
SOCS
a computational logic model for the description, analysis and verification

of global and open societies of heterogeneous computees

IST-2001-32530

Experiments on Combinatorial Auctions

Project number: IST-2001-32530
Project acronym: SOCS
Document type: D (deliverable)
Document distribution: I (internal to SOCS and PO)
CEC Document number: IST32530/UNIBO/250/D/I/a1
File name: 5250-a1[].pdf
Editor: M. Milano
Contributing partners: UNIBO, DIFERRARA, CITY, ICSTM
Contributing workpackages: WP2,WP4,WP6
Estimated person months:
Date of completion: 10 March 2005
Date of delivery to the EC: 18 March 2005
Number of pages: 31

ABSTRACT
This paper contains the description of experiments done so far in the combinatorial auction
scenario. We describe the computee side and the society side. In this context we introduce
also external objects providing services to the computees themselves, and in particular imple-
menting a complex optimization algorithm. Experimental results are given for a traditional
combinatorial auction and for two variants of it: a double auction and an auction plus the
successive payment with Netbill.

Copyright c© 2005 by the SOCS Consortium.

The SOCS Consortium consists of the following partners: Imperial College of Science, Technology and Medicine,

University of Pisa, City University, University of Cyprus, University of Bologna, University of Ferrara.

Experiments on Combinatorial Auctions

M. Alberti, F Chesani, U. Endriss, M. Gavanelli, A. Guerri, E. Lamma, W. Lu, P.
Mello, M. Milano, K. Stathis, F. Toni, P. Torroni

UNIBO, DIFERRARA, CITY, ICSTM

ABSTRACT
This paper contains the description of experiments done so far in the combinatorial auction
scenario. We describe the computee side and the society side. In this context we introduce
also external objects providing services to the computees themselves, and in particular imple-
menting a complex optimization algorithm. Experimental results are given for a traditional
combinatorial auction and for two variants of it: a double auction and an auction plus the
successive payment with Netbill.

2

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 SOCS Approach . 4
1.3 Preliminaries on Auctions as Societies of Computees 5
1.4 Structure of the report . 6

2 Experimentation with combinatorial auctions 6

3 Problem description 7
3.1 Bid Evaluation Problem: IP model . 8
3.2 Bid Evaluation Problem: CP model . 9

4 Computees Involved in the Experiment 10
4.1 Modelling the Auctioneer in PROSOCS . 10
4.2 External Objects Used by the Auctioneer . 12
4.3 Interface between the Auctioneer an the Auction Solver 13
4.4 Modelling Bidders in PROSOCS . 15

5 Society involved in the experiment: the protocol 15
5.1 Single combinatorial auction . 16
5.2 Double combinatorial auction . 16
5.3 Combinatorial auction with Netbill . 17

6 Human users and SOCS-SI: extending SOCS-SI with e-mail support 18
6.1 E-mail messages structure . 19
6.2 Configuring the MailRecorder properly . 19

7 Combinatorial Auctions Experiments 20
7.1 Experiments on the Auction Solver . 20
7.2 Experiments on Computees . 20
7.3 Experiments on the Proof Procedure (society alone) 21

7.3.1 Tests with the e-mail support . 23
7.4 Integrated Experiment . 24

8 Related Work 25

3

1 Introduction

In the vision of computational infrastructures available globally and able to provide services
of different kinds (e.g., for communication, co-operation and mobility, resource usage, security
policies and mechanisms, etc.,), a central issue is that of resource and task allocation. To
this end, particularly suited tools are market-based negotiation protocols and theories, such
as those related to auctions and the increasingly popular combinatorial auction mechanism.
Combinatorial auctions are a good candidate to address issues of service programmability,
resource distribution and management, scalability, and distribution transparency, all central
topics in the global computing perspective.

Software agent technology seems to be an attractive paradigm to support auction applica-
tions, because the introduction of software agents acting on behalf of end-users could reduce the
effort required to complete auction activities. Agents are intrinsically autonomous and can be
easily personalized to embody end-user preferences. In addition, they are adaptive in order to
cope with changing operating conditions and evolving user requirements [13]. Electronic auc-
tions have already demonstrated the potential of software agents [6], where agents are required
to perform auction activities on behalf of human users.

1.1 Motivation

Consider, for example, the situation of an Internet auction where a user asks an agent to bid
on its behalf. Assuming that the user might have a way to specify an upper limit for the bids,
and possibly a bidding strategy, an agent that could play in the auction according to the rules
would save a lot of time to the user, mainly because Internet auctions can last for a long period
of time. Even if the auction can last only for a short period, for instance in applications that
allow the provision of location-independent services [20], an agent might start a reverse auction
on the fly [31], so that to receive the right services for a user.

However, the very idea of having agents acting on behalf of people raises all sorts of issues
for auction applications. In this context, this work is particularly concerned with the following
ones:

• the provision of a generic framework that deals with auction applications;

• a model of agency where an agent must be able to report back to the user the outcome
of its actions, so that the agent’s actions are transparent to the user;

• a model of the interaction that takes into consideration the rules that govern the auction
activities at hand;

• an implementation framework that will integrate the models and the framework in a single
computing platform.

1.2 SOCS Approach

Within the SOCS project we see the support of auctions using agents as an opportunity for
experimenting with the technology and models produced by the project. This kind of experi-
mentation treats auctions as societies of agents whose interactions can be verified on demand.
More specifically, we first propose the computational logic approach in SOCS as the generic

4

framework for building auctions. We then treat agents as computees whose reasoning capabili-
ties are developed according to the KGP model. The KGP model is proposed here as the logical
model that will allow agents to report their actions back to the user, thus achieving, as argued
in [32], the required transparency. We then view the rules that govern the interactions amongst
computees in an auction as social rules that can be specified and verified using the social model
of the project, which will allow the different auction protocols to be tested for compliance.

To show how to apply the framework in detail, we experiment with different auction pro-
tocols implemented using the PROSOCS platform. This platform is intended as the imple-
mentation framework, which has also been extended with the use of objects (i.e. entities that
cannot be naturally seen as agents) so that to provide with a general implementation framework
for agent-based auctions. Based on this extension of PROSOCS, we then show how the class
of auctions, known as combinatorial auctions, can be specified in PROSOCS, by allowing a
constraint solver to be treated as an object that computees can interact with in order to solve
optimisation problems.

1.3 Preliminaries on Auctions as Societies of Computees

In an auction we have two classes of participants: the auctioneer and bidders. There is a
particular kind of auction, called combinatorial exchange where there is no auctioneer, but
an administrator of the exchange (which does not buy nor sell anything) and bidders that
either buy or sell. Participants can be humans or computees. While in the past, bidders were
only humans, recently Internet auction servers have been built and allow software agents to
participate in the auction on behalf of end-users [35]. Some of these auction servers even have
a built-in support for mobile agents [28]. As the rise of the Internet and electronic commerce
continues, dynamic automated markets will be an increasingly important domain for computees
and software agents.

Depending on the kind of auction, the auctioneer either sells goods/services or buys a set of
goods or services. Bidders have the goal to obtain/sell their goods/services under convenient
conditions as far as price is concerned. The auctioneer has the goal to sell/obtain a set of
goods/services maximizing the profit (or minimizing the cost) at the minimum risk. In a
combinatorial exchange, the goal of the administrator is to select bids so as to maximize the
surplus.

The interaction mechanisms can be different in accordance with the role of the computee in
the auction. For example, in a single unit reverse auction, we have a customer that wants to
buy a set of goods/services at the minimum cost. The customer is self interested and does not
collaborate nor negotiate with suppliers which in turn are again self interested and, in a sense,
compete with one another. The information exchanged and their form change depending on the
type of auction we are modelling. In general we have the auctioneer proposal (set of goods and
services to be sold or bought) with constraints (temporal and minimum or maximum prices)
the auctioneer wants to be respected by the participants.

A bid in an auction is defined by the participant’s name, the name of the items to be
purchased, possibly the number of identical indistinguishable items, temporal windows, and the
value of the bid. The auctioneer answer contains the set of winning bids. In addition, auctions
can also be used among cooperative computees. For example, two suppliers can cooperate
and put together their resources to obtain better prices and more appealing bids. As another
example, if the constraints (max. price and time constraints) imposed by the customer are
too strict, after a failure of the bid evaluation process, the customer can start negotiating with

5

suppliers to obtain information on the relaxation of the costumer’s constraints.
We treat auctions as societies. Each time an auction is proposed, a society is created. The

auctioneer and all participants are the members of the society. The social setting is formal,
with formal rules, constraints and goals which should be respected by all participants.

1.4 Structure of the report

The rest of the document is organized as follows: we first introduce some motivation for running
this experimentation, then we present the problem faced and provide two models for the com-
binatorial problem at hand. Then, we describe our approach to the problem and in particular
from the computee side, the model of the auctioneer (properly extended to cope with external
objects) and the model of bidders, and from the society side the protocols used to perform
the tests. Experiments are then described on all components involved in the scenario. Related
work conclude the paper.

2 Experimentation with combinatorial auctions

This document reports on some experimentation on combinatorial auctions by means of
PROSOCS. In this context, both auctioneers and bidders are seen as computees (computational-
logic agents), and, each time an auction is set-up, a corresponding society is created, with
members the auctioneer and bidder computees, and with formal rules, constraints and goals
which should be taken into account by all society members.

We have chosen Combinatorial Auctions as a scenario for experimentation since it is a real
world example in the field of e-commerce, that promises to test and exploit various aspects and
features of PROSOCS, as well as guide us through the extension of PROSOCS to incorporate
a number of additional features that we believe important for real-life applications.

In particular, this scenario requires for the computee to have skills for

• High-level communication

• Negotiation

• Policy definition

• Planning towards the achievement of goals

• Reactivity to changes in the environment

which we foresee to be mostly achievable by the Planning and Reactivity capability, integrated as
foreseen by the KGP model and as implemented within the SOCSiC component of PROSOCS.
The scenario also requires to be able to check conformance of the computees involved in it
to communication protocols governing the interaction in the auction, which can be done by
means of the SOCS-SI component of PROSOCS. Thus, this scenario will allow to test the
expressive power of social integrity constraints that can be dealt with by SOCS-SI. Finally, the
scenario shows the need and benefits of the integration between computees and society within
PROSOCS.

In addition to exploiting existing features of PROSOCS, the Combinatorial Auctions sce-
nario promises to test the extensibility of PROSOCS to deal with aspects that are not currently

6

dealt with by the platform (nor by the abstract models behind it), but that are envisaged as
possible extensions of (the models and the) platform. These aspects include

• Optimization, to solve the winner determination problem by the auctioneers and to design
the bidding strategies of the bidders, and

• Learning, e.g. to discriminate intelligently amongst different ways to reach solutions to
the winner determination problem

• Conformance enforcement (by the society over computees) to make sure that the auctions
is carried out according to the rules

We foresee that some of these additional features may be obtained via the integration within
PROSOCS of some non-logical though declarative elements other than computees, that in
PROSOCS are referred to as external objects.

In the experiment, we exploit a commercial constraint solver, namely the ILOG solver [15],
for efficiently solving combinatorial optimization problems. We have implemented in ILOG
a module called Auction solver [11] embedding a portfolio of algorithms and an automatic
algorithm selection strategy, described in [12]. In particular, in combinatorial auctions, bidders
can bid on a combination of items, and the auctioneer has to solve the winner determination
problem. The problem of determining the set of winning bids is NP-hard and its efficient
solution is the result of a set of constraint based technologies, namely constraint and integer
programming combined.

In this document, we propose a first solution for integrating the ILOG solver within a society
of computees. We consider different aspects:

• problem description;

• computees involved in the experiment;

• how the auction solver implemented in ILOG solver can be interfaced with a computee
representing the auctioneer;

• different protocols defined through social integrity constraints;

• experimental results.

We will show later that the Auction Solver will be wrapped as a PROSOCS object providing
an auctioneer the winner determination computation in a combinatorial auction. Therefore,
external objects provide additional facilities to computees.

3 Problem description

In combinatorial auctions, bidders can bid on combination of items. In this context, we have a
major problem: the Winner Determination Problem (WDP). In the WDP the auctioneer has to
find the set of winning bids at a minimum cost or maximum revenue. The winner determination
problem is NP-hard. We have different variants of combinatorial auction. We have different
kinds of auctions.

7

• The single unit auction, where the auctioneer wants to sell a set M of goods/tasks
maximizing the profit. Goods are distinguishable. Each bidder j posts a bid Bj where a
set Sj of goods/tasks S ⊆ M is proposed to be bought at the price pj , i.e., Bj = (Sj , pj).

• The multi single unit auction where the auctioneer wants to sell a set M of goods/tasks
and for each good/task a number of indistinguishable units, maximizing the profit.
Each bidder posts a bid Bj = (Sj , Λj) where Sj is the set of types of items and
Λj = (λj1, . . . , λjm), pj) where each λji is the number of units of the goods/tasks i in
the j-th bid he/she wants to buy. The price pj refers to the whole set of goods.

• The single unit reverse auction is a single unit auction where the auctioneer wants to
buy and bidders are suppliers.

• The multi unit reverse auction, is a multi unit auction where the auctioneer wants to
buy and bidders are suppliers.

• The exchanges are particular auctions where no auctioneer is present, but only an ad-
ministrator of the exchange that does not buy nor sell anything. Bidders can buy and sell
items/services. Each bidder posts a bid Bj = (Sj ,Λj) where Sj is the set of types of items
and Λj = (λj1, . . . , λjm), pj) where each λji is the number of units of the goods/tasks i
in the j-th bid. Positive λj represent buying while negative λj represent selling. pj is the
price and has the same sign.

In this paper, we consider single unit reverse auctions but other kind of combinatorial
auctions can be faced in a similar way.

We now describe the case study used to test our approach: combinatorial auctions. In
combinatorial auctions bidders can bid on combination of items. In this context, we have
two major combinatorial optimization problems. The Bid Evaluation Problem (BEP) and the
Winner Determination Problem (WDP). In the WDP, that is NP-hard, the auctioneer has
to find the set of winning bids at a minimum cost or maximum revenue. In the WDP the
optimization part of the problem is predominant, so an Integer Programming (IP) approach
represents the technique of choice.

In the BEP, beside a winner determination problem, time windows and temporal constraints
are stated among bids. We mainly consider an auction where the auctioneer buys a set of items
(in our case tasks or services) which are sequenced by temporal precedence constraints and
are associated to temporal windows and durations. When temporal constraints are added to
the problem, the feasibility part of the problem can become predominant and so a Constraint
Programming (CP) approach can take advantage of it and become the best technology. De-
pending on the instance structure, that is depending on which part is predominant between the
feasibility one and optimization one, a CP or an IP approach can supply the best results.

In the following, we describe the 2 models we developed to solve the BEP, one based on IP
and one on CP. We used ILOG to implement and solve the models, in particular ILOG CPLEX
8.1 to solve the IP model and ILOG Solver 5.3.

3.1 Bid Evaluation Problem: IP model

Each bidder j (j = 1 . . . n) posts one or more bids. A bid is represented as Bj =
(Sj , Estj , Lstj , Dj , pj) where a set Sj ⊆ M of services i (i = 1 . . .m) is proposed to be sold at
the price pj . Estj and Lstj are lists of earliest and latest starting time of the services in Sj

8

and Dj their duration. A precedence constraint between two tasks tp and ts is represented as
tp ≺ ts.

We introduce a decision variable xj for each bid j, that takes the value 1 if the bid Bj is a
winning one, 0 otherwise. We also introduce a variable Startij for each item i taken from bid
j. These variables range on the temporal windows [Estij , Lstij] for item i taken from bid j.

The objective function is min
∑n

j=1 pjxj , that minimizes the total cost.
In the BEP we have two kinds of constraints: covering constraints and precedence con-

straints. Covering constraints have the form
∑

j|i∈Sj
xj = 1, and state all items should be

covered and each item should be covered by exactly one bid.
To represent precedence constraints we consider each pair of items tp and ts such that tp ≺ ts,

and we find all pairs of bids bp and bs containing that items; if Sbp
and Sbs

have an empty
intersection we compute Estbptp + Dbptp − Lstbsts , where Dbptp is the duration of tp in bid bp.
In case the result is positive, that is, domains of Starttpbp

and Starttsbs
do not contain any pair

of values that could satisfy the precedence relation, we introduce the constraint xbp + xbs ≤ 1,
which prevents both bids from appearing in the same solution; otherwise, if the result is zero
or negative, we introduce the constraint Starttpbp

+ Dtpbp
− Starttsbs

+ M(xbp
+ xbs

) ≤ 2M ,
where M is a large number. The term M(xbp + xbs) makes the constraint satisfied in the case
where either xbp = 0 or xbs = 0.

3.2 Bid Evaluation Problem: CP model

Auctions can be easily modelled in Constraint Programming. We recall that Bj =
(Sj , Estj , Lstj , Dj , pj).

We introduce four sets of domain variables: X, that is an array of m variables representing
the items to be bought. Each variable Xi ranges on a domain containing the bids mentioning
item i. Cost, that is an array of n variables representing the cost of the bid in the solution.
Each variable Costj can assume only values 0, if bid j is a losing bid, and pj , if it is a winning
one. Duration and Start, that are arrays of m variables. Durationi ranges on the union of all
duration Dij for item i taken from all bids j mentioning i. Starti ranges on the union of all
temporal windows [Estij , Lstij] for item i taken from all bids j mentioning i.

The objective function is min
∑n

j=1 Costj .
Each time a variable Xi is assigned to a value j, that is item i is assigned to bid j, we

propagate the fact that all other items in Sj should be assigned to the same bid, setting to j
variables Xk, ∀k ∈ Sj . Similarly, we set variables Startk and Durationk, ∀k ∈ Sj to values
proposed by bid Bj . We also set to pj the variable Costj .

To consider precedence among tasks, we introduce the constraint Startp + Durationp ≤
Starts for each couple of tasks tp and ts such that tp ≺ ts.

Finally, we use Distribute(X, J, 0, |S|), that can trigger an effective propagation. It is a
variant of the global cardinality constraint whose semantics can be explained as follows: if the
bid Bj is chosen as winning, the number of variables Xi that take the value j is exactly the
cardinality of the set Sj . Otherwise, if the bid Bj is not chosen as winning, that number is 0.
Parameters in Distribute(X, J, 0, |S|) have the following meaning: X is the array of variables
representing items to be sold, J is an array containing numbers tidily from 1 to n, where n is
the number of bids, and |S| is an array where each element |Sj | is the cardinality of the set of
items contained in the bid j. This constraint holds iff the number of occurrences of each value
j ∈ J assigned to X is exactly either 0 or |Sj |.

9

4 Computees Involved in the Experiment

Computees involved in the experiment include an auctioneer proposing a set of items to be
bought and a set of bidders, possibly embedding different bidding strategies. In this setting,
the auctioneer has to interact with the auction solver to solve the combinatorial problem defined
by the bids received so as to maximise revenue. In this section, we describe the relevant aspects
of our experiment: how the auctioneer computee has been programmed in PROSOCS, how the
integration of the external object representing the auction solver has been achieved, and how
we have represented bidding computees.

4.1 Modelling the Auctioneer in PROSOCS

The main reasoning problem in this scenario, as far as the computee representing the auctioneer
is concerned, is the problem of winner determination in a combinatorial auction. This problem
has been outsourced to an external module implementing a highly efficient algorithm developed
specifically for this purpose, namely the ILOG auction solver (see Section 4.3). In the sequel
we describe how we have programmed a computee in PROSOCS to carry out the remaining
tasks, such as opening an auction, forwarding bids to the auction solver, and distributing the
result received from the solver to the bidders. Most of these tasks have been mapped to the
computee’s reactivity capability; in one case we also use planning.

Opening an auction. Opening an auction is done by sending a corresponding message to
other computees. This message will be invoked by the planning capability in response to a
corresponding goal. This is achieved by including a clause such as the following into KBplan:

initiates(Action,T,do_auction(ID,Bidders,Items)) :-

me(Name),

Action = tell(Name,Bidders,openauction(Items,30,40),ID).

That is, we assume that an auction lasts until time 30 units and that the deadline for announcing
the result of the auction is another 10 time units later. These values have been hard-wired here,
but they could also be included into the specification of the goal and then passed on to the
corresponding action.

We assume that me/1 has been implemented (as a fact), specifying the name of the auc-
tioneer computee. Furthermore, we assume that communicative actions are executable for this
computee (by programming executable/1 accordingly [1]).

Collecting bids. The next task for an auctioneer is to check the bids that it receives for
validity and to collect those that are considered valid for processing after the end of the auction.
For a bid to be valid, (i) it has to reach the auctioneer in time, (ii) it has to come from a bidder
that has actually been invited to participate in the auction, and (iii) it has to specify a set of
items that is a subset of the items put on auction.

To collect the valid bids, we make use of another external object (besides the object im-
plementing the auction solver). This so-called notepad object can be used to collect a list of
items (identified by the same identifier); it will store them and we can later retrieve the entire
list by, again, specifying the appropriate identifier. This approach has turned out to be consid-
erably simpler than programming the collection of of past observations (of valid bids) directly
in KBreact. Besides, it also showcases another application of the integration of objects into

10

PROSOCS. The following rule implements both the checking of a bid for validity according to
the three criteria given above and the forwarding of valid bids to the notepad for collection:

[observed(Bidder,tell(Bidder,Auctioneer,bid(Price,Items),ID,_),T),

executed(tell(Auctioneer,AllBidders,openauction(AllItems,T1,T2),ID),T0),

T0 #< T,

T #=< T1,

member(Bidder,AllBidders),

subset(Items,AllItems)

] implies [

assume_happens_after_once(do(notepad, makeNote(ID,bid(Bidder,Price,Items))),T)

].

This reactive rule uses the following auxiliary predicates to test for membership in a set and to
to test for being a subset of a given set, respectively (where sets are represented as lists, using
the notation familiar from Prolog):

member(Elem,[Elem|_]). member(Elem,[_|Tail]) :- member(Elem,Tail).

subset([],List). subset([Head|Tail],List) :- member(Head,List),

subset(Tail,List).

Note that these predicates are not being evaluated by the Prolog interpreter directly; they form
part of KBreact and accordingly they are being evaluated by CIFF.

The predicate used on the righthand side of the reactive rule for collecting incoming bids
has been implemented as follows:

assume_happens_after_once(Action,T) :-

assume_happens_after(Action,T),

not(already_executed(Action,T)).

assume_happens_after_once(Action,T) :-

already_executed(Action,T).

It uses two auxiliary predicates:

assume_happens_after(Action,Limit) :-

assume_happens(Action,T),

Limit #< T.

already_executed(Action,T) :-

executed(Action,T0).

That is, making a predicate of the form assume happens after once(Action,T) true requires
(i) assume happens(Action,T1) to be true for some T1 in the future of T and (ii) KB0 not
to contain a fact according to which the same Action has already been executed in the past.
Note how the implementation of assume happens after once/2 explicitly enumerates the two
possible cases: either the action has not yet been executed (in which case it should be carried
out in the future), or it is known to have been executed already. By making the second case
explicit, we can use classical negation (rather than negation by failure), which is the negation
operator implemented by the CIFF proof procedure underlying the reactivity capability [9].

For simplicity, we assume that any physical actions (of the form do()) are executable by
the computee (by programming executable/1 accordingly).

11

Closing an auction. The final task of an auctioneer is to close an auction once the specified
time has passed and to communicate the result to the bidders (at least to those that have
submitted a valid bid). This has been programmed, again, by providing appropriate rules for
KBreact. The following rule “fires” as soon as the specified end time T1 has passed and queries
the notepad object for the list of collected bids (provided the deadline T2 for announcing the
result has not yet passed):

[executed(tell(Auctioneer,AllBidders,openauction(AllItems,T1,T2),ID),T0),

time_now(T),

T1 #< T,

T #=< T2

] implies [

assume_happens_after_once(do(read_notes(ID)),T)

].

Then there is a simple rule that, upon receiving the list from the notepad (by means of a sensing
action), forwards this list to the auction solver (omitted here). The result of the auction received
from the auction solver is again picked up by means of a sensing action. It specifies the list
of winners as well as the list of losers. The following reactive rule causes a message to be sent
to each computee given in the list of winners (there is a similar rule for informing the losers;
omitted here):

[me(Auctioneer),

observed(auction_solver,see(auction_solver,solution(ID,WinBids,LoseBids)),T),

member((Bidder,Price,Items),WinBids)

] implies [

assume_happens_after_once(tell(Auctioneer,Bidder,

answer(win,Bidder,Items,Price),ID),T)

].

We should stress that the implementation of KBreact for an auctioneer computee is independent
from the exact syntax used to specify bids (i.e. it could, for instance, be used for combinatorial
auctions that either do or do not specify time windows within bids, and for both reverse auctions
and normal auctions).

4.2 External Objects Used by the Auctioneer

To allow the reuse of functionality from other components that are not necessarily computees,
PROSOCS has been extended with the notion of objects. An object is an entity that has no
reasoning capability in the sense of the KGP model. Conceptually, objects are simply a way
in which we can introduce in a PROSOCS environment entities that computees can interact
with physical actions. In other words, objects are simply parts of the environment that allow
physical interaction in a PROSOCS application. Objects can also be acting as wrappers to
external objects, if necessary. An external object is any software component with an API
(Applications programmer’s Interface). Such external object can be included in the PROSOCS
environment using the PROSOCS objects facility. A detailed discussion on the incorporation
of objects in PROSOCS is discussed in [19].

The combinatorial auctions experiment can be seen as an example of showing how to in-
stantiate objects in a practical PROSOCS application. As an example of a simple object we
have made generally available a notepad object to allow agents to make notes about dialogues

12

...

Bidders Auctioneer

Auction
Solver

InterfaceAuctioneer
computee

Notepad

Figure 1: Computees and object involved in a Combinatorial Auctions

they engage in, including accessing these notes on demand. In the context of combinatorial
auctions, we instantiate such an object to allow the auctioneer to make notes on bids made
by the bidders and access these notes when required. Similarly, as an example of an external
object we have introduced an auction solver object that allows an auctioneer to use the opti-
misation techniques and constraint capabilities of the ILOG solver whose functionality can be
reused across applications to provide solutions to sets of bids. In this way we exemplify the full
potential of the PROSOCS platform for practical applications.

4.3 Interface between the Auctioneer an the Auction Solver

In the experiments we carried out, the Auction solver implemented in ILOG is conceived as an
external object while the auctioneer is a computee. Their interaction is not monitored by the
society, therefore at society level they are indeed considered as a unique entity as shown by the
dashed circle in Figure 1.

The computee representing the auctioneer provides the auction solver a winner determina-
tion problem instance and receives its optimal solution. ILOG solver has been wrapped into
Java, so as to define a simple interface for providing a problem instance to ILOG solver and
receive the solution of the problem. The interface is reported in figure 2.

The JavaDoc can be found at
http://www-lia.deis.unibo.it/Staff/AlessioGuerri/JavaDoc/index.html
In this case the auctioneer should collect the data of the instance and send them to the

auction solver solver (with the addBid method). The auctioneer at the end of the auctions
asks the auction solver to compute the solution which is returned as an array of boolean values
representing the result for each submitted bid (possibly within a limited time t, possibly using
algorithm a).

13

AuctionSolver(java.lang.String[] t,java.lang.String[] p,
java.lang.String URL)
Is the constructor where t is the list of tasks, p the list of possible precedences between
tasks and URL is the URL of the licence server

boolean addBids(Bid[] b)
Adds a set of Bids to the auction.

Bid[] getAllBids()
Returns an array, eventually of dimension 0 if no bids have been placed

boolean[] getSolution()
Starts the search for the solution and returns the solution found

boolean[] getSolution(int t)
Starts the search for the solution and returns the solution found within a max time t.

boolean[] getSolution(java.lang.String a, int t)
Starts the search for the solution and returns the solution found within a max time t
and choosing the algorithm a

boolean verifySolution(Bid[] b, boolean[] sol)
Verifies the optimality of a solution.

public Bid(java.lang.String name, int price, java.lang.String[] item,
int[] eStart, int[] lStart, int[] duration)
Creates a new Bid Parameters: name is the symbolic name of the bid, price the price
proposed, item the items in the bid, eStart is the early start times for the execution
of the corresponding items, lStart is the late start times for the execution of the
corresponding items and duration the durations of the execution of the corresponding
items

Figure 2: Excerpt of the JavaDoc

14

4.4 Modelling Bidders in PROSOCS

For most of our experiments we have implemented concrete hard-wired bids for specific sets of
items that are on auction using simple reactive rules. Alternatively, experiments can be carried
out by using the speak tool available in the PROSOCS demonstrator, which allows a user to
type in messages (in this case bids) directly.

Here is a simple example. The following reactive rule causes a computee to reply to any
openauction message that offers a set of items including van gogh by offerening an amount of
1000 for that item, provided it is in fact amongst the computees that have been invited to bid:

[

observed(Auctioneer,tell(Auctioneer,Bidders,openauction(Items,T1,T2),ID,_),T),

me(Name),

member(Name,Bidders),

member(van_gogh,Items)

] implies [

assume_happens_after_once(tell(Name,Auctioneer,bid(1000,[van_gogh]),ID),T)

].

In principle, it would also be possible to implement more sophisticated bidding strategies (in
the true sense of the word) for combinatorial auctions. The present experiments are mostly
aimed at testing whether PROSOCS can provide the basic communication needs for running
combinatorial auctions. Another possible approach of generating interesting problem instances
would be to use the Combinatorial Auction Test Suite (CATS) [18] to automatically generate
instances of combinatorial auction problems that could be adopted by bidding computees to
test the overall architecture more extensively.

5 Society involved in the experiment: the protocol

By using the syntax of social integrity constraints we write now three different protocols that
can be defined under the hypothesis that the society should check the interactions among
computees but not the interaction between the auction solver in ILOG (the external object)
and a computee. We also make an additional hypothesis: that the society trusts the auction
solver and therefore the auctioneer computee. This means that the society does not check (in
its protocol) wether the solution provided by the auctioneer is indeed the optimal one and is
consistent with all the problem constraints described in the model in sections 3.1 and 3.2. In all
the experiments we performed, social integrity constraints are used to check that the auction
protocol is respected, but they are not used to check that the result provided by the auctioneer
is indeed the optimal (and obviously feasible) solution of the winner determination problem it
received.

In the following, we present three protocols describing variants of a combinatorial auction

• single auction: this scenario models a traditional auction where a set of bidders post their
bids on combinations of items and the auctioneer decides which bids win.

• double auction: the second experiment implements two auctions. Indeed, when an auction
is opened and the bidders have access to the list of items the auctioneers posts, some of
them can decide of opening a second auction to collect more items and perform more
appealing bids.

15

• an auction plus the buying/selling step: this experiment involves an auction and the next
step where items that are promised in the auction are sold and bought at the corresponding
price. We used the Netbill protocol for this step.

5.1 Single combinatorial auction

The protocol is the following. Each time a bidding event happens, the auctioneer should have
sent an openauction event (to all bidders).

H(tell(S,R, bid(ItemList, P), Anumber), Tbid)
→ E(tell(R, S, openauction(Items, Tend, Tdeadline), Anumber), Topen),
Topen < Tbid ∧ Tbid ≤ Tend

(1)

This icS imposes that a bidder cannot start placing bids if an auctioneer has not opened an
auction.

Incorrect bids always loose; e.g., a bid for items not for sale must loose. Indeed, the answer
loose refers also to not acceptable bids.

H(tell(A, B, openauction(Items, Tend, Tdeadline), Anumber), T1)∧
H(tell(B, A, bid(ItemBids, P), Anumber),)∧
not included(ItemBid, Items)
→ E(tell(A,Bidder, answer(lose,Bidder, ItemBids, P), Anumber),)

included([],).
included([H|T], L) : −member(H, L), included(T,L).

(2)

The auctioneer should answer to each bid. The answer should be sent after the auction is
closed within the deadline Tdeadline.

H(tell(S, R, bid(ItemList, P), Anumber), Tbid)∧
H(tell(R,S, openauction(Items, Tend, Tdeadline), Anumber), Topen) →

E(tell(R,S, answer(X, S, ItemList, P), Anumber), Tanswer),
Tanswer ≥ Tend ∧ Tanswer ≤ Tdeadline, X :: [win, lose]

(3)

Another rule is the following: it is not possible that a bidder receives for the same auction
on the same bid two conflicting answers. Therefore, each bidder either wins or looses, but not
both:

H(tell(R,S, answer(loose, S, ItemList, P), Anumber),) →
NE(tell(R, S, answer(win, S, ItemList, P), Anumber),) (4)

H(tell(R,S, answer(win, S, ItemList, P), Anumber),) →
NE(tell(R, S, answer(loose, S, ItemList, P), Anumber),) (5)

5.2 Double combinatorial auction

This protocol is intended for those cases where a bidder opens an auction for buying items he
needs for posting a more appealing bid. For describing this protocol, we still have constraints
(1) to (5). In addition, there are specific integrity constraints for this kind of auction: the first
tells that is the first openauction has happened and one bidder has opened another auctions

16

referring to a set of items involved in the first auction, then the second should be closed and
winning bids decided before the first closes.

H(tell(A,B, openauction(Items1, Tend1, Tdeadline1), A1), Topen1)∧
H(tell(B,C, openauction(Items2, Tend2, Tdeadline2), A2), Topen2)∧
intersect(Items1, Items2) ∧ Tdeadline2 >= Tend1 →
false.

(6)

The second constraint tells that one cannot bid for the same item in two auctions.

H(tell(B, A1, bid(ItemList1, P1), Anumber1), Tbid1)∧
H(tell(B, A2, bid(ItemList2, P2), Anumber2), Tbid2)∧
Anumber1! = Anumber2 ∧ intersect(ItemList1, ItemList2) →
false.

(7)

5.3 Combinatorial auction with Netbill

This protocol extends the tradition auction protocol with the payment at the end. In this case,
the auction integrity constraint (1) to (5) remain the same. We should add the following.

After the bid has been declared a winning bid, the bidder should deliver the list of items
involved in the bid.

H(tell(B,A, bid(ItemList, P), Anumber), Tbid)∧
H(tell(A,B, answer(win, B, ItemList, P), Anumber), T1) ∧ Tbid < T1 →
E(tell(B, A, deliver(ItemList, P), Anumber), T3) ∧ T3 > T1.

(8)

Clearly, a bidder should not deliver any item if his/her bid was determined as losing.

H(tell(B,A, deliver(ItemList, Price), Anumber), T3) →
E(tell(A,B, answer(win, B, ItemList, P), Anumber), T1) ∧ T1 < T3.

(9)

After an ItemList has been delivered, it should be paid. The EPOsign is a receipt of
payment.

H(tell(B,A, deliver(ItemList, Price), Anumber), T3) →
E(tell(A,B, payment(ItemList, Price, EPOSign), Anumber), T4) ∧ T4 > T3.

(10)

This constraint is the backward version of the previous one. It is important to have it also,
since no payment should be done if the items have not been delivered.

H(tell(A,B, payment(ItemList, Price, EPOSign), Anumber), T4) →
E(tell(B, A, deliver(ItemList, Price), Anumber), T3) ∧ T3 < T4.

(11)

If A should pay B, B should sign the payment receipt, and send it to a netbill server computee
with the access key. For this purpose, we use the NetBill protocol: we assume to have a netbill
server in charge of checking bank accounts and guaranteeing the ability to pay.

H(tell(A,B, payment(ItemList, Price, EPOSign), Anumber), T4) →
E(tell(B,netbill, endorsedEpo(ItemList, Price, A,EPOSign, Key), Anumber), T5) ∧ T5 > T4.

(12)

17

This constraint is the backward version of the previous one.

H(tell(B, netbill, endorsedEpo(ItemList, Price, A, EPOSign,Key), Anumber), T5) →
E(tell(A,B, payment(ItemList, Price, EPOSign), Anumber), T4) ∧ T4 < T5.

(13)
This integrity constraint states that if a bidder asks the netbill server to certify the trans-

action, the netbill server performs the transaction and sends back the result to the bidder.

H(tell(B, netbill, endorsedEpo(ItemList, Price,A, EPOSign, Key), Anumber), T5) →
E(tell(netbill, B, signedResult1(ItemList, Price,A, Result, Key), Anumber), T6) ∧ T6 > T5.

(14)
This constraint is the backward version of the previous one.

H(tell(netbill, B, signedResult1(ItemList, Price, A, Result, Key), Anumber), T6) →
E(tell(B,netbill, endorsedEpo(ItemList, Price, A,EPOSign, Key), Anumber), T5) ∧ T5 < T6.

(15)
Finally, when the netbill server informs on the bank transaction state, the bidder sends the

auctioneer the same message and the access key to use the items.

H(tell(netbill, B, signedResult1(ItemList, Price, A,Result,Key), Anumber), T6) →
E(tell(B, A, signedResult2(ItemList, Price,Result,Key), Anumber), T7) ∧ T7 > T6.

(16)

This constraint is again the backward version of the previous one.

H(tell(B, A, signedResult2(ItemList, Price, Result, Key), Anumber), T7) →
E(tell(netbill, B, signedResult1(ItemList, Price,A, Result, Key), Anumber), T6) ∧ T7 > T6.

(17)

6 Human users and SOCS-SI: extending SOCS-SI with
e-mail support

Before starting the description of the experiments done, we introduce now an extension to
the SOCS-SI that enables us to enable human users to exchange messages in the society and
participate, say to a combinatorial auction.

A new plug-in, MailRecorder, has been added to SOCS-SI, in order to cope with e-mail
messages. Until now in fact SOCS-SI was equipped to interface with the Medium (the default
communication layer in PROSOCS), with the JADE platform, with a file system, and with
a user prompt. Hence a new component, able to properly interact with the e-mail, has been
developed and tested.

The main advantage of considering the e-mail system as an agent communication layer is
that whether it can be easily used by software agents, it can be used also by human users without
much effort. Other communication layers, like the Prosocs Medium or the one supported by
JADE, require a specific software interface in order to allow human users to send and receive
messages with agents. The e-mail system instead doesn’t require any additional software except
for a Mail User Agent (known also as mail clients). The e-mail system is widely used. Therefore,
it can be considered as a good mean for exchanging messages in a society.

18

Of course the e-mail system introduces some disadvantages that make it not suitable in
a society populated by software agents only. For example, the delay between the action of
“sending” and “receiving” a message can be not tolerable, unless specific delays are introduced
in the protocol definition. Also the intrinsic non-robustness of the system is not acceptable.

However, the e-mail system represents a valid solution to easily develop and test societies
and protocols where human users act as agents.

6.1 E-mail messages structure

Human users usually do not structure strictly their e-mails messages. However, in order to
let SOCS-SI understand correctly these messages, some rules have been established on how to
compose the mails. The actual implementation of MailRecorder recognizes and accepts only
messages whose format respects the following rules:

1. Each e-mail address is recognized as a different user. A user that communicates with two
different e-mails addresses is seen as two different users.

2. The “from” identifies always the sender of the message.

3. Intended receivers are specified always by using only the “to” field.

4. Intended societies are specified by using only the “cc” field.

5. The field “bcc” is simply ignored, but it could be used for hiding the control to the user.

6. The content of the message is expressed through the “subject” field. In particular, the
subject should always be like:

<dialogId> performative perfContent1,perfContent2,...

where the dialog identifier is always the first token of the subject, enclosed by angular
brackets. Then follows the performative of the message, separated by a blank space.
Finally the parameters related to the specified performative: each parameter is separated
from the others by commas.

7. The “content” field of the mail messages is ignored. This means that users can introduce
text, or anyting else, into their messages. The rules above constraint only the fields from,
to, cc, and subject.

6.2 Configuring the MailRecorder properly

The basic assumption for using the e-mail as communication layer is that each agent participat-
ing the society should have a mail box and a valid mail address. This is true also for SOCS-SI.
Although in the experiments we have conducted SOCS-SI didn’t send any message to other
users, a mail box was needed for receiving messages.

To allow the MailRecorder to properly work it is then necessary to provide the following
information:

i) A mail account where the messages can be retrieved.

19

ii) A correspondent password

iii) The name of the pop server and the corespondent port number

iv) The name of a smtp server and the correspondent port number. This information is not
really necessary, but in order to allow future experiments about the publication of the
social expectations it has been introduced here.

All these data must be properly specified int the configuration file society.config, which
contains all the configuration information for SOCS-SI.

7 Combinatorial Auctions Experiments

We performed different types of experiments in this scenario. First, we have tested the Auction
Solver implemented in ILOG to test its efficiency for increasing number of bidders. Then, we
experimented the proof with the three protocols defined in section 5. We experimented the
society alone with an email system to test if the proof could be used also for enabling humans
to perform an auction. Finally, we performed the first integrated experiments where computees
and society interact through the medium. This last experiment is matter of current work and
it will be enriched in the near future.

All the experiments have been performed on a Pentium 4, 2.4 GHz, 512 MB.

7.1 Experiments on the Auction Solver

In the Combinatorial Auction scenario we have to cope with a complex combinatorial optimiza-
tion problem: the Winner Determination Problem. Having an efficient, scalable and flexible
tool that solves this problem is crucial for the efficiency of the overall system.

In this experiment, we exploit an Auction Solver implemented in ILOG solver [15] suitably
wrapped in to Java. The Auction Solver is so efficient that it gives the possibility of scaling the
auction dimension, and test the performances of the SOCS social infrastructure. Results are
reported in Figure 3. We can see that auctions with 1000 bidders can be solved in less then 2
seconds. In the graph, we report the number of bids and the mean of task per bid. For each
kind of problem, we report results on ten runs. The results refer to the time for finding the
optimal solution plus the proof of optimality.

7.2 Experiments on Computees

We have also tested the scalability of the overall system, namely a computee representing the
auctioneer, several computees representing bidders, and the Auction Solver using ILOG (but
without a society observing the interaction). We have done this by varying the number of
bidders involved in an auction and by varying the number of bids submitted by each bidder. As
the main computational burden lies with the auctioneer, these experiments test, in particular,
the scalability of the computee implementing the auctioneer.

These experiments have been carried out on two different machines, one was a desktop
PC (2 GHz Pentium IV CPU, 512 MB of RAM, running Windows XP Professional), and the
other was a laptop (Pentium III, 512 MB of RAM, running Windows 2000 Professional). The
latter was running the auctioneer computee and the notepad object; the former was running
the bidder computees and the Auction Solver.

20

Figure 3: Test of the Auction Solver performance

A run of the experiment starts by the auctioneer sending an open-auction message to all
bidders. Once a bidder has received such a message, it reacts to it by sending back several
bids. Once a bid is received by the auctioneer, this bid is recorded using the notepad object.
Once the deadline for bidding has passed, the auctioneers collects the recorded bids from the
notepad and sends them to the Auction Solver. Finally, after having received the answer back
from the Auction Solver, the auctioneer sends out either a win- or a lose-message for each of
the bids received earlier.

The overall runtimes for 9 different settings (with 2–4 bidders and 2–4 bids per bidder
concerning 6 items on auction) are shown in Figure 4. In the case of 2 bidders and 2 bids per
bidder, for instance, the auctioneer executes 1 open-auction action, 5 notepad access actions,
1 Auction Solver access action, and 4 win/lose actions, and it receives 4 messages from the
bidders and 1 message each form the notepad and the Auction Solver. The overall experiment
takes an average of 36 seconds

While our experiments show that the system copes well with smaller problem instances, we
have also observed clear performance problems as the overall number of bids increases. This
is not surprising given the prototypical character of our platform and the generality of our
approach.

7.3 Experiments on the Proof Procedure (society alone)

The experiments on society alone fall into two different groups: experiments devoted to test
the performances of the proof procedure, and experiments devoted to test if the proof can work
in a real setting, with delayed messages.

For the first purpose, we have arranged a first set of experiments where the proof procedure
performances are tested for an increasing number of bidders. Bidders in fact send messages

21

2

3

4

2

3

4

0

50

100

150

200

250

300

350

400time in seconds

bidders

bids per bidder

Figure 4: Results on computees performances

which should be controlled by the society and the more the number of bidders the more the
number of messages to control. We have tested the three protocols described in subsections 5.1,
5.2 and 5.3.

Concerning the single auction, we can see that the tests provide an idea on how the proof
scales for an increasing number of bidders and consequently of messages. We can see that
results are good, since the prototype we implemented works well up to 50 bidders answering in
half a minute.

As far as the double auction is concerned, it is intuitive that the number of exchanged
messages is almost doubled with respect to a traditional auction. In fact, for the same number of
bidders, two auctions are indeed started. We can see from the figures 7 (where the conformance
test succeeds) and 8 (where the conformance test fails) that the proof scales perfectly, being
the time for testing conformance almost doubled w.r.t. a single auction.

As far as the auction plus the Netbill protocol, results are very good. In fact, the time for
checking conformance is similar to that of the traditional auction. We can see from the figures
9 (where the conformance test succeeds) and 10 (where the conformance test fails) that the
proof scales perfectly.

As we can see from Figure 3 the Auction Solver implemented in ILOG is far more efficient
since it scales up to 1000 bids within 2 seconds. Slower performances are achieved by the confor-
mance checking of the society protocol (around 30 seconds for checking messages exchanged in
auctions with 50 bidders). However, even if the components have different performances, from
the testing, we can conclude that both components can be used in a real combinatorial auction

22

Figure 5: Proof performance on a traditional auction (conformant protocol)

scenario since time limits required for answering are much larger than sum of the answer times
of the components.

7.3.1 Tests with the e-mail support

Two runs of the experiments have been executed, with the following configuration:

• The Auctioneer was located in Bologna.

• Two bidders were located in Bologna while the remaining two were in Ferrara.

• The Netbill server was located in Ferrara.

• The SOCS-SI was running on a machine physically located in Bologna.

Both the runs were concluded in around 20 minutes, but with different results. In the
first run the protocol was violated, while in second SOCS-SI returned as answer the success of
SCIFF, hence the interaction between the human users complied with the protocol.

The first run violated the protocol since one of the winning bidders tried (by mistake) to cash
a payment check he wasn’t allowed to. The NetBill server executed the payment operation, but
the SOCS-SI revealed the violation of some expectations, thus invalidating all the interaction.

The test has been considered as a positive demonstration of the use of SOCS-SI within
human societies. The result of the first experiment in particular has shown two different aspects
of the use of the e-mail and SOCS-SI with humans:

i) SOCS-SI is a useful tool for detecting possible users misbehavior (malicious or unin-
tentional). The first run of this experiment in fact was automatically declared as not
compliant with the protocol.

23

Figure 6: Proof performance on a traditional auction (non conformant protocol)

ii) The misbehavior detected by SOCS-SI was unintentional, and was due by a cut&paste
mistake of a bidder. Such mistakes are quite common between humans, and happen
quite often. A real combinatorial auction system based on e-mails should take care of
the complexity of the messages exchanged: higher the complexity, in fact, higher is the
probability of a mistake by a user. Pre-formatted e-mails, or tools that address the
problem of composing the e-mail with right content could greatly reduce the unintentional
violations of the protocol.

All these data must be properly specified int the configuration file society.config, which
contains all the configuration information for SOCS-SI.

7.4 Integrated Experiment

After testing the single components separately, we have also tested the scalability of the overall
system by putting together computees exchanging messages as done in section 7.2 with the
society infrastructure checking for computees communication conformance. The experiments
have been done on the traditional combinatorial auction since the aim of this test is to check
the real integrability of the components and their interactions.

We have had two meetings for integrating the society with the computees managing the
auction. We first solved some problems arisen in merging different components, then solved
some problems coping with deadlines and we finally ended up with a stable system. We have
performed some preliminary test and the results are good, even if auction instance run are
small-size ones. The results are very similar to those presented in figure 4, since the society
checking for conformance the communication protocol introduces a negligible overhead for small
auction instance on the overall computation, as can be noted in figure 5 and figure 6.

24

Figure 7: Proof performance on a double auction (conformant protocol)

The society is able to check the non conformance to deadline at runtime, while other kind
of failures are detected when the history is closed.

We plan to have an extensive test session on the 15th-16th of March in Bologna. One
integrated example will be presented at the review meeting in Edinburgh in April.

8 Related Work

Combinatorial Auctions are increasingly studied since they have the advantage that bidders can
bid on combinations of items. This leads to more efficient allocation than traditional auctions
where the bidders valuations are only additive. The drawback is that evaluating bids and
determining the winning bids is a NP-hard problem. However, there are different systems and
methods to solve a combinatorial auction in an efficient way. The methods used to solve the
problem exploit

• dynamic programming techniques [24]

• approximate methods that look for a reasonably good allocation of bids [10, 26]

• integer programming techniques [7, 21]

• search algorithms [29]

An aspect which plays an important role in auctions in general is negotiation. Negotiation
is one of the main research areas in distributed systems. The area of negotiation is broad and
applies to different scenarios, such as for instance multi-agent systems [16, 23]. In most cases
agents need to negotiate because they operate in environments with limited resource availability.

25

Figure 8: Proof performance on a double auction (non conformant protocol)

For example, one-to-many negotiation is used for auctions, where auctioneers and bidders reach
an agreement on the cost of the items on sale. One-to-one negotiation is used, for instance,
for task reallocation [27] and for resource reallocation [22], where the limited resources may be
time, the computational resources of agents, or physical resources needed to carry out some
tasks. Persuasion also plays a role when the agent goals are conflicting and the resources in the
system are not enough to carry out all agent plans, therefore agents try to modify each other
goals or intentions.

An interesting example of system similar to ours is ISLANDER [30], a tool to specify
protocols in a system ruled by electronic institutions that has been applied to a Dutch auction
(and other scenarios). Their formalism is multi-levelled: agents have roles, agents playing a
role are constrained to follow protocols when they belong to a scene; agents can move from a
scene to another by means of transitions. As in various works, protocols are defined by means
of transition graphs, in a finite state machine. Our definition of protocols is wider than finite
state machines, and leaves more freedom degrees to the agents. In our model, an event could
be expected to happen, expected not to happen or have no expectations upon, thus there can
be three possible states, while in finite state machines there are only two states. Moreover,
they apply the model to the Dutch auction, while we focus on combinatorial auctions, that are
more expressive, as widely documented in the literature, but also makes the solving problem
NP-hard. For this reason, a general purpose proof-procedure that checks the compliance to the
protocol could be inefficient. We proposed a specialized solver and integrated it in our system.

Many argumentative frameworks are proposed in this respect [2, 17]. They often try to
embrace very hard problems and result in very good descriptive models for them. In general,
an execution model for most argumentation based systems is not straightforward to obtain, and
it is also difficult to give properties and forecast the behavior of an implemented system, if any.
Recent approaches to negotiation are based on dialogue, as one of the most flexible interaction

26

Figure 9: Proof performance on an auction plus Netbill (conformant protocol)

patterns in multi-agent systems, being something between completely fixed protocols and totally
free conversations [8]. Among them, the work of [25] aims at combining in a negotiation
framework both a logic-based formal approach and an execution model to be used in order to
implement the system.

Learning has been extensively applied to (bilateral) auctions and call market scenario, where
there exist two agents, a buyer and a seller: this scenario is very similar to the two-players game
one. Two basic approaches have been traditionally identified in the literature:

1. Reinforcement learning: reinforcement models update some unobserved propensity, rein-
forcement level, or attraction, to what a chosen strategy actually earned;

2. Belief learning: belief models form beliefs based on some weighted average of previous
observations of what other computees (players, agents, etc.) have done.

Extensive work about online learning (e.g., based upon reinforcement learning when the
model of the other agent is not available) has been done in two-player setting. Also, on-line
learning in single state multi-agent systems have been considered, for instance, in [5]. Explicit
recursive modeling of other agents in multi-agent settings in a particular exchange market was
proposed by Vidal and Durfee [33]. Relevant work about the application of learning techniques
to auction scenario is contained in [14], and [4]. In particular, in [14] the authors have modeled
a dynamic multi-agent system consisting of more than two agents where learning is applied
in order to learn just an action (the next worth to be done), or a policy /strategy. Various
degrees of learning have also considered (as done by Vidal and Durfee [33]), depending on
the ignorance or awareness of the behaviour/status/policy of the other agents. The learning
methodology introduced in [14] has been experimented in double actions, where both buyers
and sellers submit bids. Camerer and Ho [3] proposed the Experience-Weighted Attraction

27

Figure 10: Proof performance on an auction plus Netbill (non conformant protocol)

(EWA) learning which hybridizes the main features of reinforcement and belief learning. EWA
has been extended later in [4] to the scenario of bilateral call markets, where a single buyer
and a seller are each privately informed about their own value and cost, and the probability
distributions of values and costs are commonly known. These scenaria are named bilateral
call markets because they are two-agent examples of general call markets, where usually many
traders submit demand and supply schedules, and the market is ”called” at the price where
supply meets demand. Finally, it is worth to mention the work of [34], which is of interest for
SOCS even if it does not properly fits the auction scenario: the authors consider, in fact, scenaria
where there is no centralized control, but the learning algorithm of each agent (based upon
reinforcement) is such that the collective behavior of the agent system maximises a provided
global utility function. Therefore, the (overall) dynamics is governed by the collective effects of
the individual agents each modifying their behavior via their (local) learning algorithm.

References

[1] M. Alberti, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, W. Lu, K. Stathis, and
P. Torroni. SOCS prototype. Technical report, SOCS Consortium, 2003. Deliverable D9.

[2] L. Amgoud, S. Parsons, and N. Maudet. Arguments, dialogue and negotiation. In
W. Horn, editor, Proceedings of the Fourteenth European Conference on Artificial Intelli-
gence, Berlin, Germany (ECAI 2000). IOS Press, Aug. 2000.

[3] C. Camerer and T. Ho. Experienced-weighted attraction learning in normal form games.
Econometrica, 67(4):827–874, 1999.

28

[4] C. F. Camerer, D. Hsia, and T. Ho. Learning in bilateral call markets. Technical report,
Caltech Working Paper, 2000.

[5] D. Carmel and S. Markovitch. Opponent modeling in multi-agent systems. In Proceedings
of the IJCAI-95 Workshop Adaption and Learning in Multi-Agent Systems, number 1042
in Lecture Notes in Computer Science, pages 40–52. Springer-Verlag, 1996.

[6] A. Chavez and P. Maes. Kasbah: An agent marketplace for buying and selling goods. In
Proceedings of the First International Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology (PAAM-96), pages 75–90, London, Apr. 1996.

[7] J. Collins and M. Gini. An integer programming formulation of the bid evaluation problem
for coordinated tasks. In B. Dietrich and R. V. Vohra, editors, Mathematics of the Internet:
E-Auction and Markets, volume 127 of IMA Volumes in Mathematics and its Applications,
pages 59–74. Springer-Verlag, New York, 2001.

[8] F. Dignum, B. Dunin-Keplicz, and R. Verbrugge. Dialogue in team formation. In
F. Dignum and M. Greaves, editors, Issues in Agent Communication, number 1916 in
Lecture Notes in Computer Science, pages 264–280. Springer-Verlag, 2000.

[9] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof procedure:
Definition and soundness results. Technical Report 2004/2, Department of Computing,
Imperial College London, May 2004.

[10] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational complex-
ity of combinatorial auctions: Optimal and approximate approaches. In Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence, Stockholm, Sweden
(IJCAI-99), volume 1, pages 548–553. Morgan Kaufmann Publishers, 1999.

[11] A. Guerri and M. Milano. Exploring CP-IP based techniques for the bid evaluation in
combinatorial auctions. In F. Rossi, editor, Principles and Practice of Constraint Pro-
gramming - CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September
29 - October 3, 2003, Proceedings, volume 2833 of Lecture Notes in Computer Science,
pages 863–867. Springer-Verlag, 2003.

[12] A. Guerri and M. Milano. Learning techniques for automatic algorithm portfolio selection.
In R. Lopez de Mantaras and L. Saitta, editors, Proceedings of the Sixteenth European
Conference on Artificial Intelligence, Valencia, Spain (ECAI 2004), pages 475–479. IOS
Press, Aug. 2004.

[13] R. Guttman, A. Moukas, and P. Maes. Agent-mediated electronic commerce: A survey.
Knowledge Engineering Review, 13(2):143–147, 1998.

[14] J. Hu and M. Wellman. Online learning about other agents in a dynamic multiagent
system. In Proceedings of the Second International Conference on Autonomous Agents
(Agents-98), 1998.

[15] ILOG S.A., France. ILOG Solver, 5.0 edition, 2003.

[16] N. R. Jennings. Automated haggling: Building artificial negotiators (invited talk). In
AISB’01 Convention, York, UK, March 2001. Electronically available slides, http://www.
ecs.soton.ac.uk/∼nrj/download-files/negotiation.pdf.

29

[17] S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements through argumentation; a
logical model and implementation. Artificial Intelligence, 104:1–69, 1998.

[18] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for com-
binatorial auction algorithms. In Proceedings of the 2nd ACM Conference on Electronic
Commerce, 2000.

[19] W. Lu and K. Stathis. Incorporating objects in PROSOCS artificial worlds. Technical
report, SOCS Consortium, 2004. IST32530/CITY/015/DN/I/b2.

[20] P. J. McCann and G.-C. Roman. Modeling mobile ip in mobile unity. ACM Transactions
on Software Engineering and Methodology (TOSEM), 8(2), Apr. 1999.

[21] N. Nisan. Bidding and allocation in combinatorial auctions. pages 1–12. ACM Press, 2000.

[22] S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing.
Journal of Logic and Computation, 8(3):261–292, 1998.

[23] J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for Auto-
mated Negotiation Among Computers. MIT Press, Cambridge, MA, 1994.

[24] M. Rothkopf, A. Pekec, and R.M.Harstad. Computationally manageable combinational
auctions. Management Science, 44(8):1131–1147, 1998.

[25] F. Sadri, F. Toni, and P. Torroni. Dialogues for negotiation: agent varieties and dialogue
sequences. In Intelligent Agents VIII: 8th International Workshop, ATAL 2001, Seattle,
WA, USA, Revised Papers, volume 2333 of Lecture Notes in Artificial Intelligence, pages
405–421. Springer-Verlag, 2002.

[26] Y. Sakurai, M. Yokoo, and K. Kamei. An efficient approximate algorithm for winner
determination in combinatorial auctions. In Proceedings of the 2nd ACM Conference on
Electronic Commerce (EC-00), pages 30–37, 2000.

[27] T. Sandholm. Negotiation among Self-Interested Computationally Limited Agents. Com-
puter science, University of Massachusetts at Amherst, September 1996.

[28] T. Sandholm. eMediator: a next generation electronic commerce server. In Proceedings of
the Fourth International Conference on Autonomous Agents (Agents-2000), 2000.

[29] T. Sandholm. Algorithm for optimal winner determination in combinatorial auction. Ar-
tificial Intelligence, 135(1-2):1–54, 2002.

[30] C. Sierra and P. Noriega. Agent-mediated interaction. From auctions to negotiation and
argumentation. In M. d’Inverno, M. Luck, M. Fisher, and C. Preist, editors, Foundations
and Applications of Multi-Agent Systems, UKMAS Workshop 1996-2000, Selected Papers,
volume 2403 of Lecture Notes in Computer Science, pages 27–48. Springer-Verlag, 2002.

[31] K. Stathis. Location-aware SOCS: The Leaving San Vincenzo scenario. Technical Report
IST32530/CITY/002/IN/PP/a1, SOCS consortium, 2002.

[32] K. Stathis and F. Toni. Ambient Intelligence using KGP Agents. In Proceedings of the
2nd European Symposium for Ambient Intelligence, Lecture Notes in Artificial Intelligence,
Eindhoven, Nov. 2004. Springer-Verlag.

30

[33] J. Vidal and E. Durfee. Agents learning about agents: A framework and analysis. In
Working Notes of the AAAI-97 workshop on Multiagent Learning, pages 71–76, 1997.

[34] D. Wolpert, K. Wheeler, and K. Tumer. General principles of learning-based multi-agent
systems. In Proceedings of the Third International Conference on Autonomous Agents
(Agents’99), Seattle, Washington, 1999.

[35] P. Wurman, M. Wellman, and W. Walsh. The michigan internet auctionbot: A configurable
auction server for human and software agents. In Proceedings of the Second International
Conference on Autonomous Agents (Agents-98), 1998.

31

