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1 Introduction

This deliverable reports the work conducted within the SOCS project for workpackage WP5
on verifiable properties of computees and their societies. In the first year of the project we
developed declarative models for computees and societies of computees. In the second year
we developed the respective computational models and individual and integrated prototype
implementations for them. In the third year we have formalised and proved various properties
of the models (in WP5), and conducted practical experiments, with the implemented models,
based on several scenarios (in WP6). A companion document, deliverable D14 [2], reports the
work on these experiments.

The models of computees and societies of computees are both based on computational logic.
Even the control module of the computees is formalised as computational logical theories,
more specifically as logic programs with priorities. These design principles have already paid
dividends in the development of the computational models and the proximity of the prototype
implementations to the declarative and computational models. A further advantage of the use of
computational logic is that it ensures that the models, both the declarative and computational
models, lend themselves well to the specification and verification of formal properties. This is
the topic for WP5 and this deliverable.

1.1 Choice of Properties

The choice of the properties to consider for WP5 has been guided by the research area of Global
Computing. This choice has been deliberated and refined incrementally and progressively within
the SOCS consortium, as reported in the evaluation criteria given in deliverable D3 [50], the
Provisional List of Properties [30] and the progress report in deliverable D12 [3]. The final
choice is aimed at the following main objectives:

(O1) Effectiveness: To show the effectiveness of our computational logic approach in modelling
computees and their societies, in the sense of facilitating formalisation of properties and
prediction of behaviour without the need to resort to empirical methods.

(O2) Consequences: To explore the consequences of some of the detailed design choices: The
computee model is based on a modular collection of capabilities and transitions integrated
within cycle theories for control, incorporating various selection functions. The society
model is based on a social infrastructure that incorporates social knowledge and protocols.
In the detailed designs of both computees and societies many individual choices have had
to be made. One of our objectives in WP5 has been to formally explore the consequences
of these choices. This part of our investigations has aimed at:

• Showing the appropriateness of the design decisions: for example some properties
show the soundness of the proof procedures developed for computees and societies,
and others show some benefits for example in terms of computees’ behaviour towards
their goals and plans that result directly as a consequence of the design choices.
• Identifying any shortcomings or errors in the detailed design.

(O3) Versatility: To explore the scope and versatility of the computee and society models:
for example we have investigated how we can specify different profiles of behaviour in
computees and how such profiles could alter the behaviour of computees and their success
in achieving their goals.
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(O4) Guidance: To give guidelines to developers who may use the PROSOCS platform
(PROSOCS [4] is the implemented platform for computees and societies ): for example
formal results that show the relative merits of different behaviour profiles with respect to
parameters characterising features of an application domain or environment can provide
useful guidelines for those who wish to develop applications using PROSOCS.

(O5) Scenarios: To explore aspects of the chosen scenarios: for example we have studied various
aspects of protocol conformance and allocation of resources.

We present the properties in four categories:

• Properties of Proof Procedures

• Properties of Individual Computees

• Properties of the Social Infrastructure

• Properties Related to Protocol Conformance

Each property in these four categories addresses at least one, and more often than not, several
of the objectives O1–O5. For each property we give its informal description, significance,
brief formal description, approach taken in proving it and the related work, if any. Detailed
descriptions of the properties and proofs are given in the reports included in the annex and
various published documents (see page 76).

Apart from the properties shown in this deliverable there are many features of the SOCS
computee and society models that make them particularly suited to open and dynamic environ-
ments of the kind the Global Computing initiative addresses. These features require no proofs
and become evident from an examination of the models. For example,

• Heterogeneity: This is possible at almost every level of the models, starting from the
individual computee knowledge bases, priorities, and control strategies, to interaction
protocols and society knowledge bases.

• Adaptability: The control strategies of computees’ “normal” behaviour is designed in
such a way that the computee can be interrupted from its “normal” activities to make
observations in the environment and record them in its knowledge base. It then uses this
information to make any necessary adjustments to its goals and plans in order to adapt
to the perceived changes in the environment. Such changes include receiving messages
from other computees.

• Openness: The social infrastructure caters for open societies where there are no restric-
tions on which or how many societies a computee joins.

The work on WP5 is complemented by that of WP6, which aims at conducting practical exper-
iments with the PROSOCS platform and the implemented models of computees and societies
of computees. The experiments are designed to explore a number of issues:

• To test the formal definitions of some of the componments of the models, for example ex-
periments are conducted in testing some of the behaviour profiles (described in Section 5.1
in this deliverable) and the computee planning capability and transition (described in de-
tail in deliverable D8 [36]).
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• To explore empirically some of the properties of the behaviour profiles.

• To explore empirically the application of the fully integrated models and the PROSOCS
platform on example scenarios from the domain of combinatorial auctions.

The two workpackages WP5 and WP6 have provided valuable input to one another, each helping
to enhance and refine the work conducted in the other.

1.2 Deliverable Overview

The rest of this deliverable is structured as follows. In Section 2 we give an overview of the
declarative and computational models of individual computees and societies of computees. In
Section 3 we outline and classify the properties that are addressed in D13. We also explain the
uniform format that is used for the summaries given for each property in the rest of the body
of the deliverable. Using this format, in Sections 4, 5, 6, and 7 we outline the properties of the
proof procedures, individual computees, the social infrastructure and protocol conformance,
respectively. In Section 8 we conclude, and following the list of references we list all the
documents that are annexed to D13.

2 Background on the SOCS Approach

In this section we briefly review the computee and the society models and proof procedures
developed within SOCS. The purpose of this section is to make this deliverable as self-contained
as possible. The models and the proof procedures were presented in detail in deliverables D4 [42],
D5 [54] and D8 [36].

2.1 The KGP Model of Individual Computees

We summarise the main components and concepts of the KGP model of computees. Further
details may be found in deliverable D8 [36].

2.1.1 Knowledge, Goals and Plan

Internal state. KGP computees have an internal state which is a tuple
〈KB, Goals, P lan, TCS〉, where:

• KB is the knowledge base of the computee, and describes what the computee believes of
itself and the environment. KB consists of several modules supporting different reasoning
capabilities. These modules are:

– KBplan, for Planning,

– KBpre, for the Identification of Preconditions of actions,

– KBTR, for Temporal Reasoning,

– KBGD, for Goal Decision,

– KBreact, for Reactivity, and
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– KB0, for holding the (dynamic) knowledge of the computee about the external world
in which it is situated (including past communications). It records, for example,
observations of fluents holding or not holding in the environment at given times, and
actions executed by the computee or observed to be executed by other computees at
given times. KB0 is included in all other knowledge bases.

• Goals is the set of objectives that the computee wants to achieve. Each goal has an
associated time which can be fully instantiated or a (possibly constrained) variable.

• Plan is a set of actions scheduled in order to satisfy goals. Each action also has an
associated time.

• TCS is a set of constraint atoms (referred to as temporal constraints) in some given
underlying constraint language with respect to some structure < equipped with a notion
of constraint satisfaction |=<. Temporal constraints bind the time variables of goals in
Goals and actions in Plan, thus implicitly defining when goals are expected to hold and
when actions should be executed. Via the temporal constraints, actions are partially
ordered.

In the sequel, given a set C of sentences built from constraint atoms, |=< C will stand for
C is <-satisfiable, and 6|=< C will stand for C is <-unsatisfiable.

Goals and actions are uniquely identified by their associated time, which is implicitly existen-
tially quantified within the overall state. To aid revision and partial planning, Goals and Plan
form a tree, whose root is represented by ⊥. Top-level goals and actions are children of the root
of the tree.

Valuation of temporal constraints. Given a state S = 〈KB, Goals, P lan, TCS〉, we de-
note by Σ(S) (or simply Σ, when S is clear from the context) the valuation:

Σ(S) = {t = τ | executed(a[t], τ) ∈ KB0} ∪ {t = τ | observed(l[t], τ) ∈ KB0}

Intuitively, Σ extracts from KB0 the instantiation of the (existentially quantified) time variables
in Plan and Goals, derived from having executed (some of the) actions in Plan and having
observed that (some of the) fluents in Goals hold (or do not hold). KB0 provides a “virtual”
representation of Σ.

2.1.2 Capabilities and Transitions

Capabilities. Computees have a collection of reasoning capabilities, including Goal Decision,
Planning, Reactivity and Temporal Reasoning. In the computational counterpart of the formal
KGP model, the last three of these have been realised using the CIFF proof procedure for
abductive logic programming [24], while the Goal Decision capability builds on the LPwNF
(Logic Programming without Negation as Failure) framework, implemented in the Gorgias
system [20, 45]. Another important capability is the Sensing capability to check whether a
given property holds in the environment.
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Transitions. The state of a computee evolves by applying transition rules, which employ
capabilities and constraint satisfaction. The transitions are:

• Goal Introduction (GI), replacing Goals with a new set of top-level goals, and using the
Goal Decision capability.

• Plan Introduction (PI), changing Goals and Plan, and using the Planning and Introduc-
tion of Preconditions capabilities.

• Reactivity (RE), changing Goals and Plan, and using the Reactivity capability.

• Sensing Introduction (SI), changing Plan by introducing new sensing actions for checking
the preconditions of actions already in Plan, and using the Sensing capability.

• Passive Observation Introduction (POI), changing KB0 by introducing unsolicited infor-
mation coming from the environment, and using the Sensing capability.

• Active Observation Introduction (AOI), changing KB0, by introducing the outcome of
(actively sought) sensing actions, and using the Sensing capability.

• Action Execution (AE), executing all types of actions (physical, sensing, communicative),
and changing KB0.

• State Revision (SR), revising Goals and Plan, and using Temporal Reasoning and Con-
straint Satisfaction.1

Transitions are represented as T (S, X, S′, τ), where T is the name of the transition, S is the
state before the transition is applied and S′ is the state after, X is the (possibly empty) input
taken by the transition, and τ is the time of application of the transition.

2.1.3 Cycle Theories

Transitions are integrated within cycle theories that specify the control component of com-
putees.

Cycle theory. Formally, a cycle theory Tcycle consists of the following parts:

• An initial part Tinitial, that determines the possible transitions that the agent could
perform when it starts to operate (initial cycle step). More concretely, Tinitial consists of
rules of the form

∗T (S0, X)← C(S0, τ, X), now(τ),

which we refer to via the “name” R0|T (S0, X). These rules sanction that, if the conditions
C are satisfied in the initial state S0 at the current time τ , then the initial transition should
be T , applied to state S0 and input X, if required. Parameter X may be absent if the
given transition requires no input.

The notation ∗T (S, X) in the head of these rules, meaning that the transition T can
potentially be chosen as the next transition, is used in order to avoid confusion with the
notation T (S, X, S′, τ), introduced earlier to represent the actual application of T .

1We assume here that the two transitions of Goal Revision and Plan Revision in the original KGP model
presented in [42, 36, 43] are combined into a single State Revision transition (see also Section 2.3.1).
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The following initial rule, for example, expresses that the first transition may be a Plan
Introduction provided there are goals available to plan for:

R0|PI(S0, Gs) : ∗PI(S0, Gs)←Gs = cGS(S0, τ), Gs 6= ∅, now(τ)

• A basic part Tbasic that determines the possible transitions (cycle steps) following other
transitions, and consists of rules of the form

∗T ′(S′, X ′)← T (S, X, S′, τ), EC(S′, τ ′, X ′), now(τ ′),

which we refer to via the “name” RT |T ′(S′, X ′). These rules sanction that, after the
transition T has been executed, starting at time τ in the state S and ending at the
current time τ ′ in the resulting state S′, and the conditions EC evaluated in S′ at τ ′ are
satisfied, then transition T ′ could be the next transition to be applied in the state S′ with
the input X ′, if required (again, parameter X ′ may be absent). The conditions EC are
called enabling conditions as they determine when a cycle-step from the transition T to
the transition T ′ can be applied. In addition, they determine the input X ′ of the next
transition T ′. Such inputs are determined by calls to the appropriate selection functions.

For example, the following basic rule expresses that a State Revision may be followed by
an Action Execution provided that the set of actions resturned by the action selection
function is not empty:

RSR|AE(S′, As) : ∗AE(S′, As)← SR(S, S′, τ), As = cAS(S′, τ ′), As 6= ∅, now(τ ′)

• A behaviour part Tbehaviour that contains rules describing dynamic priorities amongst
rules in Tbasic. Rules in Tbehaviour are of the form

RT |T ′(S, X ′) �RT |T ′′(S, X ′′)←BC(S, X ′, X ′′, τ), now(τ)

with T ′ 6= T ′′, which we will refer to via the “name” PT
T ′�T ′′ . These rules in Tbehaviour

sanction that, at the current time τ , after transition T , if the conditions BC hold, then
we prefer the next transition to be T ′ over T ′′, namely doing T ′ has higher priority than
doing T ′′, after T . The conditions BC are called behaviour conditions. They are heuristic
conditions, which may be defined in terms of heuristic selection functions (see [42] for
details). For example, the heuristic action selection function may choose those actions in
the agent’s plan whose time is close to running out amongst those whose time has not
run out.

• An auxiliary part including definitions for any predicates occurring in the enabling and
behaviour conditions, and in particular for selection functions (including the heuristic
ones, if needed).

• An incompatibility part, including rules stating that all different transitions are incom-
patible with each other and that different calls to the same transition but with different
input items are incompatible with each other.

Operational trace. Cycle theories are interpreted as logic programs with preferences and
the respective entailment operator is denoted by |=pr. A cycle theory Tcycle induces an
operational trace, namely a (possibly infinite) sequence of transitions

T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), Ti+1(Si, Xi+1, Si+1, τi+1), . . .

(where each of the Xi may be absent), such that
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• S0 is the given initial state;

• for each i ≥ 1, τi is the time of the execution of transition Ti, with τi < τi+i;

• (Initial Step) T 0
cycle ∧ now(τ1) |=pr ∗T1(S0, X1), where T 0

cycle is Tcycle − Tbasic;

• (Cycle Step) for each i ≥ 1:

T s
cycle ∧ Ti(Si−1, Xi, Si, τi) ∧ now(τi+1) |=pr ∗Ti+1(Si, Xi+1),

i.e. each (non-final) transition in a sequence is followed by the most preferred transition,
as specified by T s

cycle, where T s
cycle is Tcycle − Tinitial. If the most preferred transition

determined by |=pr is not unique, we choose one arbitrarily.

We refer to a state Si in an operational trace as 〈KBi, Goalsi, P lani, TCSi〉.

2.1.4 The CIFF Proof Procedure

The computational counterpart of the formal KGP model builds on two proof procedures: Logic
Programming without Negation as Failure (LPwNF), implemented in the Gorgias system, and
CIFF for abductive reasoning with constraint predicates. We only include a brief description
of the latter here, to provide a reference point for the results on CIFF presented later on (see
Sections 4.4 and 4.5).

CIFF extends the IFF procedure of Fung and Kowalski [33] in two ways. One is that
CIFF incorporates a constraint solver to deal with constraint predicates. The second concerns
allowedness. The original IFF procedure requires inputs to meet a number of allowedness
conditions to be able to guarantee the correct operation of the procedure. For CIFF, our
approach is to tackle the issue of allowedness dynamically, i.e. at runtime, rather than adopting
a static and overly strict set of conditions. To this end, the CIFF procedure includes a dynamic
allowedness rule which is triggered whenever the procedure encounters a particular formula
it cannot manipulate correctly due to a problematic quantification pattern. If the dynamic
allowedness rule detects a formula with a quantification pattern that cannot be handled by
the other proof rules then that node is labelled as undefined. This ensures (i) that CIFF
will never compute an incorrect answer, and (ii) that an answer different from undefined is
given whenever possible (in comparison, the overly strict static allowedness condition given by
Fung and Kowalski means that their procedure is not defined over some types of input where
computing an answer would still be possible). Our approach also allows us to run the procedure
without first checking whether or not the input meets some suitable allowedness conditions (in
comparison, the original IFF procedure could return an incorrect answer in such a case).

The input to the CIFF procedure consists of a (selectively completed) theory Th, a set of
integrity constraints IC, and a query Q. There are three possible outputs: (1) the procedure
succeeds and indicates an (abductive) answer to the query Q; (2) the procedure fails, thereby
indicating that there is no answer; and (3) the procedure reports that computing an answer is
not possible, because a critical part of the input is not allowed.

The CIFF procedure manipulates a set of formulas that are either atoms, implications,
or disjunctions of atoms and implications. The theory Th is kept in the background and is
only used to unfold defined predicates as they are encountered. Whenever a disjunction is
encountered, the splitting rule may be applied, i.e. disjunctions give rise to different branches
in the proof search tree. A node containing ⊥ is called a failure node. If all branches in a
derivation terminate with failure nodes, then the derivation is said to fail (the intuition being
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that there exists no answer to the query in question). A node to which no more proof rules
can be applied is called a final node. A final node that is not a failure node and which has
not been labelled as undefined is called a success node. An extracted answer for a final success
node N is a triple 〈∆,Φ,Γ〉, where ∆ is the set of abducible atoms, Φ the set of equalities and
disequalities, and Γ the set of constraint atoms in N . Full details are given in [24].

2.2 The Society Model

We provide here a summary of the main features of the declarative and operational semantics
of the society. Our description is a synthesis of the relevant parts of deliverable D8 [36].

2.2.1 Syntax

The society knowledge consists of the 4-tuple 〈SOKB,SEKB, ICS ,G〉, where:

• SOKB is the Social Organisation Knowledge Base,

• SEKB is the Social Environment Knowledge Base,

• ICS is the set of Social Integrity Constraints (ICS), and

• G is the Goal of the society.

Social environment knowledge base. The SEKB dynamically evolves and consists of:

• Happened events: atoms indicated with functor H;

• Expectations: events that should (but might not) happen in the future (atoms indicated
with functor E), and events that should not (but might indeed) happen (atoms indicated
with functor EN).

The happened events are represented as ground atoms of the form H(Event [,Time]), while
expectations can be either of the form E(Event [,Time]) or of the form EN(Event [,Time]).
Expectations can contain variables, with the following interpretation:

• variables in E atoms are always existentially quantified with scope the entire set of ex-
pectations;

• the other variables that occur only in EN atoms are universally quantified.

Social organisation knowledge base. The SOKB is a logic program, consisting of clauses
that can contain expectations and CLP constraints [41].

Goal. The goal G of the society is a conjunction of expectations, CLP constraints and literals
of predicates defined in the SOKB.

Social integrity constraints. These have the form of implications and can involve predicates
defined in the SOKB, happened events, expectations, and CLP constraints. These integrity
constraints can be used to describe social protocols of interaction.
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2.2.2 ALP Interpretation of the Society Model

A society instance, i.e. a society grounded on a given history (a set of happened events), has
an abductive interpretation, presented in previous deliverables [54, 36].

Definition 2.1 (Society instance) An instance SHAP of a society S is represented as an
Abductive Logic Program, i.e. a triple 〈P, E , ICS〉 where:

• P is the SOKB together with the history of happened events HAP;

• E is the set of abducible predicates of S (the E and EN atoms);

• ICS are the social integrity constraints of S.

Definition 2.2 (Society extension) Given two instances, SHAP and SHAP′ , of a society S,
SHAP′ is a proper extension of SHAP if and only if HAP ⊂ HAP′.

Definition 2.3 (Closed instance) Given an instance SHAP of a society S, the instance is
closed iff it is assumed that no more events can happen. We denote a closed instance as SHAP.

In the following, we indicate a closed history by means of an overline: HAP. In a closed
instance, we assume that no further event can occur.

2.2.3 Declarative Semantics

The semantics of a society instance is given by identifying sets of expectations which, together
with the society’s knowledge base and the happened events, imply an instance of the goal and
satisfy the integrity constraints. We rely upon a notion of entailment in a three-valued logic.
In particular, for open instances we refer to a three-valued completion where only the history
of events has not been completed. For closed instances the history of events is completed as
well.

Definition 2.4 (Admissibility) Given a (closed/open) society instance SHAP, a set of ex-
pectations EXP? is called

• ICS-consistent iff SOKB ∪HAP ∪EXP? |= ICS

• E-consistent iff for each (ground) term p, {E(p),EN(p)} 6⊆ EXP?

• ¬-consistent iff for each (ground) term p, {E(p),¬E(p)} 6⊆ EXP?

and {EN(p),¬EN(p)} 6⊆ EXP?

Given a closed (respectively, open) society instance, a set of expectations is called closed (resp.
open) admissible if it is ICS-, E- and ¬-consistent.

Definition 2.5 (Fulfilment) Given a (closed/open) society instance SHAP, a set of social
expectations EXP? is fulfilled if and only if for each (ground) term p:

HAP ∪EXP? ∪ {E(p)→ H(p)} ∪ {EN(p)→ ¬H(p)} 6|= false

Definition 2.6 (Violation) Given a (closed/open) society instance SHAP, a set of social ex-
pectations EXP? is violated if it is not fulfilled.
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Definition 2.7 (Goal achievability) Given an open instance of a society, SHAP, and a
ground goal G, we say that G is achievable (and we write SHAP≈EXP?G) iff there exists
an (open) admissible and fulfilled set of social expectations EXP?, such that:

SOKB ∪HAP ∪EXP? |= G

Definition 2.8 (Goal achievement) Given a closed instance of a society, SHAP, and a
ground goal G, we say that G is achieved (and we write SHAP |=EXP? G) iff there exists
a (closed) admissible and fulfilled set of social expectations EXP?, such that:

SOKB ∪HAP ∪EXP? |= G

2.2.4 The Society Proof Procedure SCIFF

The SCIFF proof procedure [36], another extension of the IFF procedure [33] developed within
WP3, is based on a rewriting system transforming one node to another (or to others). A node
can be either the special node false, or defined by the following tuple

T ≡ 〈R,CS, PSIC,EXP,HAP,FULF,VIOL〉

where

• R is a conjunction and the conjuncts can be atoms or disjunctions (of conjunctions of
atoms)

• CS is the constraint store

• PSIC is the set of partially solved integrity constraints

• EXP is the set of (pending) expectations

• HAP is the history of happened events

• FULF is a set of fulfilled expectations

• VIOL is a set of violated expectations

The set of social expectations, EXP?, is partitioned into the sets EXP, FULF, and VIOL
(i.e., EXP? = EXP ∪ FULF ∪VIOL).

Initial node and success. A derivation D is a sequence of nodes

T0 → T1 → · · · → Tn−1 → Tn,

obtained as follows. Given a goal G and a set of integrity constraints ICS , we build the first
node as follows:

T0 ≡ 〈{G}, ∅, ICS , ∅, ∅, ∅, ∅〉.

The other nodes are obtained by applying the transitions defined in deliverable D8 [36], until
no further transition can be applied (quiescence).
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Definition 2.9 (Open successful derivation) Starting with an open society instance
SHAPi there exists an open successful derivation for a goal G iff the proof tree with root node
〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉 has at least one leaf node

〈∅, CS, PSIC,EXP,HAPf ,FULF, ∅〉

where CS is consistent. In that case, we write:

SHAPi∼HAPf

EXP∪FULFG

Definition 2.10 (Closed successful derivation) Starting with a society instance SHAPi

there exists a closed successful derivation for a goal G iff the proof tree with root node
〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉 has at least one leaf node

〈∅, CS, PSIC,EXP,HAPf ,FULF, ∅〉

where HAPf ⊇ HAPi, CS is consistent, and EXP contains only negative literals ¬E and
¬EN. In such a case, we write:

SHAPi `HAPf

EXP∪FULF G.

2.3 Updates

In this section, we report on two recent updates to the formal and computational models
presented in previous deliverables.

2.3.1 The New State Revision Transition

We have merged the revision transitions of the KGP model, i.e. Goal Revision (GR) and Plan
Revision (PR), into a new single revision transition SR. The reason for this is that it became
clear very quickly (and through the investigation of behaviour profiles and the experimentation)
that it is always preferable to apply one revision transition (GR or PR) immediately after the
other.

Informally speaking, the new transition SR revises a state by removing all timed-out goals
and actions and all goals and actions that have become obsolete because one of their ancestors
is already believed to have been achieved. The specification of the new transition is as follows.

(SR)
〈KB, Goals, P lan, TCS〉
〈KB, Goals′, P lan′, TCS′〉

τ

where Goals′∪Plan′ is the biggest subset of Goals∪Plan consisting of all goals G = 〈l[t], P 〉 ∈
Goals and actions A = 〈a[t′], P ′, C〉 ∈ Plan such that:

(i) P ∈ Goals′ ∪ Plan′ ∪ {⊥} and P ′ ∈ Goals′ ∪ Plan′ ∪ {⊥}, and

(ii) there exists a total valuation σ such that σ |=< TCS′ ∧ t > τ , and there exists a total
valuation σ such that σ |=< TCS′ ∧ t′ > τ , and

(iii) it is not the case that executed(a[t′], τ ′) ∈ KB0, and

(iv) there is no total valuation σ such that σ |= TCS′ ∧ t ≤ τ and KB |=TR l[t]σ, and
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(v) for every sibling G′ = 〈l′[t′], p′〉 of G (or A) in Goals ∪ Plan, either G′ is a sibling of G
(or A) in Goals′ ∪ Plan′ or there is a total evaluation σ such that σ |= TCS ∧ t′ ≤ τ and
KB |=TR l′[t′]σ.

Condition (ii) removes timed-out goals and actions, and (iv) removes goals that are already
achieved, (iii) removes actions that have already been executed, (v) removes goals and actions
whose siblings are already timed out (and thus deleted, by condition (ii)), and (i) removes
actions and goals with ancestors which are got rid off (recursively). Conditions (i)–(iv) are
directly borrowed from the original definitions of GR and PR, whereas condition (v) is novel.

2.3.2 Correction to the Action Selection Function

While investigating the Coherence Properties (see Section 5.2), we came across an error in
the definition of the Action Selection function, given earlier in deliverable D8 [36]. Below we
describe the error and correct the definition.

Specification of cAS

Informally, the set of conditions for the core action selection function is as follows. Given a
state S = 〈KB, Goals, P lan, TCS〉 and a time-point τ , the set of all actions selected by cAS is
defined as follows. Let X (S, τ) be the set of all actions A in Plan such that:

1. A is executable at τ , e.g. it is not timed out,

2. no ancestor or sibling of A in Goals and Plan is timed out at τ ,

3. no ancestor of A in Goals is already satisfied at τ , given S,

4. no precondition of A is known to be false at τ , given S,

5. A has not already been executed.

Then it should be the case that cAS(S, τ) ⊆ X (S, τ) such that all actions in cAS(S, τ) are
executable concurrently at τ .

The error in D8 in the definition of action selection was that cAS(S, τ) = X (S, τ) and thus
the action selection function could return sets of actions executable in isolation but mutually
incompatible. Note that condition 1 in the definition of X (S, τ) is logically redundant, as it is
also re-imposed by definition of cAS(S, τ). However, this condition serves as a first filter, and
is thus useful in practice.

We correct the definition of action selection as follows. We first give a formalisation of the 5
earlier conditions and then correct the definition of cAS .

Formally, given a state S = 〈KB, Goals, P lan, TCS〉, and a time-point τ , the set of all actions
selected by cAS is defined as follows. Each action A in Plan is represented as 〈a[t], G,C〉
where a is the action operator, t is the time associated with the action, G is the immediate
goal for which the action has been planned (G is the parent of A), and C is ttheset of all the
preconditions of A. Let X (S, τ) be the set of all actions

A = 〈a[t], G,C〉 ∈ Plan

such that:
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1. there exists a total valuation σ for the variables in TCS such that σ |=< t = τ ∧ TCS ∧
Σ(S),

2. there exists no action 〈a′[t′], G∗, C ′〉 ∈ Plan and there exists no goal 〈l[t′], G∗〉 ∈ Goals
such that

• G∗ = G or G∗ ∈ ancestors(G, Goals), and

• there exists no total valuation σ for the variables in TCS such that σ |=< t′ ≥
τ ∧ TCS ∧ Σ(S),

3. there exists no 〈l[t′], G∗〉 ∈ Goals such that

• G∗ = G or G∗ ∈ ancestors(G, Goals), and

• there exists a total valuation σ for the variables in TCS such that σ |=< t′ ≤
τ ∧ TCS ∧ Σ(S) and KB |=TR l[t′]σ,

4. let C = l1[t] ∧ . . . ∧ ln[t]; if n > 0, then it is not the case that for some i = 1, . . . , n there
exists a total valuation σ for the variables in TCS such that σ |=< TCS ∧ t = τ ∧ Σ(S)
and KB |=TR li[t]σ,

5. executed(a[t], t′) 6∈ KB0.

Then, cAS(S, τ) ⊆ X (S, τ), cAS(S, τ) = {〈a1[t1], , 〉, . . . , 〈am[tm], , 〉} (where m ≥ 0), such
that there exists a total valuation σ for the variables in TCS such that σ |=< TCS ∧ t1 =
τ ∧ tm = τ ∧ Σ(S).

cc
AS: computational counterpart of cAS

The computational counterpart for this corrected selection function can be obtained by having
computational counterparts for the conditions 1-5 appropriately combined (either sequentially
or concurrently checked, as discussed in D8), and then applying the final filter to get cAS(S, τ)
from X (S, τ). The computational counterparts of 1–5 are as follows:2

1. `< t = τ ∧ TCS

2. for each 〈a′[t′], G∗, C ′〉 ∈ Plan and 〈l[t′], G∗〉 ∈ Goals such that G∗ = G or G∗ ∈
ancestors(G, Goals):

`< t′ ≥ τ ∧ TCS,

3. for each 〈l[t′], G∗〉 ∈ Goals such that G∗ = G or G∗ ∈ ancestors(G, Goals):

`TR (finitely) fails to prove that l[t′] ∧ t′ ≤ τ ∧ TCS

4. let C = l1[t] ∧ . . . ∧ ln[t]; if n > 0, then for every i = 1, . . . , n

`TR (finitely) fails to prove that li[t] ∧ TCS ∧ t = τ,

2Here `< representes the computational counterpart of |=< (<-satisfiability) and `TR represents the com-
putational counterpart of |=TR (the Temporal reasoning capability).
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5. executed(a[t], t′) 6∈ KB0.

Then, cAS(S, τ) ⊆ X (S, τ), cAS(S, τ) = {〈a1[t1], , 〉, . . . , 〈am[tm], , 〉} (where m ≥ 0),
such that there exists a total valuation σ for the variables in TCS such that
σ `< TCS ∧ t1 = τ ∧ tm = τ ∧ Σ(S).

Trivially, if `TR and `< are correct computational counterparts of |=TR and |=<, then
the given computational counterparts of the checks 1–5 in the specification of cAS are correct
wrt the specification itself, and thus an overall correct computation counterpart of cAS can be
obtained.

3 Classification of Verifiable Properties

3.1 Guidelines for Choosing Properties

In this section we introduce and classify the properties that have been investigated within
workpackage WP5. Recall from the Introduction that our main objectives in the choice of
properties have been:

(O1) Effectiveness of the (computational logic-based) approach

(O2) Consequences of the design choices made

(O3) Versatility of the computee and society models

(O4) Guidance for application developers using PROSOCS

(O5) Exploring the chosen scenarios

All the properties considered go some way towards achieving the first objective, as they all
demonstrate how the declarative and computational models of computees and societies lend
themselves to formal specification and proof of properties. Below we give a general description
of each class of properties considered and outline which of the other objectives they achieve.

3.2 Catalogue of Properties

Our classification of verifiable properties of societies of computees is based on the catalogue
of properties put forward in deliverable D12 [3], which in turn extends the list of properties
identified halfway through the second year of SOCS in [30]. In addition to the classes of
properties given in the catalogue in D12, we now also include a class specifically devoted to
properties of proof procedures.

Hence, we divide our catalogue of properties into four parts: (i) properties of proof pro-
cedures; (ii) properties of individual computees; (iii) properties of the social infrastructure;
and (iv) properties specifically related to protocol conformance. As discussed already in [30],
this classification is not strict and other classifications would have been possible as well. Our
classification is summarised in Table 1.
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Class Instances

[PP-1] Soundness properties Section 4.1; Section 4.4
[PP-2] Completeness properties Section 4.2; Section 4.5
[PP-3] Termination properties Section 4.3
[IC-1] Behaviour profiles Section 5.1
[IC-2] Coherence properties of the KGP model Section 5.2
[IC-3] Success criteria and preferences Section 5.3
[IC-4] Adopting social expectations Section 5.4
[SI-1] Well-definedness of societies Section 6.1
[SI-2] Automatically verifiable properties Section 6.2
[SI-3] Microeconomic properties Section 6.3
[SI-4] Stability properties Section 6.4
[PC-1] On-the-fly conformance checking Section 7.2
[PC-2] A-priori conformance checking Section 7.3
[PC-3] Protocol competence Section 7.4

Table 1: Classification of properties

3.2.1 Properties of Proof Procedures

Properties of proof procedures developed within SOCS are relevant to both workpackages WP3
(computational models) and WP5 (verifiable properties). The investigation of properties of
proof procedures began during the second year as part of WP3 and, in some cases, has carried
on throughout the third year of SOCS as well. Although these properties are not themselves
properties of societies of computees, they are immediately relevant to these properties, which
is why we include their discussion in this deliverable. This group of properties includes three
classes:

• [PP-1] Soundness properties of proof procedures.

• [PP-2] Completeness properties of proof procedures.

• [PP-3] Termination properties of proof procedures.

These properties achieve objective O2 (investigation of consequences of design choices). Termi-
nation results also give guidance about the design of the knowledge bases and thus help with
objective O4.

3.2.2 Properties of Individual Computees

Under the general heading of properties of individual computees, we have identified the following
main classes of properties:

• [IC-1] Behaviour profiles.
We identify interesting profiles of behaviour and characterise them first in terms of prop-
erties of the states of computees and then design cycle theories that will induce traces
whose states have these properties. We argue why such profiles may be advantageous
given specific conditions, for example on the environment and timeliness requirements on
the part of the computee.
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• [IC-2] Coherence properties of the KGP model.
This class of properties has been added since the submission of D12. It comprises proper-
ties of the computee model that demonstrate the appropriateness of some of the choices
made in its design.

• [IC-3] Success criteria and preferences.
Different states of a computee, as determined by its Knowledge Base and its current
Goals and Plan, may be desirable for a computee in varying degrees. Particular states
may reflect that the computee has been successful, for example in achieving its goals.
More generally, it is possible to define preferences over alternative states, for instance,
by introducing a notion of (individual) welfare enjoyed by a computee in a given state.
These preferences may, for instance, depend on the number of achieved (or unachievable)
goals, or at a greater level of detail, on whether or not the computee is making “progress”
towards achieving its goals.

• [IC-4] Adopting social expectations.
In the SOCS models of computees and societies, social expectations are specified in the
social infrastructure, and private policies are specified in the computees’ knowledge bases
and cycle theories. We explore how these expectations and policies can be combined in
the domain of resource allocation.

The properties under [IC-1], Behaviour Profiles, are good examples of our work towards
achieving objective O3—investigating scope and versatility of the SOCS models, in particular in
this case the KGP model. They show how to increase the level of heterogeneity in computees and
the consequences of doing so. As such they also help towards objective O4—providing guidelines
to developers. Another class of properties that works towards O3 is [IC-4], Adopting Social
Expectations. These properties also demonstrate the scope of integrating the society and the
individual computee models.

The properties under [IC-2], Coherence Properties, work towards objective O2—exploring
consequences of design choices. The properties under [IC-3], Success Criteria and Preferences,
have two purposes. One is that they work directly towards objective O2, showing that the KGP
model guarantees a certain level of individual welfare. Another purpose is that they provide
useful definitions and criteria to be used in other properties, for example in comparing different
profiles of behaviour.

3.2.3 Properties of the Social Infrastructure

The next group of properties may be described as properties of the social infrastructure:

• [SI-1] Well-definedness of societies.
We show under what circumstances a society is well-defined in the sense that its Social
Knowledge Base, Social Integrity Constraints and Goal are such that amongst all its
(closed) instances there exists at least one for which the Goal is achievable. This property
provides guidance to the designers of societies.

• [SI-2] Automatically verifiable properties.
We show how some formal properties, for example properties of protocols, can be verified
automatically. For this purpose we extend the SCIFF proof procedure and show how
it can be used to verify whether a property, expressed as an existentially or universally

20



quantified formula, is a logical consequence of the Social Integrity Constraints of a given
society.

• [SI-3] Microeconomic properties.
Problems of distributed resource allocation are central to Global Computing in general and
to SOCS in particular. Given, in addition to this, the importance of the notion of society
within SOCS, it is natural to study microeconomic properties of societies of computees,
for instance, by analysing the social welfare of a society in relation to the individual
welfare enjoyed by its members. We show under what circumstances computees can reach
optimal resource allocation, while varying the notion of optimality, class of deals and
utility functions.

• [SI-4] Stability properties.
Under this category we collect properties that abstract away from the internal details
of agents. These properties concern collections of agents and result from the interaction
amongst the agents and of individual agents with the environment in which they are
situated. The main property is that of stability—all other properties in this class are
defined in terms of stability.

The properties in [SI-1], Well-definedness of Societies, and [SI-4], Stability, address objective
O4, and those in [SI-2], Automatically Verifiable Properties, address objectives O2 and O3.
[SI-3], Microeconomic Properties, addresses objective O5.

3.2.4 Properties Related to Protocol Conformance

Interaction protocols are of central importance within SOCS, which is why we list properties
related to protocol conformance separately:

• [PC-1] On-the-fly conformance checking.
On-the-fly conformance is a property of an interaction (between two or more computees)
with respect to a given society protocol. It assesses, at runtime, whether or not the
interaction is legal according to the protocol. We show how this can be done automatically
using the SCIFF proof procedure.

• [PC-2] A-priori conformance checking.
A-priori conformance is a property of a computee with respect to a protocol. It assesses, at
design time, whether or not a computee can be guaranteed to always respect the protocol.
We show how a-priori conformance can be checked by analysing the relationship between
the computees’ private policies and the public protocols. The results give guidelines for
the design of computees.

• [PC-3] Protocol competence.
By protocol competence we understand any property assessing how well a computee is
able to “use” a protocol beyond the basic requirement of being able to conform. An
example would be the ability to react to an incoming message in all of the ways foreseen
by the protocol under appropriate circumstances (as opposed to an incompetent computee
that may, for instance, have to reject any incoming proposal, however advantageous, due
to a limited knowledge base). We show how a particular aspect of protocol competence,
namely the ability to reach any given “state” in a given protocol, can be checked by
analysing the relationship between the specifications of a group of computees and a given
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protocol. The results can provide guidelines on how to “customise” protocols to adapt
them to the needs and abilities of (possibly not fully competent) computees.

A further differentiation of the concept of protocol conformance is discussed in Section 7.1. The
three classes of properties given in this section all work towards objective O3, and the last two
also work towards objective O4.

3.3 Other Properties and Related Work

As was mentioned in the Introduction the list of properties that we have addressed in WP5
has been compiled through a process of deliberation and refinement of earlier ideas reported in
D3 [50], the Provisional List of Properties [30], and D12 [3]. We have added a number of classes
of properties to these earlier lists. These include [IC-2] Coherence Properties and [SI-4]
Stability Properties. We have also removed a few of the earlier properties. These include
termination of social interaction, fairness and termination, determinism and exhaustiveness.

Properties related to termination of social interaction include, for instance, the termination
of negotiation dialogues in the context of a resource allocation scenario (and in this specific
context we have addressed it in our study of microeconomic properties). Most importantly for
SOCS, however, termination issues at the social level are closely linked to termination properties
of the society proof procedure. This is why we have removed this class of properties in favour
of the newly introduced termination properties of proof procedures.

The property of fairness has been dropped from our list, because it appears not to be of
specific relevance to societies of computees (beyond its general relevance to multiagent systems).
Nevertheless, fairness is at least related to some of the work carried out in SOCS. For instance,
our work on egalitarian agent societies (see Section 6.3) is concerned with the development and
characterisation of negotiation mechanisms for the fair allocation of resources in societies of
autonomous agents [28]. Furthermore, our work on the customisation of protocols (reported
in Section 7.4 under protocol competence) may prove useful for developing a methodology for
adapting existing interaction protocols to the characteristics of specific computees (who may
not be competent users of the full protocols) in a fair manner [22].

Finally, the entry on termination, determinism and exhaustiveness listed in earlier draft
classifications of properties we were interested in [3, 30] includes properties of a computee’s
reaction to observations caused by actions of other computees in a society. But given that
these issues have already been addressed by members of the SOCS Consortium [68, 74] prior
to the commencement of the project (for an agent model that may be considered a simplified
variant of the KGP model), we decided to prioritise our work on WP5 by including other new
properties instead.

We should stress that the type of property typically investigated in the context of modal
logic-based approaches to modelling intelligent agents within a BDI architecture do not address
what we have aimed for in SOCS. Rao and Georgeff’s seminal paper in this area [63], in partic-
ular, is concerned with the axiomatisation of simple properties such as “if an agent intends α
then he will also believe α” and the identification of the corresponding model-theoretic proper-
ties (relationships between the different accessibility relations in the Kripke frame). This is a
worthwhile enterprise in multi-dimensional modal logics (such as BDI logics), where the basic
logic does not sufficiently determine the relationship between the different modalities (belief,
desire, intention). In the KGP model, on the other hand, this issue simply does not arise. The
connections between the different “dimensions” have been fixed as part of our definition of the
KGP transitions. Nevertheless, our coherence properties (Section 5.2) are broadly related to
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this, as they also concern properties inherent in the model. The difference is that we show how
these coherence properties follow as a consequence of design choices made in the specification
of the KGP model, while the type of BDI properties addressed by Rao and Georgeff are in fact
themselves part of the design process.

3.4 Presentation of Results

Our concrete results regarding properties of societies of computees are presented in Sections 4–
7. We have used a common template throughout to report these properties. Here, we explain
the template.

Property template header. The header of each entry includes information on the name
of the property, the classification of the property with respect to our catalogue of properties
presented earlier, and the names of the SOCS partners involved in working on this particular
property. Naturally, some properties will be relevant to more than one of the classes of properties
we have identified. In such cases, the most important class is given in the header and other
relevant classes are referred to in the body of the text.

The header also includes references to the most relevant papers. These are either published
papers, previous SOCS deliverables, or technical reports included in the annex of this deliv-
erable. We have aimed at keeping the presentation of these results short and succinct in the
templates. Therefore, any proofs as well as formal definitions requiring an extensive technical
apparatus have been omitted. These may be found in the referenced papers.

Finally, the header also includes information on the status of the property, i.e. whether the
property has been fully proved or fully formalised, or whether the reported results are of a
preliminary nature.

Property template body. The body of each entry includes the following information:

• Informal statement of the property. We start by giving a short self-contained description
of the property that should be comprehensible without having an intimate knowledge
of the formal tools used in SOCS. Where appropriate, we have also included a short
introductory paragraph to introduce the wider context of the property before giving the
informal statement.

• Significance. Here we comment on the significance of the property in the context of SOCS.
Important arguments for the significance of a property include, for instance, (i) that it
demonstrates the effectiveness of the SOCS models, (ii) that it provides guidelines for
developers using our platform, (iii) that it is relevant to the evaluation criteria given in
deliverable D3 [50], or (iv) that it contributes to one of the research areas addressed by
SOCS, including Global Computing, Computational Logic and Multiagent Systems, in a
significant way.

• Formal statement of the property. If possible, we provide a short self-contained statement.
Otherwise we refer to the relevant papers that provide a full formalisation and proofs
(where appropriate).

• Approach. In this paragraph we describe the general approach followed in obtaining the
result. In particular, again, we do not give formal proofs here but rather refer to the
relevant papers listed in the header of the entry.
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• Related work. Here we briefly comment on related work to the specific property in ques-
tion. In some cases, where we have considered several closely related properties, related
work is discussed in a central place before the templates for that group of properties.

In Sections 5.1.3–5.1.8 on behaviour profiles a slightly different template is used, as this is more
appropriate. The template there is introduced in Section 5.1.1.

Overview of results. Table 1 on page 19 provides an overview of the results achieved.
For each of the classes of properties identified earlier, it provides a reference to the concrete
properties studied by giving the appropriate section numbers.

4 Proof Procedures

In this section we present properties of the proof procedures developed within SOCS. These
procedures have been used to implement the capabilities of individual computees and the rea-
soning mechanisms available in the society model and thereby directly influence higher-level
properties of both computees and societies of computees.

4.1 SCIFF Soundness

Property classification: [PP-1] Properties of proof procedures
Partners involved: UNIBO, DIFERRARA
Relevant papers: Deliverable D8 [36], Gavanelli et al. [34]
Status: Proved

Informal statement of the property. Soundness of a proof procedure refers to the fact
that if an answer is obtained by the proof procedure, then it is also logically entailed by the
declarative semantics. In the context of computees this means that if the SCIFF proof procedure
has a successful derivation, then the computees have behaved according to the protocols defined
in the Society Knowledge Bases and the expectations have not been violated.

Significance. Soundness is one of the most important properties of a proof procedure, and is
the main link between declarative and operational semantics. This result shows that the SCIFF
proof procedure can be used for checking (both on-the-fly and a-posteriori) that computees
behave in accordance with protocols defined by the Social Integrity Constraints. Importantly,
this checking is done without necessarily knowing anything about the computees’ internals (in
fact the society could be composed of a mixture of computees and agents of other kind, or it
could even include no computees at all). This result helps in several respects, including checking
the correct behaviour of a society of computees in a highly heterogeneous and dynamic setting.
This is an original and significant result of the project.

Formal statement of the property. Soundness has been stated both for the open and for
the closed instances of a society in D8 [36]. The following theorem relates the operational notion
of open successful derivation with the corresponding declarative notion of goal achievability.
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Theorem 4.1 (Open soundness) If SHAPi is an open society instance, and

SHAPi∼HAPf

EXP∪FULFG

with expectation answer (EXP ∪ FULF, σ), then

SHAPf≈(EXP∪FULF)σGσ

The theorem above states that if there exists an open successful derivation for a goal G starting
from an initial history HAPi and leading to the (open) society instance SHAPf with abduced
expectation set EXP ∪ FULF, and with expectation answer (EXP ∪ FULF, σ), then Gσ is
achievable in SHAPf (with the expectation set (EXP ∪ FULF)σ).

In the closed case, the soundness property is stated as follows, relating the operational notion
of closed successful derivation with the corresponding declarative notion of goal achievement.

Theorem 4.2 (Closed soundness) If S
HAPf is a closed society instance, and

SHAPi `HAPf

EXP∪FULF G

with expectation answer (EXP ∪ FULF, σ) then

S
HAPf |=(EXP∪FULF)σ Gσ

Soundness in the closed case states that if there exists a closed successful derivation for a goal
G starting from an initial history HAPi and leading to the (closed) society instance S

HAPf

with abduced expectation set EXP∪FULF, and with expectation answer (EXP∪FULF, σ),
then Gσ is achieved in S

HAPf (with the expectation set (EXP ∪ FULF)σ).
The property has been proved for some restricted cases in deliverable D8 [36]. The proof

has been extended to the general case in a report annexed to deliverable D12 [35].

Approach. The proof of soundness of the SCIFF proof procedure reuses the proof of sound-
ness of the IFF proof procedure [32]. Concerning dynamically incoming events, a lemma [36]
links the on-the-fly conformance checking with the a-posteriori one, showing that the success
nodes for on-the-fly verification with a dynamically growing history, are the same obtained by
the SCIFF proof procedure with the whole history given a priori. A further useful lemma
proved in D8 states that if in a derivation we have a node containing an abduced atom with
universally quantified variables, then there will be a universally quantified variable in every
non-failure successor node. Thanks to these lemmas, in [36], we were able to use soundness
results from the IFF proof procedure (in which universally quantified abducibles cannot occur
in any node of a derivation) in SCIFF derivations that terminate in a node without any univer-
sally quantified abducible. Finally, we extended the proof of soundness to derivations in which
universally quantified abducibles can occur [34]. In such cases, we showed that the derivation
is sound relying on the soundness of a second SCIFF derivation in which universally quantified
abducibles are moved to the static part of the Society Knowledge Base.

Related work. The proof of soundness of the SCIFF proof procedure is based on the corre-
sponding proof of soundness of the IFF proof procedure [32].
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4.2 SCIFF Completeness

Property classification: [PP-1] Properties of proof procedures
Partners involved: UNIBO, DIFERRARA
Relevant papers: Gavanelli et al. [34]
Status: Formalised

Introduction. The completeness property of the SCIFF proof procedure is directly relevant
to our approach of verifying protocol properties automatically (see Section 6.2). Work on a
completeness proof is currently under way; we outline the property and its significance here.

Informal statement of the property. Completeness of the proof procedure refers to the
fact that if a result is logically entailed by the declarative semantics, then it is also an answer
obtainable by the proof procedure.

Significance. Completeness can be used to affirm that if the SCIFF proof procedure has a
successful derivation, then the computees are behaving according to the protocol. It can be
considered symmetrical to soundness. In the closed case, it is important also for automati-
cally proving other properties, since, as in model checking, the automatic verification of some
properties is done by adopting the negation of properties as goals (see Section 6.2).

Formal statement of the property. Completeness was already stated in deliverable D8 [36],
both for open and closed instances of the society. Completeness in the open case states that if
goal G is achievable in an open society instance under the expectation set EXP?, then an open
successful derivation can be obtained for G, possibly computing a set EXP?′ of the expectations
whose grounding (according to the expectation answer) is a subset of EXP?. We hope to be
able to prove the following result:

Theorem 4.3 (Open completeness) Given an open society instance SHAP, and a (ground)
goal G, for any set of ground expectations, EXP? = EXP ∪ FULF, such that SHAP≈EXP?G

then ∃EXP?′ such that S∅∼HAP
EXP?′G with an expectation answer (EXP?′, σ) such that

EXP?′σ ⊆ EXP?.

More important is completeness in the closed case, in particular for the automatic verification
of properties (Section 6.2). Completeness in the closed case states that if goal G is achieved in
a closed society instance under the expectation set EXP?, then a closed successful derivation
can be obtained for G, possibly computing a set EXP?′ of the expectations whose grounding
(according to the expectation answer) is a subset of EXP?. We hope to be able to prove the
following result:

Theorem 4.4 (Closed completeness) Given a closed society instance SHAP, a (ground)
goal G, for any set of ground expectations, EXP? = EXP ∪ FULF such that SHAP |=EXP?

G then ∃EXP?′ such that S∅ `HAP
EXP?′ G with an expectation answer (EXP?′, σ) such that

EXP?′σ ⊆ EXP?.

Approach. We plan to exploit the completeness proofs for the IFF proof procedure [32, 79].
By exploiting the termination result (see Section 4.3), we plan to prove strong completeness,
i.e. completeness independent of the order of applications of the rewriting steps.
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Related work. The IFF proof procedure was proven sound and complete by Fung [32].
However, the statement of completeness was of a weak form showing only that some order of
application of the rewriting steps obtain the required answer. Xanthakos [79], after proving
termination, was able to strengthen this statement to strong completeness where any order of
application of the rewriting steps obtains the required answer.

4.3 SCIFF Termination

Property classification: [PP-1] Properties of proof procedures
Partners involved: UNIBO, DIFERRARA
Relevant papers: Gavanelli et al. [34]
Status: Proved

Informal statement of the property. Under some syntactic restrictions, namely, acyclicity
of the society knowledge bases, the SCIFF proof procedure terminates.

Significance. Termination is one of the key steps for the practical usability of an algorithm.
Of course, one would like a proof procedure to terminate for every possible input; however, as
it is obvious from the SCIFF syntax, the user can write infinite loops. Termination is therefore
important not only for the purpose of proving properties of the proof procedure, but also to
guide the design of programs and knowledge bases. Through termination, one can prove other
formal properties of the proof procedure, for example using termination and completeness a
strong completeness property [79] can be proved.

A termination result and the syntactic restrictions which it relies upon can also guide the user
in writing the Society Knowledge Bases, being able to distinguish those that allow termination
and those that may not. Finally, the proof of termination provided useful guidelines for the
implementation of the proof procedure, such as heuristics not specified by the operational
semantics. In particular, it suggested a preferred order of application of the rewriting steps
given in the operational semantics.

Formal statement of the property. Termination is proven, as for SLD resolution, for
acyclic knowledge bases and bounded goals and implications. For definitions of boundedness
and acyclicity for the Society Knowledge Bases, please refer to annexed document [34].

Theorem 4.5 (Termination of SCIFF) Let G be a query to a society S, where SOKB,
ICS and G are acyclic wrt. some level mapping, and G and all implications in ICS are bounded
wrt. the level-mapping. Then, every SCIFF derivation for G for each instance of S is finite.

Approach. Xanthakos [79] proved the termination of the IFF proof procedure. Since SCIFF
extends IFF, our proof of termination roughly follows the same overall structure as the proof
by Xanthakos. First, we prove that the presence of happened events inside social integrity
constraints does not change the fact that a program is acyclic. Since the SCIFF proof procedure,
as Constraint Logic Programming [41], considers constraint solving as an extension of unification
(or equality rewriting, in IFF), we extend the proofs regarding equality rewriting to constraint
solving. More precisely, we show that the properties of equality rewriting rewriting steps that
are exploited in the proof of termination for IFF also either hold for constraint solving rewriting
steps, or are reasonable assumptions for a constraint solver. Finally, we give a proof along the
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lines of that given by Xanthakos, extending it for the SCIFF proof procedure. The complete
proof may be found in the annexed document [34].

Related work. Naturally, the closest work is the proof of termination of the IFF proof
procedure [79]. The SCIFF proof of termination extends the proof by Xanthakos to deal with
the new features of SCIFF.

4.4 CIFF Soundness

Property classification: [PP-1] Properties of proof procedures
Partners involved: ICSTM, DIPISA
Relevant papers: Endriss et al. [23, 24]
Status: Proved

Informal statement of the property. The CIFF proof procedure for abductive logic pro-
gramming is sound in the sense that any derived answer gives rise to a correct answer according
to the completion semantics (soundness of success). Furthermore, whenever the procedure fails,
there exists no correct answer according to the semantics (soundness of failure).

Significance. The soundness property is central to any proof procedure. In the context of
SOCS, our soundness result ensures the correctness of the computational models of the planning,
reactivity and temporal reasoning capabilities, all of which are based on the CIFF procedure.

Formal statement of the property. The input to CIFF consists of a theory Th (a selectively
completed logic program), a set of integrity constraints IC, and a query Q. A correct answer
to a query Q with respect to an abductive logic program 〈Th, IC 〉 is a pair 〈∆, σ〉, where ∆ is
a finite set of ground abducible atoms and σ is a substitution for the free variables occurring
in Q, such that

Th ∪ Comp(∆) |= IC ∧Qσ

Our soundness results for the CIFF proof procedure are as follows:

Theorem 4.6 (CIFF soundness of success) If there exists a successful derivation for the
input 〈Th, IC, Q〉, then the extracted answer gives rise to a correct answer for that input.

Theorem 4.7 (CIFF soundness of failure) If there exists a derivation for the input
〈Th, IC, Q〉 that terminates and where all final nodes are failure nodes, then there exists no
correct answer for that input.

These results have been published in [24]; full proofs may be found in [23].

Approach. The proof of both of the above theorems relies on the fact that all CIFF proof
rules are equivalence-preserving in the sense that a node in a derivation is always logically
equivalent to the disjunction of its immediate successor nodes. It follows that any final node in
any branch of the proof tree logically entails the initial node, which is the conjunction of the
query and the integrity constraints. Another important lemma establishes the correctness of
the CIFF answer extraction procedure. It shows that the formulas in a final success node that
are not directly represented by the extracted answer (i.e. any formulas that are not abducible
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atoms) are in fact logical consequences of the extracted answer. Our two soundness theorems
then follow from these intermediate results.

In [24], we also note that the CIFF dynamic allowedness rule, which labels nodes containing
formulas with non-allowed quantification patterns as undefined on-the-fly (to avoid floundering),
is appropriate in the sense that such nodes would either lead to infinite abductive answers
(which would not conform to the chosen semantics) or at least require the enumeration of
all the solutions to a set of CLP constraints. Also, while the original IFF procedure would
generate a wrong answer for a non-allowed input (with respect to the definition of allowedness
used in [33]), CIFF will either state explicitly that the output is undefined or the answer will
be both well-defined and correct.

Related work. Our soundness proof is based on and extends the original proof for the sound-
ness of the IFF procedure [32].

4.5 CIFF Completeness

Property classification: [PP-1] Properties of proof procedures
Partners involved: ICSTM, DIPISA
Relevant papers: Endriss et al. [24]
Status: Preliminary results

Introduction. Work on possible completeness results for the CIFF procedure is currently
under way. Here we present a simple result that applies to inputs for which the procedure can
be guaranteed to terminate.

Informal statement of the property. CIFF is complete for a limited class of inputs for
which termination can be guaranteed and for which there are no problems with quantification
patterns (allowedness).

Significance. Completeness is a highly significant property for any proof procedure, albeit
proving completeness can often be difficult in practice. In the context of SOCS and with regard
to the applications of CIFF to implement KGP capabilities, soundness is the central property of
interest, as it ensures, for instance, that any plan that does get computed will be a correct plan.
Completeness would also allow us to draw conclusions about a computee’s ability to compute
a plan whenever that is possible at all, but this turns out to be less significant in practice.
Furthermore, for both planning and reactivity, in the implementation of the PROSOCS system,
only the first answer computed by CIFF will be fed into the respective capability. Finally, for
temporal reasoning, only the question whether or not a query will succeed matters. This is
covered by the simple completeness result presented here (i.e. the question whether or not all
abductive answers will be found is irrelevant).

Formal statement of the property. For any class of inputs (consisting of a theory, a set
of integrity constraints, and a query) that are known to be allowed (in the sense of never
triggering the dynamic allowedness rule [24]) and for which termination can be guaranteed, the
CIFF procedure will terminate successfully whenever there exists a correct answer according to
the completion semantics for abductive logic programming with constraints.
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Approach. This property is an immediate consequence of the two soundness theorems given
in the previous section. In fact, the soundness of failure result presented earlier may itself be
regarded as a kind of completeness result.

Note that both the requirement that the input is known to be allowed and that it is known
to lead to a terminating CIFF derivation are very strong assumptions. We hope to address
the question of identifying interesting classes of input programs for which termination can be
guaranteed (for instance, by imposing suitable acyclicity conditions [79]) in our future work.
This would make the above result more applicable.

Related work. In the context of the IFF proof procedure, Fung [32] proves a similar com-
pleteness result as the one presented here as well as a more general result that relies on the
three-valued completion semantics. The work of Xanthakos on the termination of IFF for
acyclic logic programs is also relevant [79].

5 Individual Computees

In this section we present our results on properties of individual computees.

5.1 Behaviour Profiles

At the level of individual computees, we have identified and analysed interesting and useful
profiles of behaviour and their corresponding cycle theories. Section 5.1.1 gives a brief in-
troduction to behaviour profiles and discusses related work. Sections 5.1.2–5.1.8 then present
specific profiles of behaviour that we have identified and that we have formalised both in terms
of describing properties of states of computees following such profiles and by giving cycle the-
ories that will induce such behaviour. The study of behaviour profiles is intended to explore
the versatility of the computee model and to provide guidelines for developments within the
PROSOCS architecture.

5.1.1 Introduction to Profiles

The KGP model of individual computees allows for a variety of different profiles of behaviour,
depending on the choices made for the rules of a computee’s cycle theory. After a joint effort in
identifying interesting profiles of behaviour, we undertook the task of formalising these profiles
and of defining suitable cycle theories that would induce such behaviours. Our results are
reported in Sections 5.1.2–5.1.8. In these sections we present the specific profiles, and for
each we give (1) a formalisation of the properties of states of computees equipped with the
profile, (2) the cycle theories that will induce such states, (3) summary characterisations of
environments and situations where computees equipped with the profile will perform either
better or at least as well as other profiles such as what we have defined as the “normal profile”,
and (4) some concrete examples of the possible consequences of the behaviours induced by the
profile.

For both (3) and (4) we often concentrate on comparing how well computees do in terms
of achieving their goals, whether or not they manage to achieve any goals, and if they do, then
how many. This links our work on profiles with the work on individual welfare. As is described
in Section 5.3 one of the notions of welfare we have defined is in terms of the number of goals
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achieved. So in the work on profiles we have attempted to study the circumstances under which
one profile may lead to increased individual welfare compared to another.

The objectives of the study of profiles are twofold:

• To explore the scope and versatility of the computee model: we explore to what extent we
can provide heterogeneity in the behaviour of computees by changing their control (cycle)
theories in a modular way, and we explore the consequences of this heterogeneity.

• To give guidelines to developers who may use the PROSOCS platform: our identification
of the circumstances, for example environmental factors, such as time criticality and
dynamism of the environment, under which one profile has advantages over another can
guide application developers in their choice of profile.

The choice of profiles we have studied was guided primarily by the nature of Global Computing
environments and by our interest in exploring how the behaviour of computees changes as a
consequence of changing various parameters. The Cautious, Actively Cautious and Objective
profiles were motivated by the highly dynamic nature of Global Computing environments,
where the environment external to the computee changes unexpectedly and frequently. So these
profiles explore ways in which the computee attempts to keep itself better informed about the
changes in the environment that affect the successful execution of the computees’ actions. The
Focussed, Punctual and Impatient profiles are motivated by the time-critical nature of Global
Computing environments. These profiles explore ways in which a computee can improve its
chances of achieving at least some of its goals, even when achieving all its goals is not feasible.
Finally, the Careful profile studies the advantages of a computee which frequently examines
and updates its commitments, in terms of its goals and plans, in its internal state.

The theoretical work reported here on profiles has motivated and is complemented by the
experimental work on profiles reported in deliverable D14 [2].

Related work. Here we briefly summarise related work that is relevant to all the different
profiles presented in subsequent sections. There are two main aspects to consider, namely
(i) programming agent control as in 3APL and (ii) attitudes of agents.

Profiles of computees are an attempt to address the need that different applications
require different deliberation processes which therefore should be controlled by the de-
signer/programmer. In 3APL [40] a meta-language that refers to goals, actions, plans and
rules together with constructs from an imperative programming is used in order to implement
how to process the object-level entities in the application. Our approach shares the aim of
3APL to make the agent cycle programmable and the selection mechanisms explicit, but it goes
beyond it. Indeed, the approach of [40] can be seen as relying upon a catalogue of fixed cycles
according to some criteria, whereas we drop the concept of fixed cycle completely and replace it
with fully programmable cycle theories. Our approach allows us to achieve enhanced flexibility
and adaptability in the operation of a computee.

Most of the existing literature refers to behaviour at the level of social attitudes and person-
alities whereas our cycle profiles refer more to the level of problem solving strategies (given an
application environment). For example, in [9] five profiles (agreeable, disagreeable, argumen-
tative, open-minded, elephant child) are proposed to discriminate between different attitudes
of agents with varying degree of willingness to cooperate. In a computee this aspect of its
personal attitude can be captured as a part of its Goal Decision knowledge base, KBGD, where
it can influence its decisions (see e.g. [46, 44]). Nevertheless the two levels are linked as a
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specific personal attitude can lead or induce a problem solving strategy. In [72] different agent
architectures are studied where each one of these is based on a different combination of reac-
tive/deliberative capabilities depending on the personal attitude to its current needs. Different
survival behaviours emerge from the different architectures. In our computees such variety of
behaviour can be achieved via a combination of suitable Goal Decision capabilities and cycle
theories.

In the BDI framework three different commitment strategies have been defined to express
relationships between current and future intentions [63]. These are blind, single minded and
open minded. Informally, a blindly committed agent is one which maintains its intentions until
it believes that it has achieved them. A single minded agent, on the other hand, maintains
its intentions until it believes they are achievable, and an open minded agent maintains its
intentions while they are still its goals. Rao and Georgeff then analyse the consequences of
these strategies in terms of the agents’ beliefs and intentions. Our work on profiles shares the
objectives behind the study of commitment strategies but goes beyond that study in the range
of profiles explored and their consequences.

Property template for behaviour profiles. In this section, we use a slightly different
template to report results on properties than in the rest of the deliverable. The reason for
this is that we typically report two different types of properties in each entry. The first are
correspondence properties. They establish that a given cycle theory does indeed induce an
operational trace that has the properties characterising the behaviour profile in question. The
second type are formal properties that demonstrate advantages of the profile in question (in
some cases such advantages are only demonstrated by means of suitable examples). For each
profile identified we report the following:

• Informal description of the profile

• Significance

• Formal description of the profile

• Cycle theory

• Advantages of the profile

• Approach

Related work on profiles has been discussed above as well as, in more detail, in the annex [13].

5.1.2 The Cautious Profile of Behaviour

Property classification: [IC-1] Behaviour profiles
Partners involved: DIPISA
Relevant papers: Athienitou et al. [13]
Status: Proved

Informal description of the profile. A cautious profile of behaviour requires a computee
to execute actions in its plan only if it believes that the preconditions of these actions are
currently true.
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Significance. The main advantage of the cautious profile is to minimise the risk of action
execution failure, in the sense of actions not causing the expected effects, by checking their
preconditions in advance.

Formal description of the profile. The cautious profile has been characterised in terms
of properties of the states that may occur in the operational trace, as well as in terms of a
cycle theory [13]. The states of the operational traces a cautious computee can exhibit can be
characterised as follows: given an operational trace

T1(S0, X1, S1, τ1), . . . Ti(Si−1, Xi, Si, τi), . . .

for all the i such that Ti = AE (Action Execution), and for all the actions 〈a[t], , C〉 in Xi, the
following holds:

KBi−1
TR |=TR C ∧ Σ[Si−1] ∧ t = τi−1

That is, whenever the computee executes an action, then all the preconditions of that action
are believed to hold.

Cycle theory. The cycle theory for a cautious profile simply contains the following basic
rule:

CautiousT |AE(S′, Y ) : ∗AE(S′, Y )← T (S, X, S′, τ), selected actions(S′, X ′, τ ′),
prec sat(X ′, Y, τ ′), now(τ ′), Y 6= ∅.

where selected actions/3 implements the core action selection function and prec sat/3 selects
in Y , amongst the actions in X ′, those whose preconditions can be proved to hold at the current
time τ ′ (by calling the TR capability). In order for the transition to occur Y must not be empty.
The above rule is required to be the only one in the cycle theory defining AE transitions. It
has been proved that the traces induced by this cycle theory fulfil the above mentioned state
properties.

Moreover, it has been shown how a cautious profile can also be realised by means of be-
havioural rules and proved that this implementation satisfies the state characteristics of the
profile. These rules can be “injected” in any cycle theory, inducing in it a cautious behaviour
as far as AE transitions are concerned.

Advantages of the profile. The features of the environment which could be relevant for
the behaviour of the profile and its capability to improve individual welfare have been studied.
It has been shown that under certain conditions a cautious computee is more likely to achieve
the expected effects from the executed actions than a normal computee. Informally, this in
particular happens when precondition truth values may change in the environment, before
actions become timed-out. In this case, the cautious computee has the chance to wait for
precondition to hold before executing the actions which depend on them.

Approach. This profile has been defined in order to improve the effectiveness of the actions
performed by a computee, whose effects may be jeopardised by the fact that the preconditions of
the executed actions fail to hold. In its basic formulation, a computee is required not to execute
actions whose preconditions are not believed to be true. This profile is an extension of the
normal one, obtained by restricting the set of executable actions to those whose preconditions
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are known to be true. The actively cautious profile, see Section 5.1.3, extends the approach by
requiring that the computee actively checks in the environment preconditions of actions before
they are executed, by introducing suitable sensing actions.

An experiment with cautious computees is presented in deliverable D14 [2].

5.1.3 The Actively Cautious Profile of Behaviour

Property classification: [IC-1] Behaviour profiles
Partners involved: UCY
Relevant papers: Athienitou et al. [13]
Status: Proved

Informal description of the profile. An actively cautious profile of behaviour requires a
computee to execute actions in its plan only if it believes that the preconditions of these actions
are currently true. In addition, the actively cautious computee executes sensing actions in order
to actively obtain the value of unknown preconditions.

Significance. The study of profiles of behaviour intends to provide guidelines for developers
using PROSOCS. The actively cautious profile will be particularly useful in environments where
it is important that the computee does not execute actions whose preconditions do not hold.

Formal description of the profile. The actively cautious profile is characterised by the
following property of the operational trace: Given any transition Ti(Si−1, Xi, Si, τi) in the
operational trace of the computee where Si = 〈KBi, Goalsi, P lani, TCSi〉 and Ti is an action
execution transition for a set of actions As, then

• For every action Aj ∈ As where Aj = 〈aj [t], , Cj〉 the following condition holds:

KBi−1
TR �TR Cj ∧ Σ[Si−1] ∧ t = τi−1

• and, if there exists an action A′ ∈ cAS(Si, τi) where A′ = 〈a′[t], , C ′〉 and there exists a
maximal non-empty set of preconditions C ′′ ⊆ C ′ such that for each c ∈ C ′′:

– KBi−1
TR 2TR c ∧ Σ[Si−1] ∧ t = τi−1

– KBi−1
TR 2TR ¬c ∧ Σ[Si−1] ∧ t = τi−1

then all actions in the set As are necessarily sensing actions.

In other words, whenever a computee executes a set of actions, two conditions hold. Firstly, all
the preconditions of those actions are known to hold at the time of the execution. Secondly,
the actions executed are all sensing actions, if there exist actions in the set of selected actions
for the current state whose preconditions are unknown. Notice that this condition prevents
the computee from executing non-sensing actions whose preconditions are known to hold, when
there exist other actions in the set of selected actions with unknown preconditions. This does
not necessarily mean that the computee will execute sensing actions for all the unknown precon-
ditions of all the actions in its plan before it starts executing the actions. Its actual behaviour
depends on the precise definition of the selection function and the extent to which this selects
a maximal set of the actions in the current Plan. For example, if the selection function takes
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into account the time ordering of actions and does not select together actions which are totally
ordered at different times then if there exist two actions, A1 and A2, whose preconditions are
not known to hold, and action A1 must be executed before action A2, then the computee will
not sense for the preconditions of the action A2 until A1 is executed.

We study a special case where we assume that only one action is executed at a time. Note
that this sets a constraint on the input parameters of the AE transition and not on the selection
function. The results and proofs that follow are based on this assumption.

Cycle theory. The actively cautious profile can be captured through a suitable cycle theory.
A short description of it is given below. The full cycle theory is given in [13].

An actively cautious cycle theory is any cycle theory where

• The following 3 rules are part of the Tbehaviour part of the theory:

– Actively Cautious PPI
SI�T : RPI|SI(S, Ps) � RPI|T (S, X)

for all transitions T 6= SI
This rule gives higher priority to a SI transition over any other transition, when the
last transition was PI.

– Actively Cautious PT
AE�AE :

RT |AE(S, A) � RT |AE(S, X) ← A = 〈sense precondition(c[t]), , 〉,∃A′ ∈
cAS(S, τ), A′ = 〈a[t], , C〉, c ∈ C, unknown(c), now(τ).
for every T,X such that X is not a sensing action, where the predicate unknown(c)
is defined appropriately using the Temporal Reasoning capability of the computee.
This rule gives higher priority to an AE transition where the action is a sensing
action, over any other AE transition, when there exist actions in the set of selected
actions with unknown preconditions.

– Cautious PT
T1�AE : RT |T1(S, X) � RT |AE(S, As)← unknown pred(S, As),

for every T and T1, X such that either T1 6= AE or T1 = AE and X 6= As, where the
predicate unknown pred(S, As) is defined appropriately using the Temporal Reason-
ing capability of the computee.
This rule gives lower priority, over any other transition, to AE transitions with input
parameter a set of actions which contains an action whose preconditions are not
known to hold at the current state and time.

• The above three rules have higher priority than any other priority rule.

• The following rule is part of the Tbasic part of the theory

RPI|SI(S′, Ps) : ∗SI(S′, Ps)← PI(S, Gs, S′, τ), Ps = cPS(S′, τ ′), Ps 6= {}, now(τ ′)

This rule enables a SI transition to follow a PI transition. We assume that the set of
preconditions of each of the sensing actions added to the plan by this rule, is empty.

We have proved the following correpondence result:

• Proposition 1: The proposed actively cautious cycle theory induces operational traces
that satisfy the characteristic feature of the actively cautious profile.
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Advantages of the profile. We call an underlying (non-actively cautious) cycle theory any
cycle theory obtained from an actively cautious cycle theory by removing the extra rules which
were added to the theory in order to achieve the actively cautious behaviour.

We examine the following propositions:

• Proposition 2: A computee with an actively cautious cycle theory is as good as a computee
with an underlying cycle theory with the same knowledge base KB, in the sense that
whenever the latter succeeds in achieving a goal, so does the former, in environments
where:

– sensing actions always succeed in finding out the values of all the preconditions that
were sensed for;

– during the delay in executing an action, due to sensing for its preconditions, there
is no change of the truth value of the preconditions via some unknown factor in the
environment;

– time is not very critical. Each action Aj in a plan Plan, where Aj = 〈aj [t], , Cj〉,
has at least time TAj

before it times out, where TAj
= 1 + Σ|Plan|

j=0 |Cj |, where |Plan|
denotes the number of actions in Plan and |Cj | denotes the number of precondition
fluents in the set Cj .

• Proposition 3: In certain cases a computee with an actively cautious cycle theory is better
than a computee with an underlying cycle theory in that the first succeeds in achieving a
goal while the second fails to achieve the same goal.

Approach. All propositions are proved in the annex document [13]:

• Proposition 1: We prove that the proposed cycle theory induces operational traces that
satisfy the required feature by proving that:

– there does not exist an admissible set of rules which concludes an action execution
transition for some action whose preconditions are not known, and

– there does not exist an admissible set of rules which concludes an action execution
which is not a sensing action, when there exist actions with unknown preconditions
in the set of selected actions.

• Proposition 2: We prove that a computee with an actively cautious cycle theory achieves
any goal that a computee with an underlying cycle theory achieves in the given environ-
ment by showing that in the given environment a computee with the actively cautious
cycle theory is able to reproduce the successful operational trace of a computee with the
underlying cycle theory.

• Proposition 3: We provide the following example to demonstrate that in certain cases
an actively cautious computee succeeds but a computee with an underlying cycle theory
fails. Suppose that the two computees have exactly the same knowledge base and that
there exists a set of actions A1, . . . , An in the set of selected actions whose preconditions
are unknown. Also assume that actions A1, . . . , An−1 belong to plans for a set of goals
Gs whereas action An belongs to a plan for a goal G′ /∈ Gs.
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According to the definition of the actively cautious computee, it will execute sensing
actions since there exist actions in the set of selected actions with unknown preconditions.
After executing sensing the actively cautious computee finds out that the preconditions
of the actions A1, . . . , An−1 do not hold whereas the preconditions of action An hold.
Therefore the actively cautious computee does not execute any of the actions whose
preconditions do not hold and executes next action An. The execution succeeds and goal
G′ is achieved.

A possible operational trace for the computee with the underlying cycle theory in the
above scenario is to begin to, unsuccessfully, execute actions A1, . . . , An−1, since it does
not know that their preconditions do not hold. While it is executing these actions, action
An times out. Consequently the computee with the underlying cycle theory fails to achieve
goal G′.

Therefore we conclude that in certain scenarios a computee with an actively cautious
cycle theory succeeds where a computee with an underlying cycle theory fails.

5.1.4 The Punctual Profile of Behaviour

Property classification: [IC-1] Behaviour profiles
Partners involved: DIPISA
Relevant papers: Athienitou et al. [13]
Status: Proved

Informal description of the profile. A punctual computee selects urgent goals and urgent
actions for planning and execution. This informal statement may be further refined according
to two possible interpretations of the notion of urgency (in the following, the term items stands
for both goals and actions):

1. Whenever planning or executing actions, select the items that are more urgent than the
others (simple punctual computee).

2. If there are very urgent goals or actions, i.e. items close to their deadlines, give preference
to planning and/or action execution rather than other transitions (punctual computee),
possibly with a given preference amongst the two and determining the input items for the
transition by choosing those that are more urgent, as in (1).

The notion of deadline has been introduced so as to impose an ordering actions and goals. The
more urgent items are the maximal elements according to this ordering amongst those returned
by the core selection functions. The very urgent items are those items, amongst those returned
by the core selection functions, whose deadline is within a chosen time window from the current
time.

Significance. The main advantage of this profile is not to let goals and actions become
unachievable due to being timed-out. Moreover, the order induced by the notion of more
urgent items can be used to guarantee temporal constraint satisfaction, for instance regarding
the execution of actions. These features are expected to facilitate the satisfaction of (top-level)
goals and to minimise failures due to a careless management of time, and temporal constraints.

As we mentioned in Section 2.3.2, while working on the Coherence Properties (Section 5.2)
we came across a problem with the definition of the Action Selection Function, namely that it
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allowed the selection of a set of actions with incompatible temporal constraints. In Section 2.3.2
we described how the definition can be corrected. The corrected definition, however, created
one further issue, namely that an action could be selected although other actions with earlier
times were available for selection. After many discussions we decided to allow for this in the
core definition, as it was possible to construct examples where it would be advantagous to allow
this out-of-order selection of actions. Instead, we decided to design the punctual profile in such
a way that it not only solved the first problem mentioned above, but also ensured that actions
are selected in the right order, according to their temporal constraints.

Formal description of the profile. The notion of deadline imposes an ordering on items
that are not timed out, lifted from the order of their deadlines: i[ti] B j[tj ] iff now ≤ di < tj
(an item i is more urgent than an item j if their deadlines are both not already timed out
and the one for i is closer). The more urgent items are the maximal elements with respect to
B. The very urgent items are those whose deadline is closer than u time instants from now
(now + u ≥ d).

The profile has been characterised in terms of properties of the states that may occur in the
operational traces. For instance, a trace of a simple punctual computee cannot have a state
where an AE transition is performed without executing the more urgent actions, i.e. if there
exists an i such that Ti(Si−1, Yi, Si, τi) is a transition in the trace of a simple punctual computee
and Ti = AE, then Yi must contain the more urgent actions in the state of the computee.

Cycle theory. The simple punctual computee can be implemented by means of basic cycle
rules, like

PunctualT |AE(S′, Y ) :
∗AE(S′, Y )← T (S, X, S′, τ), selected actions(S′, X ′, τ ′), now(τ ′),

more urgent actions(X ′, Y, τ ′), Y 6= ∅,

which suitably restricts the selected actions to the more urgent ones (the predicate
selected actions implements the core action selection function). The punctual computee, other
than rules like the one above, contains behaviour cycle rules, like

PunctualT
′

AE�T (S′, Y ) :
PunctualT ′|AE(S, Y ) � RT ′|T (S′, X)← selected actions(S′, X ′, τ ′), now(τ ′),

very urgent actions(X ′, Y, τ ′, u),
Y 6= ∅,

which, in the presence of very urgent actions, forces an AE transition. These rules are required
to be the only ones defining a preference over AE and PI. Some care is needed to fix a priority
amongst AE and PI. See [13], for further details. It has been proved that the traces induced
by the punctual cycle theory fulfil the state properties mentioned above.

Advantages of the profile. It has been shown that, under given hypotheses and a suitable
tuning of the time window width in the definition of very urgent items, a punctual computee is
able to guarantee that the execution of the planned actions satisfies the temporal constraints.
When planning and execution costs are taken into consideration, it may be useful to execute
more actions, or plan for more goals, together in order to meet deadlines. This can be achieved
by selecting the n items highest up in the order, instead of the only the maximal ones, as the
more urgent items. This may spoil temporal constraints satisfaction.
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Approach. This profile has been defined in order to improve the time responsiveness and the
temporal constraint compliance of computees. This has been achieved by imposing a preference
on the planning for urgent goals and the execution of urgent actions, with the aim of preventing
goals and actions from becoming timed-out before they have been planned for or executed.
Differently from the normal computee, a punctual computee can execute an AE or PI transition
at any instant, whenever some actions or goals in its state are recognised as being urgent
according to a suitable notion of urgency.

An experiment involving the punctual profile of behaviour is discussed in deliverable D14 [2].

5.1.5 The Impatient Profile of Behaviour

Property classification: [IC-1] Behaviour profiles
Partners involved: UCY
Relevant papers: Athienitou et al. [13]
Status: Proved

Informal description of the profile. An impatient profile of behaviour prevents a computee
from executing an action, if an action of the same type was executed in the past unsuccessfully,
that is, without producing the desired effect. We say that two actions A1 = 〈a1[t1], , 〉 and
A2 = 〈a2[t2], , 〉 are of the same type iff a1 = a2. A more moderate version of this profile
can be obtained by defining a time window after which the computee is allowed to execute the
action. In our study of the profile, the computee never executes an action if an action of the
same type was executed unsuccessfully in the past, unless no other transition is enabled.

Significance. The impatient profile will be particularly useful in environments where time is
critical and we cannot afford to have the computee try executing actions when we know that
they are likely to fail.

Formal description of the profile. The impatient profile is characterised by the following
property of the operational trace:

Given any transition Ti(Si−1, Xi, Si, τi) in the operational trace of the computee
such that executed(a[t], τi) ∈ KBi

0 for some action A = 〈a[t], , 〉, where Si =
〈KBi, Goalsi, P lani, TCSi〉, then

• either KBi−1 2 unsuccessful(a[t′])

• or the only transitions possible from state Si−1 are of the form AE(Si−1, As), where for
every action A = 〈a[t], , 〉 ∈ As, it holds that KBi−1 � unsuccessful(a[t′]).

Where the predicate unsuccessful(a[t′]) is defined appropriately using the Temporal Reasoning
capability of the computee and it means that an action 〈a[t′], , 〉 was executed unsuccessfully
in the past. This means that executed(a[t′], ) ∈ KB0, but the desired effects of the action do
not hold at the current time and nothing happened between the time it was executed and the
current time that could make the effects not hold.

In other words the computee does not execute an action if an action of the same type was
executed unsuccessfully in the past, unless it has no other choice of transition.
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Cycle theory. The impatient profile can be captured through the following suitable cycle
theory where an action of the same type as an action which failed is given very low priority
so that unless there is nothing else to be done, it will remain unexecuted and therefore it will
time out.

An impatient cycle theory is any cycle theory where

• The following two rules are part of the Tbehaviour part of the theory:

– Impatient PT
T1�AE :

RT |T1(S, X) � RT |AE(S, As))← ∃A ∈ As,A = 〈a[t], , 〉, unsuccessful(a[t′])
for every T and T1, X such that either T1 6= AE or T1 = AE and X 6= As.

– Impatient MPT
T1�AE : Impatient PT

T1�AE � PT
AE�T1,

for every T and T1, such that T1 6= AE.

• There is no rule which could enable PT
AE�T1 � Impatient PT

T1�AE in the Tbehaviour part
of the cycle theory.

The purpose of the rule Impatient PT
T1�AE is to give lower priority over any other transition

to transitions of Action Execution with input parameter a set of actions As when an action
of the same type as an action in As was executed unsuccessfully in the past. The purpose of
the rule Impatient MPT

T1�AE is to give the rule Impatient PT
T1�AE higher priority than any

other priority rule which gives higher priority to an AE transition.

• Proposition 1: The proposed impatient cycle theory induces operational traces that satisfy
the characteristic feature of the impatient profile.

Another definition of an impatient cycle theory is also given in [13] where we allow the computee
to execute an action of the same type as an action which failed, if another action, which could
affect its precondition, is executed.

Advantages of the profile. We call an underlying (non-impatient) cycle theory any cycle
theory obtained from an impatient cycle theory by removing the extra rules which were added
to the theory in order to achieve the impatient behaviour.

We examine the following propositions:

• Proposition 2: A computee with an impatient cycle theory is as good as a computee with
an underlying cycle theory with the same knowledge base KB, in the sense that whenever
the latter succeeds in achieving a goal, so does the former, in environments where the
truth value of the preconditions of an action do not change by some unknown factor in
the environment.

• Proposition 3: In certain cases a computee with an impatient cycle theory is better than
a computee with an underlying cycle theory in that the first succeeds in achieving a goal
while the second fails to achieve the same goal.
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Approach. All propositions are proved in [13]:

• Proposition 1: We prove that the proposed cycle theory induces operational traces that
satisfy the required feature by proving that there does not exist an admissible set of
rules which concludes an action execution transition for some action of the same type as
an action which was executed unsuccessfully in the past, if there are other transitions
enabled.

• Proposition 2: We prove that a computee with an impatient cycle theory achieves any
goal that a computee with an underlying cycle theory achieves in the given environment
by showing that in the given environment a computee with the impatient cycle theory
is able to reproduce the successful operational trace of a computee with the underlying
cycle theory.

• Proposition 3: We provide the following example to demonstrate that in certain cases
an impatient computee succeeds but a computee with an underlying cycle theory fails.
Suppose that the two computees have exactly the same knowledge base and that the
impatient computee executes an action A which belongs to a plan for some goal G. Let’s
say that the execution of A fails. According to the definition of the impatient cycle theory,
the impatient computee will not try executing any action of the same type as A unless
it has no other choice of transition or some action that could affect its preconditions is
executed. Suppose that no such action is executed. Let’s say that the computee executes
next an action B which belongs to a plan for a goal G′ where G′ 6= G. The execution
succeeds and goal G′ is achieved.

A possible operational trace for the computee with the underlying cycle theory in the
above scenario is to execute action A unsuccessfully and then try executing some other
action A′ of the same type as A. While the computee with the underlying cycle theory
is executing action A′, action B times out, hence the computee with the underlying cycle
theory fails to achieve goal G′.

Therefore we conclude that in certain scenarios a computee with an impatient cycle theory
succeeds where a computee with an underlying cycle theory fails.

5.1.6 The Careful Profile of Behaviour

Property classification: [IC-1] Behaviour profiles
Partners involved: ICSTM
Relevant papers: Athienitou et al. [13]
Status: Proved

Informal description of the profile. A computee endowed with a careful profile of be-
haviour examines and revises its current commitments frequently so as to recognise infeasible
goals and actions (as well as goals that have been achieved already) as soon as possible.

Significance. The intuitive advantage of such a behaviour profile is that operations such as
planning and reactivity are not hindered by superfluous items in the computee state.
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Formal description of the profile. A careful computee is a computee that will never
generate an operational trace with two consecutive transitions that are different from SR (State
Revision). In fact, this condition is stronger than strictly necessary: as long as there are no
redundant goals or actions no revision would be required. Nevertheless, from a pragmatic point
of view, our definition provides us with an appropriate characterisation of careful computees.
This is so, because checking whether or not a state includes redundant goals or actions to be
revised is just as costly as performing a state revision in the first place.

Cycle theory. Any given cycle theory can be turned into a cycle theory for careful computees
by first removing any basic rules that speak about two consecutive transitions both of which
are different from SR and then adding the following basic rule for each transition T different
from SR:

RT |SR(S′) : ∗SR(S′)← T (S, X, S′, τ)

Any such cycle theory is easily seen to induce the careful profile of behaviour.
As shown in [13], carefulness is in fact a very strong condition that requires an almost

complete rewriting of a cycle theory. Arguably, the simplest approach is to ensure carefulness in
behaviour purely by adding and deleting basic rules in the cycle theory appropriately. Behaviour
rules can then be used to guide the computee’s behaviour in aspects that go beyond the basic
need to alternate SR with every other type of transition.

Advantages of the profile. The following two propositions (which hold under certain cir-
cumstances) demonstrate advantages of the careful profile of behaviour:

• Proposition 1: Careful computees will never generate a reaction via the reactivity transi-
tion to timed-out unachieved goals or timed-out unexecuted actions.

• Proposition 2: Careful computee will never generate a reaction via the reactivity transi-
tion to actions that may not be timed out yet but which are unexecuted and no longer
necessary.

An example showing the advantage of the careful profile would be the following: Computee C
believes that he has registered for a conference conf05 but wants not to be registered at the
conference. He plans for the goal of not being registered and consequently generates an action
in his Plan to cancel his registration at conf05. He has a reactive rule in his KBreactthat says:

If (observe that the deadline for cancellation for Conference has reached) and (an
action of cancellation of registration at Conference is expected) then tell the bank to
stop credit card payment to Conference.

Suppose before the action of cancellation is executed the computee receives a message from the
conference telling him that there was a problem with its initial attempt at registration and so
he is not actually registered. So his goal of not being registered is achieved without the need for
the cancellation action. A careful computee will not tell the bank to stop credit card payment
(which is pointless anyway), but, under the same circumstances, a non-careful one might.

Approach. The above properties rely on the assumption that no action and no goal is timed
out between an SR transition and its immediate successor if that is an RE transition. Details
are given in [13].
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5.1.7 The Focussed Profile of Behaviour

Property classification: [IC-1] Behaviour profiles
Partners involved: ICSTM
Relevant papers: Athienitou et al. [13]
Status: Proved

Informal description of the profile. A focussed computee does not plan for more than
one top-level goal at a time. It remains committed to the same top-level goal until that goal
has either been achieved or is believed to be infeasible.

Significance. The advantages of the focussed profile come into effect in highly time-critical
domains as well as domains where a computee has several goals for which no mutually compat-
ible plans can be found. In such a situation, a focussed computee can be expected to achieve,
at least, some of its goals, but an unfocussed computee may fail completely.

Formal description of the profile. A focussed computee is a computee that, under no
circumstances, will generate an operational trace that includes a state with two top-level goals
with children.

Cycle theory. Focussed behaviour can be achieved by adding to any basic rule in a com-
putee’s cycle theory that enables Plan Introduction an enabling condition that succeeds iff the
selected goals all belong to the same top-level goal and no other goal in the state has got any
children.

A cycle theory is called focussed iff the initial rule r0|PI and the basic rule RT |PI for any
transition T include the enabling condition focussed(Gs′, S,Gs), where:

(i) S stands for the current state;

(ii) Gs′ stands for the set of goals that is returned by the goal selection function and Gs
stands for the set of goals to which PI will be applied; and

(iii) the predicate focussed(Gs′, S,Gs) succeeds iff Gs ⊆ Gs′ and all the goals in Gs are
descendants of the same top-level goal (possibly including that top-level goal itself) and
no other top-level goal has got any children.

We have shown that any focussed cycle theory induces a focussed profile of behaviour [13].

Advantages of the profile. If a focussed and a normal computee have a set of goals for
which they have no compatible plans then the focussed computee may be able to achieve at
least some of its goals while the normal computee may not be able to achieve any of the goals.

Note that this links the profile to the notion of welfare that is measured by the number
of achieved goals (discussed in Section 5.3). Thus under the specified conditions the focussed
profile provides the computee with an advantage in terms of its welfare.
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Approach. In [13], we first introduce a characterisation of the focussed profile of behaviour
that asserts that no state should ever include two distinct top-level goals with children, both
of which are neither achieved nor infeasible. We then show how by insisting that the computee
performs a State Revision before switching to a new top-level goal for planning, we can give an
alternative state-based characterisation of the focussed profile that is much simpler: a computee
is focussed iff it never induces a trace with a state where more than one top-level goal has got
children. This definition is then naturally captured by the enabling condition given above.

The theorem demonstrating the advantage of the focussed profile, which is formalised and
proved in the annex [13], shows under what conditions the focussed computee is guaranteed
to achieve more of its goals compared to the normal computee. An experiment related to this
property is discussed in deliverable D14 [2].

5.1.8 The Objective Profile of Behaviour

Property classification: [IC-1] Behaviour profiles
Partners involved: CITY
Relevant papers: Athienitou et al. [13]
Status: Proved

Informal description of the profile. A computee with an objective profile of behaviour
always attempts to check immediately after the execution of an action, via Active Observation
Introduction (AOI), if its desired effects are indeed established in the environment. The com-
putee therefore attempts to obtain from the environment explicit information confirming the
expected results of the execution of its actions.

Significance. This profile is suited to volatile environments where exogenous events can in-
terfere with the execution and the result of an action. However, as AOI takes extra time to
check the effect of actions, this profile may be less suitable for time-critical environments.

Formal description of the profile. Let expected effects(Si, Xi, τi) be the set of fluents
that are the expected effects of the execution of the actions in Xi in state Si at time Ti.

Given any transition Ti(Si−1, Xi, Si, τi) in the operational trace of an objective com-
putee with Ti = AE and expected effects(Si, Xi, τi) 6= ∅, then there exists a transition
Tj(Sj−1, Xj , Sj , τj) in the operational trace such that:

• j > i;

• Tj is an Active Observation Introduction, and Xj = expected effects(Si, Xi, τi)

• for all transitions Tk, k = i + 1, ..., j − 1, Tk is a POI transition.

Cycle theory. An objective cycle theory includes the following rules:

RAE|AOI(S′, X) : ∗AOI(S′, X)← AE(S, As, S′, τ),
X = expected effects(S′, As, τ), X 6= ∅

Objective PAE
AOI�T ′ : RAE|AOI(S, X) � RAE|T ′(S, Y )
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for every T ′ 6= AOI, where

expected effects(S′, As, τ) =
⋃

A=〈a′[ ],G′, 〉∈X

Obj(S′, a′, τ) ∪ {G′}\{⊥}

and

Obj(S, a, τ) = {f | S |=τ
TR initiates(a, τ, f)} ∪ {¬f | S |=τ

TR terminates(a, τ, f)}

We have proved the following correpondence result:

• Proposition: The proposed objective cycle theory induces operational traces that satisfy
the characteristic feature of the objective profile.

Advantages of the profile. In certain cases a computee with an objective cycle theory is
better than a computee with a normal cycle theory in that the first succeeds in achieving a goal
while the latter fails to achieve the same goal.

Approach. In [13], we prove that the proposed cycle theory, i.e. the normal cycle theory
extended to capture the objective profile, induces traces that satisfy the required features. Our
approach is based on argumentation-based preference reasoning. It uses preferences to define
the behaviour of the objective profile and then proves that the normal cycle theory extended
with the new preferences does have the above-mentioned property.

One type of example that demonstrates the advantage of the objective profile is one where
the computee with the objective profile succeeds in achieving a goal because after executing an
action towards it, it immediately gets feedback, through Active Observation, that the action
has been unsuccessful, while there is still time to replan for the goal and try again. This is
compared to the computee with the normal profile which will execute the action and will assume
that it has been successful. When it finds out, through Passive Observation, some time later
that the action has not been successful it is too late to replan for the goal as its time has passed.

Related work. Work related to behaviour profiles has been discussed in Section 5.1.1.

5.2 Coherence Properties

In this section we summarise our results concerning coherence properties of the model of indi-
vidual computees developed in SOCS.

5.2.1 Coherence of Plan Introduction and Action Execution

Property classification: [IC-2] Coherence properties of the KGP model
Partners involved: ICSTM
Relevant papers: Sadri and Toni [66]
Status: Proved

Informal statement of the property. Computees do not attempt to execute actions that
they believe are infeasible or unnecessary, and computees do not attempt to plan for goals if a
plan is not needed or if it is too late to plan for them.
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Significance. These properties show the suitability of the design of the KGP model in that
computees are prevented from spending time on the activities of planning and acting if these
activities are not appropriate or useful.

Formal statement of the property.

• Computees never attempt to execute actions that

– are timed out, or

– belong to a plan for a goal that is timed out or that they believe is already achieved.

• Computees never attempt to plan for a goal that

– is timed out or that they believe is already achieved, or

– belongs to a plan for a goal that is timed out or that they believe is already achieved.

Here, given a state, by plan for a goal we mean the set of all actions and goals that are
descendents of that goal within the tree in that state.

Approach. Any cycle step rule showing that a transition is followed by Action Execution uses
the action selection function in an enabling condition, and any cycle step rule showing that a
transition is followed by Plan Introduction uses the goal selection function in an enabling
condition. The required properties above follow from the definition of these two selection
functions.

Related work. To the best of our knowledge no similar properties have been proven or
identified in the literature.

5.2.2 Coherence of Action Execution with Temporal Incompatibility

Property classification: [IC-2] Coherence properties of the KGP model
Partners involved: ICSTM
Relevant papers: Sadri and Toni [66]
Status: Proved

Informal statement of the property. Temporally incompatible actions are never executed
concurrently.

Significance. This result shows that computees will avoid concurrent execution of actions
that they believe cannot be successfully executed together, because of the temporal constraints
imposed upon them.

Formal statement of the property. If for some time τ and actions in a state S with
operators a1[t1], . . . , an[tn] there exists no total valuation of the variables t1, . . . , tn satisfying
the temporal constraints in S, all equalities derived from KB0 in S (as represented in Σ(S))
and t1 = τ, . . . , tn = τ , then a1[t1], . . . , an[tn] will never be all selected for execution at τ .
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Approach. This property follows from the definition of the action selection function that will
not select temporally incompatible actions at the same time for execution, given the constraint
on their times.

Note that while proving this property a mistake in the definition of the action selection function
was identified and corrected, as reported in Section 2.3.2, thus the proof has provided useful
feedback about the model.

Related work. To the best of our knowledge no similar properties have been proven or
identified in the literature.

5.2.3 Coherence of Action Execution with Incompatible Preconditions

Property classification: [IC-2] Coherence properties of the KGP model
Partners involved: ICSTM
Relevant papers: Sadri and Toni [66]
Status: Proved

Informal statement of the property. computee will never try to execute two actions at
the same time if the actions have incompatible preconditions.

Significance. This result uses both the declarative and computational models of computees
and shows that their design is such that computees will avoid concurrent execution of actions
that they believe cannot be successfully executed together.

Formal statement of the property. Given the declarative and computational models of
computees [36] if

• the Plannr part of the computee state contains two actions A1 and A2 (i.e. A1 and A2
are non-reactive actions), and

• A1 has a precondition p1 and A2 has a precondition p2 such that the computee’s KBplan

includes an integrity constraint

assume holds at(p1 ,T ) ∧ assume holds at(p2, T )→ false

then the computee will never attempt to execute actions A1 and A2 at the same time.

Approach. The sketch of the proof is follows: As actions A1 and A2 are non-reactive actions
they must have been generated in the computee state by a PI transition. The declarative and
computational models of the computee ensure that the same PI transition which generates
actions A1 and A2 will also generate a constraint T1 6=T2 in the TCS part of the computee
state where T1 and T2 are the proposed execution times of actions A1 and A2, respectively.
Then the property follows from the proerty in Section 5.2.2.

Related work. To the best of our knowledge no similar properties have been proven or
identified in the literature.
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5.3 Individual Welfare-related Properties

Property classification: [IC-3] Success criteria and preferences
Partners involved: ICSTM, DIPISA, CITY, UCY
Relevant papers: P. Mancarella et al. [52]
Status: Preliminary results

Introduction. We consider several notions of individual welfare, some at a higher level of de-
tail, in terms of top-level goals that are achieved and top-level goals that have become infeasible
(timed out), and one at a lower level of detail in terms of incremental progress made towards
achieving top-level goals. The former, referred to as the notion of happiness, considers only the
achievement or unachievability of top-level goals, and the latter, referred to as the notion of
progress, considers the whole state of the computee. We show some relationships between these
different notions of welfare. We primarily consider a subjective approach to the notion of wel-
fare, whereby achievement of a goal is assessed with respect to the computee’s belief (knowledge
base). We briefly address what might be needed in order to deal with an objective notion of
welfare whereby achievement of a goal is assessed with respect to the computee’s environment.

Informal statement of the properties. We define four preference relations over alternative
computee states at a high level with respect to top-level goals:

• S1 �1 S2 iff in S2 at least as many top-level goals have been achieved as in S1.

• S1 �2 S2 iff in S2 more top-level goals have been achieved than in S1.

• S1 �3 S2 iff in S1 more top-level goals are infeasible (timed out) than in S2.

• S1 �4 S2 iff in S2 more top-level goals have been achieved than in S1, or in S2 the same
number of top-level goals have been achieved as in S1 and in S1 more top-level goals are
infeasible (timed out) than in S2.

Here by a goal being achieved we mean (roughly) that it is entailed from the computee KBTR

via the Temporal Reasoning capability.
We define a notion of�-improving, given any notion� of preference between states. Infor-

mally, this notion states that a computee is�-improving iff given any state S in the sequence of
states corresponding to any operational trace induced by the computee’s cycle theory, there is
a later state S′ in the sequence such that S � S′. We have established the following properties
(they all assume that no GI transition has been performed within the operational trace we are
considering):

• Proposition 1: Any computee is �1-improving.

• Proposition 2: No computee is �3-improving.

• Proposition 3: A computee is �4-improving iff it is �2-improving.

We also define a notion of welfare in terms of “progress towards achievement of goals” and
accordingly define another preference ordering ≺. The full definition is long and given in [52].
Informally and briefly, S1 ≺ S2 iff in S2 some progress has been made, for example by planning
for a goal or by making “useful” observations.
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• Proposition 4: The maximal state with respect to �2 is the maximal state with respect
to ≺.

Details of the orderings and welfare notions, formal definitions and the necessary underlying
assumptions are given in [52].

Significance. Our notions of welfare are all intuitive ones and amount to assessing how
effective a computee is in achieving its goals or at least in working towards achieving its goals.
This work, therefore, is significant, in allowing us to analyse the effectiveness of the KGP
model in these terms. Also by studying the environmental or internal conditions that would
help, guarantee or hinder improvement of welfare, it may be possible to give guidelines to
designers of computees.

Formal statement of the properties. The welfare notions and associated orderings are
formalised and the propositions are stated formally and proved in [52].

Approach. We state the orderings using the formal language of the transitions and capabil-
ities, and use their definitions to prove the properties.

Related work. As for the notion of happiness, which assesses the well-being of a computee in
terms of the number of achieved (and possibly also unachievable) goals, there are clear connec-
tions to modelling the preferences of agents using utility functions [65]. Indeed, the number of
achieved goals does induce a very simple kind of utility function. For our interpretation of indi-
vidual welfare as progress, on the other hand, there are no direct links to such decision-theoretic
concepts.

5.4 Adopting Social Expectations for Resource Allocation

Property classification: [IC-4] Adopting social expectations
Partners involved: UCY, UNIBO
Relevant papers: Kakas et al. [46]
Status: Preliminary results

Introduction. This property is an example for computees adopting social expectations as
a means of achieving a desired outcome of interaction. We have studied the general issue
of adopting social expectations in the context of a scenario where computees negotiate over
resources, i.e. this property is also related to the class of microeconomic properties [SI-4].

Informal statement of the property. In a resource reallocation domain, there exist social
protocols and individual policies (within the Goal Decision knowledge base and cycle theories
of computees) which can be combined to guarantee that a solution of a resource reallocation
problem is found (if one exists). For example, a society may encode a protocol which produces
tasks G that it expects (some of) its members to carry out. One such protocol could be the
following:

H(tell(A,B, request(Service)), T ) ∧ authorized(A)→
E(tell(B,A, accept(request(Service))), T1) ∧ T1 < T + 20
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Society expectations that are generated by such protocols are received by computees through
Passive Observations. We assume that these are recorded in their KB0 as facts of the form
observed(expectation(G), τ) where G is the goal associated with the expectation received.

Computees then respond to the expectations through rules in their Goal Decision Knowledge
Base, KBGD, conforming to the schema:

rexpect
G : G← holds at(expectation(G), Tnow)

which would thus generate an argument for G when an expectation for it is received or perceived
by the agent. Then a fully compliant agent would have in its policy theory in KBGD additionally
the general priority rule

Rcomply : rexpect
G > rLabel

G′ ← Label 6= expect

for every such expectation rule and other private rule rLabel in the theory. This can be made
conditional on specific circumstances for a non fully compliant policy. For example, an agent
may receive an expectation from the society to accept unconditionally requests for a special
type of Needs. Under the above schema this would enable the rule:

rexpect(Peer,Needs) :
msg(to(Peer), yes(Needs))←

holds at(expectation(msg(from(Peer), req(Needs))).

Thus with the compliant priority rules this means that after the receipt of this expectation the
computee will set itself the goal to reply to the request for these Needs.

Property. It is easy to see that computees with the Rcomply rule in their goal decision policy
will be expectation conformant for non-time critical expectations, in the sense that at some
stage they will set themselves the goal of the expectation and possible attempt to satisfy this.
When time is critical, we would need in addition to add in the behaviour part of the cycle theory
an analogous priority rule, that gives to the transition of Goal Introduction higher priority over
any other transition when holds at(expectation(G), Tnow) is true.

Significance. This property demonstrates an advantage of having a social model (the one
based on social integrity constraints) and a computee model (the KGP model) both using
a declarative formalism and a similar underlying logic. The smooth combination of social
expectations and internal decision making is significant for collaborative agent systems and in
open multiagent systems, where no central authority can impose choices on the operations of
individuals. The society in this context assumes the role of a driving engine, which suggests
decisions to be taken by computees in reply to requests, but which does not directly force them
to act in some way rather than in some other way.

Approach. This is still preliminary work. In order to approach the issue of computees adopt-
ing social expectations, we have defined a simplified computee architecture [46], and we have
defined a cooperative computee as a computee that is willing to give away a resource for noth-
ing in exchange. In addition, we have defined a specific cycle (“philagentic” computee cycle
of operation), which implements an exhaustive search in the space of solutions of a resource
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reallocation problem. The control of operation of “philagentic” computees allows them to find a
combination of choices of plans which allows for negotiation dialogues which solve the resource
reallocation problem and to produce the actual dialogues themselves.

Finally, we have defined the behaviour of computees in such a way that they do not consume
their resources until a dialogue has successfully terminated, thus preventing computees from
following a plan which consumes resources needed by the other computee, while they could
follow instead some alternative plan which accommodates both computees’ needs.

The decision of a computee to be cooperative or non-cooperative may depend on the exis-
tence of relevant social expectations.

Related work. To the best of our knowledge, ours is the first declarative approach that
combines agent decision making with social goals while preserving agent autonomy. However,
there are of course several logic-based frameworks for agent negotiation related to our work
that have been proposed elsewhere [10, 67, 69, 49].

6 Social Infrastructure

In this section we present our results pertaining to properties of the social infrastructure of a
society of computees.

6.1 Well-definedness of Societies

Property classification: [SI-1] Well-definedness of societies
Partners involved: UNIBO, DIFERRARA
Relevant papers: Alberti et al. [5]
Status: Proved

Introduction. When we define a society in terms of SOKB, ICS and goal G, we would
like to be sure that, under certain assumptions, this society will be well-defined, i.e. among its
possible (closed) instances there exists at least one for which goal G is achieved (see deliverable
D8 [36] for the definition of goal achievement). For instance, a society with goal p and SOKB:

p← E(q),E(k)

and ICS given by:
E(k)→ EN(q)

is not well-defined with respect to goal p. This means that there is no way to achieve p in such
a society, even when its members behave according to the society expectations.

Informal statement of the property. To illustrate the property, consider a simplified case
where the goal G is true. Whenever the goal is true, the notion of well-definedness amounts to
stating that there exists at least one course of events (history) fulfilling an (admissible) set of
social expectations EXP?. If a society is not well-defined with respect to goal true, then there
is no way (i.e. no course of events) for its members to behave according to the raised set of
social expectations EXP?.
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For instance, a society with goal true, empty SOKB and ICS given by:

H(p)→ EN(p)

¬H(p)→ E(p)

is not well-defined with respect to true, since there does not exist any admissible and fulfilled
set of social expectations for each of its (closed) instances. In fact, in any closed instance of
such a society, if H(p) belongs to the history, then EN(p) has to be abduced, but this leads to
violation. Also, if H(p) does not belong to the history, then E(p) has to be abduced, but this
leads to violation as well.

Significance. It is important to identify the societies for which there cannot exist any com-
pliant history. Such societies are ill defined, since there is no way to achieve the society require-
ments (goals) even if members interact according to the protocol specified by the society. The
well-definedness of a society is a useful guideline for the society designer; the verifiability of the
well definedness is thus an important feature of the SOCS social framework.

Formal statement of the property. We define well-definedness of a society with respect
to a goal as follows:

Definition 6.1 (Well-definedness wrt goal) A society S with ground goal G is well-defined
with respect to G iff there exists a closed instance SHAP of S such that G is achieved, i.e.:

SHAP �EXP? G

We call HAP a compliant history with respect to society S and goal G.

Notice that Definition 6.1 implies that there exists a (closed) admissible and fulfilled set of
social expectations EXP?, such that:

SOKB ∪HAP ∪EXP? � G

The following proposition relies on the generative variant of SCIFF, called gSCIFF, which has
been defined and implemented in order to generate compliant histories [5]. Whereas in usual
SCIFF executions the history is generated by external entities (e.g. by the communicative acts
exchanged by computees), in a gSCIFF computation a (compliant) history is generated by the
proof procedure itself.

Proposition 6.1 (Well-definedness) A society S with ground goal G is well-defined with
respect to G if there exists a gSCIFF computation such that:

S∅
g

`
HAPf

EXP G

By Proposition 6.1, we determine the well-definedness of a society S with respect a to goal G
by relying upon gSCIFF.

If there exists a gSCIFF computation for G in S, starting with the empty history set and
leading to a final history HAPf and (positive and negative) expectations EXP, then society
S is well-defined with respect to G.

52



Approach. As with the other properties, the well-definedness property has been dealt with
within the project by following a proof-theoretic approach, and by exploiting a variation of
the SCIFF proof procedure defined for the society infrastructure component. This has been
obtained by replacing the SCIFF Fulfilment transition by a new one (called Fulfiller) which,
in practice, turns the pending expectations into events, therefore applying the following meta
integrity constraint:

E(p)→ H(p)

Our proof of Proposition 6.1 above is based on the soundness of gSCIFF [5].

Related work. Since the well-definedness property is a particular instance of protocol prop-
erties, we refer to Section 6.2 for a discussion of related work.

6.2 Automatic Verification of Protocol Properties

Property classification: [SI-2] Automatically verifiable properties
Partners involved: UNIBO, DIFERRARA
Relevant papers: Alberti et al. [5]
Status: Proved (for restricted cases)

Introduction. Protocols are specifications of social expectations defined by the Society
Knowledge Base and the ICS parts of the social infrastructure. In this section we describe
our general approach to proving protocol properties automatically. In particular we describe
how the SCIFF proof procedure can be used and further adapted to this end.

Informal statement of the property. We aim at verifying protocol properties that can be
expressed by formulae and, in particular:

• existential properties, i.e. formulae that hold for at least one history compliant to the
protocol;

• universal properties, i.e. formulae that hold for all the histories compliant to a protocol.

Significance. Agent interaction verification is one aspect which has been intensively studied
under many perspectives in the area of open computational systems. The capability of the SOCS
social model to automatically prove or refute significant protocol properties is a demonstration
of the expressiveness of the formal model and of the effectiveness of its operational counterpart.
More generally, it shows the applicability of our approach to problems that, so far, have been
tackled mainly by model checking techniques.

Formal statement of the property. Let a protocol P be defined by SOKB and ICS . By
S, we design the society defined by SOKB and ICS . In the following definitions, we assume
that S is well defined with respect to the goal true. A formula f is an existential property of P
iff:

∃HAP∃EXP?SHAP |=EXP? f (1)

where SHAP |=EXP? f has the meaning explained in Definition 2.8 (goal achievement).
A formula f is a universal property of the protocol P iff:
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∀HAP∀EXP?(SHAP |=EXP? true → SHAP |=EXP? f) (2)

Approach. Our approach, which is described in detail in [5], aims at proving or refuting
properties automatically. For this purpose, we have extended the SCIFF proof procedure, used
for on-the-fly conformance testing, with a capability to generate histories that are compliant to
a given protocol and to a SCIFF goal (see Sect. 6.1). This extended proof procedure (gSCIFF)
can be used for verifying both existential and universal properties, as follows.

• An existential property f can be verified by:

1. expressing f as a SCIFF goal, and

2. running gSCIFF. Two cases are possible:

– gSCIFF returns failure: f is not an existential property of protocol P;
– gSCIFF returns success, with a history HAP: f is an existential property of P,

and HAP is an example instantiation of a history that satisfies f .

• A universal property f can be verified by:

1. expressing ¬f as a SCIFF goal, and

2. running gSCIFF. Two cases are possible:

– gSCIFF returns failure: f is a universal property of protocol P;
– gSCIFF returns success, with a history HAP: f is not a universal property of
P, and HAP is an example history for which f does not hold.

At the time of writing, our technique can be applied subject to the following restrictions:

• The only properties that we can verify are

– existential properties that can be expressed as a SCIFF goal;

– universal properties whose negation can be expressed as a SCIFF goal.

• Soundness of gSCIFF has been proven, but completeness has not. Thus, our approach is
provably effective for proving existential properties and refuting universal properties, but
not yet for proving universal properties and refuting existential properties.

Related work. In recent years the provability of properties for communication protocols has
received a lot of attention; this holds even more for security protocols. Various techniques have
been adopted for the task of automatic verification of properties.

One way to prove/disprove protocol properties in the security domain is the cryptographic
approach, used for proofs by hand [37] or, more recently, automatically [14]. Theorem provers,
such as Isabelle/HOL [58] have also been applied to this task, together with tools for graphically
representing and defining the protocols [76]. Another viewpoint is to embody a possible intruder
and plan for an attack [1].

Dixon et al. [21] specify security protocols in KL(n), a language for representing the Tem-
poral Logic of Knowledge. Raimondi and Lomuscio [62] also use a temporal logic enriched
with epistemic connectives for representing the agents’ knowledge, but exploit efficient data
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structures (namely, Ordered Binary Decision Diagrams) to improve the efficiency of the model
checking algorithm. The gSCIFF procedure is able not only to prove properties expressed in
the SCIFF language, but can also provide counterexamples of properties. For instance, gSCIFF
is able to generate the Lowe’s attack to the Needham-Schroeder protocol [56, 51, 5].

Armando et al. [11] compile a security program into a logic program with choice lp-rules
with answer set semantics.3 Among other approaches to security protocol verification we cite
those developed using hereditary Harrop formulas [18], process-algebraic languages [59], model
checking with pre-configuration [48], and proof theory [19].

6.3 Negotiating Socially Optimal Allocations of Resources

Property classification: [SI-3] Microeconomic properties
Partners involved: ICSTM, CITY
Relevant papers: Endriss et al. [26, 28], Endriss and Maudet [25]
Status: Proved

Introduction. This strand of work brings together two central aspects of SOCS: distributed
resource allocation and the notion of society. In the context of resource allocation problems,
the welfare of an individual computee may be measured in terms of the resources it owns and
the utility it assigns to these resources. The concept of a social welfare ordering, familiar from
welfare economics [12, 55], then allows us to compare different states from a societal point of
view. We have studied how allocations of resources that are socially optimal in this sense can
be guaranteed to emerge eventually, provided that the behaviour of individual computees is
restricted by certain rationality constraints when they engage in negotiation and agree on a
sequence of deals to exchange resources.

Informal statement of the property. Our results in this area are parametrised by (i) the
class of deals that computees may negotiate, (ii) the notion of social optimality with respect to
which we evaluate allocations of resources, and (iii) possible restrictions on the utility functions
used to measure individual welfare. Our main results may be paraphrased as follows:4

• Computees that will agree to any deal strictly improving their personal welfare will even-
tually reach an allocation with maximal utilitarian social welfare, i.e. an allocation where
the sum of utilities is maximal (provided that monetary side payments are possible).

• In domains with additive utility functions, the above result holds also for deals involving
only a single resource at a time.

3Choice lp-rules (for a formal definition, see [57]) are expressions of the form

{l0} ← l1, . . . , lm, not lm+1, . . . , not ln,

where l0, . . . , ln are literals, which prescribe that if their body is satisfied by an answer set, their head may or
may be in the answer set, or not.

4Note that a crucial feature of our negotiation framework is that deals may be truly multilateral: a single
deal may include any number of computees and any number of resources. Unless specified otherwise, monetary
side payments between computees (to compensate someone for an otherwise disadvantageous deal) are assumed
not to be possible. For precise definitions of the various social welfare orderings and types of utility functions
involved, we refer to the textbook by Moulin [55] and papers [25, 26, 28].
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• In domains with 0-1 utility functions (that is, utility functions that are additive and
where any single resource has either utility 0 or utility 1), the same result can be achieved
without side payments (provided computees do not require a strict increase in utility).

• Computees that will agree to any deal improving (or at least maintaining) their personal
welfare will eventually reach an allocation that is Pareto optimal, i.e. where no computee
could enjoy a further gain without reducing the utility of another.

• Computees that will agree to any deal improving the welfare of their trading partner
currently worst off will eventually reach an allocation with maximal egalitarian social
welfare, i.e. an allocation that maximises the utility of society’s “poorest” member.

• In domains with 0-1 utility functions, computees that will agree to any deal involving only
a single resource that is either inequality-reducing or results in an improvement for every-
one involved will eventually reach an allocation that is Lorenz optimal (a notion of social
optimality combining ideas from both the utilitarian and the egalitarian programme).

Significance. This line of research provides a theoretical analysis of the resource allocation
problem in open societies, which has been identified as a central scenario of interest in SOCS
and has also received much attention within the Global Computing initiative in general. Our
results can assist system designers in building computees that are, at least in principle, capable
of negotiating resource allocations that are optimal with respect to a notion of social welfare
appropriate for the application in question. Although, in general, acceptability criteria (i.e.
criteria that specify what deals would be acceptable to all parties) are best expressed in terms of
utility functions, in many cases they can also be translated into symbolic negotiation strategies
expressed as part of a computee’s reactivity knowledge base. The simplest examples are 0-1
utility functions, which can be modelled using a predicate need/1 that would be true whenever
the resource in question has utility 1 [68].

Formal statement of the property. These properties (as well as several related results,
pertaining in particular to the necessity of certain classes of deals for achieving optimal out-
comes) are formally stated and proved in [26, 28, 25].

Approach. We first prove termination results for each of the instances of the general frame-
work considered. These proofs rely on the fact that the negotiation space is finite (a finite
number of discrete resources needs to be distributed amongst a finite number of computees)
and the fact that for each of the classes of deals considered any one deal is bound to result
in a strict improvement with respect to a suitable social welfare ordering. It is then possible
to show that the assumption that negotiation has terminated (in the sense of there being no
more feasible deals available to computees) and that the final allocation is not optimal leads
to a contradiction. In each case, we show how these assumptions can be used to construct a
particular deal that would still be feasible (which contradicts the termination assumption).

In some cases our contribution consists mostly of designing suitable classes of deals for a
given social welfare ordering, and the actual proofs are relatively easy. In other cases, the
connections between the social welfare orderings and the classes of deals are more complex.
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Related work. Our work in this area builds on and extends work by Sandholm on distributed
task allocation [70]. In fact, our results for the first instance of the negotiation framework,
where strictly self-interested computees negotiate deals with monetary side payments and where
we are interested in maximising utilitarian social welfare, directly corresponds to Sandholm’s
framework (if we interpret tasks as resources with negative utility).

The utilitarian programme, i.e. the idea of trying to maximise the sum of all utilities of
the members of a society, is often taken for granted in the multiagent systems literature (see
e.g. [53, 64, 71, 77]). This is not the case in welfare economics and social choice theory, where
different notions of social welfare are being studied and compared with each other [12, 39, 55, 73].
Our work on negotiation addresses this gap by introducing notions such as egalitarian social
welfare into multiagent systems.

While most work on negotiation in multiagent systems has been concerned with either
auctions or bilateral (“one-to-one”) negotiation [64, 77], we should stress that our work explicitly
addresses multilateral exchanges and that it is not an auction. Auctions are mechanisms to
help agents agree on a price at which an item (or a set of items) is to be sold [47]. In our
work, on the other hand, we are not concerned with this aspect of negotiation, but only with
the patterns of resource exchanges that computees actually carry out.

6.4 Stability Properties

6.4.1 Stability Properties of Multiagent Systems

Property classification: [SI-4] Stability properties
Partners involved: ICSTM, DIPISA, CITY
Relevant papers: Bracciali et al. [15, 16]
Status: Preliminary work

Introduction. This line of work has been undertaken with the aim of investigating and devis-
ing a logic-based, declarative methodology for the study of properties of interacting computees,
emerging from their mutual interactions and from their interactions with the environment in
which they are situated. The methodology was designed to be abstract, namely focussing on
the external, observable behaviour of computees rather than their internal reasoning processes,
and possibly supporting automated verification.

We have introduced a novel semantics for generic multiagent systems (MAS), based on the
idea of stable sets of actions [15, 16]. Agents are considered as input-output transformations
from their “private” mental state and the environment they perceive to the observable set of
actions they perform in their environment (which are observed by the other agents). A MAS
is then understood in terms of the collection of the agent semantics and the environment in
which the agents are situated. It is then possible to characterise the “good” evolutions of a
MAS as those that lead to a “stability point”. The notion of stability has been formalised via a
recursive notion of a stable set of actions, i.e. the union of all the actions that the agents in the
system would perform, if each one of them knew, from an oracle, say, what all the others will do
and what will happen in the environment. If such a set exists, then it represents a convergence
point where all the agents agree on what the overall behaviour of the system is.

This provides us with a significant set of system evolutions, viz. those corresponding to
stable sets, in which it is sensible to study the properties of interest to the agents and the MAS.
MAS can then be characterised in terms of further properties, such as their robustness, that
can be meaningfully defined in terms of stable sets.
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The semantics of stable sets is abstract, since it sees agents abstractly as input-output black
boxes (and thus, in principle, it can be applied to any agent model), and since it abstracts away
from temporal issues and the time of actions and events. It also has an operational counterpart,
which, in some cases, can support automated verification.

“Well-behaved” MAS can be characterised according to the existence of stable sets for them.
Furthermore, stable MAS can be further verified against additional properties of interest, related
to either the system as a whole (see below) or to individuals within the system (see section 6.4.2).

As a first step towards using the abstract stable semantics in systems consisting of com-
putees, we have instantiated the abstract stable semantics with simple abductive logic agents,
equipped with simple planning and reactive knowledge in the form of abductive logic programs.
The simple framework considered ignores temporal issues, namely it ignores the time of actions
and events and the reasoning with it. We envisage that, in order to deal with the full KGP
model, we will need to extend the abstract stable semantics to deal explicitly with temporal
issues, so that the evolution of knowledge by computees (their observation of events in the
environment and actions by other computees) is taken into account - when building a stable
set - at the appropriate times.

Furthermore, in order to deal with societies of computees, rather than merely sets of com-
putees, we will need to extend the abstract stable semantics to take into account social rules
and goals, external to the agents.

Informal statement of the property.

• A set of actions (by the different agents) is stable if, assuming that an “oracle” could
feed each of the agents with all the actions in the set performed by the other agents (and
all events happening in the world), then each agent would do exactly what is in the set,
namely their observable behaviour would be exactly what the set envisages.

In [15] we have given a bottom-up constructive method for the approximation of stable sets for
a restricted class of agents (see above), and we have soundness for non-failing agents has been
shown.

The problem of termination in presence of “temporarily” failing agents has been addressed
in [16], where the bottom-up constructive method has been adapted to deal with abstract agents
which may become inconsistent with respect to a given environment. In that case, the stable set
is constructed, if it exists, by coordinating the agents that are able to maintain their consistency
while acting together, and by suspending the inconsistent ones.

Relying upon the semantics stable sets, in [15] we have characterised overall successful,
robust, and world dependent MAS:

• A system is overall successful if a stable set exists, according to which all the agents in
the system are individually successful. Here, we have assumed that individual success
amounts to achievement of individual goals by the agents. Note that this notion of overall
success is rather weak, as it only requires one successful stable set to exist, and stronger
versions could also be of interest.

• A system is robust if it is overall successful and there is no agent in it that can make the
system not overall successful by not contributing to the evolution of the system itself.
Namely, a robust system is one that does not need any of its agents in particular in order
to be overall successful, or, alternatively, one in which no agent specifically needs one of
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the others in order to be individually successful. Stronger notions of robustness, e.g. up
to a given number of potentially “failing” agents, could also be of interest.

• A system is world-dependent if it is overall successful only within a non-empty world (i.e.
environment) where events that are external to the agents happen. Intuitively speaking,
a robust system does not depend on all the agents that build it, while a world-dependent
one depends also on the environment, and not only on all its agents, in order to be overall
successful.

These properties are verified in equilibrium points of the possible evolutions of a MAS, i.e. those
that the agents in the MAS can reach by executing a stable sets of actions.

Significance. The declarative semantics introduced and its use for formal verification address
the description and verification of properties of interest for multiagent systems. Such systems
(intended as collections of agents) are simpler than societies of agents, the latter being provided
with a social kind of infrastructure, like the normative one in societies of computees. How-
ever, even in this “simpler” formulation, the approach covers a set of properties of interest for
communities of interacting agents and computees. Moreover, the high level of abstraction fa-
cilitates the independence of the model from the different agent paradigms. General conditions
guaranteeing that verification can be fully automated are still under investigation. Restrictions
facilitating the fruitful application of the model to the KGP model of computees are also under
investigation.

Formal statement of the property. The model and the verification of the properties of
interest have been introduced in [15], together with an automated verification methodology that
has been shown sound for a restricted class of agents, when they are able to remain coherent
with their evolving environment. In [16], the methodology has been extended to the case in
which agents may become inconsistent, given the current state of the world, but might recover
thanks to the activities of the other agents.

The model has been formalised. Properties of the automated verification methodology
for restricted classes of agent programming languages have been shown. Conditions for more
general soundness results and use of this approach for fully-fledged computees are subject to
future work.

Approach. This work has been undertaken with the aim to devise an abstract, declarative
semantics for interacting agents, with an operational counterpart allowing for the possibly
automated verification of the properties of such systems. The approach has taken inspiration
from a multidisciplinary set of fields.

Related work. The model we defined is close to several approaches, based on computational
logic, whose aim has been to provide formal models to understand MAS environments, for
example [17, 7, 8]. The distinguishing feature of our approach with respect to these proposals
is its generality, which, independently of specific agent paradigms, allows us to reason at an
abstract and “declarative” level, similarly to [75], where agents are considered in terms of their
observable interaction with the environment. Also, we have made novel use of well known
logic-based techniques, like bottom-up approximations and the idea of stability itself, as tools
aimed at the analysis of MAS.
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We also differ from several approaches based on modal logic, like [78], for both the overall
approach and the interpretation of the concept of environment.

6.4.2 Stability Properties of Agents in Multiagent Systems

Property classification: [SI-4] Stability properties
Partners involved: ICSTM, DIPISA, CITY
Relevant papers: Bracciali et al. [15, 16]
Status: Preliminary work

Introduction. These properties use the semantics of stable sets of actions given in sec-
tion 6.4.1, but they refer to individual agents and their role in a (stable) multi-agent system
(MAS), rather than the system as a whole. In this sense, they can be seen as regarding the
social effects of the agent behaviour. Thus, there are also connections to IC-3 (success criteria
and preferences).

As already discussed in section 6.4.1, the stability semantics for MAS and thus all the
properties defined in terms of it, refer to an abstract agent model and neglect the possible
presence of social rules and goals in MAS. Thus, future work will be needed to instantiate them
for computees and societies of computees.

Informal statement of the property. This class of properties is defined by adopting the
notion of individually successful agent as an agent that achieved its goals.

The following properties of agent within MAS have been studied:

• an agent within a MAS is world aware if it believes, within its mental state, all the events
that have happened in the world and that it has observed;

• an agent within a MAS is j-aware if it believes all the observations it made upon some
other agent j;

• an agent within a MAS it is environment aware if it believes everything it observes,
including events in the world and actions by all the other agents it can observe.

• an agent within a MAS is system dependent if it cannot be successful alone, but it can be
successful together with other agents in the system. Thus, this agent has a motivation to
look for other agents with which to join forces;

• an agent within a MAS is dispensable if it is not needed to guarantee success of the other
agents in the system. So, designers of multi-agent systems could exclude any dispensable
agent from it (e.g. to reduce communication costs);

• an agent within a MAS is dangerous if it can undermine the overall success of a multi-
agent system, if added to it. So, designers of a multi-agent system should make sure that
no dangerous agent belongs to the system.

The study of the relationships between the properties of single agents within MAS, illustrated
here, and those of agents within a MAS or a society, illustrated in section 6.4.1, are scope
for interesting future work. For instance, a system dependent agent will probably be world
or environment aware, and a robust system will be populated by dispensable agents, while it
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obviously will not tolerate dangerous agents. Better understanding this kind of relations should
facilitate the choice and the design of agents/computees depending on the desired features of
the overall system.

Whenever the construction of the semantics can be supported by automated procedures,
the verification of the properties above can also be supported by automated procedures.

Significance. The declarative semantics introduced is aimed at the the formal verification of
properties of interest for agents within the systems they constitute. Mainly, the approach is
oriented to MAS properties, as illustrated in Section 6.4.1, but suitable to also describe single
agent features. Moreover, its high level of abstraction facilitates the instantiation of the model
to different agent models. For some specific agent model the verification can be automated.
More general conditions on the agent models, including the KGP model as already mentioned,
which guarantee automatic verification are under investigation.

Classifying agents and computees according to their behaviour and attitudes towards other
agents is an important research issue. Results in this field can help the design of agent-based
applications by allowing system designers to determine the most suitable features an agent must
exhibit according to its planned use.

Formal statement of the property. The properties have been formally introduced in [15]
together with the automated verification methodology for a restricted case of agents. The
companion paper [16] extends the approach to agents that may temporarily become inconsistent,
i.e. may undergo a failure which might be recovered in the future.

The model has been formalised. Properties of the automated verification methodology
for restricted classes of agent programming languages have been shown. Conditions for more
general soundness results are subject to future work.

Approach. The model proposed has been devised with the aim of defining an abstract se-
mantics suitable to be used for the possibly automated verification of properties of MAS and,
with future work, societies of computees. The work has been inspired by a multidisciplinary set
of ideas: the game semantics, for the input/output abstract semantics of agents, and compu-
tational logic, for both the idea of stable semantics for abduction that has inspired our notion
of stable set, and bottom-up approximations, like the TP operator of logic programming, of
which our constructive methods can be seen as an instance. Moreover, our idea of stability
as an equilibrium point appears strongly reminiscent of the Nash equilibrium, from economics
(although this similarity needs to be further studied).

Related work. See Section 6.4.1.

7 Protocol Conformance

A protocol specifies the “rules of encounter” governing the social interactions between agents [64,
53]. It specifies which agent is allowed to do what in a given situation. It will usually allow
for several alternative actions in every situation and the agent in question has to choose one
depending on its private strategy. A good protocol will enable fruitful interaction in general. A
good strategy will benefit the agent using it. The protocol is public, while each agent’s strategy
is private. We specifically consider protocols that regulate communication. Protocols are of
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Figure 1: Time/knowledge conformance verification diagram

practical importance because they may help to select the adequate answer to an incoming
utterance, thus reducing the complexity of this task for an agent. Moreover, from a social
perspective, formal protocol specifications can be used to define what a “good” behaviour of
an agent is, in the context of a given society, towards the achievement of a social goal.

In recent years, several formalisms for defining agent interaction protocols have been pro-
posed and several notions of conformance (or compliance) to such protocols have been defined.
Section 7.1 provides an overview of these different concepts to allow us to place the technical
contributions reported later in Section 7 within the wider context of this area.

7.1 Aspects of Protocol Conformance

During the first two years of the SOCS project we have introduced a formalism, called Social
Integrity Constraints, that can be used to define protocols [54, 36]. The notion of compliance
to protocols has then been mapped onto that of fulfilment of social expectations. In parallel,
within SOCS, work has been carried out towards identifying several levels of protocol con-
formance, towards checking a computee’s expected conformance a priori (on the basis of its
internal specification), and towards actively enforcing conformance by manipulating a com-
putee’s program [27]. Related to this latter line of enquiry, we have also introduced the concept
of a computee’s competence to use a protocol [22].

Figure 1 provides an overview of the different notions of protocol conformance we may
consider. It is inspired by the work of Guerin and Pitt [38], who have identified three types
of conformance verification, depending on the amount of information that is available about
the participating computees, and on whether the verification is done at execution time or at
design time. In this diagram, the horizontal axis shows the amount of information available
about the computee, and the vertical axis represents the time of verification. If we have “static”
information about the computee, such as its specifications, it will be possible to carry out some
analysis a priori (at design time), and to foresee the behaviour of the computee (marked by
(1) in the diagram). Conversely, if we have no information about the computees, we can only

62



perform on-the-fly verification of conformance to a protocol at execution time (2), by observing
their behaviour from the outside. Finally, it is possible to study the protocol itself and its
properties (3); this is usually done under the assumption that computees will actually follow
that protocol.

In Figure 1, we indicate by (t∗) a fourth case where the specifications of computees are
available, as well as their runtime behaviour. From the viewpoint of formal property verification,
the verification of the computees’ compliance and the verification of protocol properties can be
done statically (case (1)); the additional information that we could obtain by running the system
could be related to the task of testing it (this is discussed in deliverable D14 [2]). For instance,
we may test how the properties that a computee exhibits relate to the overall system behaviour
in terms of scalability, efficiency, etc.

Having no information about computees and the availability of a full specification are two
extremes; we may also consider the availability of different degrees of knowledge about com-
putees in between these two extremes. For instance, it could be the case that we know about
some computee that it is going to be either “weakly”, “exhaustively” or “robustly” conformant
to a protocol [27], or that it is going to be either “positively”, “negatively” or “strongly” compli-
ant to it [6]. These notions are related to each other, and in some cases an equivalence between
them can be established. Endriss et al. [27] provide the following definitions of conformance:

• A computee is weakly conformant to a protocol P iff it never utters any illegal dialogue
moves (wrt. P).

• A computee is exhaustively conformant to a protocol P iff it is weakly conformant to P
and it will utter some response for any legal input it receives.

An additional notion of conformance (robust conformance) is related to the behaviour of com-
putees in the event of illegal incoming messages. This latter view of conformance is related to
the not-understood performative of the FIPA communication act library specification [31].

The SOCS social framework developed in D5 and D8 [54, 36] provides a language for defining
protocols via a set ICS of Social Integrity Constraints, rather than explicitly specifying the
valid utterances (and thereby considering all the other possible utterances invalid). A protocol
defined through this language does not over-constrained computees in their interaction. Alberti
et al. [6] provide the following definitions:

• A group of computees is negatively compliant to a set ICS of Social Integrity Constraints
iff its members never produce a social event which is expected not to happen.

• A group of computees is positively compliant to a set ICS of Social Integrity Constraints
iff its members never fail to produce social events which are expected to happen.

• A group of computees is strongly compliant to a set ICS of Social Integrity Constraints
iff it is both negatively and positively compliant to ICS .

The protocols of Endriss et al. [27] correspond to Deterministic Finite Automata (DFAs).
Clearly, it is possible to encode such protocols also by means of social integrity constraints.
It turns out that the notions of weak conformance and negative compliance coincide for the
class of protocols that can be represented using DFAs; and similarly, exhaustive conformance
corresponds to strong compliance.

We have shown in D8 [36] how the SCIFF proof procedure can be used to verify compliance
by observation on the fly (case (2) in Figure 1). This result is summarised in Section 7.2.
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Checking conformance a priori (case (1) in Figure 1) is generally a very difficult task, as it
involves the (possibly very complex) specification of a computee and the specification of a
protocol. In Section 7.3, we show how to check (weak) conformance a priori with respect to a
simple class of protocols called shallow protocols. Our results pertaining to the study of protocol
properties themselves (case (3) in Figure 1) have been presented earlier in Section 6.2 (because
these properties are not strictly related to the topic of conformance but rather properties of
the social infrastructure that provides the protocol). Section 7.4 discusses an aspect of protocol
competence, which is, broadly speaking, a computee’s ability to deal appropriately with a given
interaction protocol beyond the basic requirement of syntactic conformance to its rules.

7.2 On-the-fly Conformance Checking

Property classification: [PC-1] On-the-fly conformance checking
Partners involved: UNIBO, DIFERRARA
Relevant papers: Deliverables D5 [54] and D8 [36]
Status: Proved

Introduction. On-the-fly conformance checking is an essential feature of the society model
and has already been addressed in workpackages WP2 and WP3 throughout the first two years
of the project. Given that on-the-fly conformance is also an important property that is of high
relevance to the objectives of WP5, we include again a brief summary in this presentation.

Informal statement of the property. On-the-fly conformance checking means verifying
that a history of events is conformant to a protocol, by observing the history during its evolution.

Significance. Verifying the conformance of agent interaction to a protocol is of high impor-
tance in Multiagent Systems. The SOCS social model has demonstrated that Computational
Logic provides a viable approach to achieving this objective.

Formal statement of the property. The formal definitions may be found in deliverables
D5 [54] and D8 [36].

Approach. On-the-fly conformance is verified by means of the SCIFF [36] proof proce-
dure. The web site http://www.lia.deis.unibo.it/Research/Projects/SOCS/partners/
societies/protocols.html contains several examples of protocols and histories that have
been checked on-the-fly for conformance.

Related work. Related work on conformance verification has been discussed extensively in
deliverables D5 [54] and D8 [36].

7.3 Weak a-priori Conformance Checking for Shallow Protocols

Property classification: [PC-2] A-priori conformance checking
Partners involved: ICSTM
Relevant papers: Endriss et al. [27, 29]
Status: Proved
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Introduction. A shallow protocol is a protocol where the range of legal follow-up moves at any
given stage in a dialogue depends on the previous dialogue move alone. Shallow protocols can be
represented using social integrity constraints [54]: the only (positive) expectations required will
refer to the next point in time (or, more precisely, the next turn in the conversation regulated
by the protocol) and depend only on events that have just happened.

Informal statement of the property. Recall from Section 7.1 that a computee is called
weakly conformant to a protocol iff it will never utter any illegal dialogue moves (but it may
indeed remain silent and thereby violate a social expectation) [27]. We have shown that a
computee will be weakly conformant to a given shallow protocol whenever its so-called “response
space” (a simple abstraction from the computee’s reactivity knowledge base) logically entails
(a suitable representation of) that protocol. This result applies to computees whose reactivity
knowledge base has the structure of an abductive agent as defined in [68], and whose planning
knowledge base does not include any communicative actions.

Significance. Shallow protocols constitute a simple, yet important, class of protocols, which
can be used to represent most of the protocols based on finite state machines found in the
multiagent systems literature (e.g. [60, 61]).

Weak conformance is certainly a first important requirement for conformance in general.
From a technical point of view, it also has the advantage that it can be proved without reference
to every single component of the KGP model, and it only relies on soundness (rather than
completeness) results for the computational model of individual computees.

Formal statement of the property. The property is formally stated and proved in [27].

Approach. The result applies to computees whose reactivity knowledge base consists of a
set of reactive rules of the form P (τ)∧C ⇒ P ′(τ+1),5 specifying that whenever the computee
receives a communicative action of the form P at time τ and condition C holds, then it should
react by performing the communicative action P ′ at time τ +1. We define the notion of a
computee’s response space as the set of reactive rules we get by first dropping all conditions
C and then conjoining implications with identical antecedents by collecting the corresponding
consequents into a single disjunction (an example would be P (τ)⇒ P ′

1(τ+1)∨P ′
2(τ+1)∨ · · · ∨

P ′
n(τ +1)). A response space has the same structure as a shallow protocol (if we remove the

operators H for happened events and E for expectations and consider only the basic structure
of protocol constraints). A computee whose response space is a specialisation of the relevant
protocol constraints can never utter an illegal dialogue move. Equivalently, a computee whose
response space entails the (simplified representation of) the protocol is bound to be weakly
conformant to that protocol.

Reactivity and Planning are the only transitions that can introduce new communicative
actions.6 Plan Revision may cause an action to be deleted, Action Execution may not execute
an action in time, and a badly designed cycle may prevent the transitions generating new actions
from being called in the first place, but none of these other components of the KGP model can
be responsible for generating an illegal communicative action. Therefore, when proving results

5We use a simplified syntax to describe reactive rules here.
6While Sensing Introduction and Active Observation Introduction can introduce actions as well, these are

not communicative actions, and thereby do not affect the computee’s conformance to the protocol.
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pertaining to weak conformance alone, we can restrict our attention to Reactivity and Planning.
By assuming that the planning knowledge base does not involve any communicative actions,
we have furthermore been able to reduce the problem to a verification problem with respect to
the reactivity knowledge base alone.

Related work. We also have preliminary results on exhaustive conformance (which addition-
ally requires a computee to utter a legal move whenever it is its turn) for shallow protocols [29],
but these results only apply to a simplified model and rely on the availability of complete
reasoning mechanisms.

7.4 Reachability for Shallow Protocols

Property classification: [PC-3] Protocol competence
Partners involved: ICSTM, CITY
Relevant papers: Endriss et al. [22]
Status: Preliminary results

Introduction. Arguably, the ability to merely conform to a protocol is not sufficient to call
a computee a competent user of that protocol. For example, in the context of a negotiation
protocol, both accepting and rejecting a proposal may constitute legal moves, but a computee
rejecting any given proposal (whatever its content) could hardly be called a competent user
of such a negotiation protocol, despite behaving in conformance to its rules. The broad term
protocol competence covers all aspects of a computee’s ability to use a given protocol appro-
priately beyond being able to conform to the rules of interaction of such a protocol. We have
introduced this concept and provided a preliminary study of one aspect of competence with
respect to shallow protocols (see also Section 7.3) in [22].

Informal statement of the property. We approach the intuitive concept of protocol com-
petence by introducing a notion that considers the joint ability of a pair of computees to reach
a particular state of an interaction in a society of computees where interaction is regulated by
a protocol that can be represented as a finite state machine. We have provided preliminary
results that allow us to automatically check this type of competence with respect to shallow
protocols (a large subclass of the protocols representable by finite sate machines) and a simple
class of computees.

Significance. Interaction protocols are central to any distributed systems where autonomous
entities need to cooperate or negotiate. Being able to use these protocols in a competent
manner is equally important for such applications. While the concept of protocol conformance
has achieved much attention, both within the SOCS project and within the multiagent systems
community in general, there appear to have been no attempts to address the wider issue of
protocol competence. Our work in this area provides some first steps in this direction.

The significance of the particular class of shallow protocols considered here has already been
argued for in Section 7.3.

We have also introduced a first application of our technique in [22], namely to automati-
cally customise interaction protocols to better meet the needs of computees that are not fully
competent to use the original protocol. In this approach, we first identify states in a protocol
that, once reached, would prevent computees from ever reaching a terminal state (due to the
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incompetence of one of the participants). A social authority would be able to use this informa-
tion to propose a cut-down version of the original protocol that would prevent computees from
entering into such deadends.

Formal statement of the property. The property is stated in detail in [22].

Approach. Similarly to the property discussed in Section 7.3, our results apply to computees
with a simple reactivity knowledge base for which it is possible to extract the computee’s
response space that can be matched against a given shallow protocol. Furthermore, the result
presupposes that no other components of the KGP model (in particular, planning) will interfere
with the computee’s communicative behaviour in an unexpected manner. Our results are
preliminary, in particular, in the sense that the latter is a very strong assumption. We refer
to [22] for further details.

Related work. We are not aware of related work that aims specifically at identifying aspects
of protocol competence.

8 Conclusion

In this deliverable we have reported the work that was undertaken for workpackage WP5 of the
SOCS project. WP5 concerned the verification of properties of the computee and the society
models. We chose a broad range of properties, classified into four categories related to the
proof procedures, individual computees, societies and protocols, with each category consisting
of several results. For each property we have summarised its informal and formal definitions,
its significance and the approach taken in its proof and we give references to annex documents
that provide detailed discussions.

The summary of most of the properties includes a discussion of work related to that specific
property. In the cases of behavioural profiles there is a separate section for the related work
(Section 5.1.1), because this is shared by all the properties in this category. To our knowl-
edge our work on all the properties, with the exception of the soundness, completeness and
termination of the proof procedures, is novel.

8.1 Evaluation

The results reported in this deliverable go some way towards showing:

• The appropriateness of the models: For example, the coherence properties of Section 5.2
show some advantageous features that result from the design choices made in the computee
model, and the soundness, completeness and termination properties of the society proof
procedure show the appropriateness of the choices made there.

• The scope and versatility of the models: For example Section 5.1 on the behaviour pro-
files shows how different behaviours can be accommodated within the computee model.
Another example is Section 6.2 which shows how the society proof procedure, itself, can
be adapted to prove properties of protocols automatically.
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• The suitability of the models for the chosen scenarios, in particular resource allocation:
For example, the results reported in the whole of Section 7 on protocol conformance are
immediately relevant to the communication requirements for negotiation. In addition,
Section 6.3 discusses several concepts of optimality of allocations of resources that are
relevant in this context.

• The use of theoretical results towards providing guidelines for the design of computees
and the social infrastructure to anyone who wishes to use the PROSOCS platform: For
example, the results on well-definedness reported in Section 6.1 help give guidelines to
the designers of the social infrastructure, and the investigation of the behaviour profiles
of Section 5.1 give guidelines to the designers of computees.

In addition the results show a possible synthesis between the computee and society models:
For example, Section 5.4 shows how social expectations can be incorporated in the private
policies of computees who negotiate over resources. Another example is the result on a-priori
conformance checking reported in Section 7.3, which relates (parts of) the specification of a
computee to that of a society protocol.

Work on WP5 has helped provide detailed feedback to us about the models of computees
and societies. Work on the profiles (Section 5.1) suggested that it would be better to combine
the Goal Revision and Plan Revision transitions into one. Consequently we have defined a new
State Revision transition, SR, (see Section 2.3.1) to replace the two.

Work on the Coherence Properties (Section 5.2) revealed two problems with the Action
Selection Function. One was an error in its definition that meant that when a set of actions
As was selected for execution the time constraints of the actions in As collectively were not
guaranteed to be consistent. This has been corrected as reported in Section 2.3.2. Another
problem was that (both the original and the corrected versions of) the Action Selection Function
did not guarantee that actions would be selected in the “right” order. So an action with a later
time could be selected even if there were earlier unexecuted and non-timed out actions still
present in the Plan. After many discussions we decided that it would be better to allow this
in the core model and, instead, specify a behaviour profile, namely the simple punctual, that
would force selection of actions in the right order.

It was valuable to have the work on WP6 on practical experimentation progressing in par-
allel. This too provided feedback about the models and the properties investigated in WP5.

Despite the successes outlined above, there have been inevitable difficulties. One of the
major problems has been that the computee model is complex. It is defined declaratively at all
levels and it is modular. So it lends itself well to proving properties about its subparts. However,
with more complex, overall properties, one has to take account of the whole model. Not only
that, but one also needs to take into account the environment and its possible interventions.
These considerations made the work on individual welfare and the behaviour profiles particularly
difficult. One consequence of this has been that, for example, the results about the effectiveness
of individual behaviour profiles are based on conditions that need more detailed discussion and
perhaps more formal characterisation. One example of such a condition is time-criticality. It is
intuitively clear what we mean by time-criticality. However, it is very difficult to give sufficient
and necessary conditions for it on the knowledge bases of computees. One possible way to
tackle some of the issues and complexities in any related future work may be to specify a model
of the environment as well as computees.
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8.2 Planning and Division of Work

The work that has been done on WP5 has largely followed the task allocation planned in D12 [3].
Several plenary and subgroup meetings have taken place during the last year to finalise the list
of properties to be addressed and to plan the work amongst the partners, and later to discuss
progress and cross-fertilisation. This has been done both within WP5 and across WP5 and
WP6.

There have been many close collaborations and synergies across the sites and on different
topics. This is self-evident from the list of authors in the bibliography. For example the work
on behaviour profiles has involved the collaboration of ICSTM, DIPISA, CITY and UCY, the
work on SCIFF soundness and termination results has involved the collaboration of UNIBO
and DIFERRARA, and the work on adopting social expectations has involved a collaboration
between UCY and UNIBO and also demonstrates a synergy between the individual computee
and the society models and concepts.

8.3 Future Work

The SOCS project has been a complex and very ambitious project at all its stages, from the
development of the declarative models, to the development of the computational models and
prototype implementations and now at the stage of formalising and proving formal properties.
We have tackled a diverse and fairly large collection of properties. Almost in all cases there is
scope for refinement and improvement. Some of these we will attempt during the remainder of
the project and most are subject of future work beyond the project.

Considering the four categories of the properties: Regarding the proof procedures, there
is potential for a more comprehensive proof of completeness of CIFF and SCIFF. Regarding
individual computees, there is much scope for building on our existing work, for example to
extend the results on the behaviour profiles, or to investigate the consequences, positive and
otherwise, of combining different profiles. Another example is to extend the definitions and
results of individual welfare to more complex situations, allowing time-critical goals and plans.
The work on adopting social expectations is preliminary, but promising. Investigating further
and tighter synergies between computees and societies provides scope for much interesting
future work. Regarding the society infrastructure there are also possibilities for extending
the work. For example extending the automatic verification of protocol properties to proof
of universal properties. Another example is investigating policies and protocols that would
result in socially optimal allocations of resources through negotiation. Regarding protocol
conformance, extending the approach for proving conformance a priori discussed in Section 7.3
to both larger classes of protocols and richer agent models presents another important research
challenge for the future.
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