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1 Introduction

The SOCSDemo is the prototype demonstrator of societies of computees as implemented using
the PROSOCS platform [2]. In this context, the purpose of this document is twofold:

e to explain how to download, install and run the already available examples of SOCSDemo;
and

e to provide an overview of the knowledge representation that a user will have to understand
in order to write new examples using the PROSOCS platform.

We must say at the outset that by writing this document is not intended to provide an
explanation of how a user can program PROSOCS. Instead, our goal is more of wanting to
give an idea what it takes to build examples of the kind demonstrated by the prototype. In
particular, our concern is more on the knowledge reprsentation used and not on providing a
coherent example explaining all the required details.

We do, however, want to support a user, once the SOCSDemo has been correctly installed,
to run components of the PROSOCS platform that will execute the examples and view the
behavior of computees/societies through the provided Graphical User Interfaces (GUISs).

The document is structured as follows. Section 2 explains how to download and install
the SOCSDemo package. Section 3 illustrates how to use PROSOCS to start a computee
component. In particular, we explain the usage of the GUI provided by a computee and we
show how to run examples with it, including the knowledge represenation required to write
new instances of computees. Then in section 4 we show how to start the PROSOCS society.
More specifically, we explain the usage of the GUI, and we show how to run examples with it,
including writing new instances of societies. Finally, in section 5, we explain how to animate
both computees and societies in one single example; in doing so we use example 7 from the
Examples document [1].

2 Installation

In this section, we show how to download and install the SOCSDemo package. Before that we
will specify what the prerequisites are.

2.1 Prerequisites

In this section we list the prerequisites required to install SOCSDemo.

Architecture and OS Prerequisites This version of the SOCSDemo runs only on Microsoft
Windows XP (both Home and Professional Edition) and MS Windows 2000 operating
systems, on Intel hardware architectures(or Intel compatibles).

Software prerequisites A Java Software Development Kit must be installed prior to running
the SOCSDemo. Java SDK version 1.4.2 or higher is recommended, otherwise the SOCS-
Demo may not execute properly. The Java “bin” directory must be accessible through
the path variable. It is possible to check whether it is accessible by opening the command
prompt and typing “java -version”. You should be able to see the version of the java
installed. The output should be similar to the following:



Microsoft Windows XP [Versione 5.1.2600] (C) Copyright 1985-2001
Microsoft Corp.

C:\>java -version

java version "1.4.2_02"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_02-b03)
Java HotSpot(TM) Client VM (build 1.4.2_02-b03, mixed mode)

C:\>

If not, please refer to the Java manual of the installed version, and to the OS manual on
how to add a directory to the PATH variable.

2.2 Installation Procedure

The SOCSDemo prototype is distributed as a zipped archive file. It can be downloaded from
the url:

http://lia.deis.unibo.it/research/projects/S0CS/partners/demonstrator/
which is part of the private area of the SOCS home page. For accessing this url a reviewer can
use the keyword reviewer both for username and password.

The installation procedure consists of extracting the content of the archive in a desired
location; no further configuration steps or installation procedures are required. It is possible to
use any archive compressor/decompressor able to process the zip format.

The files inside the archive are organized in a directory tree, which must be kept as it is.
Most of the extraction tools keep the original tree structure by default.

Tt is possible to extract the prototype anywhere in the file system. At the end of the instal-
lation process, a new directory named “socs” has been created. Inside it three subdirectories
are present:

socs\demo contains the demo examples and the script to execute them. It is structured as a
set of subdirectories, each directory for a specific example.

socs\docs contains the documentation about this prototype, including also this manual.

socs\platform contains the binaries of the prototype, and it is organized in three more sub-
directories: one related to computee binaries, one related to society, and a third one
dedicated to all the common libraries used by both computees and societies.

3 Computees

3.1 Starting a Computee

A computee component is by default configured with standard parameters, which allow to start
the computee without any particular configuration. There can be cases in which users need
to modify the defaults parameters. The configuration values are stored in a text file, named
computee.config and situated in the directory socs\platform\computee. It is possible to
edit this file. For each parameter the file contains also a description of the meaning and the
allowed values it can assume.



3.2 Starting a computee

If the installation process has been terminated successfully, inside the directory
socs\platform\computee there is a script named run.bat. This script can be used for launch-
ing a generic computee. Here we describe how to execute a generic society using this script.

A computee component needs some base information before it is launched. More precisely,
it needs to know which KB to use when it is started.

a) By setting default values. It is possible to specify the information in the
computee.config file. Executing the script run.bat without any parameter will load
the configuration values stored in the file.

b) By specifying the values by the command line. It is possible to specify the values
on the command line, as parameters after the script name. For a detailed example, please
type in at the command prompt the command run --help and read the instructions.

¢) Through the computee GUI. It is possible to specify this parameter through the
computee’s Graphical User Interface. In this case we have to run the computee from the
command prompt with the command run --nokb: the GUI of the computee will appear.
We suggest that new users follow this procedure as opposed to (a) and (b) (because it is
simpler).

3.3 The computee GUI

Once the user has started the computee, in a few seconds, the computee application Graphical
User Interface (GUI) will be displayed on the screen, as shown in Figure 1.
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Figure 1: Computee GUI

This user interface supports a user to:



e configure a computee by selecting the knowledge base (this will be typically be selected
for you in the examples of the SOCSDemo);

e start/suspend/resume/stop the computee;
e communicate with other computees by sending/receving message manually;
o display and animate presence information of other online computees in the SOCS platform;

e display interactive information between the computee and other computees in the sociecty.

Configuration To configue a computee, a user at the moment can select the knowledge base
where the initial state of the computee is specified.

1. To select a knowledge base, go to the menu “config — Select kb”, a standard file chooser
window will be displayed, from which a user can browse the files and select one as a
knowledge base.

Control Computee After the configuration of the knowledge base, a computee can be con-
trolled through the menus provided by the computee GUI.

1. To start a computee, go to the menu “file — start”. By choosing this menu item the
computee will be started.

2. While the computee is running, it can be suspended by selecting the manu “file — sus-
pend”. After selecting this menu item, the computee will be suspended.

3. In the suspend state, the computee can be resumed by selecting on the menu “file —
resume”. Once this item is chosen, the computee will resume from the state of the
execution it was suspended.

4. A computee can be stopped to run at any state, by selecting the item “file — stop” from
the menu. In the stop state, a user is allowed to re-configure the computee by selecting a
different knowledge base.

Display Information The GUI also provides areas to display information about other online
computees as well as interactions between the computee and other computees.

e Computees area: display and animated online computees in the society. By clicking on
the menu “action — online computee”, all the online computees in the society will be
displayed in this area. Any change of the status (alive/suspended/stopped) of an online
computee will automatically animated (smiley face/normal face/frowny face repsectively)
of the computee.

e Observed events area: this displays the events (e.g. messages received by the computee)
that happened in the society.

e Executed actions area: this presents every action executed (e.g. sent out messages) by
the computee.



3.4 Writing the KBs of a Computee
3.4.1 Writing a KBgp

In this section, we show how one can write K Bgp theories, which form the base for the goal
decision (GD) capability, which in turn runs on top of the Gorgias system.

KBgp Representation

Typically, the knowledge base K Bgp contains three parts: the auziliary part with rules defining

auxiliary predicates, the lower-level part with rules to generate goals and the higher-level part

with rules that specify priorities between other rules of the theory. A subset of (fluent) predicates

in the language of the knowledge base is separated out as the set of goal fluents of the computee.
Rules in the lower-level or goal generation part, of K Bgp are writen as Gorgias rules of the

form:

kb_gd__rule(Label, gd(Goal), Arg_Body) :- Body.

where Label is a Prolog term naming this rule, Goal is a goal fluent literal of the form
(Literal, Time), and Body has the syntax of a Prolog rule body with conditions of the form
holds_at(Literal, Time) or of the usual form of (definite) Prolog referring to auxiliary predicates.
Arg_Body is usually the empty list as the rules of K Bgp cannot depend (see [3]) on a condition
that is itself a goal or refers to a predicate on which we carry out preference/argumentation
reasoning. Should we want to add such conditions then these are added here as a list. The
overall name kb_gd__rule is necessary for every rule in KBgp (for non-auxiliary predicates) in
order to specify that the rule indeed belongs to the K Bgp module.

As an example, suppose that we have the following GD policy, where the only goal fluents
are Leaving San Vincenzo (lsv) and low-battery alert (Iba), given below in D4 syntax.

r(lsv) : lsv(T) «
holds_at(finished_work, Tnow),
T = Thow + 6.
r(lba) : ba(T)
holds_at(low_battery, Tnow),
T =Thow +2.

These rules are coded in the K Bgp module as Gorgias rules:

kb_gd__rule(r(lsv,T), gd((1sv,T)), [1) :-
self__timestamp_current(Tnow),
holds_at(finished_work, Tnow),
T is Tnow + 6.

kb_gd__rule(r(lba,T), gd((1ba,T)), [1) :-
self__timestamp_current (Tnow),
holds_at(low_battery, Tnow),
T is Tnow + 2.

where sel f__timestamp_current/1 is a system predicate that returns the current time at the
time of application of GD. The user should not define this nor should it define rules for



holds_at(Literal, Time) which are evaluated by calling the temporal reasoning capability to
check whether Literal holds at time T'. In the current implementation equality and inequality
constraints in the body of the rules are simply evaluated under the standard Prolog assumption
that they will be fully ground when they are called.

The auxiliary part of K Bgp is just a definite ! Prolog program that does not refer at all to
any goal predicates of the theory. In addition, to accomodate conflicts of goals other than the
ones due to the classical negation, K Bgp can include statements of incompatibility using the
predicate kb_gd__incompatible/2. For example, the statement

kb_gd__incompatible((1lsv,T), (1lba,T)).

states that the goals of [sv and lba are incompatible.
Finally, to express preferences over goal generation rules the higher-level part of K Bgp
contains priority rules of the form:

kb_gd__rule(Label, prefer(Labell,Label2), Arg_Body) : - Body.

where again Label is a Prolog term now naming this priority rule between two rules whose
names are Labell and Label2. Body and Arg_Body are as above for rules in the lower-level
part. For example, the following code snippet

kb_gd__rule(gd_pref (X,Y), prefer(r(X,_), r(Y¥,_)), [1) :-
typeof (X,operational),
typeof (Y,required).

codes the preference rule (in D4 sytle):

gdpref(X,Y) : r(X) > r(Y) < typeof (X, operational),
typeof (Y, required).

stating that operational goals are ranked higher than required goals. Hence for example if we
have in the auxiliary part

typeof (1sv, required).
typeof (1ba, operational).

then the goals lba are preferred over those of lsv.

Rules for non-ground goals
The specification of KBgp in D4 allows rules that derive non-ground goals. For example, we
can have the following rules:

r(lsv) : Isv(T), T < T' «
holds_at( finished_work, Thow),
T' = Touw + 6.

r(lba) : ba(T), T <T' +
holds_at(low_battery, Tnow),
T = T + 2.

In fact, this program can contain Negation as Failure provided that it is stratified, i.e it has no non-
determinism in it.



In each of these rules the variable T' that appears in the head is existentially quantified and it
is constrained by constraints of the form Tjow < T < Thigr where T' is such that it does not
appear in the conditions of the rule. These rules will be coded as follows:

rule(r((1sv,T, [Tnow<T<T’])), gd((1lsv,T, [Tnow<T<T’]1), [1) :-
self__timestamp_current(Tnow),
holds_at(finished_work, Tnow),
T’ is Tnow + 6.

rule(r((1ba,T, [Tnow<T<T’])), gd((1ba,T, [Tnow<T<T’]1)), [1) :-
self__timestamp_current(Tnow),
holds_at(low_battery, Tnow),
T’ is Tnow + 2.

Note that in this example we have passed all the temporal constraints of the heads of the
rule in their names. This may not be necessary if the conditions of the priority rules that the
user wants to write do not depend on the times and their constraints.

3.4.2 Writing a KB.qt and KBy,

The planning and reactivity capabilities are closely related: The reactivity knowledge base is
an extension of the planning knowledge base and both capabilities have been implemented in
terms of the C-IFF proof procedure. Recall that C-IFF operates on completed logic programs
(with constraints) together with integrity constraints. The completion of logic programs is a
service performed by the system. Therefore, in order to program the planning and the reactivity
capabilities of a new computee, only a logic program (to be completed by the system) and a set
of integrity constraint need to be provided. We first briefly review the syntax of logic programs
and integrity constraints, before moving on to explain what knowledge needs to be defined in
order to set up the planning and the reactivity capabilities.

The syntax for facts and rules of a logic program is familiar from Prolog. In addition, we
also allow for temporal constraints as subgoals to a rule. Admissible constraints are terms such
as T1 #< T2+5. The available constraint predicates are #=, #\=, #<, #=<, #>, and #>=, each of
which take two arguments that may be any arithmetic expressions over variables and integers
(using operators such as addition, subtraction, and multiplication). Note that for equalities
over terms that are not arithmetic terms, the usual equality predicate = should be used (e.g.
C = francisco). Furthermore, we use the predicate not/1 for the negation of subgoals in a
rule. To indicate negative fluents (arguments inside subgoals, heads of rules, or facts), on the
other hand, we use the functor neg/1. Here is an example for a rule with all these different
features:

holds(neg(Goal),T2) :-
holds_initially(neg(Goal)),
0#<T2,
not(declipped(0,Goal,T2)).

Integrity constraints are expressions of the form A implies B where A is a list of literals
(representing a conjunction) and B is a list of atoms (representing a disjunction). Atoms are
atomic formulas, including temporal constraints and equalities, but expressions using not/1
are not allowed. For the list of literals, on the other hand, also negated atoms are admissible.
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We should stress here that not every logic program with integrity constraints following the
syntax definitions given here constitutes an allowed abductive logic program. Additional re-
strictions are required to be able to avoid the explicit representation of quantifiers. Appropriate
allowedness conditions are given in deliverable D8.

The planning knowledge base K By, of each computee consists of two parts, a domain
dependent and a domain independent part. The latter is provided by the system; it is stored in
the file kbplandi.alp. A similar file for the domain dependant part of a computee’s planning
knowledge, say kbplan-example.alp, needs to be provided for each new computee. Such a file
would typically provide rules and facts defining the following predicates: holds initially/1,
initiates/3, terminates/3, precondition/2, and executable/1 (in addition, it may also
define auxiliary predicates or it may extend the definition of predicates such as holds/2 defined
in kbplandi.alp). The first of these predicates defines the set of fluents that are assumed to
be true initially. The next two are used to describe the effect of actions on the persistence of
certain fluents. The fourth is used to define preconditions that need to be fulfilled before an
action can be executed. The final predicate defines the range of actions that the computee is
able to execute itself (as opposed to actions that may only be observed). In what follows, we
give a number of examples.

For instance, to define that computee Bob is initially known as a customer within our society
of computees, we may write the following fact into kbplan-example.alp:

holds_initially(customer (bob)).

To specify that the action of buying an object initiates the fluent of having that object we
may use the following fact:

initiates(buy(0Object),T,have(Object)).

Here, T refers to the time point at which this action takes place (it is in fact not relevant in
this particular example). Selling an object again would terminate the fluent of having it:

terminates(sell(Object),T,have(Object)).

Next let us look at an example for the definition of a precondition. The following fact
expresses that it is a precondition for a buying action to be executed that the object to be
bought is not yet sold out:

precondition(buy(Object) ,neg(sold_out(Object))).

Recall that the neg/1 operator is used to refer to negated fluents. In some cases, K Bpian
may refer to both actions that the computee in question can execute and other actions that
may only be observed. The former range of actions needs to be identified using the predicate
executable/1. the following rule, for example, expresses that the computee Francisco may
perform any kind of communicative action as long as it does not address itself with that action:

executable(tell(francisco,C,Subject,D)) :- not(C=francisco).

In cases where all actions referred to in the knowledge base are executable, we may use the
following simple fact:

executable(Anything) .

11



As we can see, many sample knowledge bases will simply consist of a list of facts. For
examples of more complex rules to define planning knowledge we refer to the domain inde-
pendent planning knowledge base specified in the file kbplandi.alp. Finally, we recall that
the domain dependent part of K By,, may also contain integrity constraints, although this is
typically not the case. The planning capability will load the planning knowledge defined in
kbplan-example.alp (or a any other file specified to contain the domain dependent planning
knowledge) and merge it with the domain independent knowledge of kbplandi.alp. The sys-
tem will compute the completion of the resulting abductive logic program and use it as a basis
for any queries to the planner.

The reactivity knowledge base K B;cqc: is an extension of K Bp,,. In particular, the do-
main independent parts of both knowledge bases are identical. In principle, K By .¢qct extends
K Bpj4n only by a number of domain dependent integrity constraints, called reactive rules. In
practice, however, the domain dependent part of K B;..,c; may also define a number of auxiliary
predicates (by means of giving rules or facts) and refer to these auxiliary predicates within the
reactive rules. Reactive rules are integrity constraints (following the syntax defined earlier) over
predicates used in the knowledge base K B0 (i.e. observed/2, observed/3, and executed/2),
the predicate holds/2 defined in K B4y, the abducible predicate assume_happens/2, temporal
constraints, and possibly the aforementioned auxiliary predicates. For details of what types of
rules are allowed we refer to deliverable D8.

Let us now consider an example for such a reactive rule. We first define an auxiliary predicate
to express that assume happens (Action,T) holds for some time T after a particular reference
time (here called the Limit):

assume_happens_after (Action,T,Limit) :-
assume_happens (Action,T),
Limit#<T.

We are now in a position to write an integrity constraint (for the computee Francisco)
expressing the following (part of a) negotiation strategy: Whenever another computee C requests
a resource R and you do not have that resource at the time T the request is observed then reply
at some later time T1 refusing to give away R. Here is the corresponding reactive rule:

[observed(C,tell(C,francisco,request(give(R)),D,T0),T) ,holds(neg(have(R)),T)]
implies [assume_happens_after(tell(francisco,C,refuse(give(R)),D),T1,T)].

All such reactive rules and definitions of auxiliary predicates are stored in a file, say
kbreact-example.alp, which will be merged with the planning knowledge base on starting
the system. The resulting knowledge base will then be queried using the C-IFF proof proce-
dure whenever the reactivity capability is called.

3.4.3 Writing a KBrpg

The computational model for the Temporal Reasoning (TR) capability (see Deliverable D8 for
its definition) builds upon the computational model of (Constraint) Abductive Logic Program-
mming (namely, the CIFF proof procedure in this implementation). The main task of TR is
to deduce whether a property (a fluent) holds at some time point, given a domain knowledge,
and a (possibly partial) narration regarding the facts observed. This is done by answering to
queries like

12



?  holds_at(Fl, T).

where F1 is a ground fluent literal, and T is a time point that can be ground, in the basic
case, or an existentially quantified variable, possibly together with a set of temporal constraints
on the existentially quantified variable of the query.

The knowledge base K Bt consists of four parts:

1. a domain independent theory, based on Abductive Event Calculus [5], which explains
how events cause fluents and how fluents persist in time. It is contained in the file
KBtrdi.pl, consulted in the initialisation phase of each computee. For instance, the
domain independent rule

holds_at(F, T) <-
happens(A,T’),
T < T,
initiates(A, T’, F),
not clipped(T’, F, T).

states that a fluent F holds at time T if an action A has occurred at the previous time T?,
it causes the fluent and the fluent has not been clipped in the meantime.

2. a domain dependent theory, specific of the domain at hand, that is contained in a specific
file for each computee, KBtrddNAMESCENARIO.pl say. It contains the definition of the
predicates like initiates/3, terminates/3, and holds_initially (as explained in D8).

For example,

initiates(switch_on, T, light) <-
holds_at (neg(broken_bulb), T).

“putting the switch on causes light if the bulb is not broken”. Note the different treat-
ment of preconditions for action effects with respect to how general preconditions are
represented, for instance, in K Bpqn.

3. a narration, contained in KBy, that is passed to TR as a parameter by all the ca-
pabilities/transitions which use it. It represents facts that are known to have oc-
curred (observed/2, observed/3 and executed/2), or to hold initially (expressed as
observed(f1,0)). For example,

executed(switch_on, 10).

states that the computee did an action of switch on at time 10.

4. the consistency integrity constraint

holds_at(F, T), holds_at(neg(F), T) -> false.

13



which prevents a fluent and its negation to hold at the same time, and currently is the
only constraint currently supported. Other (user defined) constraints could be used with
a simple extension of the implementation.

Example 1 Given KBrg containing the following domain dependent theory and KBy the
following narration

initiates(switch_on, T, light) <-
holds_at (neg(broken_bulb), T).

executed(switch_on, 10).
observed(not (light), 20).

the query
? holds_at (broken_bulb,30)

can be proved to hold both credulously and skeptically. Informally, something can be credu-
lously proved if there exists a possible explanation for it whereas for skeptically we also require
that an explanation for its negation does not exist, (see D4,D8 for details).

Example 2 In several components of the computee, e.g. the Goal Revision (GR) transition,
may use TR in order to check whether a fluent, e.g. a (sub)goal or an action precondition,
holds within a time interval. This is done via queries containing an existentially quantified
time variables, possible subject to a set of constraints on these variables and other existentially
quantified variables in the state of the computee. Referring to the previous example above, the
query

? holds_at (broken_bulb,T1), 10 < T2, T2 < T1.

can be proved to hold both credulously and skeptically (the time variable are existentially
quantified) , while the query

? holds_at (neg(broken_bulb),T1), 156 < T1, T1 < 18.

can not be proved either skeptically, or credulously. Finally, the query
7 holds_at (neg(broken_bulb),T1), T1 < 5.

credulously holds (by assuming assume holds (neg(broken bulb), 0)).

In several places within the computee model, e.g. the cycle theory, it is sufficient in most
cases to have ground skepticall temporal queries. Such queries are invoked by the call

ground_temporal_reasoning_skeptical( KBO, Goal)

where KBO is the current narration as a list of facts, and Goal is a ground goal of the form
[holds_at (£f1, t)], where £1 and t are a ground fluent and a ground time point.

Note that as it is currently used, this does not return an answer, but only succeeds when
the goal holds against the current narration.
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Example 3 In the above example the query holds_at(broken_bulb,30) will be called by:

ground_temporal_reasoning skeptical(
[executed(switch_on, 10),observed(not(light), 20)],
holds_at (neg(broken_bulb), 30))

In this case the query simply succeeds, since we are not interested in any computed answer.
On the other hand, if the fluent was not entailed, the call would have failed.

Instead, the skeptical reasoning of TR for existentially quantified variables, together with a
set of temporal constraints, can be invoked by the call

temporal_reasoning_skeptical( KBO, EqvGoal, EqvTCs, EqvSigma)

where KBO is as before, and EqvGoal, EqvTCs and EqvSigma are a goal, a set of temporal
constraints, and a substitution for existentially quantified variables in the state of the computee,
respectively. The implementation could be extended to compute a time interval where the
existentially quantified query holds.

3.4.4 Writing a Cycle Theory

A cycle theory is an LPwNF theory and consists of three components, namely a basic, an
interrupt, and a behaviour component. They are written in Gorgias in a way similar to the
knowledge base K Bgp of Goal Decision. We note that this section should be seen more as a
systems manual rather than as a user’s manual as cycle theories form the control mechanism
of computees.

A user typically will be confined to choosing for her/his application the basic high-level
characteristics of behaviour of the computee that are appropriate. This is done by giving the
computee an appropriate behaviour part of its cycle theory. How a user writes this part will be
explained in some detail in the subsection below. Before doing this we will explain how the other
parts of a cycle theory are written out which although more or less fixed can still be changed
by an (advanced) user in order to customize further the computees to meet her/his requirements.

Basic and Interrupt Components of Cycle Theories
The basic part of any cycle theory consists of rules of the form:

ik (S', X) 1 Te(S', X, 8") « T3(S, 8"), Cyyp (S', X).

where T; and T} are any two transitions different from the Passive Observation, i.e. i,k # PO.
Such a rule specifies which transition 7}, might follow a transition T; The conditions Cj, in
such a cycle-step rule are called enabling conditions as they determine when a cycle-step from
T; to Ty, is allowed or enabled. In particular, they determine the input X, if any is required, of
the ensuing transition T}. Such input will be determined by calls to the appropriate selection
functions, when required.

For example, the following cycle-step rule

rp11ap(S', As) : Tap(S', As) <~ Tp1(S,S"),Cprjap(S', As).

that expresses the possibility that a PI transition can be followed by an AE transition is rep-
resented in Gorgias as follows
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ct__rule(step(’AE’, As), step(’AE’, As), [1) :-
ct__ec(’AE’, As).

The first argument of the conclusion is a label naming the rule and which can be chosen by the
user as any Prolog term. In practice though it is important to have in this the name of the
transition (here ’AE’) and its parameters chosen by this rule (here As). Hence we are going to
adopt the convention to use the head of the basic cycle step rule, which is the second argument,
also as the name of the rule so that we carry all relevant information of the rule in its name.
Rules are wrapped in c¢t__rule to indicate the module they belong to.

As explained above the enabling conditions, i.e. the predicate ct__ec/2, determine the input
parameters of the ensuing transition, and thus in the given example they determine the actions
to be executed. Furthermore, without loss of generality, we have simplified the form of the
basic rules in the implementation in such a way that the condition for the previous transition
is included within the enabling conditions. In the example above the Plan Introduction (PI)
transition is not ”visible” in the conditions of the rule as it is part of ct__ec/2.

The enabling conditions are auxiliary predicates of the LPwN F' theory specifying the cycle
theory and are written in Prolog. For the example of the AE transition above this is given by:

ct__ec(’AE’ ,As) :-
fun__action_selection(As),
ct__ec_aux_p(’AE’,As).

The first predicate, namely fun__action_selection/2, is a core selection function (denoted as
cas in D4) that determines from the current state actions that may be executed. This predicate
is coded as follows:

fun__action_selection(((0p,AT),Goal,Preconditions,TC)) :-
self__action((0p,AT),Goal,Preconditions,TC),
self__temporal_constraints_validate(AT,TC),
self__goal_ancestors_eq(Goal,Ancestors),
self__goal_check_ancestors_nopass(Ancestors).

where (a) the first condition picks an action from the state of the computee via the predicate
self__action/1, then (b) the second condition checks that the temporal constraints are still
satisfied, and (c) the last two conditions check that none of the action’s ancestors (i.e. a goal
or subgoal) has been satisfied already.

We note that this implementation does not cover the complete specification of this selection
function as given in [3]. An advanced user can extend this definition in appropriate ways.

The other predicate, namely ct__ec_aux_p/2 checks that action execution (AE) is an allowed
type of transition based on the previous one. It calls the predicate ct__ec_user_p/2 through
which the user specifies the basic allowed transition steps. For example, if we have:

ct__ec_user_p(’AE’,’PI’).
ct__ec_user_p(’AE’,’AE’).
ct__ec_user_p(’AE’,’A0’).
ct__ec_user_p(’AE’,’PR’).

then this specifies that the only type of transitions that are allowed to follow an action execution
transition are PI, AE, AO and PR. If we want to allow any type of transition to follow any other
type (possibly the same) then we simply need to define ct__ec_user_p/2 by the single clause:
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ct__ec_user_p(Trl,Tr2).

The interrupt component of the cycle theory is analogous, in syntax, to the basic component.
However, each interrupt rule specifies what might follow a PO transition, which acts as an
interrupt. Concretely, this is accomplished as follows:

ct__ec_user_p(’P0’,’GI’).
ct__ec_user_p(’P0’,’RE’).
ct__ec_user_p(’P0’,’GR’).

Specifying the Pattern of Behaviour
The behaviour part of the cycle theory consists of priority rules whose role is to encode locally
the relative strength of the rules in the other components of the cycle theory of the computee.
These then are used to determine, amongst all the enabled cycle-steps, which ones are preferred
under the current circumstances.

In D4 notation, the behaviour rules are of the form

Rpy : re(S', Xi) > (S, X1) = BCy,(S', Xk, X1).

where BC,ill are called behaviour conditions. These are heuristic conditions (e.g. heuristic
selection functions) under which the cycle step to transition Tj(X}) is preferred over the cycle
step to transition T3(X;). Through the behaviour part of the cycle theory we can encode
different patterns of operation.

In the sequel we provide coded examples of behaviour rules that specify a certain pattern
of operation that can be taken as an underlying basis on which we can build different and
additional patterns of behaviour — we can call this the normal pattern of behaviour. This
specifies a pattern of operation where the computee prefers to follow a sequence of transitions
that allows it to achieve its goals in a way that matches an expected "normal” behaviour.
Basically, it introduces goals, then plans for them, executes a plan, revises the state,executes
another plan until all goals are dealt with (successfully completed or revised away) and then
returns to introduce new goals.

Hence for example, we have the behaviour rule of

RE1.(Gs) : rarpi(S,Gs) > rap.(S, X).

to capture that after goal introduction (GI) we plan for the goal introduced, and the behaviour
rule of
Régl* :7ABIGR(S) > TaE(S, ) + empty_plan(S).

to capture the fact that after the last possible action execution we prefer to do a revision of the
state.
These rules are coded respectively as follows:

patt__rule(prefer(normal,step(’PI’,Gs), step(Z,X)),
prefer(step(’PI’,Gs), step(Z,X)), [1) :-
self__last_transition(’GI’),

Z \= ’PI’.

patt__rule([prefer(normal,step(’GR’,_), step(_,_)),
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prefer(step(’GR’,_), step(_,_)), [1):-
self__last_transition(’AE’),
empty_plan.

where such rules are wrapped by patt__rule, the first argument of the head of the rule is a user
chosen name of the rule and the second argument, namely the head of the priority rule that is
coded up must have the form prefer(step(Trl,11), step(Tr2,12)).

The condition, empty_plan/0, used in this example is called a behaviour condition is true
whenever there are no actions in the state of the computee, i.e.:

empty_plan :-
findall(A, self__action(A), As),
As = [].

Under the normal pattern of behaviour we also give preference to responding to communication
messages received by a computee as passive observations via the PO transition. This is captured
by the behaviour rule

Rg,ol* : 7po|ar(S, 0bs) > rpo|.(S, Obs) < comm_msg(Obs).
and thus the corresponding Gorgias rule is given by:

patt__rule(prefer(normal,step(’GI’,_), step(_,_)),
prefer(step(’GI’,_ ), step(_,.)), [1) :-
self__last_transition(’P0’, Obs),
comm_msg (0bs) .

which gives preference to the goal introduction transition which through its goal decision ca-
pability will decide the response to Obs. In addition, in the normal pattern of behaviour the
rule

Rﬁz\*(AS) :rprjae(S, As) > rpr.(S, X).

gives preference to action execution (AE) after a plan introduction (PI) transition while the
rule
Ry g ap(As) : 1yap(S, As) > ryap(S, -) + comm_action_selection(As).

states that amongst possible actions to be executed, the communication actions are those
preferred. Furthermore, the higher-order priority

Capjap * Rapap(41) > Ry ap(42) « more_urgent(As, As)

ensures that the more urgent communication action is preferred. These rules are coded, respec-
tively, as follows:

patt__rule(prefer(normal,step(’AE’,As), step(Z,X)),
prefer(step(’AE’ ,As), step(Z,X)), [1) :-
self__last_transition(’PI’),
Z \= ’AE’.

patt__rule(prefer(normal,step(’AE’,As), step(’AE’,As_2)),
prefer(step(’AE’ ,As), step(’AE’,As_2)), [1) :-
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comm_action_selection(As).

patt__rule(prefer(normal_ho_pref), prefer(Pref_1, Pref_2)) :-
Pref_1 = prefer(normal,step(’AE’,As_1), _),
Pref_2 = prefer(normal,step(’AE’,As_2), _),
more_urgent (As_1, As_2).

Here comm_action_selection and more_urgent are heuristic (selection) functions that con-
tribute to the behaviour conditions of the pattern specified by the cycle theory. These are
auxiliary predicates defined by Prolog rules. For example, comm_action_selection is defined
by:

comm_action_selection(A) :-
self__action((0OP,T),_,_,_),
0P = tell(_,_,_,.).

4 Society

4.1 Configuring the Society

The Society component is by default configured with standard parameters, which allow to start
the society demonstrator without any particular configuration.

There can be cases in which users need to modify the defaults parameters. The configu-
ration values are stored in a text file, named society.config and situated in the directory
socs\platform\society. It is possible to edit this file. For each parameter the file contains
also a description of the meaning and the allowed values it can assume.

4.2 Starting a generic society

If the installation process has been terminated successfully, inside the directory
socs\platform\society there is a script named run.bat. This script can be used for launch-
ing a generic society application. Here we describe how to execute a generic society using this
script.

A society application needs some base information before it is launched. More precisely, it
needs to know:

e which proof procedure to use (the society application is able to use different proof proce-
dures with different characteristics);

e which events source to use;
e the source files (in case the file system is the selected event source);
e the protocol files in which the protocols are defined;

e one file containing the Social Organization Knowledge Base (SOKB);

There are three ways to provide these information:
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Figure 2: Main society GUI

By setting default values. It is possible to specify the information in the
society.config file. Executing the script run.bat without any parameter will load
the configuration values stored in the file.

By specifying the values by the command line. It is possible to specify the values
on the command line, as parameters after the script name. For a detailed example, please
type in at the command prompt the command run --help and read the instructions.

Through a configuration GUI. It is possible to specify these parameters through a
Graphical User Interface. The procedure is two-fold: (1) execute the launching script with
the parameter —-graphic: a configuration window will appear; (2) select the parameters
as desired, and then click to the button “start” to launch the society application. We
suggest that new users follow this procedure as opposed to (a) and (b) (because it is
simpler).

Graphical User Interface

The Graphical User Interface (GUI) allows the user to follow the interaction between the com-
putees, and it shows if the interaction is compliant to the social integrity constraints. In fact,
as it is described in Deliverables D8 [4] and D8, a society is characterized by a set of protocols,
defined in terms of Social Integrity Constraints.

The GUI of the society component is composed of three main areas:

Messages. A table to show the messages exchanged between computees is situated at the

bottom of the window, and it shows all the messages exchanged until a certain moment
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Figure 3: State diagram of the society demonstrator. The proof states are in orange; the control
states are in yellow.

between the computees. A light violet line shows the next message that will be elaborated
by the proof.

Left pane. A list of the computees members of the society at a certain moment is located on
the left, and each computee is listed with its name. The name “All” is reserved by default,
and it is used to select the data regarding all the computees. It is possible to click on a
computee to see the relevant information regarding it (e.g., the messages directed to or
sent by it).

Central pane. The content of the central pane changes according to which computee is se-
lected among those listed on the left. It can shows the set of messages exchanged by a
particular computee (divided in sent and received) or it can shows the set of expectation
regarding the computee (again divided in pending, fulfilled and violated).

A button bar, located on top of the three main areas presented above, contains some controls
and buttons. They can be used in order to manage the elaboration of the events, by selecting
different proofs or protocols, as well as to load new event files or to save through a file the
events actually received.

The controls are not always enabled: the GUI respects the proof-state diagram presented
in [2]. Some buttons can be enabled or disabled depending on the current state of the proof.

We give below a brief description of each control and of the effects it has on the application.
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Play button It starts the proof procedure. This button must be pressed in

the beginning in order to make the proof start elaborating the events; after the
user presses the “stop” button, it is necessary to press again the play button
to continue the elaboration.

Stop button It stops the elaboration of the events. The proof moves form the
“waiting-for-events” state to the “stopped” state.

Step button This button is enabled only in “step-by-step” execution mode.
It is used to let the proof elaborate the next available event.

Close History button It closes the history, and provides to notify it to the
=| proof. When the history is closed, no new messages can be elaborated by the

proof. The proof will provide to apply the close history transition. If the
society is re-initialized, the history is re-set to an “open” state.

.| Init button It re-initializes all the internal state of the society. All the results
| obtained until here are lost, and the application return to the “init” state.

The events will be processed from the beginning. It is enabled only when the
application is in the “stopped” state.

Load button It loads a new set of events from a file. The new events are

= appended to the list of available events. It is enabled only if the selected
messages source is the file system.
Save button It saves all the events received until now in a file. The saved

events can be used later for logging purposes or to repeat the elaboration.

~ | Show Tree button It shows/hides the tree viewer of the information generated
~=| after the elaboration of the events.

Execition mode: | stept ~ Exec mode selection box It selects the desired execution mode.
s Valid modes are “auto” and “stepl”. In the “auto” execution,

mode all the events are elaborated, and the elaboration stops
only when there are no more events to process. In the “stepl”
execution mode instead for each event is required an acknowledge
to elaborate it (step button). The “stepl” mode is somewhat
similar to the “step” execution mode which is available in most
debuggers. Only, instead of instruction there are events. It is
possible to change the execution mode only when the application
is not elaborating, hence when the application is in the “stopped”
state.
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4.4 Running Demo Example 4 from the package

In this paragraph we illustrate how to run a built-in example of functioning of the society
prototype. In Section 4.2 we introduced how to execute a generic society. The configuration of
parameters, necessary to the proper functioning of the demo example, has been written into a
script file (.dot).

The steps needed to execute Example 4 are as follows:

1. open the directory socs\demo\4

2. execute the script demo4_soc.bat

The script launches the society application and loads protocols and events for this example.
To execute the others examples of the society the procedure is the same, except that the user
should select the directory corresponding to the desired example (for example socs\demo\5 for
the example 5).

The purpose and expected behaviour of this example are discussed in the Examples docu-
ment.

4.5 Creating your own examples

In order to specify a society of computees, the user needs to edit two text files:
1. A Prolog file containing the Social Organization Knowledge Base of the society;

2. A text file containing the set of Social Integrity Constraints that the computees will be
required to comply with.

The specification of the society is independent of the source of events to be verified for compli-
ance (Medium, User Prompt or History File); in Sect. 4.5.2, we describe the expected format
of a History File.

4.5.1 Specification

Social Organization Knowledge Base. The Social Organization Knowledge Base should
be defined in a single Prolog file (which will be consulted by means of the Graphical User
Interface, see Sect. 4.3).

The file should be declared to be a SICStus module of name sokb, and to export the
predicates which will be used by the proof procedure (e.g., those called in the body of Social
Integrity Constraints). In addition, the module should import the proof module. See the
SICStus Prolog manual [6] for information on how to deal with modules.

Abducibles E, -E, EN, and -EN should be written as e/2, note/2, en/2, and noten/2,
respectively.

Social Integrity Constraints. Social Integrity Constraints are specified in a text file, and
are loaded into the proof by means of the GUI (see Sect. 4.3).

The formal syntax of SICs is described in [4]; in Table 1, we show the symbols in the SICs file
that correspond to those in [4].
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Type Symbols in [4] Symbols in the SICs file
Logical connectives —, A,V -—=>,/\, \/
Events & Expectations H, -H, E, -E, EN, -EN | H, !'H, E, 'E, EN, !EN
CLP Constraints (unification) =, # =, I=
CLP Constraints (CLP-FD) = # << >, > ==, <>, <, <=, >, >=

Table 1: Correspondence between symbols found in [4] and symbols in the SICs file.

For instance, the SIC

H(tell(A, B, request(P), D), T1)
— E(tell(B, A, accept(P),D),Tx) AN T» <T1+ 100
V E(tell(B, A, refuse(P), D),T) A Tp < T1+ 100

should be written as

H(tell(A,B,request(P),D),T1)

---> E(tell(B,A,accept(P),D),T2) /\ T2 <= T1+100
\/ E(tell(B,A,refuse(P),D),T2) /\ T2 <= T1+100.
Blank spaces, tabs and newlines are ignored by the parser.

4.5.2 History

The history file is a sequence of entries of the format:
Act([Soclds), Dialogld, Performer, Addressee, Performative, [ Arguments), Time).

where Act is the type of action, Soclds is the list of identifiers of the societies in which the act is
performed?, Dialogld is the interaction identifier, Performer is the computee that performs the
action, Addressee is the computee that the action is addressed to, Performative and Arguments
represent the content of the action, and Time is the time at which the action is performed.

Time is expected to be an integer number, and all the other fields are expected to be Prolog
constants. For instance, the history entry

tell([s0] ,auctionl,bidder,auctioneer,bid, [scooter,10],150).

could represent the event of bidder telling auctioneer a bid of 10 money units for a scooter,
in the context of interaction auction0 at time 150 (the society identifier sO is ignored in the
current version of the demonstrator).

In order to allow for a correct processing of events by the proof procedure, entries should
be listed in increasing order with respect to the Time field.

4.5.3 Running your own example

Once a SOKB and one (or more) file containing the Social Integrity Constraints have been
specified, running the Society is just a matter of specifying these information properly. As
already discussed in section 4.2, this can be done in three different ways. We strongly suggest
to use the configuration GUI. In order to do that a user must:

2This field is meant to support the future extension of multiple societies, and is ignored in the current version
of the prototype.
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. open a command prompt
2.
3.

A configuration window appears, and the user must select the proper files in which SOKB
and ICS have been saved. If “file” is selected as the event source, the user must also select
a history file from which to fetch the events. After clicking the button “start”, the society

application GUI should appear.

move to the directory socs\platform\society

type the command run --graphic
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Figure 4: Starting a computee under MS Windows

5 Running Example 7 of SOCSDemo

In general, once a user has selected an example to run from the SOCSDemo it will have to run
the computees involved and the society. Once the user has opened the directory of the example,
the user has to read first a readme. txt file in order to get information about the required order
of the actions that need to be performed. The user has then to select a directory where a
computee is defined, open it, and in it double-click on the file that contains an executable of a
computee. An example of this situation for example 7 of the examples document is depicted in
Fig. 4, where the user has having selected example 7 of the demo, is starting the first computee
residing in the directory comp1, from the file demo7-comp1.bat. This will start the computee of
Francisco, abbreviated as f£. Similarly, the user will have to do the same for the other computee
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Once all components have been started properly, the user will have to select in the computee
window of f the sending of message, which will need to be specified manually. Therefore, the
user will have to select from the menu Action — Speak. Then, the window of Fig. 5 should
appear on the screen. The user at this point should press the Speak button. This will have
the effect of the computee £ sending the message to computee svs, and immediately after this
the user can observe that the interfaces of the two computees have recorded messages being

Figure 6: Computee GUI

exchanged, including the society recording these events.
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At the end of the interaction the computee svs will have the state shown already in Figure
6, while the computee for f will have the actions executed from svs as observations and the
observations of svs as actions. The society, on the other hand, at the end of the interactions
will have the form shown in Figure 7.
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Figure 7: The Society at the end of the interaction between computees.
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