer that an expected event for which the deadline is passed, raises a violation.

Given a node Nk:

• EXPk = {E(X,T)} ∪ EXP′

• HAPk = {H(Y, Tc)} ∪HAP′

• ∀Event2, T2 : H(Event2, T2) ∈ HAP, (Event2, T2) does not unify with (X,T)

• closed(HAPk) = false

• CSk |= T < Tc

transition Violation E is applicable and creates the following node:

• EXPk+1 = EXP′

• VIOLk+1 = VIOLk ∪ {E(X,T)}.

In this case, as for the case of the closed history, one can avoid the expensive check of unification
with all the elements in the history by choosing a preferred order of application of the transitions.
By applying Violation E only if no other transition is applicable (except, eventually, for closure),
the check of expectations against the history can be safely avoided.

Notice that this transition infers the current time from any happened event; i.e., it infers
that the current time cannot be less than the time of a happened event. In particular, there
can be an event current time that happens at every time tick. Of course, it is not necessary
to perform the check for every event in the history; checking the last element in the history is
enough.

162

A brief discussion is helpful here for the entailment CSk |= T < Tc. The entailment of
constraints from a constraint store is, in general, not easy to verify. In this particular case,
however, we have that:

• the constraint T < Tc is unary (Tc is always ground), thus a CLP(FD) (CLP for finite
domains) solver is able to verify the entailment very easily if the store contains only unary
constraints (it is enough to check the maximum value in the domain of T);

• even if the store contains non-unary constraints (thus the solver performs, in general,
incomplete propagation), the transition will not compromise the soundness and com-
pleteness of the proof procedure. If the solver performs a powerful propagation (including
pruning, in CLP(FD)), the violation will be early detected. If the solver does not perform
propagation at all, the violation will be detected very late, when the history of the society
gets closed.

Fulfillment NE Given a node Nk where

• closed(HAPk) = true

• EXPk = EXP′ ∪ {NE(Event1)}

• ∀Event2 : H(Event2) ∈ HAP, Event2 does not unify with Event1

transition Fulfillment NE creates a successor node in which

• FULFk+1 = FULFk ∪ {NE(Event1)}

• EXPk+1 = EXP′.

As for transition Violation E, the check of unification with all the atoms in the history can be
avoided by establishing a preferred order of application of the transitions.

19.2.4 Consistency

E-Consistency In order to ensure E-consistency of the set of expectations, we impose the
following integrity constraint:

E(Ť) ∧NE(Ť)→ ⊥ (17)

Example 12. Suppose that (∃X̂)E(p(X̂)) and (∀Ŷ)NE(p(Ŷ)) have been abduced. By triggering
the integrity constraint (17) we have that:

E(Ť) ∧NE(Ť)→ ⊥

NE(p(X̂))→ ⊥

X̂ = Ŷ → ⊥

⊥

Example 13. Suppose that (∃X̂)E(p(X̂)) and (∃Ŷ)NE(p(Ŷ)) have been abduced. By triggering
the integrity constraint (17) we have that:

163

E(Ť) ∧NE(Ť)→ ⊥

NE(p(X̂))→ ⊥

X̂ = Ŷ → ⊥

�
��

H
HH

X̂ = Ŷ
⊥

X̂ 6= Ŷ
success

¬-Consistency In order to ensure ¬-consistency of the set of expectations, we impose the
following integrity constraints:

E(Ť) ∧ nonE(Ť) → ⊥
NE(Ť) ∧ nonNE(Ť) → ⊥

(18)

Example 14. Suppose that EXPk = {E(p(X̂)), nonE(p(1))}. The integrity constraint (18)
can trigger, and we have that:

E(Ť) ∧ nonE(Ť)→ ⊥

E(p(1))→ ⊥

X̂ = 1→ ⊥

�
��

H
HH

X̂ = 1
⊥

X̂ 6= 1
success

19.2.5 Constraint Solving

As in the C-IFF, the Society proof procedure has transitions of constraint solving. In the C-IFF,
CLP constraints are kept with other conjuncts in a node. In our approach, we have kept the set
of CLP constraints distinct from the other atoms, in a Constraint Store, as in the definition by
Jaffar and Maher [61]. For this reason, we use the same transitions given in CLP [61] (namely,
Constrain, Infer and Consistent), while the C-IFF does not need to explicitly give them.

In the terminology of Constraint Logic Programming [61], we assume that the symbols =
and 6= are in the constraint language and the theory underlining them is, for equality, the
one described in Section 19.2.1. Concerning 6=, we will again assume that it is possible to
syntactically distinguish the CLP-interpreted terms and atoms; the solver will perform some
inference on the interpreted terms (typically, depending on the CLP sort), and will, moreover,
contain the following rules, for uninterpreted terms:

1. Replace f(t1, . . . , tj) 6= f(s1, . . . , sj) with t1 6= s1 ∨ · · · ∨ tj 6= sj .

2. Replace f(t1, . . . , tj) 6= g(s1, . . . , sl) with true whenever f and g are distinct or j 6= l.

3. Replace t 6= t with false for every term t.

4. Replace X 6= t by true whenever t is a term containing X .

5. (a) Replace t 6= X with X 6= t if X is a variable and t is not

164

(b) Replace Y 6= X with X 6= Y whenever X is a universally quantified variable and Y
is not.

6. (a) Replace A 6= B with false if A is a universally quantified variable without quantifier
restrictions (i.e., QR(A) = ∅)

(b) If A is a universally quantified variable with quantifier restrictions QR(A) =
{c1(A), . . . , cd(A)}, and B is not universally quantified, replace A 6= B with
¬c1(B) ∨ · · · ∨ ¬cd(B).29

(c) If A and B are universally quantified, with quantifier restrictions QR(A) and QR(B)
then

• if ¬QR(A) ∩ ¬QR(B) = ∅, replace A 6= B with true.30

• otherwise, replace A 6= B with false.

Notice that the rules 1-6 do not deal with all possible combinations of quantifiers (e.g.,
∃A,B.A 6= B). For those not dealt with, we appeal to the underlying constraint solver. Some
solvers can easily propagate constraints of this type. E.g., given X 6= 1 a Finite Domain solver
can delete the value 1 from the domain of X . In the case of X 6= t, where t is not ground,
the constraint is typically suspended (thus we do not have a transition). We will delay the 6=
constraint until it can be processed by the rules 1-6 above.

The constraint solver deals also with quantifier restrictions. If a quantifier restriction (due
to unification) gets all the variables existentially quantified, then we replace it with the corre-
sponding constraint. For example, if in a node we have:

∃Ŷ , ∀
X̂ 6=1, X̂ = Ŷ

we obtain that ∃Ŷ , Ŷ 6= 1 (the quantifier restriction X̂ 6= 1 becomes a constraint on the variable
Ŷ).

Example 15. Consider the ICS

NE(p(X̌)),E(q(X̌))→ NE(r(X̌))

and suppose that ∃
Ê
∀

F̂ 6=1EXPk = {NE(p(F̂)),E(q(E))}. By applying Propagation of the ICS

with NE(p(F̂)), we first copy the abduced atom (i.e., NE(p(F̂ ′))), then we obtain (after Case
Analysis):

∀
F̂ ′ 6=1E(q(F̂ ′))→ NE(r(F̂ ′))

Now we can Propagate this PSIC with the atom E(q(Ê)), and obtain:

29Intuitively, A is universally quantified, thus it assumes every possible value except the ones forbidden by one
of the ci. Thus, the only way to satisfy this constraint is to impose that B assumes one of the values excluded
for A.

30Intuitively, if the values taken by A have no intersection with the values taken by B, then A 6= B is true.

165

∃
Ê
∀

F̂ ′ 6=1F̂
′ = Ê → NE(r(F̂ ′))

�
�

�
�

�
�

H
H

H
H

H
H

Case Analysis

∃
Ê
∀

F̂ ′ 6=1F̂
′ = Ê

true→ NE(r(F̂ ′))

Constraint Solving

∃
Ê
Ê 6= 1

true→ NE(r(Ê))

Logical Equivalence

∃
Ê
Ê 6= 1,NE(r(Ê))

Case Analysis

∃
Ê
∀

F̂ ′ 6=1F̂
′ 6= Ê

Constraint Solving (6b)

∃
Ê
Ê = 1

Constrain Given a node with

• Rk = L1, . . . , Lr

and the selected literal, Li is a constraint, constrain produces a node with

• Rk+1 = L1, . . . , Li−1, Li+1, . . . , Lr

• CSk+1 = CSk ∪ {Li}

Infer Given a node, the transition Infer modifies the constraint store by means of a function
infer(CS). This function is typical of the adopted constraint sort. E.g., the function infer in a
FD (Finite Domain) sort will typically compute (generalized) arc-consistency, while for equality
and disequality, will use the rules given earlier.

• CSk+1 = infer(CSk)

Consistent Given a node, the transition Consistent will check the consistency of the con-
straint store (by means of a solver of the domain) and will generate a new node. The new
node can either be the special node false or a node identical to its parent. Again, we will use
the rules given earlier for checking failure of equality and disequality, and will rely upon the
chosen solver for the other constraints. For example, a solver in CLP(FD) will typically detect
inconsistency when the domain of one of the variables is empty.

If consistent(CSk) then

• Nk+1 = Nk

If ¬consistent(CSk) then

• Nk+1 = false.

166

19.3 Sample Derivation

Let us take an example from the examples document [4]. The protocol definition is given by
means of the following Social Integrity Constraints:

IC1:
H(tell(A,B, query-ref(Info), D), T) ⇒

E(tell(B,A, inform(Info, Answer), D), T1), T1 < T + 10 ∨
E(tell(B,A, refuse(Info), D), T1), T1 < T + 10

IC2:
H(tell(A,B, inform(Info, Answer), D), T) ⇒

NE(tell(A,B, refuse(Info), D), T1), T1 > T

IC3:
H(tell(A,B, refuse(Info), D), T) ⇒

NE(tell(A,B, inform(Info, Answer), D), T1), T1 > T

and let us suppose that the history evolves from an empty history to a final history HAPf .
Two events are in the final history; the first happens at time 1, and the second at time 2; i.e.,
the external set of happened events contains the following elements:

H(tell(yves, david, query-ref(train info), d1), 1).

H(tell(david, yves, inform(train info, ‘departs(sv,rm,10:15)
′
), d1), 2).

The first node of the derivation tree is

N0 ≡ 〈∅, ∅, ICS , ∅, ∅, ∅, ∅〉

i.e., R0 = ∅, CS0 = ∅, PSIC0 = {IC1, IC2, IC3} and the sets EXP, HAP, FULF, and VIOL
are all empty. The only applicable transition is Happening with one of the events in the external
set of happened events; in this example we will take the events in chronological order (as it is
usually the case):

N1 ≡ 〈∅, ∅, PSIC, ∅, {H(tell(yves, david, query-ref(train info), d1), 1)}, ∅, ∅〉.

Now transition Propagation is applicable to the element in the history together with IC1. First
the happened event and the PSIC are copied, then the atoms are unified, and we obtain:

PSIC2 = { IC1, IC2, IC3,
A′ = yves,B′ = david, Info′ = train info,D′ = d1, T

′ = 1
⇒ E(tell(B′, A′, inform(Info’, Answer′), D′), T ′

1), T
′
1 < T ′ + 10

∨ E(tell(B′, A′, refuse(Info’), D′), T ′
1), T

′
1 < T ′ + 10

}

Each of the equalities in the body of the implication is dealt with by case analysis. Let us
consider the first: A′ = yves; case analysis generates two nodes: in the first A′ = yves and in
the second A′ 6= yves is put in the constraint store. Since A′ is universally quantified and non
flagged, A′ = yves succeeds when applying transition Consistent, and A′ 6= yves fails.

167

�
�

�
�

�
��

H
H

H
H

H
HH

Case Analysis
CS3 = {A′ = yves}

Infer+Consistent
PSIC4 = {IC1, IC2, IC3, IC

′
1}

Case Analysis
CS3 = {A′ 6= yves}

Consistent
fail

where

IC ′
1 =







B′ = david, Info′ = train info,D′ = d1, T
′ = 1

→ E(tell(B′, yves, inform(Info’, Answer′), D′), T ′
1), T

′
1 < T ′ + 10

∨ E(tell(B′, yves, refuse(Info’), D′), T ′
1), T

′
1 < T ′ + 10

After applying case analysis for each equality in the body, and the successive constraint
solving step, we have only one non-failure node:

N10 = 〈∅, ∅, PSIC10, ∅,HAP10, ∅, ∅〉

where

PSIC10 = {IC1, IC2, IC3,
true→ E(tell(david, yves, inform(train info, Answer′), d1), T

′
1), T

′
1 < 1 + 10

∨E(tell(david, yves, refuse(train info), d1), T
′
1), T

′
1 < 1 + 10}

HAP10 = {H(tell(yves, david, query-ref(train info), d1), 1)}

Now, we can apply Logical Equivalence to the implication with true antecedent. As explained
in Section 19.2.1, the consequent of the implication is moved to the conjunction R, and the
variables become flagged. Since all variables occur in E atoms, they are existentially quantified
on the whole node.

PSIC11 = {IC1, IC2, IC3}

R11 = {E(tell(david, yves, inform(train info, ˆAnswer′), d1), T̂ ′
1), T̂

′
1 < 1 + 10

∨E(tell(david, yves, refuse(train info), d1), T̂
′
1), T̂

′
1 < 1 + 10}

Since R contains a disjunction, splitting can be applied, and we generate two nodes; let us
consider the first node:

R12 = {E(tell(david, yves, inform(train info, ˆAnswer′), d1), T̂
′
1), T̂

′
1 < 1 + 10}

Through Abduction and Constrain steps, we reach the node:

R14 = ∅

EXP14 = {E(tell(david, yves, inform(train info, ˆAnswer′), d1), T̂
′
1)}

CS14 = {T̂ ′
1 < 1 + 10}

The declarative reading of this node is

∃ ˆAnswer′, ∃T̂ ′
1. T̂

′
1 < 1 + 10 ∧E(tell(david, yves, inform(train info, ˆAnswer′), d1), T̂ ′

1)

168

Suppose that now happening transition is applied with the second event in the external set
of happened events31.

HAP15 = {H(tell(yves, david, query-ref(train info), d1), 1).
H(tell(david, yves, inform(train info, ‘departs(sv,rm,10:15) ′), d1), 2).}

We can now apply transition fulfillment E with the event H(tell(david, yves, inform . . .)) in the
history. The transition opens two alternative nodes: either the event in the expectation unifies
with the event in the history and becomes fulfilled, or it does not unify and remains pending.

•

CS16 = { ˆAnswer′ = ‘departs(sv,rm,10:15)
′ ∧ T̂ ′

1 = 2

∧T̂ ′
1 < 1 + 10}

FULF16 = {E(tell(david, yves, inform(train info, ˆAnswer′), d1), T̂
′
1)}

EXP16 = ∅

•

CS16 = {(ˆAnswer′ 6= ‘departs(sv,rm,10:15)
′ ∨ T̂ ′

1 6= 2)

∧T̂ ′
1 < 1 + 10}

FULF16 = ∅

EXP16 = {E(tell(david, yves, inform(train info, ˆAnswer′), d1), T̂
′
1)}

The second node can be fulfilled if the history is still open, as other events may happen match-
ing the pending expectation. If the history gets closed, the pending expectation will become
violated, so the second will be a violation node. This does not mean that the proof is in a
global violation; as in SLD resolution we have a global failure if all the leaves of the proof tree
are failed, in the same way in SCIFF we have a global violation if all the leaves are violation
(which is not our case, since in the first node the expectations are fulfilled).

Other transitions are applicable to this node; we do not continue the example because their
application is very similar to the ones already presented. E.g., transition Propagation will be
applied to IC2 and the event H(tell(david, yves, inform . . .)) in the history, providing a new

expectation NE(tell(david, yves, refuse(train info), d1), T̂ ′
1), T̂

′
1 > 2.

19.4 Implementation of SCIFF

The SCIFF proof procedure has been implemented in SICStus Prolog [110], exploiting, in
particular, the Constraint Handling Rules (CHR) [45] library. The transitions of SCIFF have
been mapped to CHR rules. The CLP(FD) solver of SICStus has been extended to deal with
explicit quantification of variables, and with flagged variables. The implementation is given in
detail in Deliverable D9 [5].

20 Correctness Properties of SCIFF Proof Procedure

20.1 Soundness and completeness

We state the desirable properties of soundness and completeness for the SCIFF proof procedure
(Section 19) with respect to the declarative semantics (Section 18.2) by considering, in the fol-
lowing, a given society instance SHAP and a goal G for it. Depending on the openness or closure

31Of course, the happening transition was applicable also to the previous nodes. We are giving here a sample
derivation, but others may be possible.

169

of the society instance, we state in the following the desirable properties of correctness for the
proof procedure. For the sake of simplicity we do not consider CLP constraints in the program,
except for equality and disequality, that are dealt with the rules given in Sections 19.2.1 and
19.2.5.

The following proposition relates the operational notion of open successful derivation with
the corresponding declarative notion of goal achievability.

Proposition 20.1. Open Soundness. Given an open society instance SHAPi , if

SHAPi |∼HAP
f

EXP∪FULF G

with expectation answer (Definition 19.6) (EXP ∪ FULF, σ) then

SHAPf |≈(EXP∪FULF)σ Gσ

i.e., given Definition 18.9, Comp(SOKB ∪∆σ) ∪HAPf ∪ CET |= Gσ.

Proposition above states that if there exists an open successful derivation for a goal G
starting from an initial history HAPi and leading to the (open) society instance SHAPf with
abduced expectation set EXP∪FULF, and with expectation answer (EXP∪FULF, σ), then
Gσ is achievable in SHAPf (with the expectation set (EXP ∪ FULF)σ).

In the closed case, the soundness property is stated as follows, relating the operational notion
of closed successful derivation with the corresponding declarative notion of goal achievement.

Proposition 20.2. Closed Soundness. Given a closed society instance S
HAPf , if

SHAPi `HAPf

EXP∪FULF
G

with expectation answer (EXP ∪ FULF, σ) then

S
HAPf |=(EXP∪FULF)σ Gσ

Soundness in the closed case states that if there exists a closed successful derivation for a
goalG starting from an initial history HAPi and leading to the (closed) society instance S

HAPf

with abduced expectation set EXP∪FULF, and with expectation answer (EXP∪FULF, σ),
then Gσ is achieved in S

HAPf (with the expectation set (EXP ∪ FULF)σ).
In Appendix D.1, we introduce some lemmas useful to prove the property of open and closed

soundness. These Lemmas allow us to establish a corresponding SCIFF computation where all
the incoming events are considered at the beginning of the computation, instead of interleaving
Happening transitions with the other ones.

We first prove soundness property for the open case (Proposition 20.1) in Appendix D.3,
then for the closed case (Proposition 20.2) in Appendix D.4.

The proof of correctness (soundness, in particular) is given by exploiting soundness results
of the IFF proof procedure with respect to three-valued completion semantics. We map SCIFF
programs into IFF (rewritten) programs, and then prove that open/closed SCIFF successful
derivations have a counterpart in IFF derivations. We can therefore exploit soundness of this
latter proof procedure, in order to prove (open and closed) soundness of SCIFF. The proof of

170

soundness is given - at this stage - when the final node of the SCIFF computation contains
no literal abduced with a universally quantified variable (we do not restrict the syntax of the
SOKB or of ICS , but we give correctness results in some of the derivations). The extension to
the case with universally quantified variables in abducibles is work in progress.

The following two propositions state the converse properties, respectively for the open and
closed case. The proof of these properties is work in progress.

Proposition 20.3. Open Completeness. Given an open society instance SHAP, and a (ground)
goal G, for any set of ground expectations, ∆ = EXP ∪ FULF, such that SHAP |≈∆ G then
∃∆′ such that S∅ |∼

HAP

∆′ G with an expectation answer (∆′, σ) such that ∆′σ ⊆ ∆.

Completeness in the open case states that if goal G is achievable in an open society instance
under the expectation set ∆, then an open successful derivation can be obtained for G, possibly
computing a set ∆′ of the expectations whose grounding (according to the expectation answer)
is a subset of ∆.

Proposition 20.4. Closed Completeness. Given a closed society instance S
HAP

, a (ground)
goal G, for any set of ground expectations, ∆ = EXP ∪ FULF such that S

HAP
|=∆ G then

∃∆′ such that S∅ `
HAP

∆′ G with an expectation answer (∆′, σ) such that ∆′σ ⊆ ∆.

Completeness in the closed case states that if goal G is achieved in a closed society instance
under the expectation set ∆, then a closed successful derivation can be obtained for G, possibly
computing a set ∆′ of the expectations whose grounding (according to the expectation answer)
is a subset of ∆.

21 Discussion and planned future activity

We have described the proof procedure to be adopted by the society component. The proof
procedure is capable of checking the conformance of computees’ interactions to specified proto-
cols, raise expectations (on the basis of the social integrity constraints), and identify fulfillment
or violation of expectations.

The proof procedure has been formally defined by a set of transitions, some of which are
inherited from the IFF proof procedure [47] with constraints (C-IFF), and some of which are
original. Its main features are:

• it accepts new happened events;

• it contains transitions for the treatment of constraints [61], as C-IFF;

• it contains transitions for the concepts of fulfillment and violation [94].

Soundness has been proven for the open and closed cases, when abduced atoms do not
contain universally quantified variables.

In future work we have to:

• establish (preferred) orderings among transitions, and in particular determine when the
Happening transition has to be performed;

171

• consider non-unary domain restrictions for the universally quantified variables;

• prove further properties of the proof procedure (at least the open and closed soundness
property for computations involving abducibles with universally quantified variables, and
possibly completeness).

As concerns proofs of correctness, up to now we have considered the case of (possibly non-
ground) goals, and expectation sets without universally quantified variables. A matter of future
work is to consider the case on raised expectations containing such variables. To this purpose,
we have shown a lemma (Lemma D.12), that will be the backbone for the proof of soundness
in the more general case.

A further issue to be considered concerns the computational complexity of the proof proce-
dure, with reference also to its implementation. This will possibly be addressed in Workpackage
5.

Finally, an interesting issue, relating societies to its members, is represented by publication
of expectations, so to make members aware of what the society expects them to do. With this
awareness, members might apply inner reasoning (in particular Goal Decision, and Planning)
in order to act appropriately. This is subject of future work, too.

A further issue to be investigated (in particular, in the third year of the project, inside
Workpackage 5) is which properties can be stated (and proved) for societies of computees on
the basis of the structure of Social Integrity Constraints. For instance, a property could be the
guaranteed satisfaction of E-consistency (and ¬-consistency) of (raised) expectations.

22 Related work

In this document we presented the operational counterpart of a social framework introduced
and discussed in Deliverable D5 [94]. From the model viewpoint, in D5 we have presented
our work in relationship with other approaches to protocol and communicative act semantic
specification.

Noteworthily, Artikis et al. [9] present a theoretical framework for providing executable
specifications of particular kinds of multi-agent systems, called open computational societies,
and they present a formal framework for specifying and animating systems where the behavior
of the members and their interactions cannot be predicted in advance, and for reasoning about
and verifying the properties of such systems. A noteworthy difference with [9] is that we do
not explicitly represent the institutional power of the members and the concept of valid action.
Permitted are all social events that do not determine a violation, i.e., all events that are not
explicitly forbidden are allowed.

Yolum and Singh [123] apply a variant of Event Calculus [82] to commitment-based protocol
specification. The semantics of messages (i.e., their effect on commitments) is described by a
set of operations whose semantics, in turn, is described by predicates on events and fluents ; in
addition, commitments can evolve, independently of communicative acts, in relation to events
and fluents as prescribed by a set of postulates. Such a way of specifying protocols is more
flexible than traditional approaches based on action sequences in that it prescribes no initial
and final states or transitions explicitly, but it only restricts the agent interaction in that, at
the end of a protocol run, no commitment must be pending; agents with reasoning capabilities
can themselves plan an execution path suitable for their purposes (which, in that work, is
implemented by an abductive event calculus planner). Our notion of expectation is more

172

general than that of commitment proposed by Yolum and Singh [123] or in other commitment-
based works, such as the proposal by Fornara and Colombetti [44]: it represents the necessity
of a (past or future) event, and is not bound to have a debtor or a creditor, or to be brought
about by an agent.

From the operational framework viewpoint, the SCIFF is an extension of the IFF abductive
proof procedure [47]. Various abductive proof procedures have been proposed in the past. We
will only mention the ones closest to our work, the interested reader can refer to the survey by
Kakas et al. [68] for a complete discussion.

The IFF proof procedure [47] is probably the one most related to our work. Our operational
semantics can be considered as an extension of the IFF proof procedure that also:

• abduces atoms with variables universally quantified;

• deals with CLP constraints, also imposed as quantifier restrictions on universally quanti-
fied variables;

• is more dynamic, in fact new events may arrive, and the proof procedure dynamically
takes them into consideration in the knowledge base;

• has the new concepts, related to on-line verification, of fulfillment and violation.

Other proof procedures deal with constraints; in particular we mention ACLP [72] and
its successor, the A-system [76], that are deeply focussed on efficiency issues. Both of these
proof procedures use integrity constraints in the form of denials (e.g., A,B,C → ⊥), instead of
forward rules as the IFF (and the proof procedure of the Compliance Verifier). Both of these
proof procedures only abduce existentially quantified atoms, and do not consider quantifier
restrictions, that give more expressivity to our proof procedure.

Relevant work has been done in the past with the integration of the IFF proof procedure with
constraints by Kowalski et al. [78]; however the integration is more focussed on a theoretical
uniform view of abducibles and constraints than to an implementation of a proof procedure
with constraints.

Other implementations have been given of abductive proof procedures in Constraint Han-
dling Rules [2, 48]. Our implementation is more adherent to the theoretical operational seman-
tics (in fact, every transition is mapped to CHR rules) and exploits the uniform understanding
of constraints and abducibles noted by Kowalski et al. [78].

The use of abduction for verification is an idea which can be found also in other work.
Noteworthily, Russo et al. [103] use an abductive proof procedure for analyzing event-based
requirements specifications. In their approach, the system has a declarative specification given
through the Event Calculus [82] axioms, and the goal is proving that some invariant I is true
in all cases. The events that may happen are mapped to abducible atoms, and the goal ¬I
is given to an abductive proof procedure. In this way, if the refutation succeeds, the set ∆ of
abduced atoms contains a counterexample, i.e., a possible history for which the invariant I does
not hold. This method uses abduction for analyzing the correctness of specifications, while our
system is more focussed on the on-line check of compliance of a set of agents.

173

Part IV

Conclusions
Abstract. In this part we briefly conclude the document by summarising
its achievements and those of the SOCS’ consortium within WP3 in the
second year of the project more generally.

23 Summary and evaluation

In this deliverable we reported the activities of the consortium during the second year of the
project within workpackage WP3, which concerns the definition of the computational model
of computees and societies of computees. The computational models that we have defined
continue the spirit of the modular design of computees and societies embarked in the first year,
by using a number of proof procedures for the different aspects appropriately integrated.

A range of candidate proof procedures were studied and decisions made about the specific
ones to be used. Investigations were carried out on the specific applications of these to the
individual computee capabilities and cycle and the society model, and in each case a set of
necessary and desirable extensions and modifications have been identified.

We defined three proof procedures:

• C-IFF, an abductive proof procedure for the abductive logic programming tasks underly-
ing the computee model, namely the planning, reactivity, identification of preconditions
and temporal reasoning capabilities;

• SCIFF, another abductive proof procedure for the society model;

• an argumentation-based proof procedure for LPwNF , the logic programming with pri-
orities framework used in the computee model for all the tasks requiring preferential
reasoning, namely the goal decision capability and the cycle theory.

Both C-IFF and SCIFF are extensions of the IFF proof procedure [47] to deal with constraint
predicates. C-IFF keeps all the rewrite rules of IFF, and adds a constraint solving rule and
an additional case analysis rule, which applies to constraint atoms. C-IFF also relaxes the
allowedness restriction of IFF. SCIFF keeps some of the rewrite rules of the IFF (e.g. unfolding),
modifies some others (e.g. equality rewriting), drops some of them (e.g. factoring) and adds
some rewrite rules (dealing with the history, the fullfillment set, and the consistency of the set
of expectations, and performing constraint solving as well as case analysis over constraints).
Both procedures return answers consisting of sets of abducibles and sets of constraint atoms.
Despite their similarities, the proof procedures differ considerably, in order to cope with the
different tasks they are set to perform. The main differences are as follows:

• the treatment of variables in SCIFF is more sophisticated due to the need to deal with
universally quantified variables in abduced atoms. Instead C-IFF imposes allowdness re-
strictions ensuring that abduced atoms have only existentially quantified or free variables.

• C-IFF needs to deal with more sophisticated integraty constraints than social integrity
constraints, in that unfolding might need to be applied to their bodies in order to check
their satisfaction.

174

• C-IFF is implemented in SICStus, SCIFF is implemented in SICStus via CHR [45] (see the
companion deliverable D9 [5]). Both implementations use the built-in SICStus constraint
solver.

On the basis of these three proof procedures we defined (all the components of) the compu-
tational counterparts of the KGP model for computees defined in deliverable D4 [63] and for
the society model defined in deliverable D5 [94].

The main contributions of the work done in WP3 regarding the computational model of a
single computee can be summarised as follows:

Extension of the proof procedure for LPwNF . The framework LPwNF for reasoning
with logic programs with priorities has been enhanced in order to provide computational
counterparts of the Cycle Theory and the Goal Decision capability of a computee. The
computational model has been directly built from the argumentation based semantics
of LPwNF , exploiting the techniques of [75]. The proof theory is given in terms of
derivations of trees where each node in a tree contains an argument against its corre-
sponding parent node. The proposed argumentation framework has been implemented in
the Gorgias system.

The original LPwNF framework and its computational model have been extended with
dynamic priorities as required by the computee model. Moreover, abduction has been
incorporated within LPwNF , despite the fact that this is not required to realise the
basic computee model as currently specified in [63], since it can provide a useful extension
of the model to cope more fully with the demands of the Global Computing environment
in which computees operate.

Definition of the C-IFF proof procedure. In order to support the capabilities of the com-
putee, and specifically those based on the Abductive Event Calculus, like Planning, Re-
activity, and Temporal Reasoning, the C-IFF abductive proof procedure has been defined
and implemented. C-IFF is an extension of the IFF abductive proof procedure [47],
which encompasses constraint satisfaction within conventional abductive logic program-
ming. Constraints are needed in order to deal with temporal information, a relevant
feature of the KGP model of computees, which allows them to reason about changes in
an evolving open environment where they typically operate.

Constraint satisfaction has been embedded into the definition of the IFF proof proce-
dure, by appropriately extending the set of rewriting rules on which it is based. In the
implementaion of C-IFF within D9, concrete constraint satisfaction is delegated to the
constraint solver provided by the SICStus Prolog environment, on which C-IFF has been
implemented.

Besides constraint handling, C-IFF also generalises IFF to deal with non-allowed abduc-
tive logic programs, such as the Abductive Event Calculus that C-IFF is applied to within
the computee model.

Integration of proof procedures into a unique computational model. This is a spe-
cific aspect of the SOCS project which, starting from the plethora of specialised proof
procedures targeted to solve specific problems, recognised the needs for a general model,
capable of integrating the procedures possibly needed by a computational entity, within
the same conceptual model.

175

Currently, the two developed and implemented proof procedures fully support the com-
putational logic based reasoning of a computee in an integrated computational model.
Such a model corresponds, up to some simplifying assumptions, to the integrated formal
model defined within WP1.

Advances in integrated multi-reasoning. Building on the defined proof procedures, the
computational model of the single computee exhibit forms of non-monotonic reasoning,
like temporal and preferential reasoning, that are state-of-the-art in themselves, and an
advance as an integrated form of reasoning for an intelligent computational entity.

Correspondences of the computational and formal models. The computational mod-
els of each capability are provided with a sketch proof of soundness with respect to the
relative formal model. On top of these, Transitions, Selection functions and Cycle compu-
tational models are proven to be sound with respect to the corresponding formal models.
Formally stating the relations between formal and computational models goes into the di-
rection of facilitating the formal assessment of properties of the behaviour of a computee.
Completing the sketched proof and searching for more general results of correctness and
possible forms of completeness results need further investigation.

For an evaluation of the computee model in the context of the Global Computing programme
see deliverable D11 [13].

The main contributions of the work done in WP3 regarding the computational model of the
society can be summarised as follows:

Definition of the SCIFF proof procedure. We have interpreted the protocol conformance
checks and the normative control performed by the society as abductive tasks, and defined
an extension of the IFF abductive proof procedure to deal with this task. The extension
is non-trivial, and deals with complex forms of variables quantification in abductive logic
programs, as well as constraint predicates.

Advances in agent communication and norm-based reasoning.

Correspondences of the computational and formal model. We have proven that
SCIFF is a correct computaitional counterpart of the society model of D5 [94] (under
some assumptions).

For an evaluation of the society model in the context of the Global Computing programme
see deliverable D11 [13].

Finally, we believe that a further contribution of the work presented in this document is that
we have devised a computational model for the single computees and a computational model
for the societies which are compatible with one another and thus can be easily integrated.

176

References

[1] The DLV Project: A Disjunctive Datalog System (and more). Electronically available at
http://www.dbai.tuwien.ac.at/proj/dlv/.

[2] S. Abdennadher and H. Christiansen. An experimental CLP platform for integrity con-
straints and abduction. In H. Larsen, J. Kacprzyk, S. Zadrozny, T. Andreasen, and
H. Christiansen, editors, FQAS, Flexible Query Answering Systems, LNCS, pages 141–
152, Warsaw, Poland, Oct. 25 - 28 2000. Springer-Verlag.

[3] ACLP: Abductive Constraint Logic Programming. Electronically available at http://

www.cs.ucy.ac.cy/aclp/.

[4] M. Alberti, A. Bracciali, F. Chesani, N. Demetriou, U. Endriss, W. Lu, F. Sadri, A. Kakas,
E. Lamma, P. Mello, M. Milano, K. Stathis, F. Toni, and P. Torroni. Examples of the func-
tioning of computees and their societies. Discussion Note IST3250/ICSTM//DN/I/a2,
SOCS Consortium, Dec. 2003. http://lia.deis.unibo.it/Research/Projects/SOCS/.

[5] M. Alberti, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, W. Lu, K. Stathis, and
P. Torroni. SOCS prototype. Technical report, SOCS Consortium, 2003. Deliverable D9.

[6] J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics and general-
ized stable models via tabled dual programs. Theory and Practice of Logic Programming,
2003.

[7] K. R. Apt. Logic programming. In Handbook of Theoretical Computer Science, volume B,
pages 493–574. Elsevier Science Publishers, 1990.

[8] K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus. IMPACT:
a Platform for Collaborating Agents. IEEE Intelligent Systems, 14(2):64–72, March/April
1999.

[9] A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational so-
cieties. In C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of the
First International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), Part III, pages 1053–1061, Bologna, Italy, July 15–19 2002. ACM
Press. http://portal.acm.org/ft_gateway.cfm?id=545070&type=pdf&dl=GUIDE&dl=
ACM%&CFID=4415868&CFTOKEN=57395936.

[10] A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelligence, 93:63–101, 1997.

[11] R. Bordini, A. L. C. Bazzan, R. O. Jannone, D. M. Basso, R. M. Vicari, and V. R.
Lesser. Agentspeak(xl): Efficient intention selection in bdi agents via decision-theoretic
task scheduling. In C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of the
First International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), Part III, pages 1294 – 1302, Bologna, Italy, July 15–19 2002. ACM
Press. http://portal.acm.org/ft_gateway.cfm?id=545122&type=pdf&dl=GUIDE&dl=
ACM%&CFID=4415868&CFTOKEN=57395936.

177

[12] R. H. Bordini and Á. F. Moreira. Proving the asymmetry thesis principles for a BDI
agent-oriented programming language. In J. Dix, J. A. Leite, and K. Satoh, editors,
Computational Logic in Multi-Agent Systems: 3rd International Workshop, CLIMA’02,
Copenhagen, Denmark, August 1, 2002, Proceedings, number 93 in Datalogiske Skrifter
(Writings on Computer Science), pages 94–108. Roskilde University, Denmark, 2002.

[13] A. Bracciali, A. C. Kakas, E. Lamma, P. Mello, K. Stathis, F. Toni, and P. Torroni.
Evaluation and self-assesment. Technical report, SOCS Consortium, 2003. Deliverable
D11.

[14] M. Bratman. Intensions, plans and practical reason. Harvard University Press, 1987.

[15] M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical reasoning.
Computational Intelligence, 4, 1988.

[16] F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and J. Treur. Formal specification of multi-
agent systems: a real-world case. In Proceedings of the 1st International Conference on
Multiagent Systems, San Francisco, California, pages 25–32, San Francisco, CA, USA,
1995. AAAI Press. http://citeseer.nj.nec.com/brazier95formal.html.

[17] F. M. T. Brazier, B. Dunin-Keplicz, J. Treur, and R. Verbrugge. Modelling internal
dynamic behaviour of BDI agents. In ModelAge Workshop, pages 36–56, 1997. http:

//citeseer.nj.nec.com/103009.html.

[18] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. DESIRE: Mod-
elling multi-agent systems in a compositional formal framework. International Journal
of Cooperative Information Systems, 6(1):67–94, 1997. http://citeseer.nj.nec.com/

brazier97desire.html.

[19] F. M. T. Brazier, J. Treur, N. J. E. Wijngaards, and M. Willems. Temporal seman-
tics of complex reasoning tasks. In Proc. of the 10th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, KAW’95, pages 15/1–15/17. Calgary:SRDG Pub-
lications, 1995.

[20] G. Brewka. Reasoning about priorities in default logic. In AAAI-94, pp. 940-945, 1994.

[21] G. Brewka. Well founded semantics for extended logic programs with dynamic preferences.
Artificial Intelligence Research, 4:19–36, 1996.

[22] G. Brewka. Dynamic argument systems: a formal model of argumentation process based
on situation calculus. In Journal of Logic and Computation, 11(2), pp. 257-282, 2001.

[23] G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. In A. G. Cohn,
L. Schubert, and S. C. Shapiro, editors, KR’98: Principles of Knowledge Representation
and Reasoning, pages 86–97. Morgan Kaufmann, San Francisco, California, 1998.

[24] H. Bürckert. A resolution principle for constrained logics. Artificial Intelligence, 66:235–
271, 1994.

[25] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.
Journal of the ACM, 43(1):20–74, January 1996.

178

[26] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 293–322. Plenum Press, 1978.

[27] P. Cohen and H. Levesque. Intention is choice with commitment. Artificial Intelligence,
42(2-3):213–261, 1990.

[28] L. Console, D. T. Dupré, and P. Torasso. On the relationship between abduction and
deduction. Journal of Logic and Computation, 1(5):661–690, 1991.

[29] P. T. Cox and T. Pietrzykowski. Causes for events: Their computation and applications.
In Proceedings CADE-86, pages 608–621, 1986.

[30] M. Dastani, F. S. de Boer, F. Dignum, W. van der Hoek, M. Kroese, and J. C. Meyer.
Programming the deliberation cycle of cognitive robots. In Proc. of 3rd International
Cognitive Robotics Workshop (CogRob2002), Edmonton, Alberta, Canada, 2002.

[31] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence,
49:61–95, 1991.

[32] M. Denecker and D. D. Schreye. SLDNFA: An abductive procedure for normal abductive
programs. In K. R. Apt, editor, Proceedings of the Joint International Conference and
Symposium on Logic Programming, pages 686–702, Cambridge, Nov. 9–13 1992. MIT
Press.

[33] M. Denecker and D. D. Schreye. Representing Incomplete Knowledge in Abductive Logic
Programming. In Logic Programming, Proceedings of the 1993 International Symposium,
Vancouver, British Columbia, Canada, pages 147–163. The MIT Press, 1993.

[34] Y. Dimopoulos and A. C. Kakas. Logic programming without negation as failure. In
Logic Programming, Proceedings of the 1995 International Symposium, Portland, Oregon,
pages 369–384, 1995.

[35] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS.
In M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent Agents V, Agent Theories,
Architectures, and Languages, 5th International Workshop, ATAL ’98, Paris, France,
Proceedings, number 1365 in Lecture Notes in Artificial Intelligence, pages 155–176.
Springer-Verlag, 1998.

[36] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357,
1995.

[37] B. M. Dunin-Keplicz and J. Treur. Compositional formal specification of multi-agent
systems. In Proc. of the ECAI’94 Workshop on Agent Theories, Architectures and Lan-
guages, Lecture Notes in AI, volume 890, pages 102–117. Springer-Verlag, 1995.

[38] T. Eiter, V. Subrahmanian, and G. Pick. Heterogeneous active agents, I: Semantics.
Artificial Intelligence, 108(1-2):179–255, March 1999.

[39] T. Eiter and V. S. Subrahmanian. Deontic action programs. In Workshop on Foundations
of Models and Languages for Data and Objects, pages 37–54, 1998. http://citeseer.

nj.nec.com/eiter98deontic.html.

179

[40] T. Eiter and V. S. Subrahmanian. Heterogeneous active agents, II: Algorithms and com-
plexity. Artificial Intelligence, 108(1–2):257–307, 1999. http://citeseer.nj.nec.com/

eiter99heterogeneous.html.

[41] T. Eiter, V. S. Subrahmanian, and T. J. Rodgers. Heterogeneous active agents, III:
Polynomially implementable agents. Artificial Intelligence, 117(1):107–167, 2000. http:

//citeseer.nj.nec.com/eiter99heterogeneous.html.

[42] K. Eshghi. Abductive planning with event calculus. In R. Kowalski and K. Bowen, editors,
Proceedings of the Fifth International Conference on Logic Programming — ICLP’88,
pages 562–579, 1988.

[43] K. Eshghi and R. A. Kowalski. Abduction compared with negation by failure. In G. Levi
and M. Martelli, editors, Proceedings of the 6th International Conference on Logic Pro-
gramming, pages 234–255. MIT Press, 1989.

[44] N. Fornara and M. Colombetti. Operational specification of a commitment-based agent
communication language. In C. Castelfranchi and W. Lewis Johnson, editors, Proceed-
ings of the First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2002), Part II, pages 535–542, Bologna, Italy, July 15–19 2002. ACM
Press. http://portal.acm.org/ft_gateway.cfm?id=544868&type=pdf&dl=GUIDE&dl=
ACM%&CFID=4415868&CFTOKEN=57395936.

[45] T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic Pro-
gramming, 37(1-3):95–138, Oct. 1998.

[46] T. H. Fung. Abduction by Deduction. PhD thesis, Imperial College London, 1996.

[47] T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming, 33(2):151–165, Nov. 1997.

[48] M. Gavanelli, E. Lamma, P. Mello, M. Milano, and P. Torroni. Interpreting abduction
in CLP. In F. Buccafurri, editor, APPIA-GULP-PRODE Joint Conference on Declar-
ative Programming, pages 25–35, Reggio Calabria, Italy, http://www.informatica.

ing.unirc.it/agp03/, Sept. 3-5 2003. Università Mediterranea di Reggio Calabria.
http://www.ing.unife.it/docenti/MarcoGavanelli/papers/AGP03.pdf.

[49] M. P. Georgeff and F. F. Ingrand. Decision-making in an embedded reasoning system.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
(IJCAI-89), pages 972–978, 1989.

[50] M. P. Georgeff and F. F. Ingrand. Monitoring and control of spacecraft systems using
procedural reasoning. In Workshop of the Space Operations-Automation and Robotics,
Houston, Texas, July 1989.

[51] M. P. Georgeff and A. L. Lansky. Procedural knowledge. In Proceedings of the IEEE
Special Issue on Knowledge Representation, volume 74, pages 1383–1398, 1986.

[52] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings of
the 6th National Conference on Artificial Intelligence, AAAI’87, pages 677–682, Seattle,
WA, USA, July 1987. Morgan Kaufmann Publishers.

180

[53] G. D. Giacomo, Y. Lesperance, and H. J. Levesque. Congolog, a concurrent programming
language based on the situation calculus. Artificial Intelligence, 121(1-2):109–169, 2000.
http://citeseer.nj.nec.com/degiacomo00congolog.html.

[54] G. D. Giacomo, H. J. Levesque, and S. Sardia. Incremental execution of guarded theories.
ACM Transactions on Computational Logic, 2(4):495–525, October 2001.

[55] G. Governatori, M. J. Maher, G. Antoniou, and D. Billington. Argumentation semantics
for defeasible logics. In R. Mizoguchi and J. Slaney, editors, PRICAI 2000: Topics in
Artificial Intelligence, volume 1886 of LNAI, pages 27–37, Berlin, 2000. Springer-Verlag.

[56] K. V. Hindriks, F. S. D. Boer, W. van der Hoek, and J.-J. C. Meyer. Formal semantics
for an abstract agent programming language. In Intelligent Agents IV, Agent Theories,
Architectures, and Languages, 4th International Workshop, ATAL ’97, Providence, Rhode
Island, Proceedings, volume 1365 of Lecture Notes in Computer Science, pages 215–229.
Springer-Verlag, 1998.

[57] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. C. Meyer. Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

[58] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. C. Meyer. Semantics of commu-
nicating agents based on deduction and abduction. In In IJCAI’99 Workshop on Agent
Communication Languages, 1999.

[59] K. V. Hindriks, M. d’Inverno, and M. Luck. An formal architecture for 3APL. ZB 2000,
pages 168–187, 2000.

[60] F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time reasoning and sys-
tem control. IEEE Expert, 7(6):34–44, 1992. ftp://ftp.laas.fr/pub/Publications/

1992/92521.ps.

[61] J. Jaffar and M. Maher. Constraint logic programming: a survey. Journal of Logic
Programming, 19-20:503–582, 1994.

[62] J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of constraint logic
programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

[63] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. A logic-based approach to
model computees. Technical report, SOCS Consortium, 2003. Deliverable D4.

[64] A. Kakas and L. Michael. On the qualification problem and elaboration tolerance. In Pro-
ceedings of the 6th AAAI Spring Symposium on Logical Formalization of Commonsense
Reasoning, Stanford, Palo Alto, alifornia, U.S.A, 2003.

[65] A. Kakas, R. Miller, and F. Toni. E-res: Reasoning about actions, events and observations.
In Proc. of LPNMR-01, 2001.

[66] A. C. Kakas. ACLP: integrating abduction and constraint solving. In Proceedings of the
8th International Workshop on Non-Monotonic Reasoning, NMR’00, Breckenridge, CO,
2000.

181

[67] A. C. Kakas and M. Denecker. Abduction in logic programming. In A. C. Kakas and
F. Sadri, editors, Computational Logic: Logic Programming and Beyond. Part I, number
2407 in Lecture Notes in Artificial Intelligence, pages 402–436. Springer-Verlag, 2002.

[68] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive Logic Programming. Journal of
Logic and Computation, 2(6):719–770, 1993.

[69] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic programming. In
D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 5, pages 235–324. Oxford University Press,
1998.

[70] A. C. Kakas and P. Mancarella. On the relation between Truth Maintenance and Abduc-
tion. In T. Fukumura, editor, Proceedings of the 1st Pacific Rim International Conference
on Artificial Intelligence, PRICAI-90, Nagoya, Japan, pages 438–443. Ohmsha Ltd., 1990.

[71] A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for logic
programs. In Proceedings of the Eleventh International Conference on Logic Programming,
Santa Marherita Ligure, Italy, pages 504–519, 1994.

[72] A. C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive Constraint Logic Program-
ming. Journal of Logic Programming, 44(1-3):129–177, July 2000.

[73] A. C. Kakas and P. Moräıtis. Argumentative agent deliberation, roles and context. In J. L.
J. Dix and K. Satoh, editors, CLIMA 2002: 3rd International Workshop on Computa-
tional Logics in Multi-Agent Systems. Electronic Notes on Theoretical Computer Science,
volume 70. Elsevier Science Publishers, 2002.

[74] A. C. Kakas and P. Moraitis. Argumentation based decision making for autonomous
agents. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo, editors,
Proceedings of the Second International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2003), pages 883–890, Melbourne, Victoria, July 14–18
2003. ACM Press.

[75] A. C. Kakas and F. Toni. Computing argumentation in logic programming. Journal of
Logic and Computation, 9:515–562, 1999.

[76] A. C. Kakas, B. van Nuffelen, and M. Denecker. A-System: Problem solving through
abduction. In B. Nebel, editor, Proceedings of the 17th International Joint Conference on
Artificial Intelligence, pages 591–596, Seattle, Washington, USA, August 2001. Morgan
Kaufmann Publishers.

[77] R. Kowalski and F. Toni. Abstract argumentation. Artificial Intelligence and Law Journal,
Special Issue on Logical Models of Argumentation, 4:275–296, 1996.

[78] R. Kowalski, F. Toni, and G. Wetzel. Executing suspended logic programs. Fundamenta
Informaticae, 34:203–224, 1998. http://www-lp.doc.ic.ac.uk/UserPages/staff/ft/

PAPERS/slp.ps.Z.

[79] R. A. Kowalski and F. Sadri. Towards a unified agent architecture that combines ra-
tionality with reactivity. In Proc of the International Workshop on Logic in Databases,

182

San Miniato, Italy, volume 1154 of Lecture Notes in Computer Science, pages 137–149.
Springer-Verlag, 1996.

[80] R. A. Kowalski and F. Sadri. From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence, 25(3/4):391–419, 1999.

[81] R. A. Kowalski, F. Sadri, and F. Toni. An agent architecture that combines backward and
forward reasoning. In B. Gramlich and F. Pfenning, editors, Proceedings of the CADE-15
Workshop on Strategies in Automated Deduction, pages 49–56, November 1998.

[82] R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Com-
puting, 4(1):67–95, 1986.

[83] R. A. Kowalski and F. Toni. Argument and reconciliation. In Proceedings of Workshop
on Legal Reasoning International Symposium on FGCS Tokyo, 1994.

[84] K. Kunen. Negation in logic programming. In Journal of Logic Programming, volume 4,
pages 289–308, 1987.

[85] J. Leite, J. Alferes, and L. M. Pereira. Minerva - combining societal agents knowledge.
Technical report, Dept. Informática, Universidade Nova de Lisboa, 2001.

[86] J. A. Leite. Evolving Knowledge Bases. IOS Press, 2003.

[87] J. A. Leite, J. J. Alferes, and L. M. Pereira.MINERVA: A dynamic logic programming
agent architecture. In Intelligent Agents VIII: 8th International Workshop, ATAL 2001,
Seattle, WA, USA, Revised Papers, volume 2333 of Lecture Notes in Artificial Intelligence,
pages 141–157, 2002.

[88] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming, 31(1-3):59–
83, 1997. http://citeseer.nj.nec.com/article/levesque97golog.html.

[89] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd extended edition,
1987.

[90] P. Mancarella and G. Terreni. Extensions of kakas-mancarella logic-abductive proof pro-
cedure. Internal note (forthcoming).

[91] P. Mancarella, G. Terreni, and F. Toni. Abductive proof procedures: A multiagent
oriented survey. Technical report, Dept. Computer Science, University of Pisa, 2002.

[92] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems, 4:258–282, 1982.

[93] J. McCarthy and P. J. Hayes. Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence, 4:463–502, 1969. http://citeseer.nj.

nec.com/article/levesque97golog.html.

[94] P. Mello, P. Torroni, M. Gavanelli, M. Alberti, A. Ciampolini, M. Milano, A. Roli,
E. Lamma, F. Riguzzi, and N. Maudet. A logic-based approach to model interaction
amongst computees. Technical report, SOCS Consortium, 2003. Deliverable D5.

183

[95] S. Parsons, C. Sierra, and N. Jennings. Agents that reason and negotiate by arguying. In
Logic and Computation 8 (3), 261-292, 1998.

[96] H. Prakken and G. Sartor. A dialectical model of assessing conflicting arguments in legal
reasoning. In Artficial Intelligence and Law, volume 4, pages 331–368, 1996.

[97] H. Prakken and G. Sartor. A system for defeasible argumentation, with defeasible pri-
orities. In International Conference on Formal and Applied Practical Reasoning, LNAI
1085, pages 510–524. Springer-Verlag, 1996.

[98] A. Rao and M. Georgeff. An abstract architecture for rational agents. In C. Rich,
W. Swartout, and B. Nebel, editors, Proceedings of the International Workshop on Knowl-
edge Representation, KR’92, pages 439–449, 1992.

[99] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
R. van Hoe, editor, Agents Breaking Away, 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, MAAMAW’96, Eindhoven, The Netherlands,
January 22-25, 1996, Proceedings, volume 1038 of Lecture Notes in Computer Science,
pages 42–55. Springer-Verlag, 1996.

[100] A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceedings of the
1st International Conference on Multiagent Systems, San Francisco, California, pages
312–319, San Francisco, CA, June 1995.

[101] A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-effect problems in linear-time
and branching-time intention logics. In J. Myopoulos and R. Reiter, editors, Proceed-
ings of the 12th International Joint Conference on Artificial Intelligence, pages 498–505,
Sydney, Australia, 1991. Morgan Kaufmann Publishers. http://citeseer.nj.nec.com/
rao91asymmetry.html.

[102] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In M. N. Huhns and M. P. Singh, editors, Readings in Agents, pages 317–328. Morgan
Kaufmann Publishers, San Francisco, CA, USA, 1997.

[103] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An abductive approach for analysing
event-based requirements specifications. In P. Stuckey, editor, Logic Programming, 18th
International Conference, ICLP 2002, volume 2401 of Lecture Notes in Computer Science,
pages 22–37, Berlin Heidelberg, 2002. Springer-Verlag.

[104] F. Sadri and F. Toni. Abduction with negation as failure for active and reactive rules.
In E. Lamma and P. Mello, editors, AI*IA’99: Advances in Artificial Intelligence, Pro-
ceedings of the 6th Congress of the Italian Association for Artificial Intelligence, Bologna,
number 1792 in Lecture Notes in Artificial Intelligence, pages 49–60. Springer-Verlag,
2000.

[105] F. Sadri, F. Toni, and P. Torroni. An abductive logic programming architecture for
negotiating agents. In S. Greco and N. Leone, editors, Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (JELIA), volume 2424 of Lecture Notes in
Computer Science, pages 419–431. Springer-Verlag, Sept. 2002.

184

[106] K. Satoh and N. Iwayama. A Query Evaluation Method for Abductive Logic Program-
ming. In K. Apt, editor, Proceedings of the Joint International Conference and Symposium
on Logic Programming, pages 671–685. The MIT Press, 1992.

[107] M. Shanahan. Prediction is deduction but explanation is abduction. In Proceedings of
the 11th International Joint Conference on Artificial Intelligence, pages 1055–1060, 1989.

[108] M. Shanahan. An abductive event calculus planner. Journal of Logic Programming,
44(1-3):207–240, 2000.

[109] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.

[110] SICStus prolog user manual, release 3.8.4, May 2000. http://www.sics.se/isl/

sicstus/.

[111] K. Stathis. Location-aware SOCS: The Leaving San Vincenzo scenario. Technical Report
IST32530/CITY/002/IN/PP/a1, SOCS consortium, 2002.

[112] P. Stuckey. Negation and constraint logic programming. Information and Computation,
118(1):12–33, 1995.

[113] V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, and R. Ross. Het-
erogenous Active Agents. MIT-Press, 2000.

[114] S. R. Thomas. The PLACA agent programming language. In M. J. Wooldridge and N. R.
Jennings, editors, Intelligent Agents, Berlin, 1995. Springer-Verlag. http://citeseer.

nj.nec.com/rao96agentspeakl.html.

[115] P. van Hentenryck and Y. Deville. The Cardinality Operator: A new Logical Connective
for Constraint Logic Programming. In K. Furukawa, editor, Logic Programming, Pro-
ceedings of the Eigth International Conference, Paris, France, volume 2, pages 745–759,
1991.

[116] P. van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and evaluation
of the constraint language cc(fd). Technical Report CS-93-02, Department of Computer
Sciences, Brown University, Jan. 1993.

[117] B. van Nuffelen. personal communication.

[118] B. van Nuffelen and M. Denecker. Problem solving in ID-logic with aggregates. In
Proceedings of the 8th International Workshop on Non-Monotonic Reasoning, NMR’00,
Breckenridge, CO, pages 1–9, 2000.

[119] P. VanBeek. Reasoning about qualitative temporal information. Artificial Intelligence,
58:297–326, 1992.

[120] D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a concurrent agent-
oriented language. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents
II, Agent Theories, Architectures, and Languages, IJCAI ’95, Workshop (ATAL), Mon-
treal, Canada, Proceedings, pages 386–402. Springer-Verlag, 1995. http://citeseer.nj.
nec.com/weerasooriya94design.html.

185

[121] M. Witkowski and K. Stathis. A dialectic architecture for computational autonomy. In
M. Nickles and M. Rovatsos, editors, AUTONOMY 2003, to appear as LNCS in 2003.

[122] Y. Xanthakos. Semantic integration of information by abduction. PhD thesis, Department
of Computing, Imperial College London, UK, 2003.

[123] P. Yolum and M. Singh. Flexible protocol specification and execution: applying event
calculus planning using commitments. In C. Castelfranchi and W. Lewis Johnson, edi-
tors, Proceedings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2002), Part II, pages 527–534, Bologna, Italy, July 15–
19 2002. ACM Press. http://portal.acm.org/ft_gateway.cfm?id=544867&type=

pdf&dl=GUIDE&dl=ACM%&CFID=4415868&CFTOKEN=57395936.

186

Part V

Appendices

A Extensions of the TR computational model

A.1 Theories with actions that happen within intervals

In this section we show how Assumption 2 of Section 11.4.2 can be relaxed. We extend the
KBTR theory by allowing an action to occur within a given interval, at an unknown but fixed
time point. This will be useful in dealing with incomplete information about the environment,
where possible inconsistencies can be recovered by assuming that an action occurred in a given
interval, even without being able to say exactly when. Moreover, other capabilities or transitions
of computees may require referring to actions that the computee is committed, in its Plan, to
execute at an unspecified, but constrained, future time.

Informally speaking, an interval where an action occurs at an unspecified time point is a
sort of fuzzy interval, where it might not be possible to assert whether a given fluent holds or
it does not hold. In this context we interpret credulous reasoning as the existence of a correct
placement of the action, or of the actions if there are more than one, which allows the fluent to
be credulously proved against the grounded theory. Skeptical reasoning, instead, is interpreted
as the fact that all the possible correct placements allow the fluent to be skeptically proved (at
the end of this section we also discuss a weaker notion of skeptical reasoning in this context).

In the rest of this section we introduce the necessary notation, define the notion of correct
placement and show how this allows us to define a computational model.

An interval [s, e], or [s,∞], of possible values for a time variable T is represented by a set
of constraints over the variable, like {s ≤ T, T ≤ e}, or {s ≤ T}, respectively. A constraint
can also relate two distinct variables, like {Ti ≤ Tj}. We assume that each time variable Ti

do have an associated ground interval [si, ei].
32 The only admitted constraints are the binary

operators ≤ and <, defined over ground time points and time variables. An action that occurs
at an unspecified instant within an interval is expressed as happens(a, T), C,33 where C is the
constraint set associated to the variable (containing at least the definition of the interval itself).

Definition A.1 (KBTRint). The theory KBTRint consists of the theory KBTR extended with a
set of non-ground predicates happens(a, T) and a set of temporal constraints C. Time variables
are quantified from the outside, so that

happens(a1, T1), C1(T1, . . . , Tn).
...

happens(an, Tn), Cn(T1, . . . , Tn).

32This assumption facilitates the definition of the computational model, while it is not restrictive, in the sense
that either such an interval can be derived by the set of constraints, or it can be assumed to be [0,∞].

33In this section, with a small abuse of notation, we refer to happens as if they were directly occurring in
KB0, in place of the expected executed and relative bridge rule happens← executed.

187

stands for
∃ T1 . . . , Tn

happens(a1, T1).
...

happens(an, Tn).
C(T1, . . . , Tn).

with C(T1, . . . , Tn) the union of the constraint sets. A predicate happens(a, T), C(T1, . . . , Tn).
is called an interval action.

The set of temporal constraints C(T1, . . . Tn), assumed to be satisfiable, induces a partial
order over time variables. Each “placement” of actions onto specific time points, i.e. a total
order, must respect this partial order.

Definition A.2. Given a (satisfiable) set of temporal constraints C(T1, . . . Tn), we indicate
with Ω the (unique minimal) partial order induced over the time variables T1, . . . Tn. Given a
total order Θ, we write Ω � Θ if and only if ∀ i, j Ti Ω Tj ⇒ Ti Θ Tj , i.e. the total order
fulfills the partial order.

For the problem of deriving total orders from the partial order, papers like [31, 119] show
how this kind of temporal information can be represented in terms of our kind of temporal
constraints, which can be dealt with by efficient constraint solving techniques.

Clearly, every (total) order Θ such that Ω � Θ, satisfies the original set of temporal con-
straints.

In exploring the possible consequences of an interval action, it is necessary to describe the
significant time points where it may be executed. This is given by the notion of placement,
i.e. a substitution for constrained time variables that fulfills the constraints induced by the set
C(T1, . . . Tn). The notion of placement relies on that of order fulfillment.

The effectiveness of the computational model relies on only reasoning about significant
placements, where, as usual, the notion of significance is given according to the deserts and
oases approach.

Definition A.3 (Placement). Let Ω be the partial order induced by the set C(T1, . . . Tn). Let
Ti be a time variable occurring in an interval action happens(ai, Ti).

A placement π is an assignment from time variables to time values, such that, forall i, j
Ti Ω Tj ⇒ Tiπ Ω Tjπ, also written as Ω� π (the placement fulfills the partial order).

The application of a placement to an interval action is defined as happens(a, T)π =
happens(a, Tπ), and it transforms an extended theory KBTRint into a ground KBTR one.

A.1.1 Credulously reasoning with interval actions

The definition of placement allows us to define the notion of entailment for KBTRint in terms
of that for KBTR, and hence to define the computational model for KBTRint in terms of
that for KBTR. These settings add another dimension to the definition of believing something
credulously, that now depends both on the existence of a set ∆ and a placement π.

Definition A.4 (|=cred
TRint). Given a theory KBTRint, a placement π and a ground fluent literal

fl[t], then

KBTRint |=
cred
TRint fl[t] ⇔ ∃ π KBTRintπ |=

cred
TR fl[t].

188

Again, an appropriate partition of the time line into deserts and oases helps us in defining
an effective computational model for KBTRint. Other than usual oases, the extremes of the
intervals of interval actions must be considered as oases. Basically, this is due to the fact
that putting an action before or after the query might affect the query itself, and this makes
necessary to check integrity constraints at the extremes of an interval, when they occur in the
middle of a desert. Moreover, also the time points relative to observation of fluents in KB0

must be added to the time line as the placement of actions relatively to observations can change
the state of affairs that can be derived.

Definition A.5. Given a fluent literal fl[t] and a set of observations KB0, containing
observed/2, executed/2 and observed/3 predicates, and a set of interval actions referring to
intervals [sj , ej], the relative extended time line ETL is the (maximal) totally ordered sequence

ETL = [0 = t0, t1, ..., tn],

where ∀ i (∃ observed(f, ti) ∈ KB0∨∃ observed(c, a, ti) ∈ KB0∨∃ executed(a, ti) ∈ KB0∨ti =
t ∨ ∃ j ti = sj ∨ ti = ej).

Finally, we give the definition of essential placement and show how proofs can be computed
by only taking into consideration essential placements, which, not surprisingly, are finite in
number. We write substitution composition as ©, which is a commutative and associative
operator for substitutions with disjoint domains and ground ranges, and the empty substitution
as ε.

Definition A.6 (Essential placement). Given a theory KBTRint, in which m interval ac-
tions (i.e. m temporal variables) occur, a ground fluent literal fl[t], and the relative extended
time line ETL = [0 = t0, t1, ..., tn], then a placement π is essential if π =©iπi, with i ∈ [0, n],
and

1. ∀ i, j ∈ [0, n] dom(πi) ∩ dom(πj) = ∅ ∧ ∀ i ∈ [1,m] π(Ti) ∈ [0,∞),

2. Ω� π,

3. ∀ i

(a) πi = ε, or

(b) ∃ k, o πi : [Ti1 , . . . , Tik
]→ [ti + 1, . . . , ti + 1 + o], with o ≤ k ∧ ti + o ≤ ti+1.

Intuitively speaking, the definition requires that an essential placements can be partitioned
in n placements, one for each desert, such that

1. they are disjoint and π is total over time variables of interval actions in KBTRint,

2. π fulfills the partial order induced by temporal constraints in KBTRint, and

3. each πi either

(a) is the empty substitution (no actions are mapped in that desert), or

(b) maps, in any order, a set of k temporal variables into o ≤ k contiguous time points
starting at the beginning (ti + 1) of the desert, and not spilling out into the next
desert.

189

It is easy to note that the definition of essential placement encompasses all the possible orders in
which interval actions can be placed at the beginning of a desert, respecting the time constraints
of the interval actions, but without imposing any further order to the placement of interval
actions (which hence can be interleaved in all the possible ways that respect time constraints).

It is worth reminding here, that reasoning with a set of actions whose placements are not
beforehand defined, requires to take into consideration all the possible way in which they may
influence each other.

The definition of essential placement justify the following proposition which straightforward
leads to the computational model.

Proposition A.1. Given a theory KBTRint, a ground fluent literal fl[t], and a placement π,
then

∃ π KBTRintπ |=
cred
TR fl[t] ⇔ ∃ π̃ KBTRintπ̃ |=

cred
TR fl[t],

with π̃ an essential placement.

Proposition A.1 provides a computational model for credulously reasoning with interval
actions: in order to check for the existence of a placement which allows a fluent literal to be
proved, it is sufficient to check for the existence of an essential placement, as done by the
following program.

query int credulous TR(〈PTRint, C,ATR, ITR〉,KB0, f l[t], A) ←
extract extended oases(KB0, EO),
generate the representative partial order(EO,PTRint , PO),
generate a total order(PO, TO),
generate a partition of total order over oases(TO,EO, PTO),
generate an essential placements from a partition(PTO,EPL),
apply essential placement(PTRint, EPL, PTR),
query credulous TR(〈PTR, ATR, ITR〉,KB0, f l[t], A).

extract extended oases(KB0, EO) ←
works as expected.

generate the representative partial order(EO,PTRint , PO) ←
produces the minimal partial order induced by the set of temporal constraints C.
This order may contain ground values in order to account for constraints like 3 ≤ Ti.

generate a total order(PTRint , TO) ←
generates one (all) the existing total orders fulfilling the partial order.

generate a partition of total order over oases(TO,EO, PTO) ←
generates one (all) the existing partitions of a (each) total order over deserts,
distributing actions over deserts without violating desert “capienza”,according
to Definition A.6.

generate an essential placements from a partition(PTO,EPL) ←
works according to Definition A.6.

190

apply essential placement(PTRint, EPL, PTR) ←
works as expected.

query credulous TR(〈PTR, ATR, ITR〉,KB0, f l[t], A) ←
Works as expected. Note that the theory now is ground.
Note also that the number of essential placements that can be generated
and passed to this call is finite.

Definition A.7 (`cred
TRint). Given the abductive logic program KBTRint, the computational

model for |=cred
TRint, indicated as `cred

TRint, is defined as follows:

KBTR `
credngq

TR fl[t] ⇔ query int credulous TR(KBTRint,KB0, f l[t], A).

Theorem A.1 (|=cred
TRint ⇔ `

cred
TRint). Assuming that the abductive proof procedure used in the

definition of the predicate query credulous TR/4 is correct and complete, the computational
model `cred

TRintis correct and complete with respect to the formal model |=cred
TRint:

KBTRint |=cred
TRint fl[t] ⇔ KBTRint `cred

TRint fl[t].

A.1.2 Skeptically reasoning with interval actions

Building on credulous reasoning, believing something skeptically is interpreted as the absolute
certainty that, not matter which placement is chosen, the fluent of interest holds. Again, the
definition of skeptical entailment for KBTRint is given in terms of that for KBTR.

Definition A.8 (|=skep
TRint). Given a theory KBTRint, a placement π and a ground fluent literal

fl[t], then

KBTRint |=
skep
TRint fl[t] ⇔ ∀ π KBTRintπ |=

cred
TR fl[t] ∧

KBTRintπ 6|=
cred
TR fl[t].

Again, the notion of essential placement is used to define the computational model for
|=skep

TRint.

Proposition A.2. Given a theory KBTRint, such that C is satifiable, and a ground fluent
literal fl[t], then

∀ π KBTRintπ |=
cred
TR fl[t] ⇔ ∀ π̃ KBTRintπ̃ |=

cred
TR fl[t],

with π placement, and π̃ essential placement.

Proposition A.1 provides a computational model for skeptically reasoning with interval ac-
tions, as formalised by the following program.

query int skeptically TR(〈PTRint, ATR, ITR〉,KB0, f l[t], A) ←
extract extended oases(KB0, EO),
generate all essential placements(PTRinit, EO,LP),
for each placement query skeptically TR(LP, 〈PTR, ATR, ITR〉,KB0, f l[t], A).

191

for each placement query skeptically TR([], 〈PTR, ATR, ITR〉,KB0, f l[t], []).

for each placement query skeptically TR([P |LP], 〈PTR, ATR, ITR〉,KB0, f l[t], [A1|A2]) ←
apply placement(PTRint, P, PTR),
query skeptically TR(〈PTR, ATR, ITR〉,KB0, f l[t], A1),
for each placement query skeptically TR(LP, 〈PTR, ATR, ITR〉,KB0, f l[t], A2).

generate all essential placements(PTRinit, EO,LP), ←
Works as expected, building on the predicated used to non-deterministically
construct an essential placement for the case of credulous reasoning.
Note that the number of essential placements is finite,
and they can be determined as solutions of the constraint set C.

apply placement(PTRint, P, PTR) ←
Works as expected.

Definition A.9 (`skep
TRint). Given the abductive logic program KBTRint, the computational

model for |=skep
TRint, indicated as `skep

TRint, is defined as follows:

KBTR `
skepngq

TR fl[t] ⇔ query int skeptically TR(KBTRint,KB0, f l[t], A).

Theorem A.2 (|=skep
TRint ⇔ `

skep
TRint). Assuming that the abductive proof procedure used in the

definition of the predicate query skeptically TR/4 is correct and complete, the computational

model `skep
TRintis correct and complete with respect to the formal model |=skep

TRint:

KBTRint |=
skep
TRint fl[t] ⇔ KBTRint `

skep
TRint fl[t].

Note that a weaker definition of skeptically reasoning over interval actions could be given,
namely

Definition A.10 (|=skep
TRintalt.). Given a theory KBTRint, a placement π and a ground fluent

literal fl[t], then

KBTRint |=
skep
TRint fl[t] ⇔ ∃ π KBTRintπ |=

skep
TR holds at(fl, t),

that means that at least for a placement, the fluent can be proved skeptically. We adopted the
other definition arguing that the essence of skeptical reasoning is to guarantee that the fluent
holds under all circumstances, as our definition requires, but we do not exclude that for some
particular case, the weaker one may turn out to be more useful. Computationally, the weaker
one is one instance of the stronger one, and hence clearly more efficient.

A.2 Reasoning with non-ground queries and interval actions

In order to reason with non-ground queries we can combine in a simple way the approach of
the previous section for dealing with interval actions and the one in the section relative to
non-ground queries.

Quantified queries are treated as interval actions by considering the time of the query uni-
formly along with the other existential times in the narrative. Placements also assign the time

192

variable of the query, which, as interval actions, has associated a constraint with it, namely to
belong to the interval specified in the query.

Credulously proving an existential query, then, consists of exhibiting an (essential) place-
ment, among those that correctly place the variable within the interval, such that the query
credulously holds, according to the (ground) narrative determined by the placement itself. Fol-
lowing the interpretation given in the previous section, skeptically reasoning for existentially
quantified queries means that there exists a point in the query interval, such that all the place-
ments that place the query in that point make the query skeptically hold.

Analogously, credulously (skeptically) reasoning for universally quantified queries, amounts
to checking whether, for each point in the query interval, all the placements that place the
query in that point make the query credulously (skeptically) hold. This case, therefore requires
the full combination of the techniques developed for the treatment of the previous cases and is
currently under further investigation.

A.3 Inconsistent theories that need extra unknown event occurrences

In this section we discuss how Assumption 3 can be relaxed exploiting the extension in the
previous section A.1. We will present here only an initial study of the problem indicating the
broad approach that one can take to tackle this. Further study of this will be carried in the
third year of the project in order to fill in some of the missing details.

A narrative KB0 can render the Temporal Reasoning theory inconsistent as a computee
may only partially knowledge of its open environment. We can distinguish two types of incon-
sistency (see [64]): classical inconsistency where KB0 alone is inconsistent with the integrity
constraints of the Temporal Reasoning theory and frame inconsistency where the theory is clas-
sically consistent but becomes inconsistent when the whole of Temporal Reasoning theory is
taken into account. In the later case, the inconsistency arises from the persistence of properties
whereas in the first case the observations themselves alone are inconsistent at some time point.
In this section we will deal only with the problem of frame inconsistency. The problem of
classical inconsistency links with the wide area of Belief Revision which is beyond the scope of
this document.

Frame inconsistency arises only if we have fluent observations in the narrativeKB0. We will
assume that a computee starts with a consistent KB0, e.g. when this is empty, and accumulates
its observations one by one in this. Each time a new observation is added the computee can
check whether its theory is frame consistent or not by asking (before adding the observation)
if this is a credulous consequence of the theory so far. If this fails then the theory will become
(frame) inconsistent when this observation is added.

The specification of Temporal Reasoning as given in D4 [63] requires, when the theory is
frame inconsistent, to first find all minimal explanations of the observations in the current KB0

and then reason with each of the theories obtained by adding one explanation in KB0, e.g. for
skeptical conclusions we will need to be able to derive a query skeptically in all such extended
theories. In our case here, given the simplification that observations are accummulated one
by one and that we can detect the first time the theory becomes inconsistent, we are going
to simplify this requirement and ask only that we find all minimal explanations of the culprit
observation Obsinc just acquired.

Definition A.11. Let T = 〈PTR, ATR, ITR〉 be a temporal reasoning theory and KB0 its cur-
rent narrative. Then Obsinc ∈ KB0 is a culprit observation of T iff

193

• the theory T is frame inconsistent,

• the theory T ′, obtained from T by deleting from KB0 the observation Obsinc, is frame
consistent,

• there is no observation in KB0 which satisfies the second bullet condition and whose time
is greater than that of Obsinc.

The last condition here can be restrictive as it will force us to recover from the inconsistency
only via such latest observations. Note also that in general we need to extend this definition to
allow for sets of culprit observations.

We will assume that every Temporal Reasoning theory contains additionally the following
domain independent rules:

initiates(start(F), T, F).

terminates(stop(F), T, F).

for any ground literal F , where start(F) and stop(F) are two actions not used in the domain
dependent part of the theory and have no other effect rules. The theory also contains he bridge
rule

happens(A, T) : −ass happens(A, T).

Definition A.12. Let T = 〈PTR, ATR, ITR〉 be a temporal reasoning theory, Obsinc a culprit
observation of this and P ′

TR the theory obtained by deleting Obsinc from PTR. Then an ex-
planation, 〈E(Obsinc), C〉, of Obsinc is a set of abducibles E(Obsinc) drawn from the extended
set:

• AExt
TR = ATR ∪
{ass happens(start(F), T)|F ground literal, T a ground time or an existential variable}∪
{ass happens(stop(F), T)|F ground literal, T a ground time or an existential variable}

together with a set of temporal (interval) constraints, C, on the time variables appearing in
E(Obsinc) such that, for every valuation σ of these time variables satisfying C (σ |= C):

1. P ′
TR ∪ E(Obsinc)σ |=LP Obsinc,

2. P ′
TR ∪ E(Obsinc)σ |=LP ITR.

Note that these explanations do not depend essentially on assumptions assume holds as
the start and stop actions and their effect laws do not have any preconditions. In other words,
when we add to the theory the part of the explanation relating to ass happens only then the
culprit observation will be a skeptical consequence of this extended theory.

The previous definition of explanation, naturally extends to the case in which T =
〈PTR, ATR, ITR〉 is a theory already containing one (or more) explanation of one (or more)

different culprit observation, Obsinc. Indeed, such explanation E(Obs′inc) consists of a set of
ass happens(start(F), T) and ass happens(stop(F), T) predicates together with a set of tem-
poral constraints C. Note, from the bridge rule, that assuming that an action happened works
as if the action actually occurred. Coherently with the Definition A.12 E(Obsinc) is then an

explanation for the culprit observation Obsinc, if T ∪ E(Obsinc) |=skep
TRint Obs

inc, that is, for all
the possible (essential) placements for T ∪E(Obsinc), satisfying the set of temporal constraints
C , the ground culprit observation skeptically holds.

We can therefore adopt the more general definition of explanation of culprit observations as
follows.

194

Definition A.13. Let T = 〈PTR, ATR, ITR〉 be a temporal reasoning theory, Obsinc a culprit
observation of this and T ′ the theory obtained by deleting Obsinc from PTR. Then an expla-
nation, 〈E(Obsinc), C〉, of Obsinc is a set of abducibles E(Obsinc) drawn from the extended
set:

• AExt
TR = ATR ∪
{ass happens(start(F), T)|F ground literal, T a ground time or an existential variable}∪
{ass happens(stop(F), T)|F ground literal, T a ground time or an existential variable}

together with a set of temporal (interval) constraints, C, on the time variables appearing in
E(Obsinc) such that:

• T ′ ∪ E(Obsinc) |=skep
TRint Obs

inc.

Such explanations are required to be minimal and in addition we will assume here that they
are causal.

Definition A.14. Given an observation Obsinc an explanation E is causal iff the time variables
that appear in the ass happens abducibles contained in E are all constraint to be earlier than
the time of Obsinc.

For minimality in the general case we will adopt the following definition.

Definition A.15. Given an observation Obsinc, an explanation 〈E(Obsinc), C〉 is minimal iff
there exists no explanation, 〈E(Obsinc)′, C ′〉 of Obsinc, such that:

• for any ground literal F , E(Obsinc)′ contains a strictly smaller number of
ass happens(start(F), T ′) and of ass happens(stop(F), T ′) abducilbes as E(Obsinc) does,

• or, if they contain the same number of such abducibles, there exists
ass happens(start(F), T ′) ∈ E′ and ass happens(start(F), T) ∈ E (or
ass happens(stop(F), T ′) ∈ E′ and ass happens(stop(F), T) ∈ E) where, if I is
the set of values given to the variable T by all valuations σ of C and analogously I ′ is
the set of values given to the variable T ′ by all valuations σ′ of C ′, then I ⊂ I ′.

In other words, an explanation is minimal iff whenever it makes an assumption of some start
or stop event occurrence it allows the time of this occurrence to be as big as possible.

Causal minimal explanations are unique when the given narrative does not contain any
non-ground events.

We will introduce here a final simplification that will allow us to develop a simple algorithm
for computing explanations. We will assume that there are no observations in the narrative
whose time is later than the culprit observation(s).

Then we can simplify the notion of minimality and require that explanations contain only
one action of stop(F) or start(F) depending on the culprit observation. Minimality then just
reduces to ensuring that the interval constraint for this action is maximal, in fact maximum..

Given the above analysis and assumptions, minimal causal explanations can be computed
directly from their specification as follows:

Let T = 〈PTR, ATR, ITR〉 be a temporal reasoning theory, Obsinc a culprit observation of
this and T ′ the theory obtained by deleting Obsinc from PTR. Let TLπ denote be the time line

195

of the theory under some essential placement π of its non-ground actions in KB0. If no such
actions exist the time line is drawn from all the events and observations in T .

Let Obsinc = observed(f, t) where f and t are a ground fluent and time point respectively
(the case of observed(f, t) is analogous):

• Base case: Ground time line TL = [t0, t1, ..., tn, t] - Start from 〈E(Obsinc), C〉 =
〈{ass happens(stop(f), ts)}, {ts ∈ [si, t − 1]}〉 with si = t0 and move the value of si

successively to ti until T ′ ∪ E(Obsinc) `cred
TRint Obs

inc or have reached t in which case the
algorithm fails to find an explanation.

• General case: T ′ contains interval actions of stop and start - Let t0 be the greatest
time between the time of the latest observation of f in T ′ and the latest lower-bound of
the start(f) actions in T ′. If no such observations of actions exist in T ′ then t0 = 0. 34

Take any placement of T ′ and let TLs = [t0 + 1, t1, ..., tn, t] be the ground time (sub)line
from t0 + 1 onwards. Apply the base case on this time line.

Note that in the algorithm we are using the credulous reasoning with interval actions as the
assumptions assume holds do not affect the effects of start and stop actions and hence if the
observation is credulously derived it will also be sceptically derived.

In general, we will assume that the computee selects one explanation for a culprit observation
(maybe under some preference criteria) and commits to this, i.e. we are relaxing further the
requirement of D4 of finding all explanations and reasoning with all of these simultaneously. We
assume that if the explanation to which the computee has committed is false then the computee
will realize this sometime in the future and revise this explanation away. The details of this are
beyond the scope of this document.

We are currently studying how to extend the algorithm for computing explantions of culprit
observations when we relax some of the assumptions made above.

A.4 An example about the use of the extensions of `TR

We report here an example illustrating how Temporal Reasoning deals with narratives with
existential actions.

Example 16 (Narrative with existential actions, ground queries). Let us reconsider
Example 3, where the Temporal Reasoning capability was required to prove (skeptically) the
query holds at(booked room, T), 50 < T, T < 50 + 300, against the following (inconsistent !)
narrative:

executed(switch on, 10).
observed(neg(light), 20).
observed(booked room, 40).

observed(neg(booked room), 60).

Let us suppose, as in the original example, that the narrative is completed with a recovery
action, able to explain why the room, that was booked at time 40, is not booked anymore at time
60. We do not enter here in the problem of how this action has been generated (see section A.3).

34Note that for any essential placement π in T ′ the time line after t0 is such that all observations and actions
relating to the fluent f are placed at the same times.
Note also that the placement of the actions for other fluents does not affect the explanation for Obsinc =
observed(f, t).

196

The action does not have a fix time associated with it. Note that, informally speaking, this exis-
tentially quantified action represents a minimal explanation of the inconsistency, encompassing
all the possible occurrence of the action that may have occur between time 40 and 60. This
justifies the importance of being able to deal with interval actions in the theory.

The narrative is then

executed(switch on, 10).
observed(neg(light), 20).
observed(booked room, 40).

observed(neg(booked room), 60).
executed(cancel reservation, T1), 40 ≤ T1, T1 ≤ 60.

where T is an existentially quantified variable, together with the domain dependent knowledge

terminates(cancel reservation, T, booked room).

Hence here cancel reservation is a realization of the abstract action stop(booked room) pre-
sented in section A.3.

Let us consider the time line [0, 10, 20, 40, 50, 60, 350], which also includes the extremes of the
query interval, and apply the computational model for non-ground actions. Note that the possible
interleaving between the placed action and the ground goal will be taken into considerations by
the cases of total temporal ordering between the two corresponding variables. In addition, the
different cases relative to putting the action (and the query) in the various deserts will be taken
into consideration by exhaustively generating all the possible placements (for each total order),
as done in the following.

The partial order induced by the constraints 50 < T, T < 50 + 300 and 40 ≤ T1, T1 ≤ 60
does not impose any ordering between the two variables, then the following three cases must be
taken into consideration in order to generate the possible essential placements.

T1 < T There are two essential placements fulfilling the total order and the set of constraints:
π̃1 = {T1 = 41, T = 51} and π̃2 = {T1 = 41, T = 61}. Let us consider the first one, and
the corresponding ground narrative:

executed(switch on, 10).
observed(neg(light), 20).
observed(booked room, 40).

observed(neg(booked room), 60).
executed(cancel reservation, 41).

In this case, the now ground query holds at(neg(booked room), 51), can be skeptically
proved, according to the basic case of the computational model, the one operating with
ground narrative and ground query. It is easy to see that placing forward the action in
the current desert [41, 50], according to the time line, does not change the obtained result.

The case for π̃2 works exactly the same.

T1 = T The only possible essential placement is π̃3 = {T1 = 51, T = 51}, and the narrative is

executed(switch on, 10).
observed(neg(light), 20).
observed(booked room, 40).

observed(neg(booked room), 60).
executed(cancel reservation, 51).

197

Again the ground query holds at(neg(booked room), 51), can be skeptically proved.

T1 > T In this case there is again only one essential placement, π̃4 = {T1 = 52, T = 51}. In this
case, however, with the narrative

executed(switch on, 10).
observed(neg(light), 20).
observed(booked room, 40).

observed(neg(booked room), 60).
executed(cancel reservation, 52).

the ground query holds at(neg(booked room), 51), can not be skeptically (nor credulously)
proved.

It follows that not for all the possible essential placements, the query skeptically holds, due
to the case of π̃4, and hence the query

holds at(booked room, T), 50 < T, T < 50 + 300

is not skeptically entailed by the narrative containing the interval action

executed(cancel reservation, T1), 40 ≤ T1, T1 ≤ 60.

B Proofs for Proof Procedures

B.1 Proofs for C-IFF

B.1.1 Auxiliary lemmas

To prove the soundness results of Theorems 10.3 and 10.4, we first need to show that our proof
rules are equivalence preserving in the sense that the frontier Fi+1 obtained from a frontier Fi

through the application of a proof rule is always logically equivalent to Fi. As a proof rule
affects only the node which is applied to, the above result can be obtained showing that the
disjunction of the nodes obtained through the application of a proof rule is always logically
equivalent to the node that rule has been applied to.

Lemma B.1 (Equivalence preservation). If N is a node in a derivation with respect to the
theory CompA∪C (P), and N is the disjunction of the immediate successor nodes of N in that
derivation,35 then CompA∪C (P) |=3

< N ↔ N .

Proof. We are going to sketch proofs for three separate claims which together entail the claim
of the lemma:

(1) Let N be a node and let N ′ be its successor node, obtained by the application of one
of the unfolding rules with respect to CompA∪C (P). Then CompA∪C (P) |=3

< N ↔ N ′

holds.

(2) Let N be a node and let N be the disjunction of nodes obtained by applying either
splitting or case analysis for equalities to N . Then |=3

< N ↔ N holds.

35Note that the disjunction N will have only a single disjunct whenever the rule applied to N is neither
splitting nor case analysis for equalities.

198

(3) Let N be a node and let N ′ be the successor node of N , obtained by applying any of the
remaining rules. Then |=3

< N ↔ N ′ holds.

It is easy to see that these three claims together entail the claim of the lemma as equivalence of
two formulas entails equivalence of these two formulas with respect to a particular theory (such
as CompA∪C (P)). Also note that the disjunction N referred to in the lemma will be unary
and only contain the single successor node N ′ of N for all proof rules except splitting and case
analysis for equalities, i.e. for most rules the statement of the lemma reduces to the statement
that CompA∪C (P) |=3

< N ↔ N ′ holds for the successor node N ′ of N .
Equivalence preservation can easily be verified for most rules. In particular, claim (1)

immediately follows from the fact that applying an unfolding rule amounts to rewriting a
subformula in N according to one of the equivalences in CompA∪C (P). Claim (2) covers the
two rules that generate more than one successor node. In the case of the splitting rule, the
claim simply states the fact that distributing a disjunction to the outside is an equivalence
preserving operation. For the case analysis rule for equalities, a node containing an implication
of the form X = t ∧ A → B, where X is an existentially quantified variable and t is not, a
universally quantified variable itself (in which case another rule would apply), is split depending
on whether there exist values for the universally quantified variables in t such that X = t holds
or whether this is not the case. To see that this is also an equivalence preserving operation,
consider that there can be at most one such vector of values (for any given value of X).

For the proof of claim (3), we are going to consider here only those rules that differ from the
original framework of Fung and Kowalski [47], in particular case analysis for constraints and
constraint solving. Recall that the former replaces an implication of the form Con ∧ A → B
with the disjunction [Con ∧ (A → B)] ∨ Con , provided the constraint Con does not contain
any universally quantified variables. The following sequence of transformations establishes
equivalence preservation of the rule of case analysis for constraints:36

Con ∧ A→ B
≡ Con → (A→ B)
≡ Con → (Con ∧ (A→ B))
≡ ¬Con ∨ (Con ∧ (A→ B))
≡ (Con ∧ (A→ B)) ∨ Con

We now turn to the constraint solving rule and the two related rules for rewriting equalities
and disequalities as constraints. The two rewrite rules are equivalence preserving, because they
merely tag an equality or disequality as a formula that may be submitted to the constraint
solver. By checking that one of the arguments of the (dis)equality in question already appears
within a constraint, we ensure that the input to the constraint solver is always well-defined.37

The constraint solving step itself replaces a set of constraint atoms by ⊥ whenever that set
of constraints is not satisfiable. This is clearly an equivalence preserving operation. In case
unsatisfiability cannot be established, the constraint solving rule has no effect, i.e. it is certainly
equivalence preserving also in this case.

Equivalence preservation for the remaining proof rules of the procedure may be checked in
a similar manner.

36These transformations are applied to the matrix of the first formula, i.e. we do not need to take quantifiers
into account. Note that the argument for the case analysis rule for equalities is slightly more complex as it can
involve changes in quantification.

37At this point, we rely on the fact that the input 〈Comp
A∪C

(P), IC, Q〉 has been well-defined in the first
place; in particular, no non-constraint term occurs in an argument position reserved for constraint arguments.

199

We are now able to show that, with respect to the input theory P , both the integrity constraints
IC and the initial query Q will be logical consequences of any success node:

Lemma B.2 (Final nodes entail initial node). If N is a final success node for the input
〈P, IC, Q〉, then CompA∪C (P) |=3

< N → (IC ∧Q).

Proof. Observe that IC ∧ Q is the initial node of any derivation. The claim then follows by
induction over the number of proof steps leading to the final node N . For the induction step
we exploit the equivalence preservation result proved in Lemma B.1.

The third and final lemma required relates to answer extraction:

Lemma B.3 (Answer extraction). If N is a final success node and ∆ is the set of abducible
atoms in N , then there exists a substitution σ such that Comp(∆σ) |=3

< Nσ.

Proof. Let 〈∆,Φ,Γ〉 be the answer extracted from the node N . By construction, there exists
a substitution σ satisfying both Φ, the set of equalities and disequalities, and Γ, the set of
constraints,38 i.e. we have |=3

< Φσ and |=3
< Γσ. Hence, we certainly also have Comp(∆σ) |=3

< Φσ
and Comp(∆σ) |=3

< Γσ. Of course, we also have Comp(∆σ) |=3
< ∆σ. Besides the abducible

atoms in ∆, the (dis)equalities in Φ, and the constraints in Γ, the node N will typically also
contain a number of other formulas. The claim of the lemma is that, under the substitution σ,
these additional formulas are redundant in the sense of being satisfied by Comp(∆σ) alone.

Because N is a final node, all proof rules will have been applied exhaustively. This allows
us to narrow down the range of formulas in N :

• It does not contain any disjunctions (splitting).

• It does not contains any defined predicates as atoms (unfolding atoms).

• It does not contain either > or ⊥ occurring as an atom (logical simplification and the fact
that N is not a failure node, respectively).

• It does not contain any implications with defined predicates in the antecedent (unfolding
within implications).

• It does not contain any implications with negative literals in the antecedent (negation
rewriting).

• It does not contain any implications with> or⊥ in the antecedent (logical simplifications).

Also note that there can be no implications in N where all conjuncts in the antecedent are either
equalities or constraints (the only exception are formulas encoding disequalities and these are
contained in the set Φ). Otherwise, either one of the case analysis rules, equality rewriting,
or the substitution rule for implications would have applied; or the dynamic allowedness rule
would have been triggered. The latter contradicts our assumption of N being a success node.

Hence, the only type of formula in N (except those in ∆ ∪ Φ ∪ Γ) are implications where
the antecedent includes an abducible atom and no negative literals. To prove the claim of the
lemma for this type of implication, we are going to distinguish two cases:

38The substitution rule for atoms guarantees the existence of a substitution satisfying Φ. That σ satisfies Γ
depends on our assumption on the availability of a complete constraint solver. The fact that both Φ and Γ can
be satisfied by the same substitution follows from the way in which we rewrite (dis)equalities as constraints.

200

(1) The propagation rule has been applied to the implication in question.

(2) The propagation rule has not been applied to the implication in question.

Let us first consider case (1). Suppose p(~X)∧A→ B is an implication in N and the propagation

rule has been applied to it with respect to the abducible p. Here ~X represents the vector of
universally quantified variables occurring anywhere in p. Furthermore, let ∆p denote the set of

instances of p in ∆. The propagation rule must have been applied to p(~X)∧A → B with respect

to every member of ∆p. The residues of these rule applications are of the form ~X = ~t∧A→ B.
By Lemma B.1, each of these residues, if it is not itself a member of N , will have been replaced
by a set of formulas entailing the residue in question. By the nature of our proof rules, if any of
these formulas is itself an implication, it must be an implication with fewer abducible atoms in
the antecedent than p(~X) ∧ A→ B. But given Comp(∆pσ), the implication [p(~X) ∧ A→ B]σ

follows from the set of residues of the form [~X = ~t∧A→ B]σ, i.e. we have reduced the problem
to showing that the claim of the lemma holds for any implication with fewer abducible atoms
in the antecedent than p(~X)∧A→ B. Antecedents are of course finite; hence, the claim follows
by induction.

Now suppose case (2) applies, i.e. suppose N contains an implication with an abducible
atom as a conjunct in the antecedent to which the propagation rule has not been applied. This
is only possible if ∆ does not contain an instance of this atom. But then the implication will
be a logical consequence of Comp(∆σ) under any substitution σ. This concludes our proof of
Lemma B.3.

Observe that factoring is the only the proof rule which we did not have to appeal to in the
proof of Lemma B.3. Indeed, factoring is not required to ensure soundness. However, as can
easily be verified, factoring is equivalence preserving in the sense of Lemma B.1; that is, our
soundness results presented in the sequel apply both to the system with and to the system
without the factoring rule.

B.1.2 Soundness of success

Proof of Theorem 10.3. A derivation is successful if it yields a (at least one) success node
N . Let 〈∆,Φ,Γ〉 be the answer extracted from that node. By Lemma B.3, there exists a
substitution σ such that Comp(∆σ) |=3

< Nσ.

Together with Lemma B.2 this entails CompA∪C (P) ∪ Comp(∆σ) |=3
< (IC ∧Q)σ. As σ is,

by definition, a substitution over the set of all the variables which occur in abducible atoms
and constraint literals in N , we have that
CompA∪C (P) ∪ Comp(∆σ) ≡ Comp(P ∪∆σ)
. So, we also have that Comp(P ∪ ∆σ) |=3

< (IC ∧ Q)σ which reduces to Comp(P ∪ ∆σ) |=3
<

IC ∧Qσ, because there are no free variables in IC.

Now let σ′ be the restriction of σ to variables occurring in the query Q, and write ∆′ for the
set ∆σ, i.e. ∆′ is a (finite) set of ground abducible atoms. We obtain Comp(P∪∆′) |=3

< IC∧Qσ′.
Hence, there does indeed exist an answer 〈∆′, σ′〉 to the query Q given the abductive logic
program 〈Th, IC〉. �

201

B.1.3 Soundness of failure

Proof of Theorem 10.4. Let N be the disjunction of all the leaf nodes in the derivation. Using
Lemma B.1 and by induction over the number of proof steps in a derivation, we can prove
CompA∪C (P) |=3

< (IC ∧ Q) ↔ N . Now recall that a node is called a failure node iff it is
logically equivalent to ⊥, i.e. we get CompA∪C (P) |=3

< (IC ∧Q)↔ ⊥. Hence, CompA∪C (P)
cupIC |=3

< (Q ↔ false), that is, there can indeed be no answer for the query Q given the
abductive logic program 〈P, IC〉. �

B.2 Proofs for LPwNF

The proofs are adapted from [75].

Proof of Theorem 10.6 (Soundness)

Suppose there is a successful derivation computing ∆ from ∆0. By definition of deriva-
tion, it follows that ∆0 ⊆ ∆. We will show that:

• “∆ is not self-attacking, i.e. it is consistent.” Note that, if ∆ is self-attacking and N is
a defence node, then closure(N) ∩ culprits(∆) 6= ∅ and thus no Ti+1 can be built.

• “If A attacks ∆ then ∆ attacks A.” Assume, by way of contradiction, that A attacks ∆ but
∆ does not attack A. Since the attacking relation is compact, it follows that there exists a
minimal subset A′ of A that attacks ∆. However, by definition of a successful derivation,
A′ is marked, thus, there exists an argument D′ ⊆ ∆ against a culprit c ∈ closure(A′)
such that D′ attacks A′.

�

Proof of Theorem 10.7 (Completeness)

We show that there is a successful derivation T0, ..., Tn computing ∆′ from ∆0, such
that ∆0 ⊆ ∆′ ⊆ ∆ and ∆′ is admissible. Let ∆i denote the root of Ti. We construct a
derivation T0, ..., Tn so that ∆i ⊆ ∆ for all i, 0 ≤ i ≤ n:

• T0 consists only of the (unmarked) root ∆0, labelled as defence.

• Given Ti (i ≥ 1), let N be any unmarked node in Ti. Then, Ti+1 is obtained as follows:

– If N is an attack node, let D′ be a minimal subset of ∆ such that D′ attacks against
N . Then, D′ is added as the (unmarked) child of N in Ti+1, labelled as defence, and
N is marked. Moreover, if c is the culprit in the closure of N , then c is recorded as
the culprit of N in Ti+1.

– If N is a defence node and closure(N)∩ culprits(Ti) = ∅, then Ti+1 is Ti where N is
marked, the root is extended by N , and if A1, ..., Am(m ≥ 0) are all minimal attacks
against N then A1, ..., Am are added as additional (unmarked) attack nodes children
of the root.

Let ∆′ be the root of T ′. By soundness, ∆′ is admissible and ∆0 ⊆ ∆′. Therefore, we need
only prove that a minimal defence D′ ⊆ ∆ exists for every attack node N in Ti. By construction

202

of Ti, it holds that ∆i ⊆ ∆ and thus, by monotonicity of the attacking relation, N attacks ∆.
It follows that ∆ attacks N since ∆ is an admissible set. By compactness of the attacking
relation, it is concluded that there exists a subset D′ of ∆ that attacks N .

�

C Proofs for Capabilities

C.1 Proofs for Planning

We sketch the proof of soundness of the computational model devised above for a single goal.
In this case, we can prove that, whenever `τ

plan returns an answer which is not ⊥,⊥, conditions
(i), (ii) and (iii) in the specification of planning (see Section 11.1.1) are satisfied by the answer.
These conditions are simplified as follows when a single goal G is taken into account.

Specification of |=τ
plan for a single goal

Let S = 〈KB,Goals, P lan〉 be a state, and G be a mental goal 〈l[t], G′, T c〉. Then:

KB,P lan,Goals, {G} |=τ
plan {〈G,As,Gs〉}

where,

• either As = Gs = ⊥,

• or

As = {(a1[t1], T1), . . . , (am[tm], Tm)}, m ≥ 0, each ai[ti] is a timed operator and Ti are
temporal constraints and

Gs = {(l1[t1], S1), . . . , (lk[tk], Sk)}, k ≥ 0, each li[si] is a timed literal, and Si are temporal
constraints,

such that:

(i) if T is the set of all temporal constraints in G,As,Gs, together with additional constraints
ensuring that each new action must be executable in the future, namely
T = Tc ∪

⋃

i=1,...m Ti ∪
⋃

i=1,...k Si ∪
⋃

i=1,...m ti > τ

then there exists a total Σ−valuation σ such that σ |=< T ∪ TCS

(ii) Pplan ∧ [
∧

i=1,...,m assume happens(ai, ti) ∧ EC(P lan) ∧
∧

`=1,...,k holds(l`, s`)∧
EC(Goals \ {Gs})]σ |=LP holds at(l, t)σ

(iii) Pplan ∧
∧

i=1,...,m assume happens(ai, ti) ∧ EC(P lan)]σ ∧
∧

i=1,...,k holds at(li, si) ∧
EC(Goals)]σ |=LP Iplan

Hence we basically need to ensure that, whenever an answer Gs,As is returned, conditions (i),
(ii) and (iii) above are satisfied.

203

Lemma C.1.
Let

{〈l[t], , T c〉} `τ
plan {〈l1[s1], S1〉, . . . , 〈lk[sk], Sk〉}, {〈a1[t1], T1〉, . . . , 〈am[tm], Tm〉}

and let
T = Tc ∪

⋃

i=1,...m

Ti ∪
⋃

j=1,...k

Sj ∪
⋃

i=1,...m

ti > τ

Then there exists a total valuation σ such that

σ |= T ∧ TCS.

Proof The proof follows immediately from the soundness of CIFF and the following observa-
tions:

• each equality t′ = τ ′ in Σ is contained by construction in the initial query;

• each conjunct of TCS is contained in the initial query;

• for each i = 1, . . . , k (resp. j = 1, . . . ,m) the constraint Ti (resp. Sj) is contained in the
answer returned by CIFF;

• for each i = 1, . . . ,m, the constraint ti > τ is satisfied, since all the constraints in I+
plan

are contained in the initial query and so the constraint (iii) added to I+
plan is satisfied for

each action returned in the answer. �

The above Lemma guarantees that condition (i) in the specification is satisfied.

Given a set of goals G and a set of actions A we denote by AEC(G), EC(G), AEC(A) and EC(A)
the following sets:
AEC(G) = {assume holds(l, s) | 〈l[s], , 〉 ∈ G}
EC(G) = {holds(l, s) | 〈l[s], , 〉 ∈ G}
AEC(A) = {assume happens(a, t) | 〈a[t], , , 〉 ∈ A}.
EC(A) = {happens(a, t) | 〈a[t], , , 〉 ∈ A}.

Given a set G (resp. A) containing pairs of the form 〈l[t], T c〉 (resp. 〈a[t], T c〉), where l[t]
is a timed fluent literal (resp. where a is a timed action operator) AEC(G) and EC(G) (resp.
AEC(A) and EC(A are defined in a similar way.

Lemma C.2.
Let

{〈l[t], , T c〉} `τ
plan Gs,As

Then

P plan ∪ AEC(P lan) ∪ EC(Goals \ {G}) ∪ EC(Gs) ∪AEC(As) |=LP holds at(l, t).

Proof By soundness of CIFF we have

P+
plan ∪ AEC(P lan) ∪ AEC(Goals \ {G}) ∪ AEC(Gs) ∪ AEC(As) |=LP holds at(l, t).

Moreover, since P+
plan contains the rules

204

holds at(P, T)← assume holds(P, T)
holds at(not P, T)← assume holds(not P, T)

and assume holds atoms occur nowhere else in the rules of P+
plan, we also have

P+
plan ∪ AEC(P lan) ∪ EC(Goals \ {G}) ∪ EC(Gs) ∪ AEC(As) |=LP holds at(l, t).

Hence, by construction of P+
plan we have clearly

Pplan ∪ AEC(P lan) ∪ EC(Goals \ {G}) ∪ EC(Gs) ∪ AEC(As) |=LP holds at(l, t).

�

Lemma C.3.
Let

{〈l[t], , T c〉} `τ
plan Gs,As

Then

Pplan ∪AEC(P lan) ∪ EC(Goals \ {G}) ∪ EC(Gs) ∪ AEC(As) |=LP ICplan

Proof The proof follows from soundness of CIFF, the observation that P+
plan is obtained from

Pplan by adding the rules
holds at(P, T)← assume holds(P, T)
holds at(not P, T)← assume holds(not P, T)

(as in the proof of the previous Lemma), and finally from the fact that ICplan ⊂ IC
+
plan. �

C.2 Proofs for Temporal reasoning

Proof of Proposition 11.1

(Sketch)
⇒ Trivial.

⇐
The atom holds at(fl, ti + 1) holds either because

• an action happened in the past that initiated (resp.,terminated, if the fluent is negative)
it, and it has not been clipped (declipped) in the meantime, or

• it has been observed in the past and not clipped (declipped) in the meantime, or

• it has been assumed initially and not clipped (declipped) in the meantime.

Throughout the desert, the dynamic subset of the axioms of the theory, i.e. executed(a, t)
and observed(c, a, t) does not change. Moreover by the definition of desert, all the effects of the
actions happened at the initial instant of the desert (ti) hold throughout the whole desert, (from
ti + 1 to ti+1). It follows that the same proof used to prove holds at(fl, ti + 1), whichever of
the previous three, also proves holds at(fl, t), with t ground such that ti +1 ≤ t ≤ ti+1. Hence,
if exists a ∆ satisfying PTR ∪ ∆ |=LP holds at(fl, t), it must also satisfy ∀ i = 0, ..., n ∀ t ∈
[ti + 1, ti+1] PTR ∪ ∆ |=LP holds at(fl, ti + 1). Indeed, note that since the query time point
belongs to the time line, it is not influent with respect to constraint satisfaction checking.

205

�

Proof of Proposition 11.2

(Sketch) Directly from Proposition 11.1: the theory does not change in the desert, hence a set
of grounded integrity constraints (with respect to universally quantified variables) is satisfied
in every time point of the desert if and only it is satisfied in one the time points, and hence
also in the initial one.

�

Proof of Proposition 11.3

⇒ Trivial.

⇐ From Proposition 11.2, follows that ∀i ∀ t ∈ [ti + 1, ti+1] PTR ∪∆ |=LP ITR(t) and hence
∀ t ∈ [0,maxtime] PTR ∪∆ |=LP ITR(t), that implies PTR ∪∆ |=LP ITR, and hence the thesis.

�

Proof of Theorem 11.3 (|=cred
TR ⇔ `cred

TR)

By Proposition 11.3

〈PTR, ATR, ITR〉 |=
cred
TR fl[t]⇔ 〈PTR, ATR, ITR(t0 + 1) ∧ · · · ∧ ITR(tn + 1)〉 |=cred

TR fl[t],

and by assuming that the proof procedure is correct and complete39, and by the definition of
the predicate query credulous/4,

〈PTR, ATR, ITR(t0) ∧ · · · ∧ ITR(tn + 1)〉 |=cred
TR fl[t]

⇔
query credulous TR(KBTR,KB0, f l[t], A) succeeds

⇔
KBTR `

cred
TR fl[t],

where t0, . . . tn+1 are the oases of the time line extracted from KB0.

�

Proof of Theorem 11.4 (|=skep
TR ⇔ `skep

TR)

Soundness and completeness of `skep
TR with respect to |=skep

TR straightforwardly follow
from the ones of `cred

TR with respect to |=cred
TR stated in Theorem 11.3.

�

39We need to study syntactic restrictions on the theories KBTR in order to guarantee completeness of ALP
proof procedures. For theories that do not involve the predicate contrary/2, the discrete time on the set of
holds(F,T) provides a level mapping, and hence finiteness of the theory is sufficient to guarantee termination.
For theories with the contrary/2 predicate, we suspect that the only loops will be even loops through NAF.

206

Proof of Proposition 11.4

It trivially holds that

∃ t ground t ∈ [a, b] ∧ KBtr |=cred
TR fl[t]

⇔
∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∃ t ∈ [ti + 1, ti+1] ∧ KBtr |=cred

TR fl[t]
⇔

(by applying Proposition 11.2)
∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=cred

TR fl[ti + 1].

�

Proof of Proposition 11.5

It trivially holds that

∀ t ground t ∈ [a, b] KBtr |=cred
TR fl[t]

⇔
∀ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∃ t ∈ [ti + 1, ti+1] KBtr |=cred

TR fl[t]
⇔

(by applying Proposition 11.2)
∀ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ KBtr |=cred

TR fl[ti + 1].

�

Proof of Theorem 11.5 (|=credngq

TR ⇔ `credngq

TR)

(Along the line of Theorem 11.3). We show the case for existential queries (the one for
universal is analogous). By Proposition 11.4 (respectively Proposition 11.5 for universal
queries)

KBTR |=
credngq

TR ∃ T ∈ [a, b] fl[T]⇔ ∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=cred
TR fl[ti + 1].

and by assuming that the proof procedure is correct and complete, and by the definition of the
predicate query ngq credulous/4,

∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=cred
TR fl[ti + 1]

⇔
query ngq credulous TR(KBTR,KB0, ∃ T ∈ [a, b] fl[T], A) succeeds

⇔
KBTR `credngq

TR ∃ T ∈ [a, b] fl[T],

where t0, . . . tn+1 are the oases of the time line extracted from KB0.

�

Proof of Proposition 11.6

207

It holds that

∃ t ground t ∈ [a, b] ∧ KBtr |=skep
TR fl[t]

⇔

∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∃ t ∈ [ti + 1, ti+1] ∧ KBtr |=skep
TR fl[t]

⇔

∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∃ t ∈ [ti + 1, ti+1] ∧ KBtr |=cred
TR fl[t] ∧ KBtr 6|=cred

TR fl[t]
⇔

(by applying Proposition 11.2)

∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=cred
TR fl[ti + 1] ∧ KBtr 6|=cred

TR fl[ti + 1]
⇔

∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=skep
TR fl[ti + 1]

�

Proof of Proposition 11.7

It holds that

∀ t ground t ∈ [a, b] ∧ KBtr |=skep
TR fl[t]

⇔

∀ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∀ t ∈ [ti + 1, ti+1] ∧ KBtr |=skep
TR fl[t]

⇔

∀ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∀ t ∈ [ti + 1, ti+1] ∧ KBtr |=cred
TR fl[t] ∧ KBtr 6|=cred

TR fl[t]
⇔

(by applying Proposition 11.2)

∀ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=cred
TR fl[ti + 1] ∧ KBtr 6|=cred

TR fl[ti + 1]
⇔

∀ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=skep
TR fl[ti + 1]

�

Proof of Theorem 11.6 (|=skepngq

TR ⇔ `skepngq

TR)

(Along the line of Theorem 11.3). We show the case for existential queries (the one for
universal is analogous). By Proposition 11.6 (respectively Proposition 11.7 for universal
queries)

KBTR |=
skepngq

TR ∃ T ∈ [a, b] fl[T]
⇔

∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=skep
TR fl[ti + 1]

and by assuming that the proof procedure is correct and complete, and by the definition of the
predicate query ngq skeptically/4,

∃ i [ti + 1, ti+1] ∩ [a, b] 6= ∅ ∧ KBtr |=skep
TR fl[ti + 1]

⇔
query ngq skeptically TR(KBTR,KB0, ∃ T ∈ [a, b] fl[T], A) succeeds

⇔

KBTR `
skepngq

TR ∃ T ∈ [a, b] fl[T],

where t0, . . . tn+1 are the oases of the time line extracted from KB0.

208

�

Proof of Theorem 11.7

(Sketch)

The proof of Theorem 11.7 builds on an appropriately revised versions of the results for `skep
TR

and `skepngq

TR , Theorem 11.4 and Theorem 11.6, respectively (which were soundness and com-
pleteness results, under the assumption of a sound and complete underlying proof procedure).
The proof is based on the following three lemmas.

Lemma C.4. Let KBTR, KB0 and fl[t] be as in Definition 11.6 (C-IFF is the proof
procedure underlying query credulously TR/4), then

query credulously TR(KBTR,KB0, f l[t], (∆,Γ)) ⇒ KBTR |=cred
TR fl[t] (i)

query credulously TR(KBTR,KB0, f l[t], fail) ⇒ KBTR 6|=cred
TR fl[t] (ii)

(where |=cred
TR , according to its definition, is based on the semantical entailment of the

underling proof procedure, i.e. |=3
< in this case based on C-IFF).

Proof. The lemma follows by combining the success and failure soundness results for
C-IFF (Section 10.2.2) with Theorem 11.3 (soundness —and completeness— results for
`cred

TR), appropriately restated for the case of C-IFF. The sound answer returned by C-
IFF, and the sound (and complete) transformation performed by query credulously TR/4
guarantee the semantical entailment in (i) and (ii).

Lemma C.5. Let KBTR, KB0 and fl[t] be as in Definition 11.6 (C-IFF is the underlying

proof procedure for `skep
TR), then

KBTR `
skep
TR fl[t] with Answer = (∆,Γ) ⇒ KBTR |=TR fl[t] (i)

KBTR `
skep
TR (finitely) fails to prove fl[t] ⇒ KBTR 6|=TR fl[t] (ii)

Proof. According to the definition of `skep
TR , for the case of C-IFF (the redefined predicate

query skeptically TR/4)), the left-hand side of (i) implies, by Lemma C.4, KBTR |=cred
TR

fl[t] ∧ KBTR 6|=cred
TR fl[t], that is KBTR |=TR fl[t].

According to the definition of `skep
TR , for the case of C-IFF (the redefined predicate

query skeptically TR/4)), the left-hand side of (ii) implies, by Lemma C.4, either
KBTR 6|=cred

TR fl[t] or KBTR |=cred
TR fl[t] ∧ KBTR |=cred

TR fl[t], that is, in both the
cases, KBTR 6|=TR fl[t]

209

Lemma C.6. Let KBTR, KB0, fl[T] and TCS(T) be as in Definition 11.6 (C-IFF is

the underlying proof procedure for `skepngq

TR), then

KBTR `
skepngq

TR exists(TCS(T), f l[t]) with Answer = (∆,Γ)
⇒ (i)

∃ σ. KBTR |=TR fl[T]σ ∧ σ |=< TCS(T)

KBTR `
skepngq

TR exists(TCS(T), f l[t]) with Answer = fail
⇒ (ii)

6 ∃ σ. KBTR |=TR fl[T]σ ∧ σ |=< TCS(T)

Proof. (Sketch). The proof of this lemma is analogous to the proof of Lemma C.5, and is

based both on the definition of `skepngq

TR , for the case of C-IFF (which again is based on the
redefined predicate query skeptically TR/4), and on the soundness results for C-IFF (in
particular, as far as they regard existentially quantified queries and temporal constraints).

The left-hand side of (i), the definition of `skepngq

TR and the soundness of C-IFF imply that

∃σ. KBTR `
skep
TR fl[T]σ with Answer = (∆,Γ), and σ |=< TCS(T). By Lemma C.5, it

holds that ∃σ. KBTR |=TR fl[T]σ ∧ σ |=< TCS(T).

The case for (ii) is analogous.

Theorem 11.7 follows form Lemma C.5 and Lemma C.6, which comprise all the cases of the
definition of `TR.

�

Proof of Proposition A.1

⇒ (Sketch).
The placement π can be expressed as ©iπi, i ∈ [0, n], i.e. a composition of substitutions, such
that ∀ i, T πi(T) ∈ [ti + 1, ti+1], i.e. the range of each substitution is contained in a different
desert of the extended time line.

Let us show that an essential placement, build upon the original placement, allows to prove
the same fluent. If πi is ε then define π̃i also as ε. It πi is defined over the k variables
{Ti1 , . . . , Tik

}, then π̃i is defined as

∀ j ∈ [1, k] π̃i(Tij
) ∈ [tj + 1, . . . , tj + 1 + o],

with o ≤ k ∧ tj + o ≤ tj+1, and

∀ m,n ∈ [1, k] π(Tim
) < π(Tin

)⇔ π̃i(Tim
) < π̃i(Tin

) ∧
π(Tim

) = π(Tin
)⇔ π̃i(Tim

) = π̃i(Tin
).

Basically, the parameter o is determined by how πi maps variables, since π̃i is constrained to
preserve exactly the same order, while squashing points towards the beginning of the desert.

210

Observe that KBTRπ̃, with π̃ =©iπ̃i, i ∈ [0, n] is now a ground theory, with action time points
and observation time points as oases of the extended time line. The deserts can be populated
only by placed actions. Let us now consider the two grounded theories KBTRπ,KBTRπ̃ and
their relative time lines [s0, . . . , sm] and [r0, . . . , rm], which obviously have the same number of
oases. In particular, both the time lines have the time point t of the query fl[t] as, say, j-th
oasis.

The following facts hold (along the line of the proof for Proposition 11.1 and Proposi-
tion 11.2):

1. ∀ i ∈ [1,m], ∃ ∆KBTRπ ∪∆ |=LP fl[si]⇔ KBTRπ̃ ∪∆ |=LP fl[ri].

This can be proved by induction on i by observing that si, ri are the final point of each
desert of the two theories, and that all the actions placed by π before the i-th desert of
KBTRπ, are placed by π̃, in the same order, before the i-th desert of KBTRπ̃. Assuming
that for all the previous deserts the implication holds, at the end of the i-th desert the
same fluents must hence hold in both the two cases (given the same set of assumptions
∆). Indeed, they depend on the previously executed actions and observations and their
interleaving, that are the same in the two cases.

Note, hence, that ∃ ∆ KBTRπ ∪∆ |=LP fl[t]⇔ KBTRπ̃ ∪∆ |=LP fl[t].

2. ∀ i ∈ [1,m],
∃ t ∈ [si+1, si+1] ∃∆ KBTRπ∪∆ |=LP fl[t] ⇔ ∃ t′ ∈ [ri+1, ri+1]KBTRπ̃∪∆ |=LP fl[t′].

This follows from the standard results for deserts of ground theories, according to which
a fluent holds in any point of the desert if it holds at the initial point of the same desert.
The fact that at the initial points of each of the i-th deserts of the two theories the same
fluents holds is guaranteed by the previous point.

3. ∀ t ∈ [0,∞],
∃∆ KBTRπ ∪∆ 6|=LP ITR(t)⇔ ∃ t′ ∈ [0,∞] KBTRπ̃ ∪∆ 6|=LP ITR(t′)

Indeed, a point in a desert of KBTRπ where an integrity constraint is violated, by the
previous two points, must have a corresponding point in a desert of KBTRπ̃ where the
same constraint is violated, too. Moreover, as standard, this is the case if and only if the
points are both initial points of the relative deserts, justifying again the computational
model for ground theories, based on the grounding of integrity constraints over the initial
points of each desert.

4. Let Ω be the partial order induced by the temporal constraints of action intervals, then
Ω� π̃, since Ω� π and π � π̃. It follows that π̃ satisfies temporal constraints.

From the previous points follows that, given fl[t],

∃ π KBTRintπ |=
cred
TR fl[t]⇒ ∃ π̃ KBTRintπ̃ |=

cred
TR fl[t].

Finally, it is easy to check that π̃ fulfills the definition of essential placement.

⇐ Trivial.

�

211

Proof of Theorem A.1 (|=cred
TRint ⇔ `

cred
TRint)

(Sketch. Along the line of Theorem 11.3). By Proposition A.1

KBTRint |=cred
TRint fl[t]
⇔

∃ π̃ KBTRintπ̃ |=cred
TR fl[t],

⇔
(by the definition of the predicate query int credulous/4)

KBTR `cred
TRint fl[t].

�

Proof of Proposition A.2

⇒ Trivial.

⇐ Analogous to the proof of Proposition A.1.

�

Proof of Theorem A.2 (|=skep
TRint ⇔ `

skep
TRint)

(Along the line of Theorem 11.3).

KBTRint |=
skep
TRint fl[t] ⇔ ∀ π KBTRintπ |=

cred
TR fl[t] ∧

KBTRintπ 6|=
cred
TR ¬fl[t]

⇔
(By Proposition A.2)

∀ π̃ KBTRintπ̃ |=
cred
TR fl[t] ∧ KBTRintπ̃ 6|=

cred
TR ¬fl[t]

⇔
(By the definition of the predicate query int skeptically/4)

KBTR `
skep
TRint fl[t].

�

C.3 Proof for Reactivity

Proof of Theorem 11.2

The proof follows directly from the correctness of C-IFF, and the following two Lemmas.

212

Lemma C.7. Let

`τ
react {〈l1[s1], S1〉, . . . , 〈lk[sk], Sk〉}, {〈a1[t1], T1〉, . . . , 〈am[tm], Tm〉}

and let

T = ∪
⋃

i=1,...m

Ti ∪
⋃

j=1,...k

Sj ∪
⋃

i=1,...m

ti > τ

Then there exists a total valuation σ such that

σ |= T ∧ TCSnr.

Proof. Similar to the proof of Lemma C.1.

Lemma C.8. Let Gs and As be sets of pairs of the form 〈l[t], T c〉 and 〈a[t], T c〉 respectively,
and let σ be a total valuation. If

P+
react ∧ [AEC(P lannr) ∧ AEC(Goalsnr) ∧ AEC(Gs) ∧ AEC(As)]σ |=LP I+

react

then

Preact ∧ [EC(P lannr) ∧ EC(Goalsnr) ∧ EC(Gs) ∧ EC(As)]σ |=LP Ireact.

Proof. The proof is a direct consequence of the transformation from Pplan to P+
plan and of

arguments similar to the ones adopted in the proof of Lemma C.3.

C.4 Proofs for Goal decision

Proof of Theorem 11.8

T |=scept
pref Gi iff T |=cred

pref Gi and for each G such that incompatible(G,Gi), T 6|=cred
pref G

holds. The first condition follows from the soundness of T `cred
pref Gi. To show the second

condition assume by contradiction that there exists G such that T |=cred
pref G. Then by the

completeness of `cred
pref (and goal finiteness assumption) this goal must belong to the set Gs′

generated in the first step of the algorithm for `GD. But as G and G are incompatible then
goal G cannot be in the set Gs filtered out in the second step of the algorithm for `GD.
Contradiction. Maximality of Gs is a straightforward conclusion of the completeness of the set
Gs′ generated in the first step of the algorithm for `GD.

�

213

D Proofs for Societies

D.1 Lemmas

In this section, we prove some lemmas that will be useful in the following proofs. These Lemmas
allow us to establish a corresponding SCIFF computation where all the incoming events are
considered at the beginning of the computation, instead of interleaving Happening transitions
with the other ones. These results are represented by Lemma D.7 for the open case and Lemma
D.8 for the closed case.

A further useful results proved in this section is Lemmas D.4, that will prove that if in a
derivation we have a node containing an abduced atom with universally quantified variables,
then there will be a universally quantified variable in every non-failure successor node. Thanks
to this lemma, we will be able to use results from the IFF proof procedure (in which universally
quantified abducibles cannot occur in any node of a derivation) in SCIFF derivations that do
not terminate in a node with universally quantified abducibles.

We first give some intermediate results; first of all, we relate the treatment of disequality in
SCIFF and in IFF proof procedures.

Lemma D.1. The SCIFF proof procedure deals with disequalities in the Constraint Store (Sec-
tion 19.2.5). The IFF proof procedure transforms a disequality A 6= B into an implication
A = B → false.

For each of the rules for disequality in SCIFF that does not involve quantifier restrictions,
there is one or more rules in IFF that lead to the same node.

Proof. Let us consider a disequality A 6= B in both proof procedures. Let us assume that one
of the rules for disequality is used in SCIFF; we prove that there are one or more IFF rules
applicable that lead to the same result.

1. Replace f(t1, . . . , tj) 6= f(s1, . . . , sj) with t1 6= s1 ∨ · · · ∨ tj 6= sj .

In the IFF, we could

• rewrite f(t1, . . . , tj) 6= f(s1, . . . , sj) as f(t1, . . . , tj) = f(s1, . . . , sj)→ false.

• Apply the Rules for Equality obtaining t1 = s1 ∧ · · · ∧ tj = sj → false.

• Apply j times Case Analysis; in the first application we get t1 = s1 ∧ (t2 = s2 ∧ · · · ∧
tj = sj → false)∨t1 6= s1. By iteratively applying Case Analysis to the implications
we will get t1 6= s1 ∨ · · · ∨ tj 6= sj ∨ [t1 = s1 ∧ · · · ∧ tj = sj ∧ (true→ false)]

• by applying Logical Equivalences, we have t1 6= s1 ∨ · · · ∨ tj 6= sj .

2. Replace f(t1, . . . , tj) 6= g(s1, . . . , sl) with true whenever f and g are distinct or j 6= l.

In the IFF, we can

• Rewrite f(t1, . . . , tj) 6= g(s1, . . . , sl) as f(t1, . . . , tj) = g(s1, . . . , sl)→ false.

• Apply Rewriting Rules for Equality and get true→ false.

• Apply logical equivalence and get true.

The same reasoning can be applied for the other rules 3, 4, 5 and 6a of SCIFF proof procedure
(see Section 19.2.5). Rules 6b and 6c involve quantifier restrictions.

214

Lemma D.2. Applying the rules for disequality (Section 19.2.5) cannot change the quantifi-
cation of a universally quantified variable. Moreover, after applying rules for disequality, the
disequality constraints are not imposed on universally quantified variables.

Proof. Trivial, considering the rules of disequality: either they fail, or they succeed without
creating new constraints, or they impose constraints only on existentially quantified variables.

Lemma D.3. Let us suppose that the constraint solver only contains the rules for equality and
disequality given in Sections 19.2.1 and 19.2.5 (otherwise, the behavior of the proof depends
also on the type of constraint solver). Let us suppose that the rules for equality and disequality
are applied before the other transitions.

If an atom A is abduced containing a universally quantified variable X̂, and X̂ only occurs in
abduced atoms, if Propagation is not applied, then the atom A will remain in the set of abduced
atoms and variable X̂ will remain universally quantified in any success nodes.

Proof. Since variable X̂ only occurs in abduced atoms, its state can be changed only by tran-
sitions that affect abduced atoms. Let us consider the single transitions:

Unfolding does not affect an abduced atom; it may unify the variables appearing in a goal or
in the body of an implication with the head of a clause. However, since variable X̂ does
not occur in non abducible atoms, it will not be affected.

Abduction does not affect atoms already abduced.

Splitting does not affect abduced atoms.

Case Analysis affects the variables appearing in an implication. Since variable X̂ only occurs
in abduced atoms, it will not be affected by case analysis.

Factoring is not applicable to universally quantified atoms.

Equivalence Rewriting rules apply only to equalities, thus they will not affect variables
that do not occur in an equality.

Logical Equivalence The only rule that can change a (positive) atom is A ∨ true ↔ true.
This rule can only be applied to a disjunction, but, since atom A has been abduced, it
cannot be argument of a disjunction (in fact, disjunctions cannot occur in EXP, FULF,
and VIOL, but only in the Constraint Store or in R).

Happening does not change abduced atoms.

non-Happening does not change abduced atoms.

Closure only changes the history and does not change abduced atoms.

Violation NE generates two nodes. One is a violation node. The other imposes a disequality
constraint. We know that a disequality constraint cannot bind a universally quantified
variable (Lemma D.2). Since we chose a preferred order of application of transitions
(namely, we apply the rules for equality and disequality before the other transitions), we
can ensure that Violation NE will not bind any universally quantified variable in non
failure nodes.

215

Fulfillment E, Violation E deal with E atoms, that cannot contain universally quantified
variables.

Fulfillment NE does not change atoms, only moves them from EXP to FULF.

Constraint Solving We do not deal with constraints (except for disequality, for which we
know that it does not bind universally quantified variables, and equality, already consid-
ered in Equivalence Rewriting rules).

Lemma D.4. If, in a node N , an atom A is abduced containing a universally quantified variable
X̂, then in any node which is a descendant of N there will be such atom A in the set of abduced
atoms with universally quantified variable X̂ (unless the node is false).

Proof. We prove the lemma in the following steps:

1. whenever an atom is abduced with a new, universally quantified variable X̂, then X̂
cannot occur elsewhere except for abducible atoms.

2. Lemma D.3 is applicable, thus the thesis holds if Propagation is not applied.

3. Applying Propagation creates new universally quantified variables, while the abduced
atoms are not touched.

We now elaborate on steps 1 and 3.
1. If the proof procedure abduces an atom with universally quantified variables, then the

universally quantified variables can occur only in abducibles.
In fact, the Abduction transition can be applied only to atoms in the set R. R may contain

a universally quantified atom because it was in the initial goal of the society. In this case, the
variable cannot occur in other atoms (except abducibles and constraints, see Section 17.1). We
will suppose that the goal does not contain equality constraints; this is not a limitation. A
universally quantified atom may be inserted in R by the following transitions:

Unfolding. In this case the universally quantified atom was in the body of a clause; the syntax
[94] imposes that the universally quantified variable does not appear elsewhere (except
for constraints and other abducibles). Again, we suppose that the body does not contain
equality constraints (this is not a limitation).

Logical Equivalence: (true→ A)↔ A. In this case, the body of an implication has become
true. The implication was written with the syntax given in [94]. In particular, since
the universally quantified variable X̂ is new, then it occurred only in NE atoms and
constraints. We suppose that the conclusion of the implication does not contain equality
constraints (this is not restrictive); for disequality constraints we rely on Lemma D.2.

3. We still have to show that adding the Propagation transition does not undermine the
thesis. The Propagation transition performs a copy of an atom and of an IC, then it operates
only on the copy of the two. The universally quantified variables are renamed by the copy,
thus any subsequent operation on the copied universally quantified variables will not affect the
universally quantified variables occurring in the abduced atom.

216

The IFF proof procedure deals with a static theory. SCIFF deals with a dynamic theory to
which new happened events may be added during a derivation. So to show a mapping between
SCIFF and IFF derivations, we need to address the following question:

Does the success nodes in SCIFF depend on the events arrival rate? An open
successful derivation may disappear, if a new event E happens. Would we have the
same success nodes if we had known event E in advance?

Lemmas D.7 and D.8 will try to answer these questions. We first need some intermediate
results; we are going to prove that if a transition Tr is applicable to some elements40 of a node
Nk, and leads to a node Nk+1, then it can be applied to the same elements of an identical node
but with a larger history, and will lead to a node identical to Nk+1 but with a larger history,
as informally suggested by the following scheme:

Nk
Tr
−→ Nk+1

⇓

Nk ∪ {H(E)}
Tr
−→ Nk+1 ∪ {H(E)}

Lemma D.5. If a transition (except for Happening, Non-happening and Closure) is applicable
to some elements of a non-closed node (i.e., a node with an open history)

Nk ≡ 〈Rk, CSk, PSICk,EXPk,HAPk,FULFk,VIOLk〉

and it produces a new node

Nk+1 ≡ 〈Rk+1, CSk+1, PSICk+1,EXPk+1,HAPk+1,FULFk+1,VIOLk+1〉

then the same transition is also applicable to the same elements in the (non-closed) node

N ′
k ≡ 〈Rk, CSk, PSICk,EXPk,HAPk ∪ {H(E)},FULFk,VIOLk〉

where E is an event, and it produces a new node

N ′
k+1 ≡ 〈Rk+1, CSk+1, PSICk+1,EXPk+1,HAPk+1 ∪ {H(E)},FULFk+1,VIOLk+1〉.

Proof. Let us consider the single transitions.

Unfolding is applicable when a literal in R or in the body of an IC matches with the head of
one or more rules in the SOKB. It is not affected by the history.

Abduction is applicable when an abducible atom is in R. Its applicability does not directly
depend on the history, nor its results.

Propagation is applicable when an atom in the body of an IC matches an atom A (that can
either be in the history or in the abduced atoms). If the history is enlarged, the atom A
is still its member, thus Propagation can be applied in the same way.

Splitting does not depend on the history.

40Recall that transitions are applicable to elements of the nodes; for example, the transition Violation NE is
applied to a happened event and an abduced NE atom in a node.

217

Case Analysis does not depend on the history.

Factoring is not affected.

Equivalence Rewriting rules the history cannot contain equalities.

Logical Equivalence The applicability of these rules depend only on the presence, in the
tuple, of implications, conjunctions, and disjunctions; not on the elements in the history.

Violation NE considers an atom H(A) ∈ HAPk and a NE(B) ∈ EXPk. Thus, if violation
NE is applicable in Nk, then ∃H(A) ∈ HAPk that has been used in the transition. But
H(A) ∈ HAPk ∪ {H(E)}. So the same violation NE transition is applicable in N ′

k and
the result will be the same.

Fulfillment E is true for the same reasons as transition Violation NE.

Violation E is true for the same reasons as transition Violation NE if we make the hypothesis
of full temporal knowledge (Definition 19.7), and is not applicable otherwise.

Fulfillment NE is not applicable if the history is open.

Consistency does not depend on the history.

Constraint Solving does not depend on the history.

In the previous lemma we excluded transitions Happening, Closure, and Non-happening. We
now extend the same result given in the previous lemma to the Happening transition.

Lemma D.6. Consider two nodes Nk and N ′
k, which are identical except for the history:

HAPk ∪ {H(E1)} = HAP′
k. If transition Happening of an event E is applicable to the node

Nk, leading to a history HAPk+1, then

• either Happening of E is not applicable to N ′
k because E was already in its history (i.e.,

E = E1)

• or Happening of E is applicable to N ′
k but it fails (and in this case the history HAP′

k is
closed)

• or the transition Happening of the event E is applicable to the node N ′
k, and in the obtained

node HAP′
k+1 = HAP′

k ∪ {H(E1)}

Proof. Trivial, from the definition of transition Happening.

Now we know that, given a derivation containing a sequence of transitions

. . . −→ Nk
Tr
−→ Nk+1

Happening
−→ Nk+2 −→ . . .

where Tr is one of the transitions of the proof procedure, except for non-Happening and Closure,
we can safely exchange the two transitions:

. . . −→ Nk
Happening
−→ N ′

k+1
Tr
−→ Nk+2 −→ . . .

and obtain an analogous derivation (in fact, from node Nk+2 the two derivations are the same).

218

Lemma D.7. Consider an open successful derivation D

N0 → N1 → · · · → Nn−1 → Nn

with HAPn the history in the node Nn and

N0 ≡ 〈{G}, ∅, ICS , ∅, ∅, ∅, ∅〉.

In this case, there exists an open successful derivation D′

N ′
0 → N1 → · · · → Nm−1 → Nm

with
N ′

0 ≡ 〈{G}, ∅, ICS , ∅,HAPn, ∅, ∅〉

in which the final node Nm ≡ Nn.

Proof. Let Nh be the first node in D to which transition happening was applied. Suppose that
happening inserts the event H(Eα) in the history. Since D is an open successful derivation,
there is no transition in D of type closure; moreover in all the nodes in D the history is
open. Thus, we can apply Lemma D.5 to the transition Tr(Nh−1) (i.e., the transition that was
applied to the node Nh−1) and get an equivalent derivation D′ in which Tr and happening
are exchanged. Again, we can apply the same method to the node Nh−2 and so on, until the
transition happening becomes the first; call Dα the derivation obtained in this way. Of course,
Dα terminates in the same node as a derivation D′

α that starts from a history H1 = {H(Eα)}.
By repeatedly applying the same method for all the happening transitions in D, we obtain

an equivalent derivation that terminates in the same node. Since no transition was applicable
in the final node in D, no transition is applicable in the final node of D′.

We can prove a similar result for closed successful derivations:

Lemma D.8. Consider a closed successful derivation D

N0 → N1 → · · · → Nn−1 → Nn

with HAPn the history in the node Nn and

N0 ≡ 〈{G}, ∅, ICS , ∅, ∅, ∅, ∅〉.

In this case, there exists a closed successful derivation D′

N ′
0 → N1 → · · · → Nm−1 → Nm

with
N ′

0 ≡ 〈{G}, ∅, ICS , ∅,HAPn, ∅, ∅〉

in which the final node Nm ≡ Nn.

Proof. D is a closed successful derivation, thus there exists exactly one transition of type closure
in D; call Nc the first node with closed history (HAPc). Let us consider the derivation Do ⊂ D
that starts from the same initial node N0 up to the node Nc−1.

N0 −→ N1 −→ . . . −→ Nc−1
︸ ︷︷ ︸

Do

closure
−→ Nc −→ Nc+1 −→ . . . −→ Nn

︸ ︷︷ ︸

D

219

DerivationDo does not contain closed nodes, thus we can apply the same proof as in Lemma D.7.
On the rest of the derivation, from Nc to Nn, the history is closed, thus transition happening

would give a failure. Since D is a successful closed derivation, there is no happening transition
from Nc to Nn. Thus the lemma holds for the whole derivation D.

D.2 IFF-like Rewritten Program

The proof of correctness (soundness, in particular) will be given by exploiting soundness results
of the IFF proof procedure with respect to three-valued completion semantics. To this end, here
we map SCIFF programs into IFF-like (rewritten) programs, and then prove (in Sections D.3
and D.4) that open/closed SCIFF successful derivations in which no literal is abduced with
universally quantified variables have a counterpart in IFF derivations.

We first define the rewritten program, which is a translation in IFF syntax of the society’s
knowledge base. Since we know that no literal is abduced with universally quantified variables,
we can replace universally quantified variables with constants.

The allowedness condition for integrity constraints of the IFF proof procedure requires that
every variable in the conclusion occurs in the condition. This cannot be the case in our social
integrity constraints. However, as discussed in Section 17.2, we can transform our ICS into a
new set of integrity constraints satisfying the allowedness condition. We give a simple example
in the following. An integrity constraint of kind

H(p(X))→ E(q(Z))

is not allowed since a new variable (Z) occurs in the conclusion. But, it can be transformed
into the (IFF-like) integrity constraint:

H(p(X))→ a

and the definition:
a← E(q(Z))

which are both allowed.

Definition D.1. Given an instance of a society knowledge base 〈SOKB ∪HAP, E , ICS〉, we
define the IFF rewritten program 〈SOKB∗ ∪HAP, E , IC∗S〉 as follows:

• For each ICS ∈ ICS that does not satisfy the allowedness condition of the IFF proof
procedure, we rewrite it as explained earlier.

• For each ICS ∈ ICS with a universally quantified variable X occurring in the head of a
social integrity constraint but not in the body, X is replaced in the corresponding IC∗

S in
IC∗S with a constant symbol not occurring elsewhere.

• In the same way, for each clause in SOKB with a variable X which is universally quan-
tified in the Body of the clause, X is replaced in SOKB∗ with a new constant symbol.

• In the same way, for each atom in the goal G with a variable X which is universally
quantified, X is replaced in G∗ with a new constant symbol.

• All ¬H atoms are considered as a new predicate without definition (i.e., always false). H
events in the history are considered as a predicate in the SOKB∗.

220

• We complete the SOKB with the Clark’s completion to obtain SOKB∗.

Notice that, by construction, given a set of abduced atoms ∆ (not containing universally
quantified atoms), and an open history for the society, the set of atoms that are true in the
rewritten program and in the original society instance are the same.

Lemma D.9. For every finite ground set ∆ ⊆ E (non containing universally quantified variables
and) non containing the new constant symbols introduced in SOKB∗,

SOKB∗ ∪HAP ∪∆ |= a⇔ SOKB ∪HAP ∪∆ |= a

and
SOKB∗ ∪HAP ∪∆ |= IC∗S ⇔ SOKB ∪HAP ∪∆ |= ICS

where the symbol |= stands for the three-valued completion semantics.

Proof. The syntax imposes that only abducible atoms can be universally quantified in the Body
of a clause. Thus, the body of a clause

a← [∀Xp(X)]

(where p is a predicate symbol, in our case, only NE and ¬NE), is true if and only if there exists
an atom ∀Y p(Y) ∈ ∆, or if for every possible ground atom A with functor p, A ∈ ∆, which
is not, because ∆ is finite and ground. Thus, the body of any clause containing universally
quantified variables is false in SOKB.

The corresponding rewritten clause is

a← p(c)

where c is a new constant symbol. The body of this clause can be true only if ∆ contains p(c)
or p(X) for some variable X , which is not.

The proof is similar for the universally quantified atoms occurring in the goal, or in the ICS .
Moreover, atoms ¬H are all false in the rewritten program. In the original society instance,

since it is open, atoms ¬H are new positive literals without definition (see Section 18.2), so
they are false as well.

D.3 Proof of open soundness

We consider the case of a (possibly non-ground) goal, expectation sets without universally
quantified variables, and do not consider CLP constraints in the program.

By the following Lemma D.10, we prove that for this class of programs, any SCIFF open
successful derivation has a counterpart in an IFF derivation computed on the IFF-like rewritten
program.

Lemma D.10. Let SHAPi be 〈SOKB, E , ICS〉. Let (∆, σ) be the answer extracted from an open

successful derivation (SHAPi |∼HAP
f

∆ G) for an initial goal G and an initial society instance
SHAPi evolving to a proper extension (see Definition 18.2) SHAPf such that ∆ does not contain
universally quantified variables.

Then (∆, σ) is an IFF computed answer for G for the program 〈SOKB∗ ∪HAPf , E , IC∗S〉.

221

Proof. We construct a successful IFF derivation from the given successful (open) SCIFF deriva-
tion, by mapping every step except non-happening, fulfillment, happening, closure, violation,
and propagation onto itself. Propagation is slightly different in the IFF and in the SCIFF proof
procedures: in the SCIFF it also performs a copy of the abducible. Let us consider the new
transitions, namely non-happening, fulfillment, happening, closure, violation, and propagation.

1. Non-happening transition cannot occur along an open successful derivation (by definition
of Non-happening);

2. Violation generates two nodes. The former leading to failure (and therefore not present
along a successful open derivation) the latter reproducing the parent node plus a new
inequality constraint. Therefore this transition possibly reduces the set of computed
substitutions in SCIFF compared to the IFF proof procedure.

3. Happening transition can be removed from the computation thanks to Lemma D.7 by
considering the equivalent open successful derivation in SCIFF starting from HAPf and
leading to the same final node.

4. Closure transition generates two nodes, the former identical to its parent, the latter iden-
tical to its parent except for the history which is closed. Therefore the latter node cannot
occur along an open successful derivation.

5. Fulfillment. Since the derivation is open, fulfillment can be applied only to positive
expectations and generates two nodes where EXP ∪ FULF is identical to the parent
node, plus, respectively, a new equality or inequality constraint. Therefore this transition
does not change the set of computed substitutions with respect to the IFF proof procedure.

6. Propagation. The only difference between propagation in SCIFF and in C-IFF is the
copy: in the IFF proof procedure Propagation is applied to an atom and an implication.
In the SCIFF proof procedure, first a copy of the atom is performed. The only difference
stands in the case of universally quantified variables in abduced atoms (in fact, copy
does not perform anything significant if the atom does not contain universally quantified
variables). Since we assume that there are no universally quantified atoms in the final ∆,
from Lemma D.4 we know that no literal has been abduced with universally quantified
variables in the derivation. Therefore, copy has no effect on the derivation in this case.

Soundness in the open case requires to prove that given an open society instance SHAPi , if
there exists an open successful derivation for G:

SHAPi |∼HAP
f

EXP∪FULF
G

with expectation answer (EXP ∪ FULF, σ) then

SHAPf |≈(EXP∪FULF)σ Gσ

Let us consider the proof for an atomic goal (the extension to other structures of the formula
G is trivial). Let us suppose that:

SHAPi |∼HAP
f

EXP∪FULF G

222

with expectation answer (EXP ∪ FULF, σ), and prove that:

SHAPf |≈(EXP∪FULF)σ Gσ

Proving this latter condition corresponds to proving the following ones, separately:

(i) SOKB ∪HAPf ∪ FULF ∪ EXP |= G;

(ii) SOKB ∪HAPf ∪ FULF ∪ EXP |= ICS ;

(iii) {E(p),¬E(p)} 6⊆ FULF ∪ EXP (¬-consistency for E atoms);

(iv) {NE(p),¬NE(p)} 6⊆ FULF ∪ EXP (¬-consistency for NE atoms);

(v) {E(p),NE(p)} 6⊆ FULF ∪ EXP (E-consistency);

(vi) HAPf ∪ FULF ∪ EXP ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} 6� ⊥ (fulfillment).

For the case of an open society, we rely upon the three-valued completion [84] of SOKB
and expectation sets (i.e., the set HAP is not completed, since the society instance is open
with respect to the happening of events).

Thanks to Lemma D.10, conditions (i) and (ii) hold on the basis of the soundness results of
IFF [47] for the rewritten program; i.e., SOKB∗∪FULF∪EXP |= G∗ and SOKB∗∪FULF∪
EXP |= IC∗S . Since the declarative reading of the rewritten program is the same, in this case,
as the society instance (Lemma D.9), conditions (i) and (ii) hold.

Notice that soundness of IFF is given with respect to a (three-valued) completion semantics
of the theory adopted by the proof procedure. This is not the case in our SCIFF open derivation,
since history HAP has not been completed. But since negative literals of kind ¬H() are viewed
as new positive predicates, they are never propagated as in the IFF corresponding derivation.

Let us consider the other conditions.
Conditions (iii), (iv) and (v) hold thanks to the enforcing of E-consistency and ¬-

consistency, that generate at most two nodes. In particular, conditions (iii) and (iv) are
necessary because we deal with negation of abducible atoms differently from the IFF proof
procedure: recall that ¬E and ¬NE are considered as new positive atoms.

By contradiction, let us assume that E(p) and ¬E(p) belong to ∆ (i.e., ∆ is not ¬-consistent).
In this case however, the requirement of ¬-consistency would lead to failure (and therefore that
E(p) and ¬E(p) would not be present at the same time into a node along a successful open
derivation). Analogously for NE(p) and ¬NE(p), and E(p) and NE(p) (E-consistency).

Condition (vi) (fulfillment) holds thank to transitions Fulfillment and Violation. By con-
tradiction, let us assume that condition (vi) does not hold. In a three-valued setting this can
happen only if there exists an expectation NE(p) and the corresponding event H(p). In this
case however, transition violation NE would apply leading to a node not along a successful
open derivation.

D.4 Proof of closed soundness

As in the open case, we consider the case of a (possibly non-ground) goal, expectation sets
without universally quantified variables, and do not consider CLP constraints in the program.

By the following Lemma D.11, we prove that for this class of programs, any SCIFF closed
successful derivation has a counterpart in an IFF derivation computed on the IFF-like rewritten
program.

223

Lemma D.11. Let SHAPi be 〈SOKB, E , ICS〉 where ICS does not contain ¬H literals. Let

(∆, σ) be the answer extracted from a closed successful derivation (SHAPi `HAPf

∆ G) for an
initial goal G and an initial society instance SHAPi evolving to a proper extension S

HAPf such
that ∆ does not contain universally quantified variables.

Then (∆, σ) is an IFF computed answer for G for the program 〈SOKB∗ ∪HAPf , E , IC∗S〉.

Proof. We construct a successful IFF derivation from the given successful (closed) SCIFF
derivation, by mapping every step except non-happening, fulfillment, happening, closure, viola-
tion, and propagation onto itself. Propagation is slightly different in the IFF and in the SCIFF
proof procedures: in the SCIFF it also performs a copy of the abducible.

Let us consider the new transitions, namely violation, happening, closure, fulfillment, and
propagation.

1. Violation generates two nodes. The former leading to failure (and therefore not present
along a successful open derivation) the latter reproducing the parent node plus a new
inequality constraint. Therefore this transition possibly reduces the set of computed
substitutions in SCIFF compared to the IFF proof procedure.

2. Happening and Closure transitions can be removed from the computation thanks to
Lemma D.8 by considering the equivalent open successful derivation in SCIFF starting

from HAPf and leading to the same final node.

3. Fulfillment. In the closed case, fulfillment can be applied both to positive and negative
expectations. It generates two nodes where EXP∪FULF is identical to their parent node,
plus, respectively, a new equality or inequality constraint. Therefore this transition does
not change the set of computed substitutions with respect to the IFF proof procedure.

4. Propagation. Same discussion as for the open case (Lemma D.10).

For the case of a closed society instance, we rely upon the 3-valued completion [84] of SOKB,
expectation sets and the set HAP too, since the society instance is now closed with respect to
the happening of events.

We have to prove that given a closed society instance S
HAPf , if there exists a closed suc-

cessful derivation:
SHAPi `HAPf

EXP∪FULF G

with expectation answer (EXP ∪ FULF, σ) then

S
HAPf |=(EXP∪FULF)σ Gσ

Let us consider the proof for an atomic goal (the extension to other structures of the formula
G is trivial). Let us suppose that:

SHAPi `HAP
f

EXP∪FULF G

with expectation answer (EXP ∪ FULF, σ), and prove that:

S
HAPf |=(EXP∪FULF)σ Gσ

Proving this latter condition correspond to prove the following ones, separately:

224

(i) SOKB ∪HAPf ∪ FULF ∪ EXP |= G;

(ii) SOKB ∪HAPf ∪ FULF ∪ EXP |= ICS ;

(iii) {E(p),¬E(p)} 6⊆ FULF ∪ EXP (¬-consistency for E atoms);

(iv) {NE(p),¬NE(p)} 6⊆ FULF ∪ EXP (¬-consistency for NE atoms);

(v) {E(p),NE(p)} 6⊆ FULF ∪ EXP (E-consistency);

(vi) HAPf ∪ FULF ∪ EXP ∪ {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} 6� ⊥ (fulfillment).

Thanks to Lemma D.11, conditions (i) and (ii) hold on the basis of the soundness results
of IFF [47], in particular condition (ii) holds when no ¬H() literal occurs in the body of social
integrity constraints in ICS . We have then proved that condition (ii) above holds even when
literals of kind ¬H() occur in the body of social integrity constraints. The IFF proof proce-
dure handles negation in the body of integrity constraints in a different manner: in particular,
negated literals are turned into positive ones, and moved to the head of the constraint as addi-
tional disjunct. We apply, instead, constructive negation [112] to ¬H() literals (see transition
Non-happening), and therefore benefit of the soundness results of this procedure.

Conditions (iii), (iv), and (v) hold for the same reasons explained in the open case (Sec-
tion D.3).

Condition (vi) (fulfillment) holds thank to transitions Fulfillment and Violation. By contra-
diction, let us suppose that condition (vi) does not hold. This can happen, as in the open case,
if there exists an expectation NE(p) and the corresponding event H(p). In this case however,
transition violation NE would apply leading to a node not along a successful closed derivation.

In the closed case, condition (vi) could fail to hold because there is an E(p) atom without
a matching H(p). In his case, however, transition Violation E would apply, again leading to a
node that cannot stand along a successful derivation.

D.5 Soundness with universally quantified abducibles

Soundness with universally quantified abducibles is work in progress. We provide a lemma
(Lemma D.12) that will be used as a backbone for the full proof of soundness.

As will be clear soon, in the proof of Lemma D.12, we use a slightly different rule for
Unfolding than the one used in the IFF and in the SCIFF proof procedures. Let us call this
transition Unfolding∗. Recall (Section 19.2.1) that Unfolding is applicable to

1. an atom in a conjunct and a clause

2. an atom in an implication and a set of clauses

Transition Unfolding∗ coincides with Unfolding in the first case and is defined as follows in the
second:

Definition D.2. If

PSICk = {Atom,BodyIC → HeadIC} ∪ PSIC ′,

and if the clauses H1← B1, . . . , Hn← Bn belong to the SOKB, and H1, . . . , Hn unify with
Atom, Unfolding∗ selects a clause Hi← Bi (1 ≤ i ≤ n) and produces the following node:

PSICk+1 = {Atom,BodyIC → HeadIC,
Atom′ = Hi, Bi, BodyIC

′ → HeadIC ′} ∪ PSIC ′

225

where Atom′, BodyIC ′ → HeadIC ′ is a copy of Atom,BodyIC → HeadIC.

The proof of soundness of the IFF proof procedure is based upon the following Proposition,
called Proposition 4.1 in [46]:

Proposition D.1. (Fung) Given a node N and a set of computable immediate successors S
of N , we have:

Comp(T, P −Ab) ∪ IC |= N ↔ the disjunction of the nodes in S

where P is the set of predicate symbols in the language of the program.

The proofs that follow Proposition 4.1 in [46], up to the proof of soundness of the whole proof
procedure, do not consider the various transitions anymore, but only rely on Proposition 4.1.
Thus, by extending Proposition D.1 also for Unfolding∗, we prove that the IFF proof procedure
is sound also if enlarged with the further transition Unfolding∗.

Proposition D.2. Given a node N and a set of computable immediate successors S of N
computed by transition Unfolding∗, we have:

Comp(T, P −Ab) ∪ IC |= N ↔ the disjunction of the nodes in S

where P is the set of predicate symbols in the language of the program.

Proof. Let us consider a nodeN with an implication Atom,BodyIC → HeadIC and a predicate
H defined by the clauses H1← B1, . . . , Hn←Bn.

Transition Unfolding∗ produces the node

Atom,BodyIC → HeadIC
∧

Atom′ = Hi, Bi, BodyIC
′ → HeadIC ′

that is obviously logically equivalent to node N .

Thus, the IFF proof procedure extended with transition Unfolding∗ is sound.
Again, since the proof of soundness of the SCIFF proof procedure without universally

quantified abducibles, call it SCIFF\∀ (Sections D.3 and D.4) was based on soundness of the
IFF proof procedure, also SCIFF with Unfolding∗ is sound. We can now base the proof of
soundness of SCIFF (with universally quantified abducibles) on the soundness of the SCIFF\∀

enlarged with transition Unfolding∗.

Lemma D.12. Consider an (open/closed) successful derivation D

N0 → N1 → · · · → Nn−1 → Nn

with
N0 ≡ 〈{G}, ∅, ICS , ∅,HAP, ∅, ∅〉,

Nn ≡ 〈∅, CSn, PSICn,EXPn,HAP,FULFn, ∅〉

in which transition Happening is not applied. Let EXP∀
n ⊆ EXPn and FULF∀

n ⊆ FULFn be
the sets of (pending and fulfilled) abduced expectations of type [¬]NE. Let σ be the substitution
applied to EXPn∪FULFn by answer extraction on node Nn; by definition of answer extraction,
variables in [EXPn ∪ FULFn]σ are universally quantified.

226

Consider a society with SOKB′ = SOKB ∪ [EXP∀
n ∪ FULF∀

n]σ (meaning that for each
atom A ∈ [EXP∀

n ∪FULF∀
n]σ there is a clause A← true in SOKB′) in which the literals NE

and ¬NE are considered as defined predicates41. In this case, there exists an (open/closed)
successful derivation D′ starting from the initial node

N ′
0 ≡ 〈{G}, ∅, ICS , ∅,HAP, ∅, ∅〉

terminating in a node N ′
m such that

R′
mσ = Rnσ = ∅

CS′
m ⊆ CSi

PSIC ′
mσ = PSICnσ

EXP′
mσ =

[

EXPn \EXP∀
n

]

σ

FULF′
mσ =

[

FULFn \ FULF∀
n

]

σ

VIOL′
mσ = VIOLnσ = ∅

and the assignment σ trivially satisfies the constraints CSn \ CS′
m.

Proof. Let θ be the substitution that binds each existentially quantified variable in each node
of the derivation D to its final value in Nn/σ (thus, σ ⊆ θ). Let ∆∀

n = [EXP∀
n ∪ FULF∀

n].
We build the derivation D′ from the derivation D; we show that for each node Ni ∈ D there

is a node N ′
j ∈ D

′ such that Ni/θ = N ′
j/θ, except for the sets of abduced, for which

[EXP′
j]θ = [EXPi \EXP∀

n]θ

[FULF′
j]θ = [FULFi \ FULF∀

n]θ

By induction, we will assume that the thesis holds up to node Ni in D, and that there exists a
corresponding node N ′

j in D′, and we prove that the thesis holds for Ni+1 ∈ D, N ′
j+dj

∈ D′ for
some dj ≥ 0.

We show that, given the transition Tr from Ni to Ni+1, there is one (or more) transition
Tr′ in D′ applicable to the node N ′

j leading to a node N ′
j+dj

for which the thesis holds.
Transition Tr can be one of the following:

Unfolding. In this case, Tr′ is also unfolding, applied to the same atom and clause. Since the
thesis holds for Ni and N ′

j , it holds also for Ni+1 and N ′
j+1.

Abduction. If the literal selected for abduction, L, is of type [¬]NE, then Tr′ is Unfolding
applied to the same literal L and to the clause C defined as follows.

• If L contains universally quantified variables, we know from Lemma D.4 that L will
be in all the descendant nodes, so it will be in ∆∀

n, and there will be a corresponding
clause C in SOKB′. By definition of SOKB′ and θ, C is A← true, where A = L/θ.
The selected clause is C.

In fact, Abduction gives a node Ni+1 such that

Ni+1 ≡ 〈Ri \ {L}, CSi, PSICi,EXPi ∪ {L},HAP,FULFi, ∅〉

41Recall that literals ¬NE are mapped to new positive literals.

227

Unfolding gives a node N ′
j+1 such that

N ′
j+1 ≡ 〈R

′
j ∧ {true} \ {L}, CS

′
j ∪ {L = A}, PSIC ′

j ,EXP′
j ,HAP,FULF′

j , ∅〉

We can apply the logical equivalence Q ∧ true ↔ Q to R′
j+1. We can then apply

constraint solving steps to deal with the constraint L = A; since A = L/θ, the con-
straint rewrites to true and gives the substitution η = θ|vars(L) to the (existentially
quantified) variables in L. We reach the node:

N ′
j+2 ≡ 〈R

′
j \ {L}, CS

′
j , PSIC

′
j ,EXP′

j ,HAP,FULF′
j , ∅〉η

for which the thesis trivially holds (given that it holds for N ′
j).

• If L does not contain universally quantified variables, L/θ ∈ Nn/σ, so it will be in
∆∀

n, and there will be a corresponding clause C in SOKB′. The selected clause is
C, and the proof follows the scheme in the previous bullet.

If the selected literal L is not of type [¬]NE, then Tr′ is abduction.

Propagation. Propagation is applied to a literal L and an implication. If L is not of type
[¬]NE, transition Tr′ is Propagation applied to the same elements.

Otherwise, Propagation is applied in the node

Ni ≡ 〈Ri, CSi, PSICi,EXPi,HAP,FULFi, ∅〉

to an implication A,L1, . . . , Ln → Q ∈ PSICi and a literal L of type [¬]NE ∈ EXPi ∪
FULFi. Let us suppose that L ∈ EXPi, being the proof for the case L ∈ FULFi very
similar. The resulting node is

Ni+1 ≡ 〈Ri, CSi, PSICi ∪ {A = L,L1, . . . , Ln → Q},EXPi,HAP,FULFi, ∅〉.

Transition Tr′ is Unfolding∗, applied to the literal A occurring in the body of an im-
plication, and the clause C selected as follows. Since L ∈ EXPi in derivation D, then
L/θ ∈ Nn/σ, and there will be a corresponding clause C in SOKB′. By definition of
SOKB′ and θ, C is H ← true, where H = L/θ. The selected clause is C. Unfolding∗

generates a node

N ′
j+1 ≡ 〈R

′
j , CS

′
j , PSIC

′
j ∪ {A = L, true, L1, . . . , Ln → Q},EXP′

j ,HAP,FULF′
j , ∅〉

to which the logical equivalence F ∧ true ↔ F is applicable, leading to node N ′
j+2 for

which the thesis holds.

Splitting. Tr′ is splitting, applied to the same disjunction.

Case Analysis. Tr′ is case analysis, applied to the same elements.

Factoring. If applied to atoms different from [¬]NE, Tr′ is factoring applied to the same
abducibles. Otherwise, factoring generates two nodes; only one of the two children will
be in the derivation D.

In the first, factoring unifies two abducibles L1 and L2. If this first node is in D, by
definition of θ we know that L1/θ = L2/θ. Thus, in ∆∀

n they correspond to the same

228

clause C, so the thesis already holds for the nodes Ni+1 and N ′
j (i.e., we do not introduce

a transition in the derivation D′ at this step).

In the second node, factoring imposes that L1 6= L2. Thus, in ∆∀
n they correspond to

different clauses C, so, again, the thesis already holds for the nodes Ni+1 and N ′
j and we

do not introduce a transition in the derivation D′.

Equivalence Rewriting. Tr′ is the same equivalence rewriting rule, applied to the same
elements.

Happening. Is not considered.

non-Happening. Tr′ is non-Happening, applied to the same elements.

Closure. Tr′ is closure.

Violation NE. Applies to a node Ni in which NE(X) ∈ EXPi and H(Y) ∈ HAPi such that
X and Y are unifiable. Violation NE generates two nodes: in the first, X is unified with
Y and a violation is raised (thus, this node cannot be in a successful derivation). In the
second, X 6= Y is imposed. Thus, X and Y will be bound to non unifiable terms by the
substitution θ. transition; the thesis already holds for the pair of nodes Ni+1 and Nj ,
as well as for Ni and Nj . Intuitively, Fulfillment NE simply moves an expectation from
EXP to FULF. In the current lemma, this distinction is blurred, as all expectations of
the type [¬]NE are in the SOKB′, wether they were fulfilled or pending.

Fulfillment E, Violation E. Tr′ is Fulfillment E (resp. Violation E), applied to the same
elements.

We still have to show that D′ is a successful derivation, i.e.,

• its final node N ′
m satisfies conditions of ICS-, ¬-, and E-consistency, plus fulfillment;

• N ′
m is a node of quiescence.

N ′
m satisfies conditions of ICS-, ¬-, and E-consistency, plus fulfillment because the corre-

sponding node Nn does; in fact [EXP′
m ∪ EXP∀

n]σ = [EXPn]σ and [FULF′
m ∪ FULF∀

n]σ =
[FULFn]σ.

Concerning quiescence, we know that Nn is a node of quiescence for the society with SOKB.
By construction, we know that [EXP′

m]σ ⊆ [EXPn]σ (and [FULF′
m]σ ⊆ [FULFn]σ), while

the other elements of the tuple are the same. Thus, if a transition that only involves the
elements in the tuple is applicable to N ′

m, then it is also applicable in Nn. The only difference
is the SOKB; the only transition applied to clauses in SOKB is Unfolding.

Unfolding can be applied to an atom in a conjunct of R, or in the body of an implication.
But, since Nn is a final node, Rn = ∅, thus R′

m = ∅, so the first case cannot be. In the second
case, an atom of a predicate defined in the SOKB occurs in the body of an implication. Since
the only difference stands in [¬]NE atoms, and Rn is a node of quiescence, the only possibility
is that a literal L of type [¬]NE occurs in the body of a PSIC. But, in order to apply Unfolding,
there must be a clause C matching with L. In this case, by definition of SOKB ′, we would
have a corresponding atom A ∈ EXPn ∪FULFn matching L, and this would make transition
Propagation applicable to node Nn, which is not. Thus, also the second case is impossible.

229

