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1 Introduction

Computees are Computational Logic-based entities interacting in the context of global and
open computing systems [KSST03]. They are abstractions of the entities that populate Global
Computing environments [GC]. These entities can form complex organizations, that we call
Societies Of ComputeeS [SOC]. The main objective of Global Computing, rephrased in terms
of SOCS, is to provide a solid scientific foundation for the design of societies of computees, and
to lay the groundwork for achieving effective principles for building and analyzing such systems.

Computees are autonomous computational entities, autonomous in the sense that their in-
ner activity is not externally controlled. Computees have their own knowledge, capabilities,
resources, objectives and rules of behavior. Each computee typically has only a partial, incom-
plete and possibly inaccurate view of the environment and of the other computees, and it might
have inadequate resources or capabilities to achieve its objectives. We do not make assumptions
on the location or movements of computees, and we propose a model of societies which is not
based on an a-priori determined rigid configuration.

In our approach, we believe that the knowledge and technologies acquired so far in the area
of Computational Logic provide a solid ground to build upon. In the companion document D4,
reporting on the activity done during the first year of the project with respect to Workpackage 1
(“A logic-based model for computees”) [KSST03], it is possible to see how computees, in order to
achieve their objectives and exploit their knowledge, are provided with reasoning functionalities
(such as deduction, abduction, reasoning with priorities, etc.) and Computational Logic-based
capabilities (such as planning, goal decision, temporal reasoning, and so forth). The role of
Computational Logic at the level of the single computee is therefore to provide a formalism and
an operational semantics to its capabilities and to its life cycle which activates such capabilities.

At the society level, the role of Computational Logic is to provide both a declarative and
an operational semantics to interactions. The advantages of such an approach are to be found:

(i) in the design and specification of societies of computees, based on a formalism which is
declarative and easily understandable by the user;

(ii) in the possibility to statically analyze the behavior of the society and of its individuals,
based on the properties that such a framework allows to prove;

(iii) in the possibility to detect undesirable behavior, through on the fly control of the system
based on the computees’ observable behavior (communication exchanges) and to dynam-
ically check the conformance of such behaviour with the constraints posed by the society;

(iv) in the possibility to understand its own limits and potential, through the study of verified
properties which will help to define the application domains of our results.

This document presents a framework based on Computational Logic for modelling interac-
tion among computees in an open environment, and summarizes part of the work done during
the first one and a half year of the project, with respect to Workpackage 2 (“Modelling inter-
action amongst computees”).

The main features of the framework here presented are:

(i) the use of Computational Logic to model and give semantics to interactions; and

(ii) the use of a uniform formalism (Social Integrity Constraints) for expressing both protocols
and “social” semantics of communication languages.
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1.1 Dealing with an open environment

The society formal model should satisfy the following high-level objectives derived directly from
the GC vision of an open and changing environment.

There are several notions of openness that could be adopted for societies of computees.
In the following we will take into consideration the two most widely accepted definitions of
openness in the agent community. According to [Dav01], in an open (artificial) society “there
are no restrictions for agents/processes to join/leave the society”: this means that it is possible
for any agent to enter the society simply by starting an interaction with a member of it. This
is also the acceptation adopted in the Agentcities initiative [Age], whose aim is to increase the
commercial and research potential of agent-based applications by constructing a worldwide,
open network of platforms hosting diverse agent-based services.

Another widely accepted definition of openness in agent societies is that given in [APS02]
(derived from [Hew91]) where an agent society is open if three properties hold:

(i) the behavior of members and their interactions are unpredictable (i.e., the execution of
the society is non-deterministic);

(ii) the internal architecture of each member is neither publicly known nor observable (i.e.,
members may have heterogeneous architectures);

(iii) members of the society do not necessarily share common goals, desires or intentions (i.e.,
each member may conflict with others when trying to reach its own purposes).

The two definitions are based on different notions, but they imply similar effects on the
society features. The first definition of openness is more focused on the society membership,
and therefore it necessarily implies that we have to take into consideration the way an agent
can enter/leave the society: if a society can be entered/left without any restriction, we call it
open. In particular, according to [Dav01], in addition to openness, an agent society may need to
support (some of) the following properties: flexibility : the degree to which agents are restricted
in their behavior by the society; stability : the predictability of the consequences of actions;
trustfulness: the extent to which agents trust the society. Typically those properties are not
independent of each other. Since entering an open society is completely free, in principle this
does not impose any monitoring/constraining infrastructure to the society. For these reason,
as observed in [Dav01], such kinds of “open” society are often unstable and untrustful.

The second definition of openness [APS02] is more based on externally observable fea-
tures within the society. It implies that members could be heterogeneous, and possibly non-
cooperative. Thus, in this kind of open society, as in the one proposed by [Dav01], trustfulness
of members and of the society itself could be low. Moreover, again as in [Dav01], being the
society behavior non-deterministic, this could cause a low stability as an additional property.

With reference to SOCS objectives, we propose a model of the society where:

• the way computees enter/exit the society is not necessarily constrained;

• the presence of heterogeneous computees within societies is emphasized;

• it might not always be guaranteed that the internal structure of computees is observable,
and that their social behaviour is predictable.

We are interested in modelling societies by specifying a social knowledge which possibly
expresses some constraints on members’ social behavior.
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We are also interested in expressing a notion of social goal, and in supporting both goal-
directed and non-goal-directed societies. For all these reasons, the kind of agent society we will
consider is more adherent to the definition of openness given in [APS02].

1.2 Modelling interactions amongst computees

SOCS has many aspects in common with the current work on Multi-Agent Systems. One
such model is [APS02], that we cited above. Societies of agents and agent interactions have
been widely studied, and models have been proposed which offer several advantages in certain
domains.

In this report, we carefully put SOCS into relationship with the agent literature, with the
purpose to single out the original contribution of our work with respect to such a conspicu-
ous and rich material. In this introduction we briefly motivate our approach towards agent
interactions. Our arguments are:

• the use of a declarative and understandable representation,

• a uniform medium to understand aspects of interactions so far treated separately and
thus disconnected,

• an operational model to pave the way to an implementation of societies of computees
based on the declarative specifications,

• a bridge built to verification and formal proof of properties, and

• a link to the model of individual entities in the society.

Agent Communication Languages (ACL) and Conversation Protocols (CP) are the tradi-
tional approaches to support interactions among software agents. The semantics of speech acts
in ACL is customarily defined in terms of mental attitudes such as beliefs, desires and intentions.
This approach has been criticized as inadequate for open environments [Sin98] since agents can-
not verify whether the private beliefs of other agents comply with speech act definitions without
pre-established constraints on how agents are internally implemented.

On the other hand, CP are static structures that define the sequences of utterances making
a coherent conversation. This approach has been criticized for its lack of flexibility, i.e., the
lack of compositional rules governing how protocols are extended or merged. An additional
shortcoming is that ACL and CP are defined independently of each other. We have tried to
combine them in a way that recognizes the dependencies between the two.

In our approach, we define the semantics of the protocols and the communication language
of the computees as integrity constraints over social events (e.g., communicative acts), which
caters for heterogeneity of computees and openness of societies, since it makes no assumptions
on the internal structure of the computees. Being the present report a companion work of D4
[KSST03], from now on we will call the communication language of the computees “Computee
Communication Language” (CCL).

The formalism adopted for protocols and CCL is based on Social Integrity Constraints
(ICS) which express constraints on the communication patterns of computees, and therefore
determine expected communicative acts, on the basis of the history of social events.

Building on previous work on abductive logic-based agents [KS99, STT02a, CLMT02], we
define the society’s knowledge assimilating it to abductive logic programs [CP86, EK89, KM90]:
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society and protocols

computee communication language

platform

Figure 1: The multi-layered architecture

we define a notion of expected social events, and express them as abducible predicates, while
using ICS to constrain the “socially admissible” communication patterns of computees. The
syntax of ICS and of the society in general are those of an extended logic program, and the
operational semantics will draw inspiration from that of abductive frameworks such as the IFF
proof-procedure by Fung and Kowalski [FK97]. In this way, we address a foundational aspect
and a major engineering problem, allowing for different kinds of verification: static, dynamic,
based on outside observation of the computees communication exchanges, based on knowledge
on the computee internals. This is, we believe, one of our main innovations in the theory and
design of systems of autonomous entities in the Global Computing environment.

1.3 Basic architecture of the society

With this report we want to commit to a model of interactions which the other Workpackages
will build upon later on in the project. The objectives of our design are on the one hand the
possibility to capture violations and incorrect social behavior of computees, and possibly to
recover from a state of failure, on the other hand to give the society the means to be pro-
active in helping the computees behaving in a socially correct way, for instance, by suggesting
to the computees what their expected social acts are, or by showing them the possible social
consequences of their actions. Some of those objectives are met at this stage of the work and
some others are subject for current and future investigation.

We propose a multi-layered architecture to model and implement a society of computees. We
rely on a functional definition of a society, implemented through a management infrastructure
that supports the definition of constraints on communicative acts (protocols), and possibly roles
and operations for joining and exiting a society.

We would like to stress here that the architecture we propose is at an abstract level. In
particular, when we talk about “society”, we do not suggest that there is any global entity
that contains all protocols and “social” information of all sorts. Our “society” is instead an
abstraction, which could be in practice implemented by one or several computees, or by any
other suitable entity (which we will refer to, in the following, as social infrastructure): the
choice will depend on the underlying algorithms and on the specific application.

The architecture is composed of three layers (see Figure 1):

(iii) Society and Protocols

(ii) Computee Communication Language

(i) Platform

At the bottom level we put the platform used to implement the system, which supports
low-level communication among computees. The platform layer is beyond the scope of this
report, as it is relevant to Workpackage 4 of the project.
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On top of the platform, we have the CCL, which defines the syntax and semantics of com-
municative acts, still specified via ICS . The CCL layer equips computees with means for
exchanging information and knowledge, and provides formalisms for communication handling
propositions, rules, and actions instead of simple objects with no associated semantics. What is
handled by the CCL is related to the single computee formal model (see [KSST03], Section 10,
and Section 10 of this document).

The topmost level (Society and Protocols) defines the social knowledge, and provides for-
malisms to rule computees’ interactions. It can specify entrance/exiting rules, relationships
between roles and the expected behaviour of computees, with respect to the roles that they
cover. Protocols formalize social rules of interaction, by posing constraints on the computees’
communicative acts and on their sequences.

In defining our model of interaction, and mainly in defining the syntax and the expressive
power of ICS , we started from different case studies. Therefore, along with the “horizontally”
layered structure of the interaction architecture, we have a “vertical” notion of scenario, which
we use to put things into context and explain the ideas by means of running examples. In this
report we use three examples.

The first example is inspired by [STT02a], which proposes a negotiation solution to a re-
source reallocation problem, presenting a framework based on Abductive Logic Programming.
In this scenario, computees are the entities holding the resources.

The second example is based on combinatorial auctions. Auctions are an important way
of allocating items among autonomous and self-interested entities. In combinatorial auctions
[Nis00, San02], bidders can bid on combinations of items and associate a price to each combi-
nation. The auctioneer should solve the winner determination problem, i.e., it should choose
the best bids that cover all items at the minimum price. In this report, we briefly show how to
model the communication protocol of a society implementing the combinatorial auction, where
bidders and auctioneers are modeled as computees. We also show how it is possible to capture
possible deviations from the proper/expected behavior of a participant (bidder or auctioneer).

The third example, NetBill [CTS95], is a simple security and transaction protocol designed
for ruling selling and delivery of low-priced information goods (such as software or journal arti-
cles) over the Internet. It manages all the phases of a complete transaction: price negotiation,
ordering, delivery of goods, payment and delivery of a receipt of payment. It relies on a Net-
Bill server as an information store and authentication server for sellers and buyers and as an
interface to traditional financial entities (such as bank accounts or credit cards).

1.4 Dissemination of results

The present document, D5, reports on both previously published and original work. Among
the conferences and workshops where parts of D5 have been or will soon be presented, we
cite: the UK Multi-Agent Systems Annual Conference (UKMAS) [TMM+02], the Interna-
tional Workshop on Formal Approaches to Multi-Agent Systems (FAMAS) [ACG+03a], the 3rd
International Central and Eastern European Conference on Multi-Agent Systems (CEEMAS)
[ACG+03b], the Workshop on Logic and Communication in Multi-Agent Systems (LCMAS)
[AGL+03c], the First International Workshop on Declarative Agent Languages and Technolo-
gies (DALT) [AGL+03b], the 18th International Joint Conference on Artificial Intelligence
(IJCAI) [STT03], and the 8th National Congress on Artificial Intelligence (AI*IA) [AGL+03a].
In particular, in [TMM+02] a layered architecture for societies of computees (Section 1.3) has
been proposed, where at the bottom level a platform is used to implement the system and give
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support to computees’ communication, and a communication language layer defines syntax and
semantics of communicative acts, while society and protocols are in a higher layer. A social
semantics for communicative acts (Section 5.3) has been presented in [ACG+03b], along with
a discussion about the advantages and motivation of a social semantics of communication with
respect to other approaches, and in [ACG+03a] an implementation of a restricted class of ICS

is proposed, based on the CHR language [Frü98]. [AGL+03a] defines the full syntax of ICS ,
the scope of variables, quantification, and gives some results about the conditions for a proper
behaviour of the framework, along with a formal declarative semantic characterization of con-
cepts such as coherence and consistency of sets of expectations and their fulfillment (mainly
Section 3.3 and Section 4.1). [AGL+03b] shows the practical use of our theoretical framework,
by means of a simple though realistic case study of resource sharing (Section 8.1). The protocols
are taken from [STT03], where the authors introduce a formalization of dialogues, policies and
protocols, and discuss about conformance of policies to protocols. Finally, [AGL+03c] focusses
on formal and automatic verification of properties of interactions and protocols (Section 6).

1.5 Organization of the report

This work is structured as follows:

2 Societies of Computees - In this section, after giving some background notions on the
modelling of agent societies, we define the social knowledge base and we introduce the
notions of events and expectations;

3 Protocols - In this section, we survey background work on protocols, we introduce the
syntax of ICS , and we show how we can model roles and manage membership;

4 Semantics of the social framework - In this section, we give the declarative semantics
of our model of society and its operational counterpart, and with the help of examples we
show the “evolution” of expectations during the life of a society of computees. We discuss
some aspects of our framework related to temporal reasoning, and we conclude by giving
an abductive interpretation of our framework;

5 Computee Communication Language - In this section, after briefly surveying the main
proposals for Agent Communication Languages, relevant to our approach, we introduce
the basic ideas on the CCL and its semantic characterization via ICS .

6 Formal verification of properties - In this section, we elaborate on the use of our frame-
work to automatically prove properties of interactions, such as compliance to protocols;

7 Extensions - This section preliminarily studies some extensions of the framework that
could be developed in future work. We discuss about violation and recovery from states
of violation, protocol learning, trust management, and about our approach to the study
of emerging behaviour of societies of computees;

8 Examples - In this section we introduce some simple examples, used as application scenar-
ios: the resource reallocation problem, combinatorial auctions and the NetBill protocol;

9 Related work - In this section, we discuss our work in relationship with the state of the
art in agent societies, protocols and ACL;
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10 Discussion and evaluations of objectives - In this section, we conclude by evaluating
our work with respect to the Technical Annex and to deliverable D3 [LMM+03], and we
discuss it in relationship with other Workpackages.

Three appendices complete the deliverable, by giving some additional information and back-
ground on Logic Programming:

Appendix A Background - In this section, we give some background on Abductive Logic
Programming, as it is used within this report.

Appendix B Comparing ICS with the IC of the IFF proof-procedure - In this brief
section, we elaborate on some differences and similarities between syntax and restrictions
of ICS and those of the integrity constraints handled by Fung and Kowalski’s IFF proof-
procedure for abductive reasoning [FK97].

Appendix C Learning - In this section, we provide some background on Inductive Logic
Programming which can help the reader in better understanding its exploitation to learn
social behavior in societies of computees

2 Societies of computees

In this section, we give some background notions on agent society modelling, and we define the
syntax of our model of societies of computees.

2.1 Modelling agent societies

Several approaches to agent society modelling can be found in the Multi-Agent Systems liter-
ature. The earliest attempts to model a society of agents or interacting computational entities
have their roots in the Distributed Problem Solving (DPS) area, further extended towards con-
tract networks and market models. Different perspectives lead to dependency network models,
Deontic Logic-based models and models based on modal and/or temporal logics (in particular,
extensions of the Belief, Desire, Intention - BDI - architecture [RG92a]). Another interesting
approach is that of organizational models which define societies as the actual (and dynamic)
composition of organizations. Organizations specify the roles agents will enact and their inter-
actions by means of protocols. Finally, we should mention bottom-up models which focus on
the spontaneous emergence of coalitions, cooperation and norms; for instance, economic and
social-based multi-agent systems [Axe97] and artificial life [DFCF91]. In the following, we give
a brief description of some of the most relevant approaches amongst the ones mentioned above
for the purposes of our work.

Distributed Problem Solving - The need for a society model emerges in DPS when prob-
lems have to be addressed by coordinating an ensemble of computational entities. It hence
follows the requirement for the definition of models, systems and tools for dealing with
dynamic coalition formation, cooperation and competition.

In this context, a society is a collection of agents interacting (i.e., cooperating and/or
competing) to solve the assigned tasks. The rules of the society define the actions that
agents are allowed to take and the allowed interaction patterns. Two typical examples of
this kind of societies are those based on market models and contract networks.
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Market models - Market models [WW98, Wel93] use the economic metaphor of market,
where agents sell and buy goods and services. The society is thus defined as a market
and the equilibrium reached after the economic transactions is the result of the compu-
tation performed by the society. Market-oriented programming has been mainly applied
to tackle resource allocation problems. Market oriented models can be considered as a
computational framework rather than an actual model for societies: in fact, they are more
focused on the computational process, than on the definition of social interaction.

Contract Net model - The Contract Net model (CN) [IS00, Smi80] is strongly related with
market models, and specifies a dynamic organization model based on the notion of ne-
gotiation in an auction scenario. In the CN model, contracts define sets of tasks to be
accomplished. Agents need to perform some tasks and have some capabilities. Tasks are
performed by agents having the required capabilities. The negotiation is aimed at assign-
ing tasks to the agents which have the required capabilities to fulfill them. The structure
of the negotiation is the following:

• Announcement: each agent announces the tasks that need to be carried out.

• Bid: agents make bids to perform tasks announced by other agents.

• Award: bids are evaluated and contracts are awarded.

Even though the CN model presents more structured agent interaction patterns, it essen-
tially lacks an organization definition, since it mainly consists of a mechanism for task
distribution.

Dependence-based models - The concepts of social power and dependence lead to the for-
malization of dependence-based models [Sic01, SCDC98]:

“Briefly, we can say that an agent depends on another one if the latter can
facilitate/prevent the former to achieve one of his goals. We can also say that
in this case the second agent has power on the first one.”

Dependence among agents has been formalized and different types of dependence have
been formally defined (see, for example, [Sic01, SCDC98]). By means of these models,
it is possible to define dependence networks (which describe the relations among agents
by explicit dependence relations) and social reasoning mechanisms can be provided. A
notion of agent consistency based on dependence networks is introduced in [SD95, SD01].
This issue is related to the work being done on the model of the single computee (WP1),
since it is based on an individual perspective of beliefs.

BDI architectures - A milestone work in Multi-Agent Systems is that of Belief-Desire-
Intention (BDI) architectures [RG92a]. BDI architectures are based on the assumption
that agents have an internal representation of the world and of the mental states of other
agents. This representation is used to enable an agent to reason about the other agents.
A formal modelling of a society, which extends the BDI architecture to societies, can
be found in [PNJ99]. BDI-like models suffer from a main problem which is very hard
to overcome in scenarios involving heterogeneous and autonomous computational entities
[Sin98]:
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“It appears to be repeating the past mistake of emphasizing mental agency –
the supposition that agents should be understood primarily in terms of men-
tal concepts, such as beliefs and intentions. It is impossible to make such a
semantics work for agents that must be autonomous and heterogeneous. This
approach supposes, in essence, that agents can read each other’s minds. This
supposition has never held for people, and, for the same reason, it will not hold
for agents.”

Organizational models - Among the various organizational models available in the litera-
ture, we briefly describe one which we consider of particular interest for the purposes of
this project.

In [DMDW02, DMWD02, DMW02] an organizational model is defined, based on a frame-
work which consists of three interrelated models: organizational, social and interaction.
The organizational model defines the coordination and normative elements and describes
the expected behavior of the society. Its components are roles, constraints, interaction
rules, and communicative and ontology framework. The social model specifies the con-
tracts that make explicit the commitments regulating the enactment of roles by individual
agents. Finally, the interaction model describes the possible interactions between agents
by specifying contracts in terms of description of agreements, rules, conditions and sanc-
tions. In this organizational model, Deontic Logic is used to specify the society norms
and rules.

Institutional approach - We conclude this brief outlook on society modelling by mentioning
the institutional approach, which deals with the definition of agent interactions. This ap-
proach supposes that the situations where computees interact may involve commitments,
delegation, repetition of interactions and risk. A suitable model to establish and enforce
conventions is that of institutions [EdlCS02, NS02]. The basic aim of an institution is to
facilitate, oversee and enforce commitments among agents.

In our model of society, we draw inspiration from [DMWD02], and we aim at proposing an
architecture that fulfills the following requirements:

• it should explicitly specify the organizational and normative elements of the society since
an open society cannot rely on its embedding in the intentions, desires and beliefs of each
computee;

• it should include formalisms for the description, construction and control of the organiza-
tional and normative elements of a society (roles, norms and goals) instead of computee
beliefs and states;

• it should provide mechanisms to describe the environment of the society (e.g., in terms
of interactions between computees) and the society, and make it possible to formalize the
expected outcome of roles in order to verify the overall animation of the society;

• it should provide building directives concerning the communication capability and ability
to conform to the expected behavior of computees in the society.
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2.2 Social expectations

The idea of social expectations stems from our intention to meet the requirements mentioned
above (in particular, the possibility to specify normative elements), and the need to meet those
of Global Computing (in particular, to provide a model which can be used in presence of
incomplete information, or information that becomes available over time).

In our model, the society is time by time aware of social events that dynamically happen in
the social environment (happened events). Moreover, it encodes the “normative elements” in
what we call ICS , as we will show below. Based on the available history of events, and on its
specification of ICS , the society can define what are the “expected social events” (that have
not yet happened) and the social events that are expected not to happen. The expected events,
from a normative perspective, reflect the “ideal” behaviour of the society. We call these events
social expectations.

The idea of expected behavior can be considered related to deontic logic; however, our claim
is that we do not need the full power of the standard Deontic Logic, but only constraints
on events that are expected to happen or not to happen. Notice that we do not use deontic
operators, but instead we map expectations into first-class predicates (E for positive and NE
for negative expectations, see the next section).

The set of social expectations is adjusted when the society acquires new knowledge from the
environment on social events that was not available at the time of generating such expectations.
In this perspective, the society should be able to deal with unexpected social events from the
environment, which violate the expectations, as it can be the case in an open environment
where regimentation cannot be assumed.1

Apart from defining the correct behaviour of computees in a society, there could be other
uses of expectations. Indeed, they could be used pro-actively by the society: suitable social
policies could make them public in order to try and influence the behaviour of the computees,
towards an ideal behaviour. On the other hand, happened events that were expected not to
happen can raise mechanisms of recovery from violation (e.g., sanctioning computees that cause
them), without preventing the society from continuing its operation.

2.3 Representation of society knowledge.

The knowledge in a society is represented by the following 4-tuple:

〈SOKB,SEKB, ICS ,G〉

where:

• SOKB is the Social Organization Knowledge Base,

• SEKB is the Social Environment Knowledge Base,

• ICS is the set of Social Integrity Constraints (ICS), and

• G is the set of Goals of the society.

1Regimentation in Multi-Agent Systems is defined as the principle that actions which an agent is obliged to
take are actually executed [Kro95]. This principle reflects the ideal behavior of an agent in a normative system
[ESP99].
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The Social Organization Knowledge Base (SOKB) defines structure and properties
of the society, and has strong similarities with the organization level in [DMWD02]. Indeed,
it defines the structural description of the society, possibly including, for instance, rules for
joining/leaving the society, and role assignment.

The SOKB can change from time to time, as, for example, norms may change during the
life of the society due to learning or knowledge revision. Nevertheless, this knowledge can be
seen as static since it describes the organization of a society which is constant in a specific time
window, and which, however, changes more slowly than the SEKB does.

The current instantiation of a society is described by the Social Environment Knowl-
edge Base (SEKB), which takes into account occurred events and (positive or negative)
expectations about social events. The SEKB concerns the actual process of the life of the
society (e.g., which computees take part to the society, their interactions, etc.). The SEKB
is a dynamic environment space for representing the environment as it is “perceived” by the
society, and the expectations on the “observable” behavior of computees at society level. Note
that the recorded events are only those that are observable and significant for the society.

While the SOKB defines properties of the society, the SEKB concerns with the instantia-
tion of these properties. Indeed, given a society description, many instantiations are possible,
each one characterized by a different SEKB. In particular, the SEKB dynamically evolves
and is composed of:

• Observable and relevant events for the society (happened events: atoms indicated with
functor H);

• Expectations on the future: events that should (but might not) happen in the future
(atoms indicated with functor E), and events that should not (but might indeed) happen
in the future (atoms indicated with functor NE).

We often call history the set of facts concerning dynamic (happened) events; both the history
and current expectations are represented as logical formulae (see the next section).

ICS expresses what is expected or should happen or not, given some happened events. For
example, a ICS in ICS could state that the manager of a resource should give an answer to
whomever has made a request for that resource. ICS can produce expectations on the future.
As we will better see in the following sections, a correct (or conforming) behaviour of a society
requires a match between expectations and history, e.g., E expectations have to be matched by
H events, and NE expectations should not have a corresponding H event.

In the following, we define the syntax of SEKB, SOKB, and G. ICS will be described in
Section 3. Atom and Term are intended as usual in Logic Programming [Llo87]; Constraint is
a constraint in the CLP sense [JM94].

2.4 Syntax of the Social Environment Knowledge Base

As we explained earlier, the SEKB contains information about the (actual) behavior of com-
putees and about their expected behavior. It is composed of events and expectations. In
particular, the syntax of the SEKB is as follows:
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SEKB ::= HAP [∧EXP]
HAP ::= [H(Event [,Time])]?

EXP ::= Expectation [ ∧ (Expectation|Constraint)]?

Expectation ::= [¬]E(Event [, T ]) | [¬]NE(Event [, T ])
Event ::= Atom

(1)

The syntax of constraints is as in [KSST03]:

Constraint ::= AtomicConstraint | Constraint ∧ Constraint |
Constraint ∨ Constraint | ¬Constraint

AtomicConstraint ::= V ariable Relop Term
Relop ::= = | 6= | < | > | ≤ | ≥
Term ::= Atom | V ariable | Term Op Term

Op ::= + | − | ∗ | ÷

(2)

Events - The Events recorded in the history are the socially significant ones; here, we are
mostly concerned with computees’ communicative, as well as physical, performed actions. They
are expressed as

H(Event [,Time]) (3)

where Event is an atom describing the event occurred and Time is the time at which the event
occurred. We explicitly consider time as a parameter of an atom H as it is often important to
consider time as a special variable, with axioms specific to temporal variables (as we will see
in Section 2.7). However, the time parameter is optional because in some cases it is not the
central issue. In such cases, we use H(Event) as a syntactic sugar for H(Event, ), where the
underscore represents an unnamed variable.

Intuitively, a H atom represents a socially significant event that happened in the society,
i.e., social events are mapped into H predicates. Events that happen, such as dialogue moves
(social events), are part of the SEKB. The history of the society grows monotonically as new
events are recorded. In the following, we will use the notation HAP for such a history.

A H atom is always ground: when an event happens, we suppose to be given all the
significant information about it.

Expectations - Expectations (positive and negative) are hypotheses of the society about the
(future) behavior of computees; a computee may then fulfill or not the society’s expectations:
because of the openness of the society and the autonomy and heterogeneity of the computees,
there is no guarantee that expectations will be fulfilled.

The syntax of expectations is the following:

E(Event [,Time]) (4)

NE(Event [,Time]) (5)

for, respectively, positive and negative expectations. E is a positive expectation about an event
(the society expects the event to happen) and NE is a negative expectation, (i.e., the society
expects the event not to happen in order to fulfill the protocols).

Note the difference between ¬E(X) andNE(X). The first expresses the fact that the society
does not have an expectation about the happening of event X (yet, if the event happens, no
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protocol will be violated), while the second expresses the fact that the society expects the event
not to happen.

Expectations can have non-ground terms as arguments. Intuitively, if an atom E is in the
set of expectations, we hope that an atom H will unify with it (and one is enough to fulfill the
expectation). Thus, variables in an E atom are always existentially quantified. For instance,

E(tell(Auctioneer,Bidders, openauction(Item,Dialogue)), Topen)

stands for an expectation about a communicative act tellmade by a computee (Auctioneer),
addressed to a (group of) computees (Bidders), with subject openauction(Item,Dialogue), at
a time Topen.

Often we need to share variables between expectations; thus the scope of the existentially
quantified variables is the whole set of expectations. On the other hand, NE atoms represents
disproved behavior: something that hopefully will not (ever) happen. Variables in a NE atom
are universally quantified if they are not shared with an E atom. To sum up

• variables in E atoms are always existentially quantified with scope the entire set of ex-
pectations

• the other variables, that occur only in NE atoms are universally quantified (the scope
of universally quantified variables is not important, as ∀X, p(X), q(X) is equivalent to
∀Xp(X), ∀Y q(Y )).

In the following, we will use the notation EXP for the set of expectations.

2.5 Syntax of the Social Organization Knowledge Base

We consider the SOKB as a logic program. The syntax of the SOKB is as follows:

SOKB ::= [Clause]?

Clause ::= Atom←Body
Body ::= ExtLiteral [ ∧ ExtLiteral ]?

ExtLiteral ::= Literal | Expectation | Constraint
Expectation ::= [¬]E(Event [, T ]) | [¬]NE(Event [, T ])

Literal ::= Atom | ¬Atom | true

(6)

In a clause, the variables are quantified as follows:

• Universally, if they occur only literals of kind NE (and possibly constraints), with scope
the body;

• Otherwise universally, with scope the entire Clause.

The following is a clause:

sold(Item)←
E(tell(Auctioneer,Bidders, openauction(Item,Dialogue)), Topen)

It says that one way to sell an item is to have some computee tell a set of possible bidders
that an auction is open for the item.
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2.6 Goals of the society

Both goal-directed and not goal-directed behavior for a society is supported. A Goal has the
same syntax as the Body. A Goal can activate a derivation; if the goal is “true”, then the
behavior for the society will be non-goal-directed.

While trying to reach a goal of the society, the society may derive the need for some computee
to behave in some way. Thus, the society expects some computee to behave accordingly, in order
to fulfill the society’s needs.

As an example, we can consider a society with the goal of selling items (this example is a
simplified version of the scenario in Section 8.2). In order to sell an item, the society might
expect some computee to embody the role of auctioneer. The goal of the society could be

← sold(nail)

and the society might have, in the SOKB, a rule like the one shown above, having sold(nail)
in the head. Of course, there could be more clauses specifying other ways for achieving the
same goal, like expecting some computee to advertise it on some public channel, and so on.
The protocol of the auction (i.e., the way the auctioneer and the bidders interact) can be then
specified by means of ICS .

2.7 Temporal reasoning

As we hinted earlier, one of the parameters of happened events and expectations is time. We
conclude this section by introducing some ideas about temporal reasoning in our social frame-
work. Details about temporal information management will be provided in Section 4.2, after
we define the declarative semantics of the framework.

Temporal reasoning should be taken into account when defining protocols in an agent soci-
ety and when checking the computees’ protocol compliance. Several frameworks have been pro-
posed to deal with this form of reasoning, most notably those based on Event Calculus [KS86],
Interval Algebra [All83], Point Algebra [VK89], Simple Temporal Problems and Temporal Con-
straint Satisfaction Problems [DMP91] and Time Map Management [DM87]. In addition, some
promising approaches have been proposed for integrating qualitative and quantitative temporal
reasoning [KL91, Mei91].

Some of these frameworks are based on temporal constraints (relations among time vari-
ables), and the problem is represented as a Constraint Satisfaction Problem (CSP) [vH89],
in terms of a constraint graph where nodes are the problem variables (points or intervals) and
arcs are (binary) constraints (temporal relations between pairs of variables). Given a constraint
graph, we are interested in determining whether the graph is consistent, or in determining an
equivalent minimal representation by computing its transitive closure, or in finding a feasible
temporal scenario. Many algorithms have been proposed for solving these problems (see, for
example, [All83, DMP91, PV90, VK89]).

For our purposes, and for efficiency reasons, we have decided to use a simple temporal
reasoning framework, based on a quantitative constraint-based approach working on temporal
points. Qualitative reasoning is not needed in this application since we suppose that when an
event occurs we know the precise time point. In addition, qualitative reasoning is needed if we
have to compute a qualitative closure of the network, while our purpose is to detect infeasibility
of instantiated events. We decided to use a discrete time domain, instead of a continuous one
because it can be handled more efficiently; also “Continuous Time domains have very little
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applicability in computer science solutions since in practical terms the domain has to be sampled
with some level of frequency” [FIP03]. Therefore, we represent time on integer numbers, and
we have a finite domain solver which checks consistency and is able to find a consistent scenario
if any. Clearly, being the temporal representation discrete, the minimal interval between two
events is a time unit, which can be tuned according to the application. If we are modelling
a society with a slow dynamic, we can consider a time unit as a day or an hour, while if we
are representing society with a faster dynamic the time tick can be a minute or a second. In
addition, using finite domains, we have a temporal horizon TMax of the system which represents
the entire life of the society.

One advantage of using discrete temporal points is that, if we restrict ourselves to consider
only the relations before, after and at the same time, based on the operators <, >, and =, we
have a complete polynomial propagation [VK89]. In this way, from a declarative viewpoint the
time variables are considered as the other finite domain variables; operationally, we will use
specific axioms for time (Section 4.2).

Therefore, as explained earlier, we associate to each event and to each expectation a time
variable whose feasibility and propagation are managed by a constraint solver on finite domains
of integers. Happened events are always associated with a ground time since we know exactly
that the event has occurred at time t

H(Event, t)

while expectations may have a (constrained) variable as time parameter, explaining the possible
time points in which the event is expected to happen, or not to happen.

3 Protocols

A protocol specifies the “rules of encounter” governing a dialogue between agents [RZ94,
MPW02]. It specifies which agent is allowed to say what in a given situation. It will usu-
ally allow for several alternative utterances in every situation and the agent in question has to
choose one according to its private policy. Sometimes in the literature, dialogue policies are
also referred to as strategies. A good protocol will enable fruitful interaction in general. A good
policy will benefit the agent using it. The protocol is public, while each agent’s policy is private.
Protocols are practically important because they may help to select the adequate answer to an
incoming utterance, thus reducing the complexity of this task for an agent (see Section 10 of
D4 [KSST03] and [EMST03b]).

In this section, we provide a language (ICS) for defining protocols and checking the com-
pliance of the behavior of a computee, or, in general, of a society, to protocols. We first survey
background work and motivate our choices, then we introduce the syntax of ICS .

3.1 Agent interaction protocols

Until recently, Agent Communication Languages (ACL) research issues were primarily related
to the generation and interpretation of individual ACL messages. They have consequently
largely remained disconnected from the large amount of existing work on Interaction Protocols
[BHS93, Dem95] (or IP, for short), which was essentially viewed as a practical matter as far
as agent communication theory was concerned. It was indeed assumed, more or less explicitly,
that conversations structure should emerge as a consequence of the semantics of individual
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messages (that is, a question should be followed by an answer because the agent should be
able to recognize the other agent’s underlying intention, not because it is specified as such in
a protocol). This is illustrated by the following quote, taken from the specifications of the
Foundation for Intelligent Physical Agents (FIPA) [FIP01b]:

“A designer of agent systems has the choice to make the agents sufficiently aware
of the meanings of the messages and the goals, beliefs and other mental attitudes
the agent possesses, and that the agent’s planning process causes such IPs to arise
spontaneously from the agents’ choices. This, however, places a heavy burden of ca-
pability and complexity on the agent implementation, though it is not an uncommon
choice in the agent community at large. An alternative, and very pragmatic, view
is to pre-specify the IPs, so that a simpler agent implementation can nevertheless
engage in meaningful conversation with other agents, simply by carefully following
the known IPs.”

Because this position has raised many critics, especially in the context of open systems as dis-
cussed earlier (see Section 1.1), IPs are now considered as structures of theoretical importance
when one tries to model agent interactions. As a result, nowadays research on ACLs tries to
address the gap between the individual messages and the extended message sequences (dia-
logues) that arise between agents (witness the fact that the series of workshops on ACL and
IPs, held separately until 1999 have now merged into an “Agent Communication Languages and
Conversation Policies” series).

Let us now introduce the various formalisms proposed in the literature to regulate the
interaction and allow the generation of conversations.

Input-output pairs - This is the most basic way of representing interaction patterns: the
pairs just specify the appropriate answer(s) (output) to a received message (input). It is
clear that this model does not permit to refer to the history of the dialogue, which makes
it only suitable for the simplest interactions.

Finite State Machines - Finite State Machines (FSMs) are arguably the most adequate (and
popular) formalism to account for sequential interactions. The state of the automaton
describes the state of the conversation. Carefully designed FSMs have been implemented
in real application,s see for instance COOL [BF95]. However, because it is necessary to
specify all the local states of the interaction, it is clear that designers face a practical
specification problem and consequently tend to oversimplify the protocols.

Dooley graphs - Dooley graphs have been introduced in the Multi-Agent community by
[vP96], as a natural way to represent dialogue “as it happens” (the set of utterances that
are related to one another are closer in the graph). A Dooley graph basically consists of
a set of nodes (the participants), a set of indexes (the acts), a set of arcs connecting the
nodes, and a set of vertices connecting the arcs providing a way to represent various forms
of relations between the acts (replies, resolves, completes) beyond simple precedence.

AUML Protocol Diagrams - Protocol diagrams rely on an extension of the classical UML
formalism specially dedicated to agents [BMO01]. Protocol diagrams introduce a number
of new features: most notably, concurrent messages are allowed, and the cardinality of
messages is not restricted to the one-to-one case. The notion of role is central: protocol
diagrams typically represents the lifelines of agents using defined roles, and the steps in
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which the communicative acts are sent between these agents. AUML supports partial
or complete reuse of protocols. There is still ongoing research trying to enhance the
formalism with useful notions (e.g., synchronization, exception handling, see [Hug02]).
However, it should be kept in mind that AUML remains a semi-formal specification.

Coloured Petri Nets - Colored Petri Nets (CPNs) is a well-known formalism for concurrent
systems which has recently been proposed to account for interaction protocols [CCF+00].
A CPN basically consists of places, transitions, states, functions and domains. Unlike
AUML protocol diagram, CPN is a formal model with a proper semantics, which al-
lows verification and validation of the interaction protocols. Interestingly, it is argued in
[MEH02] that AUML protocol diagrams can be translated into CPNs, and some guide-
lines are offered to help the designer in this task. Roughly speaking, each agent lifeline
will correspond to a sequence of places and transitions, while the exchange of a message
between two roles is represented by a synchronization place and arcs.

Dialogue games - Recently, a significant trend of research has been influenced by the philo-
sophical work on informal logic [Ham70]. The main feature of the dialogue game approach
is (i) to rely on a notion of conversational store in order to keep track of the relevant part
of the history; (ii) to allow different compositions of interaction protocols (embedding,
sequence, parallelization, etc.), see for instance [MP02, DHvdT00]. A thorough review of
current work on dialogue game-based protocols can be found in [MC02].

Event Calculus - In [YS02], a variant of the event calculus [KS86] is applied to commitment-
based protocol specification. The semantics of messages (i.e., their effect on commitments)
is described by a set of operations whose semantics, in turn, is described by predicates on
events and fluents; in addition, commitments can evolve, independently of communicative
acts, in relation to events and fluents as prescribed by a set of postulates. This way of
specifying protocols is more flexible than traditional approaches specifying protocols as
action sequences in that it prescribes no initial and final states or transitions explicitly,
but allows any possible protocol to run with the only condition that, at the end of a
protocol run, no commitment must be pending; agents with reasoning capabilities can
themselves plan an execution path suitable for their purposes (which, in that work, is
implemented by an abductive event calculus planner).

Process calculi - Process calculi (or process algebras) specify interactions among a set of
concurrent processes in a formal way. Since the first process calculus (CSP [Hoa78]), a
number of calculi have been designed in order to model mobility, cryptography, access
control and other features of distributed systems. Among the many existing calculi one
of the most noteworthy is the π-calculus [MPW92]. Process calculi are used in order to
specify protocols of interactions among agents in two projects from the Global Computing
initiative: DEGAS [DEG01] and MYTHS [MYT01]. In DEGAS interaction protocols
are specified in UML and are automatically translated into π-calculus in order to prove
qualitative and quantitative properties of the protocol. In MYTHS a process calculus
based on types is developed, and it is shown how it can be used in order to prove formal
properties of protocols, in particular as regards security. None of these projects employs
the protocol specification for checking the conformance of agents to the protocol.

This list is by no means exhaustive, but only reflects what we considered to be the most
significant proposals. Others important approaches include for instance open protocols in the
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context of Agentis [dKL98], or the framework of Electronic Institutions [ERA+00].
None of the formalisms described above has been definitely accepted as the interaction

protocol formalism, and some of them are still the subject of active ongoing research. It is worth
noting however that, in its 1999 specifications, FIPA used a finite state machine representation
of its interaction protocols. And that, as a consequence of the collaboration between FIPA and
OMG (Object Management Group), the 2001 specifications has recently adopted the new Agent
UML standard [BMO01] and thus uses Protocol Diagrams to describe interaction. Most of the
times, however, protocol designers use the simplest formalism which meet their requirement for
a given application.

3.2 ICS to express protocols

This section presents the motivations underlying our proposal for modelling interaction proto-
cols. More specifically, we will motivate the use of sets of constraints on the social behavior
(i.e., social events) to specify protocols within our societies of computees. When computees
join a society, indeed, they join one or more roles, thereby acquiring restrictions on how they
can act and, in particular, communicate (see further section 3.4). Our approach could rely on
an “ICSbased semantics” for specifying protocols. The motivations for adopting this approach
are the same supporting commitments and committed-based semantics in [YS02]. The idea is
also in a way similar to that of conversation policies, defined as “general constraints on the se-
quences of semantically coherent messages leading to a goal” [GHB00], but with a more flexible
approach.

Computees - It is clear that the formalisms described so far do not lend themselves to be
used as they stand in a Computational Logic-based framework such as the one that we
envisage. Because of the reactive capability of computees (see D4 [KSST03]), integrity
constraints are perfectly well suited to our purposes.

Flexibility - Most of the formal approaches to model protocols reviewed in Section 3.1 require
that each state of the interaction is described. This can be practically tedious and motivate
designers to over-constrain protocols, affecting in turn the flexibility of the interactions
and the autonomy of the computees. Instead, “participants must be constrained in their
interactions only to the extent necessary to carry out the given protocol and no more”
[YS02]. Our ICS have this feature.

Expressiveness - ICS allow to capture the different features exhibited by the formalisms de-
scribed in Section 3.1. Sometimes, however, it can be necessary to include extra integrity
constraints left implicit in semi-formal models, as shown in [EMST03a]. The explicit rep-
resentation of the time parameter within the constraints allows to handle synchronization
easily. On top of that, we believe that constraints will allow us to extend the expressive-
ness of classical protocols. For instance, deadlines could be introduced as additional ICS ,
as we shall see in Section 4.2.

Properties - Since protocols are expressed in terms of ICS , verifying that some properties
hold for a given protocol will be made easier. For instance, computees can be tested for
compliance on the basis of their communications, or even (in some cases) of their specifi-
cations, by relying on techniques well-studied in the context of Computational Logic. We
also envisage to use the same techniques to formally study the different combinations of
protocols as proposed in the dialogue game literature.
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Exceptions - In all the classical formalisms described, it is unclear how the society should react
in case of violation of the rules described by the protocol. This issue can be addressed in
the ICS-based approach that we propose: for this, ICS for society protocols express just
expectations about social behavior. That is, if the ICS are violated, the society is not
inconsistent, but only in an undesirable state. It is then possible to define how such an
undesirable state can be abandoned.

Our approach also guarantees autonomy, in that computees are not constrained in their
behaviour but they can act as they planned to do. The outcome of their actions will depend,
from a social perspective, from the fact that they obey or not to the ICS defining the protocols.

3.3 Syntax of Social Integrity Constraints

The ICS in ICS are used to check if a computee inside the society behaves in a permissible
way with respect to its “social” behavior. Intuitively, ICS are rules used to provide information
about the expected behavior of computees.

The syntax of ICS is as follows:

ICS ::= [ic]?

ic ::= χ→ φ
χ ::= (HEvent|Expectation) [∧BodyLiteral]?

BodyLiteral ::= HEvent|Expectation|Literal|Constraint
φ ::= HeadDisjunct [ ∨HeadDisjunct ]?|⊥

HeadDisjunct ::= Expectation [ ∧ (Expectation|Constraint)]?

Expectation ::= [¬]E(Event [, T ]) | [¬]NE(Event [, T ])
HEvent ::= [¬]H(Event [, T ])
Literal ::= Atom | ¬Atom | true
Event ::= Atom

(7)

The syntax of Constraints is the same defined in Section 2.4 below the syntax of the SEKB.
Given a ICS χ→ φ, χ is called the body (or the condition) and φ is called the head (or the

conclusion).

Syntactic restrictions, scope and implicit quantification of variables - The rules of
scope and quantification are as follows:

1. A variable must occur at least in an Event or in an Expectation.

2. The variables that occur both in the body and in the head are quantified universally with
scope the entire ICS .

3. The variables that occur only in the head must occur in at least one Expectation in
Eq. (7), and

(a) if they occur in literals E or ¬E are quantified existentially and have as scope the
disjunct they belong to;

(b) otherwise they are quantified universally.

4. The variables that occur only in the body have the body as scope and
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(a) if they occur only in conjunctions of ¬H, NE, ¬NE or Constraints are quantified
universally;

(b) otherwise are quantified existentially.

5. the quantifier ∀ has higher priority than ∃ (e.g., literals will be quantified ∃∀ and not
viceversa).

There are several reasons why we decided to adopt this convention. Firstly, we wanted to
keep the notation simple. We did not want to load the notation with explicit quantification
symbols in the ICS , and at the same time we wanted ICS to have a simple reading, and an
intuitive meaning associated. Secondly, we had to take into account compatibility issues: As
described in the syntax of the SEKB (Section 2.4), E atoms in the SEKB are existentially
quantified, and NE atoms are universally quantified. The syntax of the SOKB is consistent
with that of the SEKB, so atoms occurring in the Head of a ICS are quantified accordingly
(rule 3 above). Integrity Constraints, in ALP, are usually universally quantified with scope
the whole Integrity Constraint, and rule 2 above states that the other variables in the ICS are
quantified accordingly, suggesting that ICS are considered as particular Integrity Constraints.
On the other hand, we decided to have exceptions to this rule, stated in rule 4a: ¬H and NE
atoms2. This is due to the fact that ¬H atoms, that can only occur in the Body of a ICS , have
the intuitive meaning: “if an event did not happen, trigger the rule”. Consider the following
example:

Example 1. If I did not say “propose” at some time T , you should not say
“accept”.

This sentence can be written as

¬H(tell(A,B, propose), T ), T < T1→ NE(tell(B,A, accept), T1).

Without rule 4a, variable T would be universally quantified with scope the whole ICS, mean-
ing that

(for all T1,A,B) At all times T before T1, if A does not say “propose”, then B
is not entitled to say “accept”.

We find this meaning is quite counterintuitive: the rule triggers in all times in which A does
not say “propose”. With the exception in rule 4a, the quantification is

∀T1, A,B [∀T¬H(tell(A,B, propose), T ), T1 > T ]→ NE(tell(B,A, accept), T1).

thus, ∀T and → are exchanged in priority:

(for all T1,A,B) If, at all times T before T1 A did not say “propose”, then B is
not entitled to say “accept”.

2Note that rule 4b is equivalent to rule 2, in fact ∀X(Body → Head) is equivalent to (∃XBody)→ Head if
X only occurs in the Body.
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We conclude by giving an example of ICS . In this example, if a computee X says “ask” to
a computee Y during a conversation D, Y is expected to answer back either “yes” or “no” (but
not both of them):

H(tell(X,Y, ask,D), T )→
E(tell(Y,X, yes,D), T ′), T ′ > T
∨ E(tell(Y,X, no,D), T ′), T ′ > T

H(tell(X,Y, yes,D), T )→
NE(tell(X,Y, no,D), T ′)

H(tell(X,Y, no,D), T )→
NE(tell(X,Y, yes,D), T ′)

H(tell(X,Y, S,D), T )→
NE(tell(X,Y, S,D), T ′), T ′ > T

The last ICS says that a computee is expected not to repeat the same thing twice in the
same dialogue.

In the example above, X telling “ask” to Y generates an expectation which can be fulfilled
if Y answers back “yes” (Y behaves “properly”). Y violates the protocol, instead, if it says
both “yes” and “no”, due to the second constraint (“improper” behavior of Y ). At all times
there can be alternative sets of expectations (e.g., E( tell(Y,X, yes,D), T ′), T ′ > T OR E(
tell(Y,X, no,D), T ′), T ′ > T ).

In Appendix B, we compare the syntax of ICS with the syntax of integrity constraints in
the IFF proof-procedure.

3.4 Roles

In the analysis and design of MAS, roles play a fundamental part. Software engineering method-
ologies have been defined to design MAS, which are based on the concept of roles. In the Gaia
methodology [WJK00], a role is associated to a set of rights (what an agent embodying the
role can do) and responsibilities (what an agent embodying the role should do); responsibili-
ties can be of two types: liveness (i.e., ensuring that something good will happen) and safety
(i.e., something bad will not happen). Other approaches propose to associate capabilities and
expected behavior [CLZ02]. Capabilities are the set of actions that an agent (embodying the
role) can perform; they are related to the concept of pro-activeness, since they concern what
an agent may do. The expected behavior in [CLZ02] is the reaction to incoming events, and is
thus related to the reactiveness of the agent.

The concept of roles can be accommodated in our framework by expressing both capabilities
and duties as preconditions for expectations to be raised in ICS . Intuitively, if a computee R
is asked to perform a task by a computee S, the expectation about its future behavior is raised
only if

1. the role of S (or, one of its roles, if S embodies more than one role) gives it the capability
to ask for the given service; and

2. the role of R (resp., one of its roles) assigns it the duty to perform the given action when
requested.
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For this purpose, we introduce in the SOKB the predicate

role(RoleName,Capabilities,Duties),

which is used to define the set of roles that can be assumed by the members of the society.
Along with the name of a role, its associated Capabilities and Duties are specified as a list of
predicates. One can write the following ICS :

3

H(tell(S,R, ask(perform(Action))), Tr)∧
embodies(S,RoleS) ∧ role(RoleS , CapabilitiesS , ) ∧ ask(perform(Action)) ∈ CapabilitiesS

∧embodies(R,RoleR) ∧ role(RoleR, , DutiesR) ∧ perform(Action) ∈ DutiesR

→ E(perform(R,Action), Ta)
(8)

Notice that the ICS in Eq. (8) can be obtained syntactically, as a preprocessing, from the
following, more intuitive, rule written by the user:

H(tell(S,R, ask(perform(Action))), Tr)→ E(perform(R,Action), Ta)

In this simple example, we have a static assignment of roles: we suppose to have a predicate

embodies(Computee,Role)

defined in the SOKB that associates computees and roles. Of course, one could have a dynamic
assignment of roles; in this case the ICS would be triggered depending on some event where
one computee starts embodying the given role (e.g., a computee registers in the given role), or
is entitled a given role (e.g., a computee is accepted for the role).

For example, let us consider an auction (this is a simplified version of the example provided
in Section 8.2, where combinatorial auctions are considered). We can have two roles, namely
auctioneer and bidder. The auctioneer may have the capabilities of opening an auction, reply
to bidders if their bid was winning or loosing, and declaring closed the auction. The duties
concern taking into consideration bids.

role(auctioneer, {openauction(Item), answer(Reply), closeauction}, {bid(Item, Price)})
(Capabilities) (Duties)

The bidders, in this simple example, can place bids and have no duties (of course, in a real
auction one should pay for the good, etc.; here we do not model the actual transaction).

role(bidder, {bid(Item, Price)}, ∅ )
(Capabilities) (Duties)

A rule of the auction protocol, as written by the user, can be the following:

H(tell(A,B, openauction(Item)), Topen) ∧H(tell(B,A, bid(Item, Price)), TBid), TBid > TOpen

→ E(tell(A,B, answer(win)), Tanswer) ∨E(tell(A,B, answer(lose)), Tanswer), TAnswer > TBid

3for the sake of brevity, we use the symbol ∈ instead of using a set membership predicate.
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that will be automatically translated, by taking roles into consideration, into

H(tell(A,B, openauction(Item)), Topen) ∧H(tell(B,A, bid(Item, Price)), TBid)∧
embodies(B,RoleB) ∧ role(RoleB , CapabilitiesB , ) ∧ bid(Item, Price) ∈ CapabilitiesB

∧embodies(A,RoleA) ∧ role(RoleA, CapabilitiesA, DutiesA)
∧openauction(Item) ∈ CapabilitiesA ∧ answer(Reply) ∈ DutiesA

→ E(tell(A,B, answer(win)), Tanswer) ∨E(tell(A,B, answer(loose)), Tanswer)

The other rules of the (combinatorial) auction protocol are shown in Section 8.2 and can be
syntactically translated in a similar way.

3.5 Entering and exiting the society

As we already mentioned in Section 1.1, societies have been classified, from the openness view-
point, as open, semi-open, semi-closed and closed [Dav01].

In an open society (or an open artificial society) “there are no restrictions for
agents/processes to join/leave the society” [Dav01]: this means that it is possible for any
agent to enter the society simply by starting an interaction with a member of it. This is also
the acceptation adopted in Agentcities initiative [Age] to realize the commercial and research
potential of agent-based applications by constructing a worldwide, open network of platforms
hosting diverse agent-based services. In open societies, there is no clear frontier of the society:
everybody can start interact with a member of the society and is considered a member in its
turn. One drawback is that it is not clear which agents are currently members of the society.

In semi-open societies, the agent must also be admitted by the society to enter and, if
accepted, it is a member until it leaves or is expelled; typically, there is a gate-keeper that
decides whether to accept or not a given admission request. In semi-closed societies there is a
representative of the agent inside the society.

In closed societies, one cannot dynamically become a member (the members are decided
before the society starts).

All of these types of societies can be accomplished in our framework by exploiting the ICS .
Typically, being member of a society brings benefits and duties. If a given action can only be
performed by members of the society, one can forbid the action to all the non members (which
is quite meaningless in open societies). This translates, in a semi-open society, as follows:

“If you have never been admitted to the society, you cannot do Action.”

¬H(tell(Gatekeeper,A, admit), Tjoin)→ NE(do(A,Action), Taction)

“If you have left the society (either because you decided to leave, or because you
were expelled) and you have not been admitted again, then you cannot do Action.”

H(tell(A,Gatekeeper, leave), Tleave),
¬H(tell(Gatekeeper,A, admit), T ), T ≤ Tcurrtime, T > Tleave

→ NE(do(A,Action), Tcurrtime)

H(tell(Gatekeeper,A, expel), Tleave),
¬H(tell(Gatekeeper,A, admit), T ), T ≤ Tcurrtime, T > Tleave

→ NE(do(A,Action), Tcurrtime)
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“You should not have done Action before entering the society the first time.”

H(tell(Gatekeeper,A, admit), Tjoin),
¬H(tell(Gatekeeper,A, admit), Tnj), Tnj < Tjoin

→ NE(do(A,Action), Taction), Taction < Tjoin

¬H(tell(Gatekeeper,A, admit), Tnj)
→ NE(do(A,Action), Taction)

Symmetrically, members of a society have duties and should behave in a permissible way;
again, this can be established by saying

H(tell(Gatekeeper,A, admit), Tjoin)∧
¬H(tell(A,Gatekeeper, leave), Tleave)∧
¬H(tell(Gatekeeper,A, expel), Tleave), Tleave > Tjoin

→ E(do(A,GoodBehavior), Tg), Tg > Tjoin∧
NE(do(A,Misbehave), Tm), Tm > Tjoin

For what concerns semi-closed societies, rights and duties belong to the representative of
the computee inside the society, which is a member of a society; thus we can apply the same
rules as in a closed society.

Besides the classification by Davidsson [Dav01], there are also societies in which one cannot
leave the society in any moment, but only when it does not have pending expectations.

In this section, we gave a set ICS of ICS defining at the protocol level the actions that agents
are expected to do, depending on whether they succeed or fail in obtaining a membership.
Another way to approach the problem is discussed in D4 [KSST03], Section 10.

4 Semantics of the social framework

In previous sections, we introduced the model for societies of computees in terms of SOKB and
SEKB, and the concept of social events, social expectations and ICS for expressing protocols,
with their syntax.

In the following, we introduce a series of successively more refined declarative semantics.
The various declarative semantics offer a range of options for different proof-procedures, and
are a ground basis to identify relevant properties of the society and its protocols.

An interesting point is that the declarative semantics is given as clean extension of that
given for (extended) Logic Programming, making existing results for Logic Programming and
Non-Monotonic Reasoning re-usable in this context.

4.1 Declarative semantics

The semantics of a society is here given, intuitively, by identifying a set of expectations which,
together with the society’s knowledge base and the happened events, implies an instance of the
goal - if any - and satisfies the integrity constraints.

Throughout this section, for the sake of simplicity, we always consider the ground version
of society’s knowledge base and integrity constraints, and do not consider Constraints.
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We first introduce the concept of admissible set of social expectations. Intuitively, given a
society, and a set of events HAP, an admissible set of social expectations consists of a set of
expectations about social events that are compatible with the SOKB, the set HAP, and ICS .

More formally, we introduce the following definition.

Definition 2. Given a society and a set of events HAP, an admissible set of social expectations
EXP is a set of expectations such that:

SOKB ∪HAP ∪EXP ² ICS (9)

Note that definition above follows, like in [FK97], the theoremhood view of integrity con-
straint satisfaction.

Furthermore, definition above is non-committal with respect to the notion of ². This is
mainly because at this stage of the project we have not yet defined the proof-procedure, and
we wish to keep different options open at this time, so to guarantee compatibility with different
(model-theoretic) semantics. Nonetheless, we have investigated a number of different definitions
for ². All these interpret P ² C as expressing that C is true in all the intended models of P .
The definitions differ, however, in their understanding of the notion of intended model.

If we interpret social expectations as abducible predicates (see section 4.3) we can rely
upon a three-valued model-theoretic semantics as intended meaning, as done, for instance, in a
different context, by [FK97, DS98].

Intuitively, many different sets of expectations are admissible, given ICS , the SOKB and
the set HAP.

Example 3 (admissible set of expectations). As an example, let us consider the following
protocol

If I tell you “start” then you should pass; if I tell you “stop” then you should
not pass.

H(tell(X,Y, start))→ E(pass(Y )).
H(tell(X,Y, stop))→ NE(pass(Y )).

If the event H(tell(X,Y, start)) actually happens, then an expectation will be raised telling
the receiving computee that it should pass. Otherwise, if the event H(tell(X,Y, stop)) happens,
another expectation is raised: the receiving computee is expected not to pass. If none of the
actions tell(X,Y, start) and tell(X,Y, stop) occurs, no expectation is raised, and the computee
can perform as it wishes.

Let us now consider the following situation:

• SOKB = ∅

• HAP= {H(tell(thomas, yves, start)),H(tell(david, yves, stop))}

• ICS = {H(tell(X,Y, start))→ E(pass(Y )),
H(tell(X,Y, stop))→ NE(pass(Y ))}

• G = ∅
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EXP1 = {E(pass(yves)),NE(pass(yves))} is an admissible set of expectation, w.r.t. the
SOKB, HAP, and ICSabove. Notice that any set of expectations larger than EXP1 is also
admissible.

Instead, EXP2 = {E(pass(yves))} is not an admissible set of expectations, because
H(tell(david, yves, stop)) → NE(pass(yves)) ∈ ICS, H(tell(david, yves, stop)) ∈ HAP, and
NE(pass(yves)) /∈ EXP2.

Admissible set of expectations can be however self-contradictory (e.g., both E(p) and ¬E(p)
may belong to an admissible set). In this respect, the introduced notion of admissible expecta-
tion set is a sort of para-consistent [DP98] semantics.

More refined semantics can be given by identifying a subset of admissible expectation sets
as the intended semantics for a society.

In particular, among admissible sets of expectations, we are interested in those which are
coherent and consistent with respect to the following notions.

Definition 4. A set of social expectations EXP is coherent if and only if :

{E(p),NE(p) 6⊆ EXP}

Example 5 (coherent set of expectations). Let us consider the situation presented in
Example 3. EXP2 = {E(pass(yves))} is a coherent set of expectations (although it is not
admissible w.r.t. the SOKB, HAP, and ICSof Example 3). On the other hand, EXP1 =
{E(pass(yves)),NE(pass(yves))} is not a coherent set of expectations (although it is admissi-
ble).

Intuitively, we are not interested in sets of social expectations that, at the same time, require
that a particular event p should happen and should not happen. In a social context, if computees
are aware of social expectations, thus they can plan and act appropriately in order to achieve
them, an incoherent situation, of course, has no contribution and information for them.

Definition 6. A set of social expectations EXP is consistent if and only if :

{E(p),¬E(p)} 6⊆ EXP

and
{NE(p),¬NE(p)} 6⊆ EXP

Example 7 (consistent set of expectations). Let us consider a modification of Example 3:

• SOKB = ∅

• HAP= {H(tell(thomas, yves, start)),H(tell(david, yves, stop))}

• ICS = {H(tell(X,Y, start))→ E(pass(Y )),
H(tell(X,Y, stop))→ ¬E(pass(Y ))}

• G = ∅

The intuitive meaning of the second ICS in ICS is:

If I tell you “stop” then one should not expect that you pass.
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EXP2 = {E(pass(yves))} is a consistent set of expectations, although it is not admissible,
since H(tell(david, yves, stop)) → ¬E(pass(yves)) ∈ ICS, H(tell(david, yves, stop)) ∈ HAP,
and ¬E(pass(yves)) /∈ EXP2.

EXP3 = {E(pass(yves)),¬E(pass(yves))} is instead an admissible set of expectation, but
it is not consistent.

Intuitively, we are not interested in sets of social expectations that are intrinsically incon-
sistent, i.e., that at the same time, expect something and do not expect the same thing.

When no coherent (and consistent) admissible expectation set exists, and therefore an inco-
herency (or inconsistency) arises, it means that the society has been modelled in a wrong way
since a ICS representing social laws is violated. In this case, it could be necessary to modify
the society’s SOKB or ICS by means of a theory revision process. This will be subject for
future work.

We would like to stress that, up to now, we do not assume that expected events actually
happen. This is in accordance with an open view for society where social expectations are just
a suggestion for what should be done (or not done). It can be the case that in a situation
an expectation is assumed as true, but the expected event does not happen (which leads to a
violation, and possibly to a sanction).

A further refined semantics is then given by identifying, among coherent and consistent
admissible expectation sets, those which are fulfilled by a set of events H in a society. This
reflects the ideal behavior of a society [ESP99].

Definition 8. Given a society and a set of events HAP, a coherent and consistent admissible
set of social expectations EXP is fulfilled if and only if:

HAP ∪EXP ² {E(p)→ H(p)} ∪ {NE(p)→ ¬H(p)} (10)

Example 9 (fulfilled set of expectations). Let us consider the following situation:

• SOKB = ∅

• HAP1 = {H(tell(thomas, yves, start)),H(pass(yves))}

• ICS = {H(tell(X,Y, start))→ E(pass(Y ))}

• G = ∅

EXP2 = {E(pass(yves))} is a coherent, consistent and fulfilled admissible set of expecta-
tions, w.r.t SOKB, HAP1, and ICS.

But if we consider a different history: HAP2 = {H(tell(thomas, yves, start))}, then,
EXP2 is not a fulfilled set of expectations w.r.t. SOKB, HAP2, and ICS (still, it is ad-
missible, coherent, and consistent).

Intuitively, many different formulas are admissible with respect to ICS , the SOKB and the
history HAP. By Definition 8, we select, among them, those where the happened events cover
all the events that should happen, and none of the events that should not happen.

Notice that such a fulfilled admissible formula might not exist, even if a coherent and
consistent admissible expectation set exists. The reason is the violation of the protocol: some
computee did not behave as expected, and some action need be taken to recover from this
violation (see Section 7.1).
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Definition 10. Given a society and a set HAP of events, if each coherent and consistent
admissible set of expectations is not fulfilled (i.e., if the constraints E(p)→ H(p) or NE(p)→
¬H(p) are violated), then we say that HAP produces a violation in the society.

Also notice that in the previous definitions, we did not deal with a possible Goal of the
society. If we want to consider a goal-directed society, then we introduce the following definition.

Definition 11. Given a society, a goal G and a set of events HAP, we say that G is achievable
iff there exists a coherent and consistent admissible set of social expectations EXP such that:

SOKB ∪HAP ∪EXP ² G (11)

Example 12 (achievable goal of a society). Let us consider the following situation:

• SOKB = {G1←E(pass(yves)),
G2←E(pass(david))}

• HAP= {H(tell(yves, david, stop))}

• ICS = {H(tell(X,Y, start))→ E(pass(Y )),
H(tell(X,Y, stop))→ NE(pass(Y ))}

• G = {G1, G2}

G1 is an achievable goal w.r.t. SOKB, HAP, and ICS, thanks to the coherent and consis-
tent admissible set of social expectations EXP= {E(pass(yves)),NE(pass(david))}.

On the other hand, there exists no coherent and consistent admissible set of social expecta-
tions to make G2 achievable, given history HAP.

Note that the notion of goal achievability does not guarantee that the goal is really achieved,
since expectations may not be fulfilled, i.e., the corresponding events that should happen can
be possibly not generated, and vice-versa. This introduces the following definition:

Definition 13. Given a society, a goal G and a set of events HAP, G is achieved iff there
exists a fulfilled coherent and consistent admissible set of social expectations EXP such that:

SOKB ∪HAP ∪EXP ² G (12)

Example 14 (achieved goal of a society). Let us consider the following situation:

• SOKB = {G1←E(pass(yves)),
G2←E(pass(thomas))}

• HAP= {H(tell(yves, david, stop)),H(pass(yves))}

• ICS = {H(tell(X,Y, start))→ E(pass(Y )),
H(tell(X,Y, stop))→ NE(pass(Y ))}

• G = {G1, G2}

G1 is an achieved goal of the society. G2 is achievable, but it has not yet been achieved.
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The set of admissible expectations can be further refined by introducing further constraints
(as done, for instance, in order to remove incoherent and inconsistent expectation sets). Any
further refinement then possibly augment the potentiality for violation, since it introduces
further constraints. In the following section, for instance, we introduce a constraint pertaining
time, which allows us to deal smoothly with deadlines.

The declarative semantics here given is a clean extension of that given for (Extended)
Logic Programming, making existing results for logic programming and monotonic reasoning
re-usable in this context. In particular, a model-theoretic semantics for various non-monotonic
extensions of Logic Programming (such as abduction, default and explicit or classical negation)
has been proposed in [BLMM97], and shown equivalent to well-known three-valued semantics
for negation, such as preferential and 3-valued stable semantics.

In this way, the main advantage is that we can exploit well-known (model-theoretic) ap-
proaches in order to provide a basis for relevant properties, even if we have to deal with dynamic
events.

4.2 Temporal information management

It is now time to give some details about the temporal information management of our frame-
work.

We have a special event, i.e., the society clock represented by the atom current time that
happens at each time tick. Clearly, if we have

H(current time, tcurrent)

the next event current time will happen at tcurrent + 1. A more interesting case concerns the
expectations:

E(Event, T ).

In this case, unless otherwise specified, T is an existentially quantified variable which is not
subject to any constraint, and its domain represents the entire life [0..TMax] of the system (i.e.,
the society). However, T can occur in one or more constraints. In this case its domain is
reduced accordingly by removing unfeasible values.

As an example, let us consider the problem of modelling a protocol that specifies deadlines
for events to happen. If a given event should happen within a fixed deadline d, the temporal
variable associated T whose initial domain is [0..TMax], is now pruned to [0..d]. The ICS stating
that given an event at time T an event Event1 is expected at time Tanswer within the deadline
is the following:

H(Event, T )→ E(Event1, Tanswer), Tanswer ≥ T, Tanswer ≤ T + 10

When the Event happens, its temporal variable is linked to a ground value, say 5. The corre-
sponding domain of Tanswer becomes [5..15]. The semantics of a domain variable Tanswer rang-
ing on [5..15] is simply given by the disjunction Tanswer = 5∨Tanswer = 6∨ . . .∨Tanswer = 15.
Therefore the ICS results in a disjunction:

H(Event, 5) → E(Event1, Tanswer), Tanswer = 5
∨ E(Event1, Tanswer), Tanswer = 6
∨
...
∨ E(Event1, Tanswer), Tanswer = 15
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This ICS is respected, i.e., no violation arises, if Event1 happens in one of the time ticks
belonging to the domain of Tanswer. For that time tick we have that the expected event is
fulfilled by the corresponding happened event.

A violation occurs if for all time points belonging to the domain of Tanswer we have an expec-
tation which is not fulfilled, i.e., we have that for all t ∈ [5..15] E(Event1, t) and ¬H(Event1, t).

Now a problem arises: how can we monitor events that have not happened? Let us consider
the following hypothesis that ensures that the declarative semantics is respected: we assume
that the society is able to monitor all the events that happen in the society itself. Thus, for
each time tick, we assume a sort of closed world assumption on the happened events for that
time tick. Given the set U of all possible events that can happen in the society, and given
HAP(t) the set of all happened event at a given time tick t, we can assume that U \ HAP(t)
is the set of not happened events. Thus for each E ∈ U \ HAP(t) we assume ¬H(E, t).

Thus, if the event Event1 does not happen within the deadline at each time tick t in the
domain of Tanswer we have ¬H(Event1, t). For definition 9, the set of expectation is not fulfilled.
As a consequence the operational semantics produces a violation.

Clearly, operationally, for each time tick we can restrict our attention to those events that
are expected to happen. If they do not happen, i.e., if they do not belong to HAP(t), a
violation arises.

More formally, let us consider the set EXP(t) that contains the set of expectations in the
time tick t. For each event E ∈ EXP(t) such that E 6∈ HAP(t), we assume ¬H(E, t).

Let us consider now negative expectations. For each event which is expected not to happen,
we consider the associated temporal variable T representing the time of the negative expecta-
tion. If a given action is expected not to happen in the society, then we have

NE(Event, T ).

If T is not subject to constraints, it means that the event is expected never to happen. On the
contrary, if we have some event that is expected not to happen for 10 time ticks after a given
event happens, we can write:

H(Event, T )→ NE(Event1, T1), T1 ≤ T + 10, T1 > T

In this case, Event1 is expected not to occur for the 10 time ticks after the occurrence of Event.
When the Event occurs, its temporal variable is linked to a ground value, say 5. The

corresponding domain of T1 becomes [5..15]. Note that in this case, occurring T1 in a NE, T1
is universally quantified, therefore the ICS results in a conjunction of ICS

H(Event, 5)→ NE(Event1, T1), T1 = 5
∧
H(Event, 5)→ NE(Event1, T1), T1 = 6
∧
. . .
∧
H(Event, 5)→ NE(Event1, T1), T1 = 15

This ICS is respected, i.e., no violation arises, if Event1 does not happen in all the time
ticks belonging to the domain of T1.

A violation occurs if Event1 happens between 5 and 15. In this case, we have a negative ex-
pectation for Event1 which is not fulfilled. For one t ∈ [5..15] NE(Event1, t) and H(Event1, t).
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Our framework has different features from those of frameworks based on Event Calculus,
see [APS02, YS02] to name a few. Our choice has the following features: first a temporal
point representation is enough for our purposes, second we can rely upon an efficient and
complete propagation of temporal constraints. Therefore, we think that the way we model and
reason upon time is sufficiently powerful for our purposes, and it is a good tradeoff between
expressiveness and efficiency.

Our constraint-based framework for temporal information management can be easily inte-
grated by each single computee, employing extended Abductive Event Calculus (see Section
“Temporal reasoning” in D4 [KSST03]). In this way, using a constraint solver, we can enhance
the efficiency of the temporal information management both at the society level and in each
computee.

With respect to flexibility, in our approach, extension and merging of protocols can be
accommodated by a suitable composition of constraints representing individual or partial in-
teraction patterns.

Let us consider the following example where a “combination” of two individual interaction
patterns is obtained just by the union of their individual ICS :

H(tell(X,Y, request(A), D), T )→
E(tell(Y,X, accept(A), D), T ′), T ′ > T + 2, T ′ < T + 10

(13)

“Y is expected to accept a request within a time between 2 and 10 minutes after
the request has been made”

H(tell(X,Y, request(A), D), T )→
NE(tell(Y,X, accept(A), D), T ′), T ′ > T, T ′ < T + 5

(14)

“Y is expected not to accept a request in the next 5 minutes of the request”.

The union of ICS (14) and (13), if only coherent sets of expectations (Definition 4) are required,
restricts the time points in which the reply is expected to happen to the interval [6..10], i.e.:

“Y is expected to accept a request within a time between 6 and 10 minutes after
the request”

4.3 The society knowledge as an Abductive Logic Program

The semantics of our social framework can be smoothly given an abductive interpretation. This
is interesting in its own right and we foresee will play a role in Workpackages 3, so as to exploit
well-assessed proof-theoretic techniques in order to check compliance of the overall computation
within a society, with respect to the expected social behavior. This is indeed one of the main
motivation of our approach.

In the following, we interpret the knowledge available at the social level as an Abductive
Logic Program (ALP, see Appendix A). Imposing that all computees in a society share the same
abducible predicates is a minimal requirement. The idea is derived from work by Kowalski and
Sadri on abductive agents [KS99], where the abducibles are produced within an agent cycle,
and represent actions in the external world.
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The abducible atoms are the positive and negative expectations, E and NE. Finally, we
have negative expectations (¬E and ¬NE), also represented as abducible atoms, in accordance
with the usual way abduction can be used to deal with negation [EK89]. The set EXP can be
seen as a set of hypotheses (possibly, a set of disjunctions of atomic hypotheses [Poo88, FK97]).

At the society level, knowledge can therefore be represented as an ALP, i.e., a triple:
〈KB, E , IC〉 where:

• KB is the SOKB and the history of events HAP;

• E is a set of abducible predicates, standing for positive and negative expectations (or their
negation);

• IC is the set ICS of ICS .

Declaratively, the sets of social expectations discussed in Section 4.1 correspond to abduced
set of hypotheses when the society is interpreted as and ALP.

Operationally, the idea is to exploit abduction for checking the compliance of the computa-
tion at a social level. Abduction captures relevant events (or hypotheses about future events),
and a suitably extended abductive proof-procedure can be used for integrity constraint check-
ing. If we consider that there exists a goal G at the society level (see also Section 4), then G is
achieved when some expectations EXP are abduced, i.e.:4

KB `EXP G (15)

and EXP is a set of abducibles (coherent and consistent, see Def. 2 and 4) such that

KB ∪EXP∪ ` IC (16)

and conformance to rules and protocols is guaranteed by:

KB ∪EXP ` {E(X)→ H(X)} ∪ {NE(X)→ ¬H(X)} (17)

if this last condition is not verified, then a violation occurs (see Def. 10).
The set HAP of happened events is included in the KB and therefore does not occur

explicitly in Eq. (16) and Eq. (17).
Notice that Eq. (16) is the operational counterpart of Eq. (9) and Eq. (17) is that of Eq. (10).

It should be noted that, if the society does not have a goal, i.e., G is true, Eq. (15) is always
true for any set of EXP and, therefore, only equations (16) and (17) are significant (as in the
declarative semantics, Section 4).5

Give this abductive re-interpretation of out social framework, in the later stages of the
project a suitable proof-procedure should be defined in order to efficiently deal with such a
semantics. In particular, the fulfillment check should be incremental (in order to detect viola-
tions as soon as possible), the operational phases of Equations (15)–(17) should be interleaved
properly, and complexity issues should be taken into account [EM02].

4We do not commit at this stage for any particular semantics for the ` symbol. Many semantics indeed could
be given, such as for instance the classical SLDNF derivation as usual in Logic Programming. KB 6` G is a
shorthand for not(KB ` G). The symbol `∆ stands for an abductive derivation with set of abduced atoms ∆.
5Notice that the condition established by Eq. (17) is new with respect to the abductive frameworks defined

in Computational Logics.
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Therefore, the adoption of this kind of representation for protocols and communicative acts
requires suitable (extended abductive) proof-procedures (see previous work of CYPRUS on in-
tegration of abduction and constraint processing [Kak00, KvND01], previous work of UNIBO
and DIFERRARA on the multi-agent ALIAS architecture [CLM+03], work on speculative com-
putation of Satoh [Sat02], etc.).

From a first analysis, that will be developed in Workpackage 3, we understand that an
extension of the IFF proof-procedure [FK97] will be appropriate. In Appendix B we present a
comparison between the integrity constraints of the IFF proof-procedure and the ICS of our
framework.

5 Computee Communication Language

In this section, we describe our approach to the definition of a logic-based semantics for a CCL.

The section begins with a brief overview of existing work on the subject of Agent Com-
munication Languages (ACLs), especially aimed at clarifying the differences between the most
common approaches to definition of semantics, namely mentalistic, conversational and social.

We then explain why a social semantics appears the most appropriate for the purposes of
the SOCS project, and show how the ICS can be used to define CCL semantics; we also provide
several example definitions of CCL communicative acts. What follows is not meant to define a
substitute for the sets of communication primitives defined in existing ACLs; rather, it explains
how the ICS can be used to define the semantics of a given set of primitives.

Drawing inspiration from existing social ACL approaches, we build an independent model,
based instead on a social constraint-based semantics where constraints can be used for defining
semantics of communicative acts in terms of their social effects. The approach here presented
is also documented in [ACG+03a, ACG+03b].

5.1 Agent Communication Languages: state of the art

In most proposals for agent systems, the formalism used to express knowledge exchange between
agents is an ACL.

An ACL provides language primitives (also called communicative acts, utterances, and in
certain contexts performatives, illocutions, or dialogue moves) which, mostly taking inspira-
tion from the Speech Act theory [Aus62], implement the agent communication model. Each
performative is associated with an attitude which represents its meaning (e.g., why the commu-
nicative act is performed, and what the expected effects are). Therefore, ACLs (as, for instance,
KQML [FLM97] and FIPA ACL [FIP01a]) have much higher expressive power than traditional
inter-process communication primitives.

Moreover, since ACL primitives are intended as means to support knowledge exchange, the
content of each communicative act is usually expressed by means of a proper content language,
whose features can express in an accurate way the information to be transferred.

More formally, an ACL is defined by two languages:

• the communication language, represented by a set of communication performatives, each
corresponding to a different illocution;

• the content language which expresses the information to be transferred.
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In recent years, much effort has been devoted to the definition of a standard for ACL
[FIP01a]; however, the definition of ACL semantics is still an open issue.

Currently, in the international agent community, the main approaches to define ACL seman-
tics are the mentalistic [FLM97, FIP01a], the conversational [GHB00], and the social approach
(see [Sin98]).

Mentalistic approaches define ACL semantics in terms of agents mental states. The KQML
language [LFP99] is divided into three layers:

• the content layer, where the actual content of the language is. KQML does not specify a
particular content language;

• the message layer, which identifies the network protocol to be used to deliver the message,
and describes optional features, such as the content language or the ontology;

• the communication layer, which describes the low-level communication parameters such
as the identity of the sender and receiver and the identifier associated with the commu-
nication.

The semantics of KQML is given in terms of:

• pre-conditions, which define the necessary conditions for an agent to send or to successfully
receive a message;

• post-conditions, which define the state of both interlocutors after a successful utterance
or receipt of a performative;

• completion conditions, which define the final state after a conversation has taken place.

For instance, the semantics of tell(A,B,X) is [LFP99]:

• Pre(A): Bel(A,X) ∧Know(A,Want(B,Know(B,S)))

• Pre(B): Int(B,Know(B,S)), where S may be any of Bel(B,X) or ¬Bel(B,X)

• Post(A): Know(A,Know(B,Bel(A,X)))

• Post(B): Know(B,Bel(A,X))

• Completion: Know(B,Bel(A,X))

It can be noticed that all the semantics are given in terms of mental states of sender and
receiver; thus, in order to verify that an agent is communicating according to such semantics,
it is necessary to access its mental state.

KQML+ [BM98] is an attempt to overcome the limitations of KQML that the authors
detect, namely:

• out of the five categories of performatives that the speech act theory recognizes (directive,
assertive, commissive, expressive and declarative), KQML performatives are limited to
the assertive and directive categories;

• the choice of names of performatives is inappropriate, as it does not properly reflect their
meaning;
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• different authors use different performatives for the same communication task.

To overcome these limitations, and in particular to ground their ACL more consistently
onto the speech act theory than in the case of KQML, the authors propose new performatives
and new slots in a KQML+ message. In particular, a primitive-performative slot is added, to
represent which of the five categories of speech acts the KQML+ message belongs to.

A KQML+ message is used by an agent to express its positioning with respect to a com-
municative state. The choice of the primitive and expressed performative follow the position-
ing: for instance, a propose positioning can be expressed by a message with direct in the
primitive-performative slot and ask in the expressed-performative slot (which corresponds to
the performative of KQML).

FIPA ACL assumes a BDI (Belief, Desire, Intention) model for the agents [RG92b], and relies
on it for defining the semantics of communicative acts in terms of Feasibility Preconditions (i.e.,
the conditions that have to be satisfied for the communicative act to be planned) and Rational
Effects (i.e., the expected effect that the communicative act would have).

As an example, the definition of the FIPA ACL performative request is as follows:
<Sender, REQUEST (Receiver,a)>

FP : FP(a)[Sender\Receiver]∧
BSenderAgent(Receiver, a)∧
BSender¬PGReceiverDone(a)

RE : Done(a)

where

• FP denotes the feasibility preconditions of the act;

• RE denotes the rational effect of the act;

• FP(a)[Sender \ Receiver] denotes the part of the FPs of a, which are mental attitudes of
the Sender;

• BSenderAgent(Receiver, a) means that Sender believes that Receiver can perform a;

• BSender¬PGReceiver Done(a) means that Sender believes that Receiver does not (yet)
intend to perform a.

• Done(a) means that a has “just” taken place.

It is worth noticing that, according to this definition, the agent Sender should not only be
aware of its own mental state, but also have beliefs about the agent Receiver’s mental state.

The mentalistic approach to the ACL semantics has been much criticized mainly because
its underlying assumptions regarding agents’ internals are not realistic in open societies of
heterogeneous agents. As Singh stated [Sin98], emphasizing mental agency leads to the suppo-
sition that agents should be primarily understood in terms of mental concepts, such as beliefs
and intentions: this approach supposes, in essence, that agents can read each other’s minds.
Whenever agents’ mental states are not accessible, which is reasonably the case if agents oper-
ate in open and heterogeneous environments, it is impossible to verify semantic compliance of
communicative acts.

In addition, as observed in [GP01], the meaning of each communicative act is strictly linked
to a specific mental state (e.g., the feasibility precondition), so communicative acts are not
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flexible for use in different contexts. In this perspective, an ACL’s formal semantics should
better emphasize social agency. This approach recognizes that communication is inherently
public and thus depends on the agent’s social context.

A different approach relies on Conversation Policies (CP) [GHB00], which express meaning
and composition of speech acts for agents by means of static structures which define the se-
quences of communicative acts making a coherent conversation. The main advantage of this
approach is that in this perspective a communicative act does not have an absolute meaning,
but its semantic rather depends on the conversation (i.e., the context in which it is uttered),
thus overcoming one of the main drawbacks of the mentalistic approach. However the conversa-
tional approach has been criticized for its lack of flexibility, i.e., the lack of compositional rules
governing how protocols are extended or merged (see [MC02]).

The social approach defines ACL semantics in terms of the effects of the communicative acts
on the society. Following this approach, even if the agents’ mental state cannot be accessed,
it is possible to verify whether communicating agents in a society comply to some social laws
which regulate the interactions.

In this setting, a commitment-based semantics [Sin00, FC02] could fully reflect this, by
adopting the notion of social commitment in a multi-agent setting. A social commitment is an
obligation which binds an agent (usually the speaker in a communicative act) to the society.
So, each social commitment refers to a content (i.e., the action, or the proposition to be made
true), a debtor (i.e., the agent engaged to make the content true) and a creditor (i.e., the agent
relative to which the commitment is made).

In particular, in Singh’s work [Sin00] three levels of semantics for each communication
performative are defined: the objective claim (that the subject of the communication is true),
the subjective claim (that the communication is sincere) and the practical claim (that the
speaker is justified in making the communication).

For instance, the semantics of the performative inform(s, h, p) is:

• s is committed towards h that p holds (objective claim);

• s is committed towards h that s believes p (subjective claim);

• s is committed towards the society that he has reasons to believe p (practical claim).

In this way, the mentalistic approach is adopted only at the subjective level, while at the
practical level a commitment towards the agent society is used.

The social approach is applied to the definition of ACL semantics in [FC02], where an
operational specification of an ACL is given in an object-oriented framework by means of the
commitment class. A commitment represents an obligation for its debtor towards its creditor.
A commitment is described by a finite state automaton, whose states (which can take the values
of empty, pre-commitment, cancelled, conditional, active, fulfilled and violated) can change by
application of methods of the commitment class, or of rules triggered by external conditions.
Semantics of communicative acts is specified in terms of methods to be applied to a commitment
when a communicative act is issued.

Within this framework, for instance, the semantics of the assertive inform performative is
given as follows:

inform(Sender, Receiver, P) = make C(Sender, Receiver, P, true, CC)

where C(Sender,Receiver,P,true,CC) is a (conditional) commitment (with the condition al-
ready true) made by Sender, to agent Receiver (the “creditor” of the commitment) that P
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(the content) will be satisfied. The effect of this utterance will define a commitment initially in
the transitory state CC, that will immediately move (due to the true condition) in the state A.
It might be later either fulfilled (if P becomes true), or violated (if P becomes false).

As a further example, let us report also the commitment-based semantics of the directive
performative request:

request(Sender, Receiver, F) = make C(Receiver, Sender, F, true, P),

which means: a (conditional) pre-commitment with Receiver as the debtor to agent Sender
(the creditor) that F will be performed (the content in this case is an action to be possibly
performed by Receiver) will be executed. In case of an explicit acceptance by the Receiver

(with an accept act), the commitment will move in the transitory state CC to reach (due to the
true condition) the state A. It might be later either fulfilled (if the Receiver performs F), or
violated (if the Receiver does not perform F within a given deadline). If, instead, the Receiver
refuses the request, the commitment will move in the cancelled state (C).

5.2 Constraint-based semantics for CCL

Since the SOCS project is aimed at modelling open societies of heterogeneous computees, among
the approaches to the definition of semantics of communication, the social approach appears
more appropriate, because it allows for verification of compliance of communicative acts to
protocols, regardless of the internal structure of individual computees.

The semantics of communicative acts from the point of view of a single computee is, in our
opinion, not to be constrained, since it does not directly affect the correct functioning of the
society. In human societies, from a social point of view it is not necessary that contractors
fully understand a contract they are signing for the contract to be effective, although it is
obviously in their own interest, and it will make easier for them to fulfill the expectations on
their behavior: we think a similar approach should be adopted in modelling interaction among
computees. Thus, although in WP1 we show how to accommodate communication within the
model of the single computee, we do not impose this as a requirement.

We rather distinguish between

(a) communicative acts as observable facts (from an external perspective);

(b) communicative acts as actions planned (from an internal perspective) in order to make a
goal feasible.

From an external perspective, communicative acts may be subject to the rules (in a broad
sense) of the society. From an internal perspective, communicative acts are motivated by
their intended effect (see D4, [KSST03]). This approach smoothly integrates in the framework
adopted to specify interaction protocols (see Section 3.3). The constraint-based semantics also
guarantees the requirements of flexibility, declarativeness, readability and verifiability.

We express semantics of communicative acts in a CCL, exploiting the same ICSbased frame-
work described in Section 3.3.

In the following, unless otherwise specified, we will express a computee’s communicative act
as follows:

CommunicativeActId(X,Y,Content ,Context)

where X is the speaker computee, Y is the intended recipient(s), Content is the content of the
message and Context is an identifier of the interaction context between X and Y . In the case of
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dialogues, Context can be a dialogue identifier, set by the computee who initiates the dialogue.
A possible event is:

H(request(thomas, david , give(scooter), evening dialog), 21)

5.3 Social semantics of CCL performatives

In this section, we map into our framework some of the linguistic primitives defined in [FC02].
What follows should be intended neither as a final choice of communicative acts for a CCL nor
as a final choice on how to the define the chosen ones, but as an example of how some of the
most common communicative acts might be defined in our semantic framework.

It will be shown that the formalism of ICS can express both social semantics of communica-
tive acts and communication protocols, which yields the additional advantage that the same
proof-procedures can be used to verify both.

5.3.1 Social semantics as expectations raised

In the following, we express the social semantics of communicative acts in terms of the expec-
tations raised by a given set of events on the subsequent behavior of computees, by means of
ICS .

Assertives: inform - Intuitively, an inform communicative act is used by a computee to
assert the truth of the content to another computee. In a commitment-based setting like that
of [FC02], this equates to the speaker computee to commit to the truth of the content to the
hearer computee.

In our framework, a possible definition of the semantics of inform is as follows:

H(inform(A,B, P,D), T )

→E(true(A,B, P ))
(18)

where, with E(true(A,B, P )), we mean that A is responsible towards B with respect to the
truth of P ; in other words, if P is proved false, then A has violated a commitment towards B.

We are aware that verifiability is a problem here: who is supposed to verify the truth of P?
According to our approach, built on the principle that it is not acceptable to make assumptions
about computees (and, therefore, about their truthfulness) there should be a super partes entity
in the society, equipped with a knowledge base allowing it to decide the truth value of the content
of a message. If this is not the case, the only way is probably to associate no expectations to
an inform act, and let the hearer computee decide about the trustworthiness of the speaker.

Commissives: promise and conditionalPromise - A promise, like an inform, commits
the speaker to the truth of the content, but for the former the speaker is responsible for fulfilling
it by a physical action.

H(promise(A,B, P,D), Tp)

→E(do(A,B, P,D), Td) : Td ≤ Tp + τ
(19)

where do is the action that should make P true. The constraint Td ≤ Tp + τ , where τ is some
constant, expresses that the expectation will be fulfilled only if the do event happens by the
prescribed deadline Tp + τ .
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The expectation in a conditionalPromise becomes effective only when an event (which plays
the role of a condition6 that is external to the dialogue and thus, intuitively, is supposed not to
be an action performed by the speaker) happens:

H(conditionalPromise(A,B, cond(P,Q), D), Tc)

∧H(Q,TQ)

→E(do(A,B, P,D), Td) : Td ≤ max(Tc, TQ) + τ

(20)

where Q is a term describing an event and, as usual, H(Q,TQ) expresses that Q happens at
time TQ.

Directives: request and conditionalRequest - A request does not, by itself, generate any
expectation. The hearer computee can either accept or reject the content of the request, by the
corresponding communicative acts. Only in case of an accept the content of the request becomes
expected:

H(request(A,B, P,D), Tr)

∧H(accept(B,A, P,D), Ta)

∧Tr < Ta

→E(do(B,A, P,D), Td) : Td ≤ Ta + τ

(21)

where Tr < Ta means that the expectation will be raised only if the request happens before the
accept.

A conditionalRequest is different from a request in that its content becomes the content of
an expectation only once the hearer has accepted it and an event, specified as a condition in
the content of the conditionalRequest, has happened.

H(conditionalRequest(A,B, cond(P,Q), D), Tr)

∧H(accept(B,A, cond(P,Q), D), Ta)

∧Tr < Ta

∧H(Q,TQ)

→E(do(B,A, P,D), Td) : Td ≤ max(Ta, TQ) + τ

(22)

There is no need to express the semantics of a reject by a ICS , because a rejected request (or
conditionalRequest) generates no expectations.

Proposals: propose - A propose is similar to a conditionalRequest, with the difference that
for the former the speaker is able by itself to fulfill the condition by a do action.

As conditionalRequest, however, propose does not, by itself, generate any expectation. It
is with accept that both the speaker and the hearer become committed to their respective
expectations. We assume that the hearer and the speaker can have different time limits for
fulfilling the expectations on their behavior.

6In [FC02], the condition is expressed as a temporal proposition object. Temporal propositions express the
truth value (true, false or undefined) of a statement (about some state of affairs holding, or some action having
been performed, or commitment having been created) in a given time interval, with existential or universal
temporal quantification. Thus, Fornara and Colombetti’s framework can express a broader set of conditions
than ours.
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H(propose(A,B, prop(PA, PB), D), Tp)

∧H(accept(B,A, prop(PA, PB), D), Ta)

∧Tp < Ta

→E(do(A,B, PA, D), TdA
) : TdA

≤ Ta + τA

∧E(do(B,A, PB , D), TdB
) : TdB

≤ Ta + τB

(23)

5.3.2 Permissible sequences of communicative acts

In the following, we will show how to express permissible sequences of communicative acts (i.e.,
communication protocols) by means of the ICS .

For instance, we may want to express that a request, conditionalRequest or propose is ex-
pected to be followed by an answer (either accept or reject) by a specified amount of time. This
is achieved by the following ICS :

H(request(A,B, P,D), Tr)

→E(accept(B,A, P,D), Ta) : Ta ≤ Tr + τ

∨E(reject(B,A, P,D), Te) : Te ≤ Tr + τ

(24)

H(conditionalRequest(A,B, P,D), Tc)

→E(accept(B,A, P,D), Ta) : Ta ≤ Tc + τ

∨E(reject(B,A, P,D), Te) : Te ≤ Tc + τ

(25)

H(propose(A,B, P,D), Tp)

→E(accept(B,A, P,D), Ta) : Ta ≤ Tp + τ

∨E(reject(B,A, P,D), Te) : Te ≤ Tp + τ

(26)

It is also possible to specify that a computee cannot perform both an accept and a reject in
the same dialogue, by means of ICS (27) and (28):

H(accept(A,B, P,D), Ta)

→NE(reject(A,B, P,D), Tr) : Tr ≥ Ta

(27)

H(reject(A,B, P,D), Tr)

→NE(accept(A,B, P,D), Ta) : Ta ≥ Tr

(28)

On the other hand, we may want to express that an accept or a reject are expected not to
happen, unless a request, conditionalRequest or propose have happened before.

A possible way to express this is that if no request, conditionalRequest or propose has hap-
pened before a given time, no accept or reject should happen at that time:

¬H(request(A,B, P,D), Tr) : Tr < T0

∧¬H(conditionalRequest(A,B, P,D), Tc) : Tc < T0

∧¬H(propose(A,B, P,D), Tc) : Tp < T0

→NE(accept(B,A, P,D), T0)

∧NE(reject(B,A, P,D), T0)

(29)
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Another way to achieve the same result7 is to state that if an accept or reject has happened,
then a request, conditionalRequest or propose is expected to have happened before, as in the
following two ICS :

H(accept(A,B, P,D), Ta)

→E(request(B,A, P,D), Tr) : Tr < Ta

∨E(conditionalRequest(B,A, P,D), Tc) : Tc < Ta

∨E(propose(B,A, P,D), Tp) : Tp < Ta

(30)

H(reject(A,B, P,D), Te)

→E(request(B,A, P,D), Tr) : Tr < Te

∨E(conditionalRequest(B,A, P,D), Tc) : Tc < Te

∨E(propose(B,A, P,D), Tp) : Tp < Te

(31)

We call the expectations in ICS (30) and (31) backward expectations, because they regard
events that should have happened before the event that has caused them.

As shown by the previous examples, the ICS represent a uniform formalism that is ex-
pressive enough for both social semantics of communicative acts and communication protocols,
two aspects which are usually specified (and checked for compliance) at different levels. For
instance, an accept communicative acts will raise expectations about communicative acts that
are expected to have been issued before in order to make the accept permissible (because of
ICS (30)), about communicative acts that are expected not to happen because they would
contradict the accept (due to ICS (27)) and about physical actions that are expected to happen
as consequence (due to ICS (21), (22), or (23)). A uniform formalism and verification method
for all these different social aspects of communication is, in our opinion, a valuable advantage
of our framework.

6 Formal verification of properties

In this section, we make a point about proving and verifying properties of societies of computees.
We anticipate that the work that we are going to present here is very preliminary, since it is
planned to be matter of study for the third year of the project. The purpose of this section
then is mainly to provide a concrete support to our claim that a formal Computational Logic-
based approach to modelling agent societies is very promising, since it bridges the gap between
specification and verification.

In [GP02, PG02], Guerin and Pitt propose a classification of properties that are relevant
for e-commerce systems, with particular emphasis on properties of protocols and interactions.
This is only a part of the properties that we wish to study along the project, and it is espe-
cially focussed on properties of interactions. A more elaborated document about properties is
[EMS+03].

In this setting, they propose a formal framework for verification of properties of “low level
computing theories required to implement a mechanism for agents” in an open environment,
where by open the authors mean that the internals of agents are not public, as discussed in
Section 1.1.

7The result is the same in that, in both cases, a non-conforming sequence of communicative acts will be
recognized as a violation; however, the set of expectations raised in the two cases is different.
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Verification of properties is classified in three types, depending on the information available,
and whether the verification is done at design time or at run time:

Type 1: verify that an agent will always comply;

Type 2: verify compliance by observation;

Type 3: verify protocols’ properties.

As for Type 1 verification, the authors propose using a model checking algorithm for agents
implemented by a finite state program. As for Type 2 verification, the authors refer to work
done by Singh [Sin00], where “agents can be tested for compliance on the basis of their commu-
nications”. As for verification of Type 3, the authors show how it is possible to prove properties
of protocols by using only the ACL specification. They construct a fair transition system repre-
senting all possible observable sequences of states and prove by hand that the desired properties
hold over all computations of the multi-agent system. This type of verification is demonstrated
by an auction example.

In this section, we sketch a possible methodology that can be followed to achieve in our
setting all the above three types of verification, in an automatic way. Such a methodology is
based on the fact that both (public) protocols and (internal) computee policies are expressed
in the same formalism. This is still preliminary work, but we include it here in order to back
up some claims made in Section 1.1.

Let us briefly describe an example adapted from [PG02]. An auction is held to sell a lot of
items. The system that implements the auction is composed of four computees: an auctioneer
(auct), two bidders (bidder1 and bidder2), and a computee rand who will decide the winner
randomly in case both bidder1 and bidder2 declare the same value. The auction mechanism is
designed so to show properties such as: feasibility, incentive compatibility, individual rationality,
optimal expected value for the seller, symmetry.

In particular, the auction mechanism is a modified Vickrey auction, where a bidder can
either bid ‘low’ (if its valuation for the item being sold is 3) or ‘high’ (if its valuation is 4), and
in case a high bidder wins the price to pay is 3+ 2

3
, otherwise it is 3. The winner determination

is as follows: if there is exactly one high bidder, it wins, otherwise rand will generate a random
value in {1, 2}, and the winner will be determined accordingly (bidder1 if rand produces 1 and
vice versa).

In Figure 2, we define the protocol by giving the ICS . In Figure 3, we define the semantics
of the communicative acts for this example.

6.1 Verification for open systems

Let us now consider the three different types of verification for open systems, and sketch how
they could be achieved in our framework.

6.1.1 Type 1 verification (a computee will always comply)

Verification that a computee will always comply cannot be done by externally monitoring its
behavior. Quoting Hume, “we are in a natural state of ignorance with regard to the powers and
influence of all objects when we consider them a priori” ([Hum48], IV.ii.32). For this kind of
verification, we need to have access to the computees’ internals. We can express the computee’s
program and policies by means of a Logic Programming-based formalism, such as, for instance,
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H(tell(bidder1, auct, h)) ∧ H(tell(bidder2, auct, l))
→ E(award(auct, bidder1, 3 + 2

3
))

H(tell(bidder1, auct, l)) ∧ H(tell(bidder2, auct, h))
→ E(award(auct, bidder2, 3 + 2

3
))

H(tell(bidder1, auct, h)) ∧ H(tell(bidder2, auct, h))
→ E(request(auct, rand,number))

H(tell(bidder1, auct, l)) ∧ H(tell(bidder2, auct, l))
→ E(request(auct, rand,number))

H(tell(bidder1, auct, h)) ∧ H(tell(bidder2, auct, h)) ∧ H(tell(rand, auct, 1))
→ E(award(auct, bidder1, 3 + 2

3
))

H(tell(bidder1, auct, h)) ∧ H(tell(bidder2, auct, h)) ∧ H(tell(rand, auct, 2))
→ E(award(auct, bidder2, 3 + 2

3
))

H(tell(bidder1, auct, l)) ∧ H(tell(bidder2, auct, l)) ∧ H(tell(rand, auct, 1))
→ E(award(auct, bidder1, 3))

H(tell(bidder1, auct, l)) ∧ H(tell(bidder2, auct, l)) ∧ H(tell(rand, auct, 2))
→ E(award(auct, bidder2, 3))

Figure 2: Definition of the auction protocol.

H(award(auct,Bidder, P ))
→ E(buy(Bidder, lot, P ))

H(request(auct, rand,number))
→ E(tell(rand, auct, 1)) ∨ E(tell(rand, auct, 2))

Figure 3: Semantics of the speech acts.
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tell(auct, bidder1, start) ∧ highbidder
⇒ tell(bidder1, auct, h)

tell(auct, bidder1, start) ∧ ¬highbidder
⇒ tell(bidder1, auct, l)

Figure 4: bidder1’s policy (time is left implicit).

a set of reactive constraints in KBreact, which will be evaluated by the computee using its
|=react capability, as it is shown in D4 [KSST03]. We give an example of a policy for bidder1
in Figure 4, where we assume that the auctioneer agent auct starts the auction by sending a
start message to all participants. We also assume, for the sake of simplicity, that bidder1 is
interested in buying the item sold in the auction, and that it is a high bidder, by considering
the predicate highbidder to be true in bidder1’s knowledge base.

A way to prove that bidder1 will always comply is to show that for all the ICS expressing
the protocol, if in the head of a ICS there is a social event which is expected from bidder1 (e.g.,
E(buy(bidder1, lot, 3 + 2

3
))), then, the history of events that by social viewpoint leads to such

expectation, leads by bidder1’s viewpoint to producing such event.
Our aim is to define a methodology to automatically obtain such proof (or its failure). The

idea is to define a mapping of ICS into normal logic programs. A possible such mapping, for a
restricted set of ICS is presented in [AGL+03c].

For instance, using the mapping defined in [AGL+03c], the first ICS of Figure 2 is trans-
formed into the clause:
award(auct, bidder1, 3 + 2

3
)←

tell(bidder1, auct, h) ∧ tell(bidder2, auct, l)

Given the normal logic program P into which the protocol is mapped, we consider the
abductive logic program 〈P, IC,A〉, with IC = ∅ and A (the set of abducible predicates) equal
to the undefined predicates of H(P ) (the Herbrand universe of P ).

In order to prove that bidder1 will always comply to the protocol, we consider both the
protocol and the computee reactive rules. For all defined predicates p ∈ P , that represent
actions to be taken by bidder1 we execute the following two steps:

1. Firstly, we consider p as a goal to prove in P , and we obtain a collection of sets ∆i of
social events which entail p (possibly a minimal set?). These represent the history that
generated some expectation.

2. Secondly, we consider p as a goal to prove within bidder1’s policies, and we obtain again
a collection of sets ∆′i of social events that would lead to the generation of p. If for all
∆i there is a ∆′i which is a subset of ∆i, then the computee will always comply (because
the course of events that leads to an “expectation about p” also leads to the generation
of the action p according to bidder1’s policies.

6.1.2 Type 2 verification (compliance by observation)

For this kind of verification we need to be able to observe the computee’s social actions, i.e.,
the communicative acts that they exchange. As in [PG02], we can assume that this can be
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tell(bidder1, auct, h) ∧ tell(bidder2, auct, h) ∧ tell(rand, auct, 1)
→ buy(bidder1, lot, 3 + 2

3
))

Figure 5: Protocol propertyM′.

achieved by policing the society. In particular, “police” computees will be able to “snoop” the
communicative acts exchanged by computees and check at run time if they comply with the
protocol specifications.

This kind of verification is the one which is most easily accommodated in our social frame-
work. The purpose of its mapping to an ALP framework, and the operational counterpart
introduced in Section 4.3 are mainly motivated by the possibility to check the compliance of
the overall computation of a society of computees, with respect to the society protocols.

In [ACG+03a] we already propose a possible implementation of the verification of compliance
to ICS by observation based on the CHR language [Frü98].

6.1.3 Type 3 verification (protocol properties)

M′, defined in Figure 5, is the property that we want this auction mechanism to exhibit. M′

is the first conjunct of the property M defined in [PG02]. The proof of M is obtained by
repeating the proof that we show forM′ to all conjuncts inM. We assume that all properties
that we want to show about protocols can be expressed in the form of integrity constraints. M′

says: if bidder1 and bidder2 are both high bidders, and rand generates 1, then bidder1 will buy
the lot.

In order to prove the protocol properties we do not need to access the computees’ internals,
nor to know anything about the communication acts of the system, because it is a verification
which is statically done at design time. In particular, it can be done by a simple top-down
derivation in Logic Programming.

We could define the algorithm for the proof of a property π expressed as an integrity con-
straint: Body → Head, for the case of a protocol which is expressed by Social ICs with no
disjunctions in the head. Again, we restrict ourselves to the case of normal logic programs.

As we did with Type 1 verification, in order to prove that π holds given the protocol,
we could consider the normal logic program P that we obtain from the protocol through the
mapping T . Then, we consider Head as a goal to prove in P ∪Body (the preconditions of the
property are put together with the logic program). π holds if P ∪Body |= π.

7 Extensions

In this section, we discuss some extensions that we have been partially studied. This is work
in progress, and describes our viewpoint about very challenging issues. We show different ideas
that we tried to develop, with advantages and drawbacks for each one.

7.1 Recovery from violations

We have studied different types of problems related to recovery and violations, and found some
partially satisfactory solutions. We discuss the problems and the possible solutions.
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7.1.1 Problems with violations

The problem of recovering from a violation can be divided in the following steps:

Unexpected events should not start protocols - As we have seen, actions can trigger
new expectations. On the other hand, computees are free to perform actions that were
expected not to happen. In many cases, actions that were expected not to happen should
not trigger interaction protocols, but, possibly, recovery or sanctioning protocols.

Symmetrically, if a protocol can be started by the non-happening of an event, then the
non-happening should trigger new expectations only if the event was not expected to
happen.

Deciding the culprit - When an expectation E (or a NE) is violated, the culprit could be
the computee that should have performed (resp. should not have performed) the expected
(forbidden) action or it may be a different computee. The recovery procedure should de-
cide which computee is responsible for the violation and start a corresponding sanctioning
protocol.

Recovery from violation - After a violation has been detected, an action should be per-
formed to lead the society to a consistent (non-violation) state. The society can acknowl-
edge the violation, and remove the inconsistency. We do not yet address this problem.

In the following, we address the first two issues.

7.1.2 Wrong trigger

Events expected not to happen, that actually happen, in many cases should not generate further
expectations within that protocol, but should activate instead a different, recovery protocol.
For example, let us consider this simple example.

Example 15.
H(tell(Seller,Buyer, offer(Item), P rice), Toffer )
→ E(tell(Buyer, Seller, accept(Item), P rice), TAccept)
∨E(tell(Buyer, Seller, refuse(Item), P rice), TRefuse)

¬H(tell(Seller,Buyer, offer(Item), P rice), Toffer )
→ NE(tell(Buyer, Seller, accept(Item), P rice), T )

H(tell(Buyer, Seller, accept(Item), P rice), TAccept)
→ E(deliver(Seller,Buyer, Item), TDeliver)

(32)

Intuitively, the protocol says that a seller can offer an item to a buyer, and the buyer is expected
either to accept or to refuse. If the buyer accepts, then the seller is expected to deliver the good.
However, the buyer should not accept a good that was not offered.

Suppose now that a buyer sends an acccept message for a good that was not offered:

H(tell(buyer1, seller1, accept(ferrari car), 1$), 1)

What is the expected behavior of seller1? Is it supposed to deliver a Ferrari car taking 1$ as
payment?

Intuitively, we do not want the seller to be expected to deliver a good if the corresponding
accept was expected not to be raised.
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Indeed, one could argue that, as in commitments, the expectation about delivery does not
depend on the single accept of the buyer, but on the couple offer-accept, thus one should rewrite
the protocol as:

H(tell(Seller,Buyer, offer(Item), P rice), Toffer )
∧H(tell(Buyer, Seller, accept(Item), P rice), TAccept)
→ E(deliver(Seller,Buyer, Item), TDeliver)

However, if the protocol is rather complex, there may be many ways to reach a state in the
protocol, so the user has to write very complex implications.

Another possible idea is to avoid triggering (non-recovery) protocols if the action gave rise
to violation. For example, we may write:

H(tell(Buyer, Seller, accept(Item), P rice), TAccept)
∧¬NE(tell(Buyer, Seller, accept(Item), P rice), TAccept)
→ E(deliver(Seller,Buyer, Item), TDeliver)

Thus, the expectation about delivery is raised if the event accept was not expected not to
happen (in a sense, if the action was not forbidden, and thus possible, by the protocol).

Symmetrically, one might have a protocol triggered by the non-happening of an event, like

¬H(p(X))→ E(q(Y ))

Again, we might think that the action should trigger only if the non happening of event X did
not give violation:

¬H(p(X)) ∧ ¬E(p(X))→ E(q(Y ))

Let us finally consider the following examples:

Example 16. “If I do not ask you something, you should not reply.”

¬H(ask)→ NE(reply)

If I did not ask you something but I was supposed to, can you reply?

Example 17. “If I do not send you corrections at 7, submit the paper within
the deadline.”

¬H(corrections, 7)→ E(submit, T ) : T < Tdeadline

If I send you corrections, but I was not supposed to, are you not expected to send the paper
within the deadline?

This issue is more intuitive with expectations about negative behavior. Our current under-
standing is that the wrong trigger of protocols because of (violating) happened events is an
important issue, while its symmetric is not; however, in our framework it is possible to address
both of the issues.

To recap, the solution proposed in this section for recovery from violations divides the
protocol into two layers: a normal and a recovery protocol. The normal protocol is triggered
only by events that do not raise violation, while the recovery protocol is triggered by events
that gave violation. In this way we address the problems identified earlier as follows:
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1. Events that violate the protocols can be easily made harmless, in the sense that normal
protocols are not triggered by events expected not to happen.

2. The user writes the recovery protocol, thus (s)he decides both the culprit and the pun-
ishment.

It is worth noticing that this solution fits perfectly in the declarative semantics (Section 4.1). A
proof-procedure designed to find an admissible, coherent, consistent and fulfilled set of expec-
tations will never trigger a recovery protocol (which is triggered only in case of violation, i.e., if
the set of expectation is not fulfilled). On the other hand, a proof that accepts also a (admis-
sible, coherent, consistent but) non fulfilled set of expectations will punish the culprit decided
by the user by means of the recovery protocol. In the implementation, the proof-procedure
will strive to find a fulfilled set of expectations, but if such a set does not exist, will take (as a
second choice) a violation state, and trigger the recovery protocol.

7.2 Trust and reputation in societies of computees

In recent times, trust has become an important notion in Multi-Agent Systems, especially
in electronic commerce related applications and in the design and modelling of institutions
[ALF99]. Trust can be defined as a subjective expectation an agent has about another’s future
behavior based on the history of their encounters [MM02]. According to Dellarocas [Del02],

“the production of trust has three prerequisites:

• an agent should know its utility function;

• an agent should set a minimum threshold of satisfaction relative to a transac-
tion;

• an agent should estimate the trustworthiness of its prospective trading part-
ners.

Of the three elements of trust computation the first is usually internal and private
to an agent. The second is either internal or the explicit result of a negotiation
process that precedes a transaction. The last one, trustworthiness, is the trickiest
one to assess.”

In order to estimate the trustworthiness of an agent or institutions, many models have been
proposed, for which the role of external information is very important. Some of these are based
on the notion of reputation.

There are several definitions of reputation: “Reputation is a characteristic or attribute
ascribed to one person by another. Operationally, this is usually represented as a prediction
about likely future behavior. It is, however, primarily an empirical statement. Its predictive
power depends on the supposition that past behavior is indicative of future behavior.” [Wil85]
“The reputation of an agent s as perceived by agent b in the context of transaction ti ∈ T with
critical attribute set R is its trustworthiness distribution τ s

b (R, ti) in the special case where the
estimation of τ s

b (R, ti) is based on information about the past behavior of s in transactions of
class T” [Del02]. Finally, reputation is defined by [MM02] as the “perception that an agent
has of another’s intentions and norms”.8 Other definitions of reputation can be found in
[CF98, Mar94, ZM99].

8The notion of norm adopted by the authors is taken by Ostrom, 1998 [Ost98]: “heuristics that individuals
adopt from a moral perspective, in that these are the kinds of actions they wish to follow in living their life.”
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7.2.1 Qualitative trust and reputation management in societies of computees.

Most approaches to reputation management in multi-agent systems adopt numeric methods
to compute trust, to define satisfaction thresholds, to estimate the reputation of an agent.
This results in methods that may be very efficient, but little informed and often depending on
subjective estimates of other agents. Predicting the future behaviour of an individual based on
numerical data might be convenient when a yes/no evaluation and a threshold are all is needed,
and when a large amount of data is enough to grant stochastic value to numbers, but it might
be limiting in other scenarios.

In global and open computation environments, and in the SOCS scenario in particular,
we would rather prefer to provide the computees of a society with the means to evaluate the
behaviour of the others based on their own notion (subjective) of trust.

Given this, it would be difficult if not impossible for a computee to look back at the history
of the other computees (provided it is public, which is not always the case), and to evaluate
it case by case every time it wants to estimate their trustfulness. It would require knowledge
about protocols, which might have changed over time, about the society itself, and so on.

In SOCS, the notions of expectations, fulfillment, and violations can be considered a way to
code the behaviour of a computee with respect to the social protocols and norms of a society.
They are not numerical values, but pieces of knowledge that can be used to give a qualitative
estimate of a computee’s trustfulness.

Although trust and reputation are not a scenario of SOCS, we are considering them as an
interesting extension to our current work.

7.2.2 Example of trust reputation

We conclude this section by briefly sketching an example of reputation management in societies
of computees.

Let us consider three members of a society of computees: a, b, and c. Members of this
society buy and sell items among each other. a needs to buy an item which is sold by b and c
at equivalent prices.

The decision whether to buy the item from b or from c may rely on the degree of trust
(however we define it) that a has about the other computees. We assume that a did not have
any past encounter with either of them, therefore its notion of trust can be based upon the
reputation that b and c have in the community.

a can collect information about b’s and c’s past behaviour in the society. In particular, the
infrastructure – or a representative computee, d – could reply to a’s questions about critical
attributes in past transactions. Such attributes can be objective, such as b’s and c’s fulfillment
of past expectations, violations that they generated in the past, sanctions, etc. Also, such
attributes are not the whole history of their interactions in the society, but represent “filtered”
information about their “good” or “bad” behaviour. While being able to provide objective
information about trustworthiness, on the other hand, this model allows to take into account
also attributes that are subjective (depending on a, in this example). In this approach not only
the idea of reputation is subjective (as in [Del02]) but also the interpretation of the information
used to model a computee’s reputation is subjective.

Some possibilities that open up in this setting are, for instance:

• trust can be individually defined in the computee’s knowledge base, as any other predi-
cate. For instance, a computee could define “trustworthy” an individual that never left a
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specific expectation unfulfilled (forgetting about other expectations that it may consider
irrelevant);

• a computee can use some private integrity constraints to prevent any interaction with
others if their “reputation” violates them;

• by looking at the pending expectations in the society, a computee could estimate the
likelihood of some computees to take some actions rather than others;

• when violations and sanctions are considered private information, not to be disclosed
outside of the infrastructure, the society infrastructure itself (or a computee like d in
the example above) could process such information, in order to provide computees with
“objective” evaluation of its members’ trustfulness, based on criteria which could be made
public.

7.3 Learning protocols

Learning and inductive capabilities are very useful functionalities for agents and computees too,
as it has been pointed out in [SV00].

Learning is applicable at two different levels inside the project:

1. At level of the single computee, when the computee wants to refine his knowledge and
behavior. This inductive capability mainly concerns with Workpackage 1. Among other
knowledge, the computee can learn, for instance, also the protocols ruling its commu-
nication. In the inductive process, it works by exploiting its own knowledge SOKB as
background knowledge (and eventually, its own knowledge on the society and environ-
ment).

2. At the society level, learning is applied for refining knowledge and behavior (e.g., pro-
tocols) of the whole society. This inductive capability concerns Workpackage 2 since it
mainly involves the social behavior emerging from performed communicative acts (as we
discuss in the following).

The process of acquiring new or refined behavior patterns in a social context, is a task which
pertains to members of a society, but that can be exploited from the society itself or by one of
its members, covering a special role.

As pertaining learning and refinement of social rules, the proposed model allows for the easy
use of well known learning techniques, to be exploited from single computees, but also from the
society itself. The society can decide to learn (by some of its members having a special role)
social rules from outcomes of interactions (possibly judged by some oracle), or refine its social
rules when, for instance, it is observed that they are always not respected.

In the following, we discuss how to learn social rules from performed communicative acts
(as judged from an oracle, for the moment).

A lot of work has been done in Multi-Agent Systems which exploit learning techniques.
Before introducing our approach, we briefly survey the most recent approaches to learning in
agent systems, and among them those most related with our purposes.
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7.3.1 Social rules, protocols and learning

In several contexts, social rules minimize conflict and optimize global efficiency. Social rules are
a natural part of any society, and the acquisition of those rules (by computees) is an important
aspect of adaptive behavior which pertains Workpackage 1. From past experience, learning can
be exploited in order to behave socially as, for instance, proposed in [Mat94].

Social learning is the process of acquiring new behavior patterns in a social context, by
learning from other individuals of the society [Mat94]. In [Mat94], Mataric discusses how to
learn social rules in homogeneous societies where social rules are shared by all individuals.
In particular, through social reinforcement learning, she learns (robot) behaviors that do not
produce immediate payoff for the single agent but benefit the group as a whole. In that
context (which is that of a group of robots moving around a room and interested in getting
food), learned social rules are those that minimize interference among agents to direct behavior
away from individual greediness and toward global efficiency. She considers three types of
reinforcement, one related with the individual perception of progress relative to the current
goal, the second coming from observing the behavior of conspecifics, and the third received by
conspecifics. In particular, this latter form of reinforcement do not require the agent to model
the another agent’s internal state. Since the agents belong to a homogeneous society in which
they obey consistent social rules, any reward or punishment received by a conspecific would
have been received by the agent itself in a similar situation. In this way, a society can develop
social rules based on individual learning, i.e., without some centrally imposed arbiter. This
is accomplished by agents which are able to estimate other agents’ reinforcement, and their
individual reinforcement is positively correlated with their conspecifics (see also [Mat98]).

Learned behaviors are condition-action pairs, and goal-driven control laws in particular,
which couple sensory inputs and effector outputs (e.g., if a robot is near a stopped agent, then
proceed).

The proposed approach is interesting since social rules are learned from individuals not only
on the basis of their own experience, but taking into account information and experience coming
from conspecifics too.

In our society model, any interaction relevant at social level is mapped into an event (stored
in the SEKB) occurring in the social environment. Any computee can be aware, through
passive observation (see D4, [KSST03]) of social acts amongst the rest of computees and,
possibly, of sanctions to some of them, thus learning can exploit information from conspecifics
too.

Other approaches have exploited learning in multi-agent systems to learn cooperative be-
havior, but possibly with a less distributed approach.

In [DE02] the authors propose an approach for learning cooperative behavior, where an
agent in a team of cooperative agents is substituted by a new agent. The new agent learns how
to cooperate with the other agents by means of on-line learning, i.e., by learning while solving
the problem at hand. The learning starts from the strategy of the old agent, and is achieved by
means of a genetic algorithm. The approach is tested on various versions of the pursuit game,
in which a number of agents have to catch a “prey” by surrounding it.

In [LR02] the authors present a toolkit for the development of multi-agent systems based on
learning. The toolkit allows the agent to use learning techniques such as reinforcement learning,
Q-learning and neural networks. In order to coordinate the agents, each agent is assigned an
utility function that is computed by a central authority so that by maximizing their local utility
function the agents also maximize a global utility function. The agents apply learning in order
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to maximize their local utility function.

Finally, some further approaches in Multi-Agent Systems have exploited learning techniques
with the purpose of learning the strategy to adopt in negotiation protocols, or learning com-
munication protocols.

In particular, in [ZS97, ZS96] the authors propose an approach for the modification of agent’s
strategies during negotiation. The modification is achieved by means of Bayesian learning. The
authors illustrate their approach by means of an example. Consider a negotiation scenario
that comprehends a buyer and a supplier. They have to negotiate the price of an item to be
exchanged. Consider the negotiation process from the buyer point of view. The buyer has
a belief about the reservation price of the supplier RPsupplier. The reservation price of the
supplier is the threshold of offer acceptability, i.e., the price above which the supplier is willing
to sell the item to the buyer.

The real value of RPsupplier is unknown to the buyer. However, the buyer can update his
belief (learn) about RPsupplier based on the interactions with the supplier and on his domain
knowledge. As a result of learning, the buyer is expected to gain more accurate expectation of
the supplier’s payoff structure, and therefore make more advantageous offers.

In [MOB03] the authors describe an approach for the inference of communication protocols
from the conversations between the agents of a multi-agent system. Conversations are made
up of sequences of messages exchanged inside the system. Stochastic grammatical inference is
used in order to infer a Stochastic Deterministic Finite Automaton that represents a grammar
describing the sequence of messages.

In the following, we concentrate ourselves on learning the social behavior emerging from
performed communicative acts, as this is relevant to Workpackage 2.

7.3.2 Extended ILP for learning protocols

When protocols that rule the society are represented as integrity constraints and expectations
interpreted as abducibles, as proposed above, two issues arise. The former concerns the op-
erational method to ensure that the integrity constraints are satisfied, and it will be faced
by adopting proper proof-procedures (see Section 4.3). The latter concerns the capability of
automatically identifying/learning these protocols (ICS).

In particular, when protocols are declaratively stated as constraints (or constraining clauses
as for the IFF proof-procedure [FK97]), it is worth exploring the use of machine learning
techniques in order to equip computees with the capability of learning, via induction, the
protocols ruling a society/institution.

We would like to equip societies of computees with inductive capabilities by exploiting for
instance Inductive Logic Programming (ILP) techniques, already experimented by members
of the SOCS Consortium in the past. The aim is to learn, incrementally, protocols when
expressed as constraints, i.e., learn the integrity constraints. This might be useful whenever
societies/institutions do not make public their own protocols or they are not yet assessed (but
they will be in the future, as emerging behavior that can be learned).

We require, of course, to consider a proper abductive proof-procedure integrated with the in-
ductive process. If an abductive proof-procedure is taken into account to address the operational
support for protocols expressed as constraints, then we can take advantage, in the inductive
process, of the integration between ILP and Abductive Logic Programming (ALP), already
explored and faced by some members of the Consortium (UNIBO, DIFERRARA, CYPRUS).
See also Appendix C.
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We can assume that examples for the inductive process are the performed communicative
acts, labelled by an evaluation (positive or negative, for the sake of simplicity) given by a sort
of oracle. A more realistic evaluation can be obtained by “sanctioned events”.

In the inductive process, background knowledge is represented by SOKB and SEKB (apart
from examples), examples are H events which have taken place, properly recorded in their sym-
bolic representation (split into positive examples, E+, and negative examples, E−, depending
on their evaluation), and a language bias determines the syntax of the integrity constraints to
be learned.

We can take advantage from previous integration of ILP and ALP and adopt Abductive
Concept Learning introduced in Appendix C as the definition of the learning problem.

In the learning process applied to protocols, background knowledge is represented by the
(known) society infrastructure which corresponds to the ALP triple:

〈KB, E , IC〉

Examples are abducible atoms themselves, i.e., set of positive events (E+, which have got a
positive evaluation since considered mandatory) and a set of negative events (E−, which have
got a negative evaluation since considered forbidden).

Given E+, E−, the ALP triple:
〈KB, E , IC〉

and a set S of possible society infrastructures (ALP programs), the problem is to find a new
society infrastructure:

T ′ = 〈KB′, E , IC ∪ IC ′〉

such that T ′ belongs to S, and T ′ is complete and consistent with respect to E+ and E−.
Notice that, as result of the learning process, both the static knowledge base and IC can

be enlarged. Furthermore, with the notion of correctness introduced above, the compliance
of the learned knowledge and protocols to the given (positive and negative) examples can be
obtained by also possibly abducing further hypotheses. These abducibles can be, in their turn,
new input for a further inductive cycle.

7.3.3 Learning the deadline protocol

Let us see an example of learning of the IC in the case of a simple request-response protocol
with deadline, involving positive expectations with deadline. Suppose that the protocol to be
learned is represented by a single constraint stating that a request should be followed by an
answer within two time ticks:

H(tell(S,R, request(G), D), T )→
E(tell(R,S, answer(G), D), T ′) : T ′ > T, T ′ ≤ T + 2

This protocol could be learned by adopting a system that implements Abductive Concept
Learning. Such a system is, for example, ICL [DRL95].

In this case, the background theory is empty (assuming that >, <, ≤, ≥ are built in
the language). We may have, for example, the following positive interpretations (positive
communication acts):

e+1 = {H(tell(a, b, request(give(nail)), 1), 0),
H(tell(b, a, answer(give(nail)), 1), 1)}

e+2 = {H(tell(a, b, request(send(info)), 5), 10),
H(tell(b, a, answer(send(info)), 5), 12)}
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and the following negative interpretations (negative communication acts):

e−1 = {H(tell(a, b, request(give(nail)), 2), 5),
H(tell(b, a, answer(give(nail)), 2), 8)}

e−2 = {H(tell(a, b, request(send(info)), 7), 15),
H(tell(b, a, answer(give(nail)), 7), 16)}

e−3 = {H(tell(a, b, request(give(nail)), 9), 20),
H(tell(b, a, answer(give(nail)), 9), 19)}

From these examples, Abductive Concept Learning is able to learn the desired constraint

H(tell(S,R, request(G), D), T )

→H(tell(R,S, answer(G), D), T ′)
(33)

which is the previous one, apart from the presence of the E predicate in the head. Moreover,
by adopting techniques similar to those described in [AF97] for learning built-in constraints,
we are able to infer the relationship between T and T ′:

T ′ > T, T ′ ≤ T + 2

At this point, in order to have a ICS , we can turn the H literal in the head into a conditional
E literal having as the condition the constraint shown above.

The application of ILP techniques for learning protocols involving both positive and negative
expectations is subject for future work. In Section 8.3.1 we sketch the learning of the NetBill
protocol.

7.4 Emerging behaviour

The concept of emergence has its roots in the field of complex systems and it roughly refers
to “something new appearing at a different scale w.r.t. parts of the system under observa-
tion” [Cru94]. There is no universal agreement on the definition of emergence (often even
contradictory definitions are given). In the following we report some observations collected
in [Cor02]:

- Emergence arises when an observer recognizes a pattern.

- Emergence is like a dynamic attractor, or the product of a “deep structure” – a pre-existing
potentiality.

- Emergence does not have logical properties; it cannot be deduced (predicted);

- Emergence represents rule-governed creativity based on finite sets of elements and rules
of combination.

In the field of Multi-Agent Systems, the concept of emergence is usually referred to emerging
behavior, society, conventions, etc. [WW95, LL02, ST97, Axe97, Dav00]. In this context, the
term expresses the arising of coordinated behaviors, the autonomous formation of groups or
societies and the reaching of agreements on norms regulating interactions among agents. All
these phenomena involve the presence of stochasticity. Indeed, something can be generally
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defined as emergent when it is not originated from a centralized control, nor the result of
deterministic interaction patterns.

Another relevant issue related with emergence is the introduction of adaptive mechanisms
in the multi-agent system. Adaptive mechanisms range from simple self-tuning of agent param-
eters to the application of evolutionary techniques.

One of the main aims of this project is to investigate the composition of (possibly) different
reasoning mechanisms, which are embedded in computees. This does not necessarily involve
stochastic nor adaptive components. However, we can consider as emerging a characteristic of
the system which can be dynamically observed. This characteristic might be also very simple,
such as the composition of sequences of interactions among computees. In the experimental
setting of Workpackage 6, we will focus mainly on the experimental observation of simple
characteristics, originated by interaction patterns among agents. In particular, the goals are
the following:

- Observe whether a particular interaction pattern emerges;

- Observe which patterns emerge, given a defined initial setting;

- Try to prove the falsity of a given conjecture on a property, by means of a counter-
example9.

8 Examples

In this section, we present three concrete examples where we show the use of ICS to express
protocols. The first is a resource exchange scenario, first introduced in [STT02b] and then
presented in the context of SOCS in [TMM+02, AGL+03b]; the second is a combinatorial
auction scenario, and the third is a protocol for the selling and delivery of information goods
[CTS95].

8.1 The resource reallocation problem

In this section we briefly recall the resource reallocation scenario studied by [STT02b, STT02a,
STT03]. Let us consider a society of computees where individuals have goals to achieve, and in
order to achieve them they identify plans. Plans are (partially) ordered sequences of actions.
In order to execute the actions, computees may need some resources. An action that requires a
resource r is said to be unfeasible if r is not available to the computee that intends to execute it.
Similarly, a plan is unfeasible if it contains an action which is unfeasible, and so is the intention
of a computee, containing such plan10. The resources that computees need in order to perform
an action in a plan but that they do not possess are called missing resources. The resource
reallocation problem is the problem of reducing a possibly non-empty set of missing resources
of a computee to the empty set (resource reallocation problem of a computee), and, in a society,
it is the problem of solving all the resource reallocation problems of all the computees (resource
reallocation problem of a society).

In [STT02b, STT02a, STT03], the exchanges made to solve the resource reallocation problem
are determined by means of negotiation dialogues.

9Here we refer to the concept of falsifiable scientific conjecture described by Popper [Pop68].
10In [STT02a] plans are modelled as part of the computee intentions.
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Figure 6: Request dialogue protocol

They do not model the physical counterpart that they potentially represent (e.g., they do
not model the physical exchange of resources). In their formulation, what is meant by resource
is in fact only an abstract entity, identified by its name, which possibly represents a physical
resource such as a nail or a hammer. The actual delivery of physical resources is not modelled
either. We follow a similar approach, but we also assume that communicative acts may come
together with commitments that at some point computees must fulfill once the act is made.
Based on the idea of commitments, we “institutionalize” the computee interactions, and we
associate computee societies with institutions (see Section 2.1).

As in 5, we define the CCL for resource reallocation by defining the communication language,
and the content language, and the format of communication acts is as described in Section 5.

8.1.1 Protocols in the resource exchange scenario

The only communication protocol allowed in this sample society is the request dialogue protocol,
that we define by a state machine. A request dialogue is initiated by a computee, say x, that
needs a resource r, if there exists a computee y to whom x still has not requested r.

The protocol is defined in Figure 6, as a finite state machine, consisting of states and arcs,
which has as its states an initial state S0, two final states, SF−s (successful termination) and
SF−u (unsuccessful termination), and an intermediate state S1.

The arcs can be viewed as allowed transitions mapping one state to another given a label.
These labels correspond to the content of utterances. In the protocols, we use some abbrevia-
tions:

request for request(give(R, (Tstart, Tend)),
refuse req for refuse(request(give(R, (Tstart, Tend)))),

and so forth.

We can express this protocol in terms of ICS , as it is shown in Figure 7.

The first two groups of ICS express the expected behavior of computees following the request
dialogue protocol, while the last two groups of ICS consider an illicit behavior.

The advantages of using ICS to express protocols have been already discussed in the general
case. In the particular setting of resource reallocation, an obvious advantage of this approach
is that it paves the way to prove formally some properties of the society, such as the class of
resource reallocation problems that it can solve, dialogue termination and maximum length,
and the conformance of computees to protocols. Some work in this respect has already been
done by Sadri et al. [STT02a, STT02c].
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conditions that allow to accept or refuse:

H(tell(X,Y, accept(give(R)), D), T )→
E(tell(Y,X, request(give(R)), D), T ′), T ′ < T

H(tell(X,Y, refuse(give(R)), D), T )→
E(tell(Y,X, request(give(R)), D), T ′), T ′ < T

expected moves from S0 after a deadline of 2 time units:

H(tell(X,Y, request(give(R)), D), T )→
E(tell(Y,X, accept(give(R)), D), T ′), T ′ > T, T ′ ≤ T + 2
∨E(tell(Y,X, refuse(give(R)), D), T ′), T ′ > T, T ′ ≤ T + 2

SF−u and SF−s are final states:

H(tell(X,Y, accept(give(R)), D), T )→
NE(tell(Y,X,Move,D), T ′), T ′ > T

H(tell(X,Y, accept(give(R)), D), T )→
NE(tell(X,Y,Move,D), T ′), T ′ > T

H(tell(X,Y, refuse(give(R)), D), T )→
NE(tell(Y,X,Move,D), T ′), T ′ > T

H(tell(X,Y, refuse(give(R)), D), T )→
NE(tell(X,Y,Move,D), T ′), T ′ > T

S0 is an initial state:

H(tell(X,Y, request(give(R)), D), T )→
NE(tell(Y,X,Move,D), T ′), T ′ < T

H(tell(X,Y, request(give(R)), D), T )→
NE(tell(X,Y,Move,D), T ′), T ′ < T

Figure 7: ICS for the request dialogue protocol
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8.2 Modelling a combinatorial auction

As the rise of the Internet and electronic commerce continues, dynamic automated markets
will be an increasingly important domain for computees and software agents. Auctions are an
important way of allocating items among autonomous and self-interested agents. The software
agent technology seems an attractive paradigm to support auction applications, because the
introduction of software agents acting on behalf of end-users could reduce the effort required to
complete auction activities. Agents are intrinsically autonomous and can be easily personalized
to embody end-user preferences. In addition, they are adaptive and capable of learning from
both past experience and their environment, in order to cope with changing operating conditions
and evolving user requirements [GMM98]. While, in the past, bidders were only humans,
recently Internet auction servers have been built and software agents can participate in the
auction on behalf of end-users [WWW98]. Electronic auctions have already demonstrated the
potential of software agents [CMK96]. Some of these auction servers even have a built-in support
for mobile agents [San00].

In this setting, each agent can be viewed as a computee with knowledge base and reasoning
capabilities required to perform auction activities on behalf of the users. Various learning
techniques have been also applied to auction scenarios and the (bilateral) call market scenario
(see, for instance, [HW98, WWT99, CHH00]), e.g., in order to learn the strategy on which to
base further bids. Participants can be humans or computees.

Items are not limited to goods, but can also represent resources and services, possibly
associated to time windows. Traditionally, auctions are aimed at selling or buying a single
item; the auctioneer tries to maximize his/her profit if selling an item, or minimize his/her
costs if buying an item. Since bidders make bids on a single item, it is easy to choose the best
bid, i.e., the one providing the highest revenue. This kind of auction follows the sequential
auction mechanism. However, it is difficult to bid in these auctions when more than one item is
needed since one bidder can have preferences on bunches of items. In this case, a bidder should
make hypotheses on what the other bidders will bid.

To partially solve the problem, the parallel auction mechanism has been proposed. Bidders
can bid on a set of items simultaneously, bids are visible to all the participants and should be
performed in a limited time window. Again, it is easy to choose the best bid by simply choosing
the best one. A problem in parallel auctions can arise: it can happen that no bidding would
start since all bidders wait for other bids to perform the best offer.

Recently, a third kind of auction mechanism has been proposed, the so called combinatorial
auctions [Nis00, San02, San96]. Bidders can bid on combinations of items, and associate a price
for each combination. The auctioneer should solve the winner determination problem, i.e., it
should choose the best bids that cover all items. Clearly, the problem becomes combinatorial
and deciding the best bids is now difficult. Thus, for a long time combinatorial auctions have not
been considered a viable alternative to single or parallel auctions. Recently, however, effective
solving methods have been propose that make such auctions a viable alternative.

Depending on the kind of auction, the auctioneer either sells goods/services or buys
goods/services. Bidders have the goal to obtain/sell their goods/services under convenient
conditions as far as price is concerned. The auctioneer has the goal to sell/obtain a set of
goods/services maximizing the profit (or minimizing the cost) at the minimum risk. In a
combinatorial exchange, the goal of the administrator is to select bids so as to maximize the
surplus.

We are here particularly interested in the communication protocol of a society representing a
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Figure 8: A protocol for Combinatorial Auctions

Combinatorial Auction. We have two roles: the auctioneer and the bidder. The auctioneer has
the task of opening the auction by informing the bidders about the items it wants to sell/buy.
The bidders may then start bidding (they are not obliged to). Each bid contains a set of items
and a price. The bidding ends when the auction is closed by the auctioneer. The auctioneer
then has to communicate within a deadline to each bidder if its bid wins or looses.

The protocol is depicted in Figure 8.

8.2.1 The SOKB

The goal of the society might be, for instance, selling a given item. In order to sell an item,
the society might expect some auctioneer to open an auction containing the given item. Stated
otherwise, the society expects one of the computees to take the role of the auctioneer in order
to reach the goal of the society. The goal of the society could be

sold(nail)

and the society might have, in the SOKB, a rule

sold(Item)←
E(tell(Auct,Bidders, openauction(Items, Tend, Tdeadline, Anumber)), Topen)
∧E(tell(Bidder,Auct, bid(ItemList′, P ), Anumber), Tbid)
∧Item ∈ Items ∧ Item ∈ Items′

saying that an item is sold if some computee is expected to open an auction where the item is
for sale and somebody offers to buy it. The parameters of the openauction represent

• the whole set of items in the auction, Items,

• the closing time of the auction, Tend, and
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• the deadline within which the auctioneer should answer, Tdeadline.

Instead, each bid has a parameter ItemList′ that represents the bid items and should be a
subset of the total list of Items. The second parameter of the bid is the price P .

The details about the exchanged messages and ICS are explained in the following section.

8.2.2 Rules of interaction (protocols)

In a combinatorial auction, the protocol can be tested by the society (which is the auction in
this case) or by a computee delegated by the society to check the protocols.

The first rule is the following: each time a bidding event happens, the auctioneer should
have sent before an openauction event (to all bidders).

IC auc- 1.

H(current time, Tc),
¬H(tell(R,Bidders, openauction(Items, Tend, Tdeadline), Anumber), Topen),
Topen ≤ Tc

→ NE(tell(S,R, bid(ItemList, P ), Anumber), Tbid), Tbid < Tc

This ICS imposes that a bidder cannot start placing bids if an auctioneer has not opened
an auction.

Placing incorrect bids (a bid for items not for sale, or after time Tend) will be forbidden by
the following rule:11

IC auc- 2.

H(tell(R,Bidders, openauction(Items, Tend, Tdeadline), Anumber), T1)
→ NE(tell(S,R, bid(ItemList, P ), Anumber), ), ItemList 6⊆ Items
∧NE(tell(S,R, bid( , P ), Anumber), T2), T2 > Tend

∧NE(tell(Swrong, R, bid( , P ), Anumber), ), Swrong 6∈ Bidders

The auctioneer should answer to each bid if it wins or looses. The answer should be sent
after the auction is closed within the deadline Tdeadline.

IC auc- 3.

H(tell(S,R, bid(ItemList, P ), Anumber), Tbid)
∧H(tell(R,Bidders, openauction(Items, Tend, Tdeadline), Anumber), Topen)→

E(tell(R,S, answer(win, S, ItemList, P ), Anumber), Tanswer),
Tanswer > Tend ∧ Tanswer < Tdeadline

∨E(tell(R,S, answer(loose, S, ItemList, P ), Anumber), T
′),

T ′ > Tend ∧ T
′ < Tdeadline

Note that this ICS is fired each time a bid is generated and checks that the event answer
will hopefully happen.

Another law is the following: it is not possible that a bidder receives for the same auction
on the same bid two conflicting answers. Therefore, each bidder either wins or looses, but not
both:

11For the sake of brevity, we use the symbol not ⊆ and 6∈ instead of using the corresponding predicates.
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IC auc- 4.

H(tell(R,S, answer(loose, S, ItemList, P ), Anumber), )→
NE(tell(R,S, answer(win, S, ItemList, P ), Anumber), )

IC auc- 5.

H(tell(R,S, answer(win, S, ItemList, P ), Anumber), )→
NE(tell(R,S, answer(loose, S, ItemList, P ), Anumber), )

In addition, the society should ensure that each item should be covered by only one winning
bid, i.e., two winning bids of two different bidders cannot contain the same item:

IC auc- 6.

H(tell(R,Bidder1, answer(win,Bidder1, ItemList, P ), Anumber), )→
NE(tell(R,Bidder2, answer(win,Bidder2, ItemList

′, P ′), Anumber), ),
Bidder1 6= Bidder2 ∧ ItemList ∩ Itemlist

′ 6= ∅

Finally, there is a law that says that it is not possible that the whole set of winning bids does
not cover the whole set of items in the auction. This rule should be enforced if free disposal
is not allowed. Free disposal is the assumption that the auctioneer can obtain/give away one
item for free. Since we check elsewhere that the auctioneer has answered to all bidders, the
society simply has to collect the whole set of winning bids and check that it covers the whole
set of items. This check should be performed after the auction is closed and after the whole set
of answers has been computed:

IC auc- 7.

H(tell(R,Bidders, closeauction,Anumber), Tend) ∧H(current time, Tcurrent),
H(tell(R,Bidders, openauction(Items, Tend, Tdeadline), Anumber), )
∧Tcurrent > Tend, auctioneer(R) ∧ I ∈ Items
→ E(tell(R,S, answer(win, S, ItemList′, P ), Anumber), Tanswer), I ∈ ItemList

′

∨NE(tell(R,S, answer(win, S, ItemList′, P ), Anumber), Tanswer)

Notice that I is universally quantified, thus, the ICS is checked for each I ∈ I tems.
If free disposal is not allowed, all the bids are declared as losing. We can simply declare, as

an alternative, that no bid can win, thus, the interaction with rule IC auc-3 will ensure that all
the bids are losing.

8.3 Modelling the NetBill protocol

In recent years, electronic commerce has gained more and more popularity among both sell-
ers and buyers, because of the ease and fastness with which it allows business transactions.
However, there is still little confidence in the Internet as a reliable marketplace, especially for
questions regarding security and privacy. Electronic commerce protocols can serve as a remedy
to the lack of standard security and privacy mechanisms of the Internet.

NetBill (see [CTS95]) is a security and transaction protocol optimized for the selling and
delivery of low-priced information goods, like software or journal articles. The protocol rules
transactions between two agents: merchant and customer.
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Figure 9: The NetBill protocol

Accounts for merchants and customers, linked to traditional financial accounts (like credit
cards), are maintained by a NetBill server.

The protocol prescribes a price negotiation phase, in which the customer presents evidence
of his/her identity, and requests the quote for a good, and the merchant answers with the
price. Then, the customer accepts or declines the offer; acceptance constitutes an order for
delivery of the goods. The merchant then delivers the goods under encryption (remind they
are information goods), withholding the key. To fulfill payment, the customer constructs and
digitally signs an Electronic Payment Order (EPO) and sends it to the merchant, who will
append the encryption key to it, digitally sign it and forward it to the NetBill server. The
NetBill server takes care of the actual money transfer and returns a digitally signed receipt,
including the key, to the merchant. The merchant forwards receipt and key to the customer,
who will so be able to decrypt the good.

In the following, we will suppose the agents in a NetBill-ruled transaction are computees.
We study how ICS can be used to express (a simplified version of) the protocol as described in
[YS02]. The protocol is depicted in Figure 9.
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Two computees are involved in the protocol: customer (consumer) and merchant.
We suppose the following performatives, with the associated intuitive meaning described in

the following, are available:

• request(C,M, good(G,Q), D): consumer C requests to merchant M the quote Q for a
good G (in a dialogue D);

• present(M,C, good(G,Q), D): merchant M tells consumer C that its quote for good G is
Q;

• accept(C,M, good(G,Q), D): consumer C tells merchant M that it is willing to pay Q for
good G;

• deliver(M,C, good(G,Q), D): merchantM delivers good G to consumer C, expecting that
a quote Q will be paid for it;

• epo(C,M, good(G,Q), D): consumer C sends an Electronic Payment Order for an amount
of Q to merchant M , in payment for good G12;

• receipt(M,C, good(G,Q)): merchant M sends a receipt of payment for good G for an
amount of Q to consumer C.

By using ICS , we can specify what sequences of communicative and physical actions are
acceptable, in the sense that they do not violate the protocol13. The protocol does not deal
with deadlines, so neither will we: no constraints are imposed on time variables in expectations.

We will follow the general principle that an event brought about by a computee should not,
by itself, commit another computee to anything14. This can be achieved in (at least) two ways.

Expectations from bilateral actions - One possibility is to generate an expectation only
as consequence of two or more communicative or physical actions (at least one of one computee
and one of the other), or as consequence of an action which fulfills an expectation. In this
way, we prevent expectations for a computee from being raised by unilateral actions of another
computee.

A possible specification of the protocol by means of ICS follows (ICS (34)–(36)):

H(present(M,C, good(G,Q), D), Tp)

∧H(accept(C,M, good(G,Q), D), Ta),

Tp < Ta

→E(deliver(M,C, good(G,Q), D), Td)

(34)

12Here we consider an interaction between two computees only; therefore, we do not consider interaction
between the merchant and the intermediation server (steps 6 and 7 in Figure 9) and assume that an epo

performative implies that the corresponding payment is always fulfilled correctly. We will also assume that
certification of identity and digital signs are handled by the underlying infrastructure
13We will not consider ICS linking request and present acts, because we think negotiation should not be

constrained: however, if so desired, this can be easily added.
14Obviously, this may not be the case if we consider a hierarchical structure of roles in the society; but for an

electronic commerce setting, it would not make much sense if the merchant or the consumer had some kind of
power over the other.
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An expectation for merchant M to deliver the good is generated by ICS (34) only if both a
present and an accept event have occurred. If consumer C accepts a quote which merchant M
has not presented, no expectation is raised.

H(deliver(M,C, good(G,Q), D), Td)

∧E(deliver(M,C, good(G,Q), D), Td)

→E(epo(C,M, good(G,Q), D), Te)

(35)

ICS (35) is effective (i.e. generates an epo expectation) only if the deliver event corresponds
to an existent deliver expectation. Since a deliver expectation can only be raised for ICS (34),
this implies that corresponding present and accept events have occurred before; in other words,
this prevents consumer C from being obliged to pay for unrequested goods that have been
delivered to it. The same mechanism is used in ICS (36).

H(epo(C,M, good(G,Q), D), Te)

∧E(epo(C,M, good(G,Q), D), Te)

→E(receipt(M,C, good(G,Q), D), Tr)

(36)

Backward expectations - The second way is to use backward expectations, i.e. expectations
concerning past events (see Section 5.3.2); in this way, it is possible to ensure the desired
sequentiality of actions.

H(accept(C,M, good(G,Q), D), T2),

→E(present(M,C, good(G,Q), D), T1), T1 < T2
(37)

H(accept(C,M, good(G,Q), D), T1)

→E(deliver(M,C, good(G,Q), D), T2).
(38)

An accept event generates two expectations: one backward, to ensure it follows a corresponding
present event, and one ordinary, which commits merchant M to deliver. It is worth noticing
that, in case of an accept without a previous present, although the accept event is a violation, the
deliver expectation would be generated anyway, if we do not prevent it by a recovery procedure
(see Section 7.1).

The same applies to the pairs of ICS(39)-(40) and (41)-(42); instead, for a receipt event, it
is only needed to verify that it follows a corresponding epo event (ICS (43)).

H(deliver(M,C, good(G,Q), D), T2),

→E(accept(C,M, good(G,Q), D), T1), T1 < T2
(39)

H(deliver(M,C, good(G,Q), D), T1)

→E(epo(C,M, good(G,Q), D), T2)
(40)

H(epo(C,M, good(G,Q), D), T2),

→E(deliver(M,C, good(G,Q), D), T1), T1 < T2
(41)
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H(epo(M,C, good(G,Q), D), T1)

→E(receipt(M,C, good(G,Q), D), T2)
(42)

H(receipt(M,C, good(G,Q), D), T2),

→E(epo(C,M, good(G,Q), D), T1), T1 < T2
(43)

Note that, in both cases, the protocol is fulfilled when no more expectations exist (which
holds true once the last receipt act has been properly performed).

Both protocol specifications are fulfilled by a complete sequence of actions as the one de-
scribed in [YS02]; however, the second is stricter in that it generates a violation if a non-initial
action is performed and its predecessor has not been (for instance, a deliver without a previous
accept), whereas in the first case this is allowed, but is not effective in generating expectations.
Obviously, which of the two possibilities is better depends on the designer’s choice; however,
there are many more possibilities to make the protocol specification stricter or looser.

8.3.1 Learning the NetBill protocol

(For background material on machine learning, see Appendix C).
Let us see how the constraints describing the NetBill protocol can be learned. Let us

consider first the constraints belonging to the case of expectations from bilateral actions and,
in particular, ICS (34) that we reproduce here for the ease of reading:

H(present(M,C, good(G,Q), D), T1)

∧H(accept(C,M, good(G,Q), D), T2) ∧ T1 < T2

→E(deliver(M,C, good(G,Q), D), T3)

(44)

Suppose we have the following set of positive interpretations (positive communication acts,
as judged by an oracle):

e+1 = {H(present(a, b, good(nail, 10), 1), 2),
H(accept(b, a, good(nail, 10), 1), 5),
H(deliver(a, b, good(nail, 10), 1), 7), . . .}

e+2 = {H(present(c, d, good(hammer, 20), 2), 10),
H(accept(d, c, good(hammer, 20), 2), 13),
H(deliver(c, d, good(hammer, 20), 2), 15), . . .}

and the following set of negative interpretations (negative communication acts):
e−1 = {H(present(a, b, good(hammer, 10), 3), 17),

H(accept(b, a, good(hammer, 10), 3), 20),
H(deliver(a, b, good(nail, 10), 1), 23), . . .}

e−2 = {H(present(a, b, good(nail, 10), 4), 25),
H(accept(b, a, good(nail, 10), 4), 26),
H(deliver(a, b, good(nail, 20), 4), 28), . . .}

e−3 = {H(present(a, b, good(nail, 10), 5), 30),
H(accept(b, a, good(nail, 10), 5), 32), . . .}

e−4 = {H(present(c, d, good(hammer, 10), 6), 40),
H(accept(d, c, good(hammer, 10), 6), 37),
H(deliver(c, dgood(hammer, 10), 6), 42), . . .}
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In order to learn back ICS (34) we can exploit ICL [DRL95]. The background theory is
empty and >, <, ≤, ≥ are built in the language.

From the previous sets of positive and negative interpretations, ICL learns the following
ICS :

H(present(M,C, good(G,Q), D), T1)

∧H(accept(C,M, good(G,Q), D), T2)

→H(deliver(M,C, good(G,Q), D), T3)

(45)

Moreover, by adopting the system described in [AF97] the following relation among the time
variables can be learned

T1 < T2

that, since it involves only variables in the body, can be added to the body of the ICS . Finally,
in order to have a ICS the H literal in the head is turned into an E literal.

The other ICS of the “expectation from bilateral actions” encoding of the NetBill protocol
can be learned in a similar way. However, note that for learning ICS (35)–(36), we need not only
a record of the interactions between computees but also a record of the various expectations
that have raised inside the individual computees.

9 Related work

The main contribution of this deliverable is in providing a declarative representation of the
social knowledge, and in a logic formalism based on social expectations and ICS , for specifying
social rules and easily verifiable protocols, and for defining the semantics of communicative
acts in an open system scenario. Our work relates to several aspects of Multi-Agent Systems
research.

In previous sections, we already gave some background on societies (Section 2.1), protocols
(Section 3.1), and communication languages (Section 5.1) for multi-agent systems. In this
section we discuss the contribution of our work in relationship with the state of the art in these
areas. For the sake of conciseness, we will keep this section partial and will discuss only the
most important relationships with our work.

We consider societies that are open in the sense that computees are free to enter or leave the
society. However, even for open societies, we need to verify that the identity that the computee
communicates is indeed its real identity. To this purpose, we could use techniques developed
in the project SECURE [SEC01], such as APER (A Peer Entity Recognition scheme). In such
a recognition scheme, a small initial measure of trust is given to any entity so that it can enter
the society and begin collaborating with other entities. Through continued collaboration, trust
between entities increases and evolves. Some hints about how to estimate trustworthiness based
on our social framework have been given in Section 7.2.

Several researchers have studied the concepts of norms, commitments and social relations in
the context of Multi-Agent Systems [CFS99]. Furthemore, a lot of research has been devoted in
proposing architectures for developing agents with social awareness (see, for instance [CDJT99]).
Our approach, can be conceived as complementary to these efforts, since instead of proposing
a specific architecture for designing computees, our work in mainly focused on the definition of
a society infrastructure based on Computational Logic for regulating and improving robustness
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of interaction in an open environment, where the internal architecture of the computees might
be unknown.

Our work is very close, as far as the objectives and methodology, to the work on computa-
tional societies presented and developed in the context of the ALFEBIITE project [ALF99], and
the work by Singh [YS02] where a social semantics is exemplified by using a commitment-based
approach. With these works we share the same view of an open society as that of [APS02],
which we introduced in Section 1.1. In turn, our work is especially oriented to computational as-
pects, and it was developed with the purpose of providing a computational framework that can
be directly used for automatic verification of properties such as compliance (see Section 6.1.2).

Most of the formal approaches to model protocols that we briefly reviewed in Section 3.1
specify protocols as legal sequences of actions. In this way, protocols can be over-constrained,
and this affects autonomy, heterogeneity, and ability to exploit opportunities and exceptions
[YS02]. Moreover, the mentalistic approach to protocol definition has been much criticized
mainly because its assumptions regarding agents’ internals are not realistic in open societies of
heterogeneous agents, as, e.g., stated by [Sin98]: “Whenever agents’ mental states are not ac-
cessible, which is reasonably the case if agents operate in open and heterogeneous environments,
it is impossible to verify semantic compliance of communicative acts.” Therefore we advocated
a social approach, where the semantics of interactions is defined in terms of the effects of the
computees interactions on the society. Following this approach, even if the computees mental
state cannot be accessed, it is possible to verify whether communicating computees in a society
comply to some social laws and norms which regulate the interactions.

As regards the approaches based on a process calculus, namely developed in the projects
DEGAS [DEG01] and MYTHS [MYT01], both of them employ the protocol specification only
for proving property of the system and not, as we also do, for checking the conformance of
agents to the protocol.

Another expressive advantage of our framework is that it can express with the same formal-
ism both protocols and social semantics of communicative acts.

A piece of work that inspired ours, as concerning the semantics of communication language,
is that by Fornara and Colombetti [FC02] (see also Section 5.1). The approach there presented
is similar to ours in that it is social-based : it makes no assumptions on the nature of agents,
specifies semantics of actions as their social effects and presupposes a social framework (which
is called institution in [CFV02]) for assigning agents with roles, verifying their social behav-
ior and, possibly, recovering from violation conditions. There are, however, some significant
differences with [CFV02], mainly originating from the different paradigm we have chosen to
express semantics (logic-based instead of object-oriented). The main difference is that a com-
mitment can have several states in [CFV02]. Although an expectation has no state, we can
map to our framework the states of empty (no expectation), active (an expectation which has
been generated), fulfilled (an expectation which has been fulfilled) and violated (an expectation
which has been violated); since we cannot map the states of pre-commitment, canceled and
conditional, our approach might, at a first look, seem less expressive. However, if we think of
the social infrastructure/institution as a black box with computees/agents’ actions as inputs
and fulfillment or violation of expectations/commitments as outputs, it is possible to obtain an
equivalent behavior with our approach to one specified by the approach of [FC02]. We give a
thorough comparison of our work and that of [FC02] in [ACG+03a].

Furthermore, our notion of expectation is more general than that of commitment in [FC02]:
it represents the necessity of a (past or future) event, and is not bound to have a debtor or a
creditor, or to be brought about by a computee.
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A different, and interesting, way of linking social semantics of communicative acts and
protocol specification is presented in [YS02]. However, in that work it is the single agent which,
by exploiting its reasoning/planning capabilities, must find a communication path leaving no
pending commitments (the alternative, to be applied when agents lack reasoning capabilities, is
to compile a protocol specification to a Finite State Machine). Our approach ensures protocol
compliance regardless of computees’ reasoning capabilities, since it lets us express explicitly
constraints between communicative acts, if so desired; however, equipping the communication
model of single computees with sufficient knowledge to reason about social expectations is
certainly an interesting option. This topic is discussed in D4 [KSST03].

In [APS02], Artikis et al. present a theoretical framework for providing executable speci-
fications of particular kinds of multi-agent systems, called open computational societies, and
present a formal framework for specifying, animating and ultimately reasoning about and ver-
ifying the properties of systems where the behaviour of the members and their interactions
cannot be predicted in advance. Three key components of computational systems are speci-
fied, namely the social constraints, social roles and social states. The specifications of these
concepts is based on and motivated by the formal study of legal and social systems (a goal
of the ALFEBIITE project), and therefore operators of Deontic Logic are used for expressing
legal social behaviour of agents [Wri51, vdT03]. ALFEBIITE has investigated the application
of formal models of norm-governed activity to the definition, management and regulation of
interactions between info-habitants in the information society. Their logical framework com-
prises a set of building blocks (including doxastic, deontic and praxeologic notions) as well as
composite notions (including deontic right, power, trust, role and signalling acts).

Deontic Logic enables to address the issue of explicitly and formally defining norms and
dealing with their possible violations. It represents norms, obligations, prohibitions and per-
missions. Deontic Logic enables to deal with predicates like “p ought to be done”, “p is forbidden
to be done”, “p is permitted to be done”. In our context, we only have expectations that can
be respected by computees or violated, depending on their internal structure and behaviour.
Taking this view, the E predicate is a suggestion for what should be done. As discussed also
in [Sin98] at social level we do not have to constrain the autonomy of individuals, therefore we
decide of expressing just expectations: E(h) expresses the expectation that h happens, while
NE(h) expresses the expectation that h does not happen.

Our operator E could be compared with the O operator of Deontic Logic. But, while in a
deontic context, E(h) (NE(h)), could be interpreted as h is obliged (forbidden), in our context
they are interpreted as it is expected that h happens (does not happen). For these reasons we
do not rely on Deontic Logic for the semantics of this operator, but rather on abduction.

We believe that with our proposed formalism based on ICS constraints we can capture
(in a computational setting) the concept of (conditional) obligation with deadline presented in
[DMDW02]. We map time explicitly. They write: Oa(r<d|p) to state that if the precondition
p becomes valid, the Obligation becomes active. The obligation expresses the fact that a is
expected to bring about the truth of r before a certain condition d holds.

For instance, if we have:

p = H(tell(S, a, request(G), D, T ))
r = H(tell(a, S, answer(G), D, T ′)), T ′ > T
d = T ′ > T + 2

we can map Oa(r<d|p) into a ICS :
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H(tell(S, a, request(G), D), T )→
E(tell(a, S, answer(G), D), T ′), T ′ > T, T ′ ≤ T + 2.

A notable difference with [APS02] is that we do not explicitly represent the institutional
power of the members and the concept of valid action. Permitted are all social events that do
not determine a violation, i.e., all events that are not explicitly forbidden are allowed, and this
implements a sort of “open world assumption” at a society level. Differently, permission, when
it needs to be explicitly expressed, is mapped the negation of a negative expectation: ¬NE(. . .).

With respect to social constraints and roles, in [APS02] the framework is based on (Logical)
Constraints, specified by using a temporal formalism based on the Event Calculus [KS86]. We,
instead, represent social constraints by Integrity Constraints on happened events and expec-
tations. We do not map our framework on the Event Calculus but, instead, on an abductive
framework, arguing that in an open society, knowledge on computees behaviour is incomplete,
and we need to do a sort of guess and expectation on the social behaviour of the computees.
Therefore the semantics of our system can be directly mapped onto an abductive framework,
where expectations can be confirmed (fulfilled) or disconfirmed (violated) by the history of the
happened social events. Moreover, we deal with time by using suitable constraints on finite do-
mains (see section 4.2 for a more elaborated discussion), while they use a temporal formalism
based on the Event Calculus.

We are aware that the temporal framework we use is less expressive than that generally
used in these cases [YS02, APS02], but we think that it is powerful enough for our goals and is
a good trade off between expressiveness and efficiency.

Moreover, differently from [APS02], also in defining CCL semantics, we have followed a social
approach which, differently from the mentalistic, seems to fulfill the requirements of commu-
nication in open societies of heterogeneous computees. Therefore, we link social semantics of
communicative acts and protocol specification in a uniform way.

Another notable related work is IMPACT [AOR+99, ESP99]. In IMPACT, agent programs
may be used to specify what an agent is obliged to do, what an agent may do, and what an
agent cannot do on the basis of deontic operators of Permission, Obligation and Prohibition,
whose semantics doe not rely on a Deontic Logic semantics. In this respect, IMPACT and our
work have similarities even if their purpose and expressivity are different. The main difference
is that the goal of agent programs in IMPACT is to express and determine by its application
the behavior of a single agent. In particular, “whenever the agent’s state changes, the agent
must take actions in accordance with some clearly specified operating principle so as to ensure
that the resulting state satisfies some integrity constraints” [ESP99]. Our goal is to express
rules of interaction, that instead cannot really determine and constrain the behavior of the
single computees participating to the interaction protocols, since computees are autonomous.
Constraints in IMPACT are to be satisfied, and their violation has the principal meaning
of a corrupted state. In this case, agents must be able to recover from being corrupted to
uncorrupted [EMS02]. In our setting, violation does not necessarily imply a “corrupted” state
of the society, but just a “violation” of a protocol by a particular computee. Also with different
purposes, we share with IMPACT the same effort of giving semantics in terms of (refined)
restrictions of the possible sets of behaviors. As in [ESP99], we do not rely on Deontic Logic,
but on abduction and well known semantics for Extended Logic Programming, with many
advantages from both the declarative and operational points of view.

Our work is not only directly related to social aspects of MAS, but also to extensions of
Logic Programming for MAS. In particular, the syntax of ICS is strictly related to that of
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integrity constraints in the IFF proof-procedure [FK97]. In Appendix B we compare our work
done about ICS with some syntactic aspects of the integrity constraints handled by the IFF
proof-procedure.

10 Discussion and evaluations of objectives

In this work, we defined a Computational Logic-based framework for modelling societies of
computees and their interactions. This work reports on both published and original work
done within SOCS Workpackage 2 (WP2): “Modelling interactions between computees”. In
Section 1.4 we listed the workshops and conferences where parts of this deliverable have been
submitted and presented, with the aim of both disseminating our results and get feedback from
peer review. The objectives of WP2 are specified in the Technical Annex included in the project
documentation [SOC]. In particular, in the Technical Annex, page 6, it reads:

“Objective O2 will deliver a formal logic-based framework to characterize the in-
teractions between computees in a rule-based manner, either by relying on protocols
shared and agreed upon by all computees in a given society, or by interaction pat-
terns that are specific to individual computees and possibly different for different
computees.”

In deliverable D3 [LMM+03], we set down the evaluation criteria that we would follow to
evaluate our work. In particular, with respect to WP2, we stated the following:

“in order to achieve this vision, the model should satisfy the following specific ob-
jectives:

• societies should be able to function in the presence of incomplete information,
due to the open and dynamically evolving environment;

• societies should be able to handle changes in a dynamic environment;

• societies should be able to adapt their behaviour, as they assimilate new knowl-
edge about the social events;

• societies should include high-level communication mechanisms.

In addition, we have set down two major objectives that relate more to the nature
of the model rather than to the resulting behaviour of the society that the model
achieves:

• the model should lend itself easily to a computational realisation (during
Phase 2);

• the model should be precise and amenable to formal verification of proper-
ties pertaining to the interactions of the computees belonging to a particular
societies (during Phase 3).”

For this purpose, evaluation criteria have been classified into two groups, the first one
related to the GC base requirements (adaptability, openness, heterogeneity, amenability to
dealing with partial information), the second one related to properties of the model (modularity,
computational viability, uniformity, formality, and links with related work).
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The model of societies of computees that we propose follows a Computational Logic-based
approach. In this model, Logic Programming, suitably extended with the concept of ICS and
expectations (interpreted as abducibles), acts as a uniform language for protocols, interaction
policies and patterns.

A degree of openness, understood as the freedom of its members to join or leave it, is
given by the model of society, presented in Section 2, which caters for new members joining a
society and existing members leaving it (see Section 3.5). Moreover, the entry/exit rules can
be expressed in terms of ICS , which makes it possible to implement semi-open societies in the
sense introduced by [Dav01]. The two “extremes” of semi-open societies are: open societies,
i.e., those that pose no constraints at all on the entry rules, and closed societies, i.e., those that
prevent members from joining in or leaving them.

Another degree of openness, understood as the possibility to have a society of heterogeneous
computees, is achieved by the fact that the model of the society, including the handling of
expectations, the protocol conformance checking and the generation of violations, are only based
on the socially observable behaviour of computees: no assumption is made on the internals of
computees, but their social behaviour is constrained by the semantics of social actions and
protocols. Non-conforming behaviour of computees is still possible, but it will be detected by
the society infrastructure and it will have social consequences. Violation handling and recovery
is a matter of current and future work (see Section 7.1). This model of society caters for
reasoning under incomplete information, in the sense that events that did not happen or that
have not been “detected” are treated as unattended expectations, and it is possible to reason
over both expectations and happened events.

The formalism for expressing society rules and protocols, together with the semantics of
the individual communication utterances, is based on Abductive Logic Programming and con-
straints over abducible predicates, and its declarative semantics has been given in terms of
logical entailment. Therefore, appropriate abductive proof-procedures can provide the oper-
ational support for the underlying infrastructure. In Section 4.3 we describe a possible way
to “operationalize” the declarative semantics of societies and protocols, but this will be in-
deed matter of study during the second year of the project, in Workpackage 3, “Computational
models for (societies of) computees”.

Time is explicit in the model. The “reasoning” at a social level is made over time, and it
takes into account issues such as dealing with deadlines, that are important also from a practical
viewpoint (see Section 4.2). In this way, we propose a social framework which is suitable for
modelling a dynamic setting and able to handle changes in a dynamic environment.

We believe that one of the strong points of our approach is to be found in its formality, not
only at a syntactic level (definition of what is the format of the society knowledge, ICS , proto-
cols, CCL format and constraints), but also, and more importantly, at the semantic level, which
allows for describing what are the desirable evolutions of a society and link these formally to the
social structure and social behaviour of the computees. This link is facilitated by the uniform
way in which the society knowledge is expressed at the different levels (protocols, languages)
and by its semantic characterization. Thanks to the society infrastructure, interactions among
computees in a society are not only message exchanges, but they are high-level communication
mechanisms that come together with a semantics that is at the same level as that of interaction
protocols.

Adaptability is another evaluation criteria for the project. Besides a form of adaptability
that can be achieved by individual computees, there is another kind of adaptability that we
aim to achieve at a social level: the society should adapt itself to a changing environment as

75



new social events are recorded in the event history. A first degree of adaptability is achieved
by the society being able to react to changes in the environment. More sophisticated degrees
of adaptability, such as the ability to recover from states of violations, learning how computees
interact, and single out “emerging” patterns of interaction, have been investigated throughout
the project and some preliminary results have been presented in Section 7.3.

With respect to modularity, in our approach extension and merging of protocols can be
accommodated by a suitable composition of constraints representing individual or partial in-
teraction patterns.

As far as computational viability, we are aware that a very expressive formalism such as ICS

can result in computationally costly proof-procedures. For this reason, the evaluation of the
SOCS project will be also based on the outcomes of the prototype demonstration and society
animation that we aim to achieve at the end of Workpackage 4: “Prototype demonstrator”.

We think that the framework here presented is rich enough to accommodate varieties of in-
teractive behaviors of computees. In particular, to evaluate the expressiveness of the designed
interaction models, we have considered as case studies a dialogue-based interaction, with a spe-
cial focus on resource reallocation, a combinatorial auction and an electronic payment network
protocol. Other examples may be considered in the future (as work on scenarios).

We would like to conclude with a note about the relationship between D5 and the other
activity of the project. In the Technical Annex, page 26, it reads:

“The models for interaction should be integrated with the logic-based models for
computees (WP1) in order to allow, through a computational counterpart (WP3),
some interesting and useful global properties of the resulting system to be verified
(WP5).”

We already discussed about the computational counterpart (related to WP3) in Section 4.3.
As far as the relationship between D5 and D4/WP1, the formalism developed in D5 has

been designed for open and heterogeneous systems, therefore we did not put any constraints
on the architecture and design of computees. However, it is a clear advantage of the whole
approach of SOCS the fact that both the formalizations proposed in both D4 and D5 build
upon a Computational Logic-based common ground. This means that it will be possible to
uniformly reason upon both computees and societies, which will be particularly important once
we start the third phase of the project (proving properties, in Workpackage WP5). Some
hints in this respect, and in particular about on-the-fly verification of properties, are given in
Section 6. On the Finally, the social framework of SOCS can be smoothly combined with the
model of a computee (see Section 10 of deliverable D4).
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A Abductive Logic Programming

In this section we give some background to those who are not very familiar with Logic Pro-
gramming. In particular, we will review a technology that we use to give an interpretation of
our model of societies of computees: Abductive Logic Programming (ALP). Some background
on ALP is also given in deliverable D4 [KSST03], in more general terms. Here, we want to
focus on the computational aspects of the abductive process, by briefly introducing the IFF
proof-procedure [FK97], which we refer to very often in this report.

Abduction has been widely recognized as a powerful mechanism for hypothetical reasoning in
the presence of incomplete knowledge [CP86, EK89, KM90]. Incomplete knowledge is handled
by labelling some pieces of information as abducibles, i.e., possible hypotheses which can be
assumed, provided that they are consistent with the current knowledge base. More formally,
given a theory T and a formula G, the goal of abduction is to find a (possibly minimal) set of
atoms ∆ which together with T “entails” G, with respect to some notion of “entailment” that
the language of T is equipped with.

Some results about the computational complexity of the abductive process are presented by
Eiter & Makino in [EM02].

In the following, we briefly recall the framework of ALP [KKT98], where T is a logic program.
Within ALP, abductive proof-procedures (well-assessed in the Computational Logic setting, e.g.
see [EK89, KM90, FK97]) can be exploited to compute any ∆ as above, given G and T .

A.1 Abductive Logic Programming

An abductive logic program is a triple 〈P,Ab, IC〉 where:

• P is a (normal) logic program, that is, a set of clauses of the form
A0←A1, . . . , Am, not Am+1, . . . , not Am+n, where m,n ≥ 0, each Ai (i = 1, . . . ,m + n)
is an atom, and all variables are implicitly universally quantified from the outside. A0 is
called the head and A1, . . . , Am, not Am+1, . . . , not Am+n is called the body of any such
clause.

• Ab a set of abducible predicates, p, such that p is a predicate in the language of P which
does not occur in the head of any clause of P (without loss of generality, see [KKT98]).

• IC is a set of integrity constraints, that is, a set of sentences in the language of P .

Abducible predicates (or simply abducibles) are the predicates about which assumptions (or
abductions) can be made. These predicates carry all the incompleteness of the domain, they
can have a partial definition or no definition at all, while all other predicates have a complete
definition in the logic program.

Given an abductive logic program T = 〈P,Ab, IC〉 and a formula G, the goal of abduction is
to find a (possibly minimal) set of ground atoms ∆ (abductive explanation) in predicates in Ab
which, together with P , “entails” G, i.e., P ∪∆ ` G, and such that P∪∆ “satisfies” IC, e.g. P ∪
∆ ` IC (see [KKT98] for other possible notions of integrity constraint “satisfaction”). Here, the
notion of “entailment” ` depends on the semantics associated with the logic program P (there
are many different choices for such semantics, as it is well-documented in the Computational
Logic literature).

Operationally, we write T `Abd G when there exists an abductive explanation computed by
an abductive proof-procedure for G in T .
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In [KM90] Kakas and Mancarella define a proof-procedure (here referred to as KM) for ALP,
as an extension of that in [EK89]. This procedure assumes that the integrity constraints are in
the form of denials, i.e.:

←A1, . . . , Am, not Am+1, . . . , not Am+n

where each Ai, i = 1, . . . ,m + n is an atom, m > 0, at least one of the Ai, i = 1, . . .m is
abducible, and all variables are implicitly universally quantified from the outside. The semantics
of such integrity constraints within the KM proof-procedure requires that at least one of the
literals in the constraint does not hold. The procedure starts from a goal and a set of initial
assumptions ∆i and results in a set of consistent hypotheses (abduced literals) ∆o such that
∆o ⊇ ∆i and ∆o together with the program P entails the goal. The proof-procedure uses
the notion of abductive and consistency derivations. Intuitively, an abductive derivation is the
standard Logic Programming SLD-derivation suitably extended in order to consider abducibles.
As soon as an abducible atom δ is encountered which does not already occur in the current
set of hypotheses, it is added to the current set of hypotheses, and it must be proved that
any integrity constraint such that δ is an instance of any of the Ai, i = 1, . . . ,m, is satisfied.
For this purpose, a consistency derivation for δ is started. Since the constraints are denials
only (i.e., goals), this corresponds to proving that every such goal fails to hold. Therefore, δ is
removed from all the constraints containing it, and we prove that all the resulting goals fail. In
this consistency derivations, when an abducible is encountered, an abductive derivation for its
complement is started in order to prove the abducible’s failure, so that the initial constraint is
satisfied. When the procedure succeeds for the goal G and the initial set of assumptions ∆i,
producing as output the set of assumptions ∆o, we say that T abductively derives G or that G
is abductively derivable from T and we write T `∆o

G.
The original KM proof-procedure can only deal with abducibles which are ground at selection

time, and flounders if the selected abducibles are not ground. Moreover, it treats constraint
predicates, such as <,≤, 6=, . . ., as ordinary predicates, thus being unable to use specialized
constraint solvers for such predicates. Some work have proposed abductive proof-procedures
dealing with non-ground abducibles and/or constraints which are relevant for our purposes. In
the following, we survey some of them.

A.2 Abductive proof-procedures dealing with variables in hypotheses

and with constraints

In [DS92], Denecker and De Schreye introduce a proof procedure for normal abductive logic
programs by extending the SLDNF resolution to the case of abduction. The resulting proof-
procedure (SLDNFA) is correct with respect to the completion semantics. A crucial property of
this abductive procedure is the treatment of non-ground abductive goals. In [DS92], the authors
do not consider general integrity constraints, but only constraints of the kind ← a, not a. To
overcome this limitation, in a later work [DS93], they consider the treatment of general integrity
constraints but in a quite inefficient way. In practice, they check all the integrity constraints
at the end of the proof for a query, i.e., only when the overall set of abductive hypotheses
supporting the query has been computed. More recent work is represented by the SLDNFA(C)
system [vND00] which extends SLDNFA with constraints.

A recent abductive proof-procedure dealing with constraints is also contained in [ACL],
where the ACLP system is presented. ACLP programs can contain constraints on finite do-
mains. ACLP interleaves consistency checking of abducible assumptions and constraint satis-
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faction. Finally, A-system [KvND01] is a followup of ACLP and SLDNFA(C). A-system differs
from the previous two for the explicit treatment of non-determinism that allows the use of
heuristic search with different types of heuristics.

Among other abductive proofs existing in literature, we cite here the abductive query eval-
uation method proposed by Satoh and Iwayama in 1992 [SI92] and Abdual, by Alferes, Pereira
& Swift, [APS99].

A.3 The IFF proof-procedure

Another recent proof-procedure dealing with non-ground abducibles is presented in [FK97],
referred to as IFF. This uses backward reasoning with the selective completion of the given
logic program (namely its completion, but only with respect to the non-abducible predicates)
to compute abductive explanations for given goals. The goals are conjoined with the integrity
constraints at the beginning of the abductive process, and forward reasoning with them is ap-
plied. The integrity constraints do not need to be denials, but can be any (closed) implications.
This procedure is proposed as the engine underlying the reasoning mechanism of intelligent
agents in [KS99]. An extension of this procedure to deal with constraint predicates is given in
[KTW98]. An extension of this procedure to deal with negation as failure in integrity constraints
is proposed in [ST00].

The IFF proof-procedure [FK97] uses a syntax very related to the one in our framework; in
the following we discuss it in detail.

A.3.1 Syntax

An abductive program is a triple 〈T,Ab, IC〉, where:

• T is a theory given by a set of definitions

P (X1, . . . , Xk)↔ D1 ∨ · · · ∨Dn

where Di is a conjunction of literals (positive or negative atoms). The semantics is similar
to that of the completion of a logic program, except for the fact that there can be more
definitions for a unique predicate. This is used to distinguish suspended atoms: in fact,
when using the unfolding rule (that replaces resolution), only one-way unification (a.k.a.
pattern-matching) is used. For example, the user can either define a predicate p/1 as

p(1)↔ true.
p(2)↔ true.

or as
p(X)↔ X = 1 ∨X = 2.

the two are declaratively equivalent, but have a different operational semantics: a query
?− p(Y ) is suspended in the first case and opens a choice point in the second.

The syntax forbids to write two definitions with unifying heads; this avoids backtracking
in the selection of the definition.

Apart from this, the meaning is the same as for the completion: all variables in the head
are universally quantified and the remaining (in the body) are existentially quantified.

A definition is allowed if every variable in a negated atom also occurs in a positive atom
in the same Di (intuitively, in the same branch);
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• Ab is a set of abducible predicates;

• IC is a set of Integrity constraints. It is a set of implications

A1 ∨ · · · ∨Am ← B1 ∧ · · · ∧Bn

where all variables are universally quantified, Ai and Bi are atoms (can be abducibles
or defined predicates), but they cannot be the negation of an atom. An IC is allowed if
every variable in the conclusion occurs in the condition.

A.3.2 Proof-procedure

The IFF proof-procedure is based on rewriting. It starts with a formula (that replaces the
concept of resolvent in logic programming) built as a conjunction of the initial query and the
ICs. Then it repeatedly applies one of the following inference rules:

unfolding replaces resolution;

propagation propagates ICs;

splitting distributes conjunctions and disjunctions, making the final formula in a sum-of-
products form;

case analysis if the body of an IC contains X = t, case analysis nondeterministically tries
X = t or X 6= t,

factoring tries to reuse an previously made hypothesis;

rewrite rules for equality use the inferences in the Clark Equality Theory;

logical simplifications try to simplify a formula through equivalences like A∧false↔ false,
[A← true]↔ true, etc.

Thanks to these inference rules, each node is always translated into a (disjunction of) con-
junctions of atoms and implications; e.g., it can look like:

(A1 ∧A2 ∧ [A3 ← B1 ∧B2] ∧ [A4 ← B3 ∧B4])
∨ (Ai ∧Aj ∧Ak ∧ [Az ← By] ∧ [false← B5])

the atoms have a similar meaning to those in the resolvent in LP, while the implications are
(partially-propagated) integrity constraints.

Given a formula, it is always clear the quantification of the variables by the following rules:

• if a variable is in the initial query, then it is free;

• else if it occurs in an atom, it is existentially quantified;

• else (it occurs only in implications) it is universally quantified.
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A.3.3 Negation

A negated atom ¬A is rewritten as false← A. Notice that this does not change the existential
quantification of the atom because of the allowedness condition. A variable can occur in a
negated atom only if it also occurs in a positive atom. A variable is universally quantified
only if it occurs only in implications. Thus, if an implication false← A was generated by the
transformation of a negated atom ¬A, the variables in A necessarily occur also in a positive
atom, and must be considered existentially quantified.

B Comparing ICS with the integrity constraints of the

IFF proof-procedure

The syntax of ICS is strictly related with that of integrity constraints in the IFF proof-
procedure [FK97]. This leads to the idea of using an extension of the IFF proof-procedure
as a proof-procedure for our language. We can map E and NE as abducible predicates, while
H atoms are considered as facts in the history of the society.

A first, obvious difference stands in the fact that our framework requires more dynamics.
New facts (H events) continuously occur in the KB of the society, and must be taken into
account by the proof.

Other differences in the syntax are given in the following.

Syntactic restrictions - In the IFF definitions, integrity constraints and queries are required
to be allowed. A definition and a query are allowed if every variable occurring in a negative
atom also occurs in a positive atom (or in the head of the definition). This ensures that all
variables in a negative atom will be existentially quantified (or free). An Integrity Constraint
is allowed if every variable in the conclusion also occurs in the condition. All these restrictions
are present in order to avoid explicit quantification of the variables, as explained in the next
paragraph.

Implicit/explicit quantification of variables - The IFF proof-procedure is a rewriting
systems that produces, at each node, a Formula. A formula is a conjunction of atoms and
implications. Thanks to the syntactic restrictions explained earlier, for every variable it is
always clear if the variable is quantified existentially or universally; thus, there is no need to
add an explicit quantification.

Quantification of variables in abduced atoms - In the IFF proof-procedure, abduced
atoms are always existentially quantified. In our framework, we need to express concepts like
“An event is expected not to happen in a time interval” or “All computees are expected not to
perform a given action” or “A computee is expected not to perform all the actions in a given
class”. To express an expected behavior one needs to forbid actions for all the possible values
of the variables. For this reason, new variables in NE atoms are universally quantified.

In the IFF proof-procedure, universal quantification can be put in the integrity constraints;
for example, instead of writing

H(tell(X,Y, yes,D), T )→ NE(tell(X,Y, no,D), T ′)
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(where T ′ is universally quantified in our framework, and would be existentially quantified in
the IFF), one may write (in the IFF clauses use the symbol ↔, as they represent a completion
of a set of clauses):

H(tell(X,Y, yes,D), T ),H(tell(X,Y, no,D), T ′)→ false

Note that this provides a different set of expectations, thus the result is different. The set of
expectations may be visible to the computees, so they can reason about their expected behavior.

Quantification of variables in Integrity Constraints - Variables in the integrity con-
straints of the IFF proof-procedure are all universally quantified, while in our case some of the
variables are universally quantified, and some are existentially quantified. This derives from the
fact that positive expectations (E) mean that some computee should perform a given action
choosing some parameters (e.g., the time at which the action is performed, or the addressee of
the action, etc.). In the previous example

H(tell(X,Y, ask,D), T ) → E(tell(Y,X, yes,D), T ′)
∨ E(tell(Y,X, no,D), T ′)

Variable T ′ is existentially quantified, while in the IFF it is not accepted, as the integrity
constraint is not allowed.

In the IFF one can put existentially quantified variables in the body of a definition, thus
one would write:

H(tell(X,Y, ask,D), T )→ reply(X,Y,D)

reply(X,Y,D) ↔ E(tell(Y,X, yes,D), T ′)
∨ E(tell(Y,X, no,D), T ′)

C Learning

In the following, we briefly recall the main definition of ILP, and some extensions provided for
learning abductive logic programs. This part is aimed at providing some background which
can help the reader in better understanding the exploitation of ILP to learn social behavior in
societies of computees.

C.1 Inductive Logic Programming

ILP is the research area that studies the problem of inductive concept learning from examples
when the representation language employed is Logic Programming. In particular, ILP is the
research area covering the intersection of Machine Learning [MCM83] and Logic Programming.
Its aim is to devise systems that are able to learn logic programs from examples and from a
background knowledge.

The ILP problem can be defined as [BG94]:
Given:

• a set P of logic programs (hypotheses space)

• a set E+ of positive examples
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• a set E− of negative examples

• a logic program B (background knowledge)

Find:

• a logic program P ∈ P (target program) such that

– ∀e+ ∈ E+, B ∪ P ` e+ (completeness)

– ∀e− ∈ E−, B ∪ P 6` e− (consistency).

The predicates which are defined in P are called target predicates. The sets E+ and E−

are called training sets and contain ground atoms for the target predicates. The program B
contains the definitions of the predicates that are already known. We say that the program P
covers an example e if15 P ∪ B ` e, i.e., if the theory “explains” the example. Therefore the
conditions that the program P must satisfy in order to be a solution to the ILP problem can be
expressed as “P must cover all positive examples and must not cover any negative example”. A
theory that covers all positive examples is said to be complete while a theory that does not cover
any negative example is said to be consistent. The importance of the hypotheses space lies in
the fact that it defines the search space of the ILP system. In order to be able to effectively
learn a program, this space must be restricted as much as possible. If the space is too big, the
search could be unaffordable.

The language bias is a description of the hypothesis space (i.e., the forms of program clauses
to be learned).

There are two broad categories of ILP learning methods: bottom-up methods and top-down
methods. In bottom-up methods clauses in P are generated by starting with a clause that
covers one or more positive examples and no negative example, and by generalizing it as much
as possible without covering any negative example. In top-down methods clauses in P are
constructed starting with a general clause that covers all positive and negative examples and
by specializing it until it does no longer cover any negative example while still covering at
least one positive. A basic top-down inductive algorithm [BG95, LD94] learns programs by
generating clauses one after the other. A clause is generated by starting with an empty body
and iteratively adding literals to the body.

ILP has been initially applied to learn definite logic program. However, in the last years,
in this research area, a number of works appeared on the problem of learning non-monotonic
logic programs [BM92, DK95, BGNR96, MV96]. Particular attention has also been given to the
problem of learning abductive logic programs [ELM+96, KR96, LMMR97a, LMMR97b, KR97]
and, more generally, to the relation existing between abduction and induction and how they
can integrate and complement each other [DDRFK96, DK96, AD95].

Learning abductive logic programs allows one to deal with knowledge incompleteness, and
also learn default theories and exceptions to general rules, since default negation can be mapped
into abduction. These are very frequent cases in practice, because very often the available data
is incomplete and/or noisy. Abduction helps induction by allowing to make assumptions about
unknown facts.

15In the ILP literature, the derivability relation is often used instead of entailment because real systems adopt
the Prolog interpreter for testing the coverage of examples, although this is not sound nor complete.
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C.2 Learning with abduction

In [LMMR97a, KR00] members of the SOCS consortium defined a new learning problem called
Abductive Concept Learning. In this new framework an abductive logic program is generated
from an abductive background knowledge and from a set of positive and negative examples
of the concepts to be learned. Moreover, abductive derivability `Abd is used as the example
coverage relation instead of deductive derivability as in conventional ILP.

Definition 18 (Abductive Concept Learning).
Given

• a hypothesis space T = 〈P, I〉 consisting of a space of possible logic programs P and a
space of possible integrity constraints I,

• a set of positive examples E+ (ground facts),

• a set of negative examples E− (ground facts),

• an abductive logic program T = 〈P,A, I〉 as background theory,

Find
A set of rules P ′ ∈ P and a set of integrity constraints I ′ ∈ I such that the new abductive

logic program T ′ = 〈P ∪ P ′, A, I ∪ I ′〉 satisfies the following conditions

• T ′ `Abd E
+,

• ∀e− ∈ E−, T ′ 6`Abd e
−.

We say that an individual example e is covered by a theory T ′ if and only if T ′ `Abd e.

The full abductive concept learning problem can be split into two subproblems: (1) learning
the rules together with appropriate explanations and (2) learning integrity constraints. The
solutions of the two subproblems can be combined to obtain a solution for the original problem.
[LMMR97a] gives a top-down algorithm for the first subproblem. The second subproblem can
be solved by means of a system that learns from interpretations, like ICL [DRL95].
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