Universita degli Studi di Bologna
DEIS

Verifiable Agent Interaction in

Abductive Logic Programming:
the SCIFF proof-procedure

Marco Alberti Federico Chesani

Marco Gavanelli Evelina Lamma
Paola Mello Paolo Torroni
March 2006

DEIS Technical Report no. DEIS-LIA-06-001 LIA Series no. 75

Verifiable Agent Interaction in Abductive Logic
Programming:
the SCIFF proof-procedure

Marco Alberti® Federico Chesani? Marco Gavanelli !
Evelina Lamma ? Paola Mello ! Paolo Torroni®

! Dipartimento di Ingegneria, Universita di Ferrara
Via Saragat, 1
44100 Ferrara, Italy
{marco . alberti, marco .gavanelli, evelina.lamma}@unife.it
2DEIS, Universita di Bologna
V.le Risorgimento 2
40136 Bologna, Italy
{federico . chesani, paola.mello, paolo .torroni}@unibo.it

March 2006

Abstract. SCIFF is a new abductive logic programming proof-procedure
for reasoning with expectations in dynamic environments. SCIFF is also the
main component of a framework thought to specify and verify interaction in
open agent societies. In this paper we present the declarative and operational
semantics of SCIFF, its termination, soundness and completeness results, and
some sample applications to demonstrate its use in the multi-agent domain.

Keywords: Abductive Logic Programming, Proof-procedures, Agent Interaction
Protocols, Declarative Semantics, Formal Properties, SCIFF, SOCS (SOcieties
of ComputeeS), IFF Proof-procedure

Contents

1

10

Introduction 3
1.1 Agent societies: interaction specification and verification 4
1.2 Simple examples of agent interaction)
1.3 Ten good reasons to use SCIFF for reasoning about MAS interaction 7
Background and notation 9
Syntax 11
3.1 Representation of dynamically happening events 11
3.2 Social specifications Lo 13
Declarative Semantics 20
The SCIFF proof procedure 22
5.1 Data Structures L 22
5.2 Variables e 24
5.3 Transitions L L 25
Properties 40
6.1 Termination of SCIFF 40
6.2 Soundness of SCIFF 42
6.3 Completeness of SCIFF 43
Implementation 43
Sample Applications 45
8.1 Planning with the Abductive Event Calculus 46
8.2 Specifying and verifying agent interaction 48
8.3 Reasoning with norms and events 52
Related Work and Discussion 58
9.1 ALP frameworks 58
9.2 Computational Logic and societies of agents 62
Conclusions 64

DEIS Technical Report no. DEIS-LIA-06-001

LIA Series no. 75

1 Introduction

This article describes a declarative and operational framework, grounded on Ab-
ductive Logic Programming (ALP) [63], that can be used in a number of situations
involving reasoning with incomplete knowledge and dynamic occurrence of events.

The main motivations of such a work originate from the domain of agent inter-
action. In order to appreciate them, one must consider that in such a domain the
definition of agent communication languages and protocols, their semantic charac-
terization, and their verification, are key issues with many points still open, notwith-
standing interaction being one of the characterizing and most widely studied aspects
of agency [101]. In order to address these issues, not surprisingly, multifarious logics
have been adopted, extended and developed: modal logics, mainly, in the domain
of rational agents, and a number of fragments of temporal logics in the domain of
open societies and social commitments.

Our work mainly focusses on the specification and verification of interaction in
open agent societies. It advocates the use of Computational Logic for agent applica-
tions, and it demonstrates ALP to be a viable tool for the specification, development
and implementation of operational frameworks for agents and their application in
a number of reference scenarios. The outcomes of our research activity, carried out
in the context of a EU IST project named SOCS (Societies Of ComputeeS) [92],
completed in June 2005, are a declarative semantic characterization of open agent
societies in terms of abduction, and an operational framework centered around an
ALP proof-procedure called SCIFF.

SCIFF is an extension of the well-known IFF abuctive proof-procedure defined
by Fung and Kowalski [56]. IFF has inspired conspicuous work in logic-based agent
systems [68, 36, 82], paving the way for the definition of a reference agent architec-
ture that combines rationality with reactivity and other components like planning,
temporal reasoning and deliberation, to cite some [67, 72]. Important as it has
been in its seminal role, some limitations have made the use of IFF impractical in
many scenarios, and an agent system based on IFF and at the same time dealing
with typical agent settings, involving communication, constraints, deadlines, and
the occurrence of events has never been implemented.

To overcome such limitations, again in the context of the SOCS project, work
has been done to extend IFF by constraint solving giving rise to the CIFF (IFF with
Constraints) proof-procedure [45]. The introduction of constraints made it possible
to implement core agent reasoning functionalities, such as temporal reasoning and
abductive event calculus-based planning [74], and to demonstrate the feasibility of
the approach in simple scenarios [2].

1.1 Agent societies: interaction specification and verification

We think of Multi-Agent Systems (MAS) as societies of computational entities. The
counterpart of individual agent design and implementation is a number of issues
related to agent interaction, at the social level. They include:

(a) definition of an agent interaction model. What is a suitable representation of
messages and protocols? What is the meaning given to agent communication
exchange, and what is the role of protocols in this?

(b) social goals. How to define the goal of agent interaction formally, in a specific
context? Does the occurrence of a certain sequence of messages mean that a
goal has been achieved?

(c) evaluation of the agent social behaviour. How to define the “correct” behaviour
of agents interacting in a social environment? In relation to protocols, is it
possible to tell out the agent interaction actions that are compliant to some
defined protocol from those that are not? Can this be done dynamically, while
agents are interacting?

(d) projection of the future states of agent interaction. Given some rules of interac-
tion, which can be coded in terms of protocols, what is the expected behaviour
of the MAS? Will it be able to develop a consistent sequence of events, or will
it necessarily violate some protocols? Is there a way at all for agents to engage
in compliant interaction, given some state of affairs and possibly a goal?

An important point to make is that to answer these questions we do not need to
acquire information nor to make assumptions about the agent internal architecture.
Agents could be computational entities, reactive systems, peers in a distributed
computer system, even human actors. This detachment of agent architectural de-
sign information from interaction definition and study is called “social approach”
to agent interaction, and it is advocated by milestones of the MAS literature, such
as work by Castelfranchi [26], Singh [91], Yolum and Singh [104], and Fornara and
Colombetti [53]. Other very influential approaches have been proposed, which focus
on the relationship of agent interaction with agent internal reasoning and mental
states, leading to a completely different semantic interpretation of agent commu-
nication, rooted in the theory of speech acts [32]. We will not delve here on this
this hoary debate. We will focus instead on how to address the issues above with
a computational logic-based and operational framework. We will show a semantics
for agent interaction based on the concept of social expectation. Such a semantics
provides a simple, intuitive and general, high-level abductive interpretation for agent
societies [12], in which we define the concept of social goal and social integrity con-
straints (ICs). We will not only provide a declarative specification language for agent

interaction, but we will also present a fully-fledged operational framework centered
around the SCIFF proof-procedure, whose properties of termination, soundness and
completeness with respect to its declarative semantics, make it a suitable means for
tackling verification of agent interaction.

We define compliance to protocols by matching of “socially relevant” events with
social expectations. Such a unification is checked dynamically, as agents execute
their programs, and as events of other kind occur in the environment. We explicitly
represent timing of events, which makes it possible for such a framework to cater
for sequences, deadlines and concurrent events.

We propose SCIFF as a general framework, that can be applied to many sit-
uations involving reasoning with incomplete knowledge and dynamic occurrence of
events, not necessarily related to agent interaction. Nevertheless, the main motiva-
tions of the research behind it come from the MAS domain. We will now briefly
show, by examples, what typical situations we shall meet in such a domain. This
will explain some choices we have made, and why we have decided to propose such a
powerful formalism, rather than resorting to off-the-shelf solutions, based on exist-
ing proof-procedures or other logic-based operational tools. We will keep this part
short, since the focus of this article, and its original contribution, is the operational
framework of SCIFF, which has never been presented before, and in its relationship
with the declarative model, in terms of soundness and completeness and related re-
sults. The reader interested in more focussed discussions about the relation of the
SCIFF framework with other work of literature, specific case studies, and in the
general issue of agent interaction can refer to previously published work, including
[13, 15, 5, 10, 2, 7, 3].

1.2 Simple examples of agent interaction

Let us consider, for the sake of example, a typical two-agent setting. Agents a
and b interact by message exchange. Messages may have a format in the style of
KQML [49] or FIPA ACL [50], but we simplify the notation and indicate only sender,
recipient, content and context by functor symbols.t

Agent a requests agent b to perform an action p. Let us use the tell functor to
represent messages:

tell(a, b, request(p), d)

where the context is the dialogue d, occurring between a and b.

'For the sake of simplicity and generality, we will not propose a concrete content language.
We will assume that, depending on the context, some content language is adopted. Some suitable
interface can be used to map FIPA messages onto other notation. One such interface is that
integrated in the SOCS-SI tool [7]. The reader interested in such a mapping can access a large
number of sample protocols and communication traces from the SOCS-SI Protocol Repository [93],
and download and execute them using the publicly available SOCS-SI tool [94].

When reasoning about agent interaction, especially in tackling issues like eval-
uation and prediction of agent interaction (points (¢) and (d) above), we need to
consider not only messages already exchanged by agents, but also messages that we
expect agents to exchange in the future. We will then need some sort of hypothetical
reasoning to figure what messages are expected to be sent, given the protocols and
the current state of affairs regarding the interaction. Dually, we will also need to
represent and reason about messages are expected not to be sent.

We will distinguish between three different categories of messages: sent messages,
messages ezxpected to be sent, and messages expected not to be sent. To this end, we
will adopt the special symbols H, E, and EN to represent, respectively, happened
events, positive expectations, and negative expectations. Using the same intuitive
meaning of symbols as in the example above, we will write:

EN(tell(a, b, refuse(p),d), T) N T < 10

to indicate that, in the context of dialogue d, a is expected not to express before time
10 his possible refusal to perform action p, i.e., he is expected not to send a message
in the format tell(a,b,refuse(p),d), at any time T < 10.

Note that, if we want to express, like in this example, that some event is expected
not to happen at any time, we need T to be universally quantified. Dually, if we
want to express the fact that some event is expected to happen at some time, we
need T to be existentially quantified. The variable quantification applies not only
to variables representing time: we may need to refer to messages that are expected
by some agent, or we may be expecting messages about some content but we do
not know exactly what the message will be. For example, a could be expected to
make a bid for a specific item i, by offering a quote Q (E(tell(a,B,quote(i,Q),T)):
but we do not know exactly what @) will be. Dually, when we consider expectations
that certain events will not occur, we will have to express, for example, that agent
a is expected not to send any message to agent b, or that we expect no message
following some pattern to be sent between any two agents (e.g., EN(tell(a,b,M,T)),
or EN(tell(A,B,insult(1),T))).

The relations among past, happened events and expected, future events corre-
spond to the idea of protocols. Integrity constraints (ICs) are used precisely to relate
sent messages, belonging to the category of happened H events, with conjunctions of
E/EN expectations. In doing so, disjunctive constructs are needed to express that
after some event, several alternative future sequences of events would be equally con-
sistent with the protocols. For example, after tell(a, b, request(p), d) we may expect
either tell(b, a, agree(p), d) or tell(b, a, refuse(p), d):

H(tell(a, b, request(p), d), T)
— E(tell(b, a, agree(p), d), T1) N T < T1
Vv E(tell(b, a, refuse(p), d), T1) N T < T1

In checking agents’ compliance to given protocols, we need to verify whether
expectations are met by events. We do this by unification/disunification of posi-
tive/negative expectations with events.

For example, given the expectation E(tell(b, a, agree(p), d), T1) N 1 < T1, we
need to be able to understand whether there is a matching event which makes it
“fulfilled”, or whether it is “violated”, i.e., missing a matching event.

Dually, given the negative expectation EN(tell(b, a, refuse(p), d), T1) A 1 < T1,
we need to be able to tell whether it is fulfilled, which is the case until no matching
event is generated in the society, or whether it becomes “violated” because of an
event like: H(tell(b, a, refuse(p), d), 5).

Finally, let us consider, at a higher level, interaction as a means to achieve a
goal. From the individual agent standpoint, in line with many agent theories such
as Rao and Georgeff’s BDI [78] or the KGP model of agency [67], we can imagine an
internal process that considers goals or intentions, and through a deliberation phase
generates communicative acts as part of plans to achieve them [32]. For example,
we can imagine that by issuing request(p), agent a hopes to find itself into a state
in which some other agent performs p. Some policies internal to ¢ may have lead
him to issue such a request. From the social standpoint, we can associate a goal
to the interaction of agents, which is independent of the single agents, but reflects
a status to be reached by the system as a whole. We argue that the production
of expectations can be interpreted as the “social” goal of agent interaction in this
sense. In the example above we can thus define a high-level goal, satisfy request,
which becomes true when an expectation about agree(p) is produced (and fulfilled),
in this way:

satisfy_request(A, T) «—
E(tell(B, A, agree(p), D), T1) N T1 < T

A and T are here universally quantified variables, whereas B, D and T1 are
existentially quantified: satisfy_request becomes true, given A and T, if (or for all A
and T such that) there exists an agent B, a context D and a time 71 in which B
agrees to perform p. The verification of fulfilment of such expectations will ensure
that the social goal has been met.

1.3 Ten good reasons to use SCIFF for reasoning about MAS in-
teraction

These examples capture some of the most relevant features of the SCIFF abductive
framework. What does then SCIFF offer, with respect to other existing abductive
logic programming frameworks, and in the domain of agent interaction specification
and verification? In a nutshell, with respect to other proposals, SCIFF offers:

. a definition language based on ICs. In the MAS domain, the SCIFF language
can be used to define agent interaction protocols. More in general, it can be
used to describe the generation of hypotheses and expectations by events;

. variables (e.g. to model time), and constraints on variables occurring in hy-
potheses and expectations: a feature which only a few protocol definition
languages offer, but which is needed to express partially specified events and
deadlines;

. a very rich, flexible and transparent (i.e., implicit) quantification of variables,
which allows to keep the SCIFF language neat and simple, and makes it suit-
able to express interaction protocols in an intuitive way;

. social goals, defined as predicates. Goals can express the social aim or outcome
of some agent interaction, or they can be used to start an abductive derivation
in the more classical ALP tradition;

. the possibility to model dynamically upcoming events, which will be used by
SCIFF as an extension of a social environment knowledge base;

. the ability to generate positive and negative expectations, beside making hy-
potheses, and the concepts of fulfilment and violation of expectations. These
features are needed to implement dynamic checking of protocol compliance,
which is a distinguishing feature of the SCIFF framework, in the sense that
at the time of writing, to the best of our knowledge, no other frameworks offer
this feature with such a wide range of protocols;

. a declarative semantics given in terms of ALP. In the MAS domain, it can be
used to give an abductive interpretation to agent societies;

. a proof-procedure, called SCIFF, which extends Fung and Kowalski’s IFF [56]
in the directions above (variables, constraints, quantification, expectations, hy-
potheses confirmation/disconfirmation, dynamic occurrence of events). SCIFF
generates expectations from events, checks their confirmation/disconfirmation,
and predicates about the achievement of social goals;

. the properties of termination, soundness, and completeness, under reasonable
assumptions, of SCIFF. Together with the presentation of the SCIFF proof-
procedure, these properties represent the main contribution of this article and
are among the most important achievements of the overall framework, since
they set a correspondence between SCIFF and its declarative, abductive se-
mantics;

10. an efficient implementation. SCIFF has been implemented on top of CHR
[54, 4] and it is at the core of the SOCS-SI tool [7]. SOCS-SI is publicly
available [94].

These features make SCIFF a suitable framework for the MAS domain. Inde-
pendently of this, and more generally, many of the individual features of SCIFF,
like its very expressive quantification of variables are, to the best of our knowledge,
to be hardly found in most existing operational abductive frameworks.

In this article, we present the SCIFF abductive framework. We present the
declarative and operational semantics of SCIFF in terms of transition rules, as
an extension of Fung and Kowalski’s IFF’s operational semantics [56]. We then
present three very important results: first, termination of SCIFF under reasonable
assumptions (i.e., in a way that does not prevent us from specifying any of the
protocols that we have considered so far). Second, soundness of the proof-procedure
with respect to its declarative semantics. Finally, we prove that SCIFF is complete
for a limited though very significant set of programs.

After the preliminaries, we introduce in Sect. 3 our framework’s syntax. We then
proceed to Sect. 4 and 5 which provide its declarative and operational semantics;
results of termination, soundness and completeness are shown in Sect. 6, while Sect. 7
sketches the implementation of SCIFF inside SOCS-SI. In Sect. 8 we present three
applications of SCIFF in different contexts, and finally we review related work in
Sect. 9. Additional details about the syntax of the SCIFF language and allowedness
criteria for proving soundness can be found in [14].

2 Background and notation

In the remainder of the article, we assume a basic familiarity with the concepts,
results and conventions of Logic Programming. A good introduction is that pro-
vided by Lloyd [73]. The words integer, variable, term, atom will be used in the
following with their usual meaning in Logic Programming [73]. We adopt the Pro-
log convention that reserves capital letters (X, Y, Z, ...) for variables, lower-case let-
ters (a,b,c,...) for constants and functors. We use capital-letter boldface fonts
(E,H,EN) for special functors defined in our language. The symbol — stands for
explicit negation, while not is for negation by failure.

As in ACLP [65], our language integrates Constraint Logic Programming [60]
and Abductive Logic Programming [62].

Constraint Logic Programming (CLP) is a class of declarative languages. Each
CLP language can be seen as an instance of a general CLP(X) scheme where each
instance can be specified by instantiating the parameter X’ [61]. The parameter X
represents a 4-tuple (X x, Dy, Lx, Tx) where X y is a signature, Dy is a ¥ y-structure,
Ly is a class of ¥ y-formulas and 7y is a first-order X y-theory.

We will assume that the symbols = and # belong to the signature Xy. As usual
in CLP, the constraint = replaces unification, and will be called equality constraint.
The constraint # is called disequality constraint; the semantics of A # B is that
of not(A = B). With an abuse of notation, we will also apply equality (resp.
disequality) on atoms; in such a case, we mean the conjunction (resp. disjunction)
of equalities (disequalities) of corresponding arguments.

In our language, constraints can also be applied to universally quantified vari-
ables. The meaning, in such a case, is that of quantifier restrictions [25]. The
semantics of quantifier restrictions is different for the case of universally quantified
and existentially quantified variables, as follows (where ¢ € Y y):

Notice that for existentially quantified variables, quantifier restrictions have the
same meaning of constraints; for this reason, in the rest of the paper, we will use
the terms constraint and quantifier restriction interchangeably.
Given a variable X, with QR(X) we will denote the quantifier restrictions on X.
An abductive logic program [62] is a triple (P, Ab, IC) where:

o Ab a set of abducible predicates.

e P is a (normal) logic program, that is, a set of clauses of the form Ay «—
A, ... Ap,not A, ... not Apyp, where myn > 0, each A; (i =0,...,m+
n) is an atom. Ag is built on a signature ¥Xp of defined predicates, while each
A; (i=0,...,m+n) is built on a signature Xp U AbU X x. Ay is called the
head and A1, ..., Am,not Ama1,..., not Ay, is called the body of any such
clause.

e [(C'is a set of integrity constraints, also built on Xp U AbU X y.

Without loss of generality, we assume >p, Ab and Xy to be pairwise disjoint.

Abducible predicates (or simply abducibles) are the predicates about which as-
sumptions (hypotheses, abductions) can be made. For example, a ground abducible
can be assumed to be true, or false. We will represent abducible predicate symbols
in boldface, as in a(X).

Given an abductive logic program T' = (P, Ab, IC) and a formula G, the goal of
abduction is to find a (possibly minimal) set of ground atoms A (abductive explana-
tion) in predicates in Ab which, together with P, “entails” G, i.e., PUA = G, and
such that PUA “satisfies” IC, e.g. PUA = IC (see [62] for other possible notions of
integrity constraint “satisfaction”). Here, the notion of “entailment” = depends on
the semantics associated with the logic program P (there are many different choices
for such semantics, as it is well-documented in the Logic Programming literature
20]).

If F is a formula, with vars(F') we mean the set of variables occurring in F.

10

3 Syntax

In this section, we define the syntax of the logic language used in the SCIFF frame-
work. The language is composed of entities for expressing:

e events, expectations about events, and hypotheses;

e relationships between events and hypotheses.

3.1 Representation of dynamically happening events
3.1.1 Events

Events are the abstraction used to represent the actual observations.
Definition 3.1 An event is an atom:

o with predicate symbol H;

e whose first argument is a ground term; and

e whose second (optional) argument is an integer.

Intuitively, the first argument is meant to represent the description of the happened
event, according to application-specific conventions, and the second argument is
meant to represent the time at which the event has happened:

Example 3.2
H(tell(alice, bob, query_ref(phone_number), dialog_id), 10) (2)

could represent the fact that alice asked bob his phone_number with a query_ref mes-
sage, in the context identified by dialog_id, at time 10.

A negated event is an event with the unary prefix operator not applied to it.?
We will call history a set of events, and denote it with the symbol HAP.

3.1.2 Expectations

Ezxpectations are the abstraction we use to represent the desired events. In a MAS

setting, they would represent the ideal behaviour of the system, i.e., the actions

that, once performed, would make the system compliant to its specifications.?
Expectations are of two types:

2not represents default negation (see declarative semantics of the SCIFF framework, Sect. 4).
30ur choice of the terminology “expectation” is intended to stress that observations cannot be
enforced, but only expected, to be as we would like them to be.

11

e positive: representing some event that is expected to happen;

e negative: representing some event that is expected not to happen.

Definition 3.3 A positive expectation is an atom:
o with predicate symbol E;
e whose first argument is a term; and

e whose second (optional) argument is a variable or an integer.

Intuitively, the first argument is meant to represent an event description, and the
second argument is meant to tell for what time the event is expected. If no time is
specified, it means that the event is expected to happen any time.

Example 3.4 The atom
E(tell(bob, alice, inform(phone_number, X), dialog_id), T;) (3)

could represent that bob is expected to inform alice at some time T; that the value for
the piece of information identified by phone_number is X, in the context identified
by dialog_id.

A negated positive expectation is a positive expectation with the explicit negation
operator — applied to it.

As the example shows, expectations can contain variables, as it might be desir-
able to leave the expected behaviour not completely specified. Variables in positive
expectations will be existentially quantified, supporting the intuition, as we have
seen in Ex. 3.4.

Definition 3.5 A negative expectation is an atom:
o with predicate symbol EN;
e whose first argument is a term; and

e whose second (optional) argument is a variable or an integer.

Intuitively, the first argument is meant to represent an event description, and the
second argument is meant to tell for what time the event is expected not to happen.
If time is not specified, it means that the event is expected not to happen at any
time.

12

Example 3.6 The atom
EN (tell(bob, alice, refuse(phone_number), dialog_id), T}) (4)

could represent that bob is expected not to refuse to alice his phone_number, in the
context identified by dialog_id, at any time.

A negated negative expectation is a negative expectation with the explicit negation
operator — applied to it.

Note that =E(tell(bob, alice, refuse(phone_number), dialog-id), T,) is different from
EN(tell(bob, alice, refuse(phone_number), dialog_id),T,). The intuitive meaning of
the former is: no refuse is expected by Bob (if he does, we simply did not ex-
pect him to), whereas the latter has a different, stronger meaning: it is expected
that Bob does not utter refuse (by doing so, he would frustrate our expectations).

As the example shows, variables in negative expectations are naturally inter-
preted as universally quantified (Bob should never refuse). However, the same
variable may occur in two distinct expectations, one of which positive, the other
negative. In that case, the quantification will be existential (i.e., the convention
adopted for positive expectations will prevail). This follows the intuitions, as we
can see in the following example.

Example 3.7 [t is expected that (at least one) agent A performs task t1, and that
no other agent B interrupts A:

E(perform(A,t1)), EN(interrupt(B, A)).
Variable A is existentially quantified, while B is quantified universally.

The syntax of events and expectations is summarised in Tab. 3.1, and it will be
used as such by the subsequent Tab. 3.2 and 3.3.

We also introduce, for ease of presentation, the syntactic element FEristLiteral,
that lists the literals that are existentially quantified. Again, for simplifying the fol-
lowing presentation, we define NbfLiteral, that intuitively indicates negative literals
with negation by failure. By AbducibleAtom we mean an atom built on an abducible
predicate (i.e., a predicate in the set Ab).

3.2 Social specifications

A Social specification, i.e, a specification of the society in the SCIFF framework, is
composed of two elements:

e A Knowledge Base;

o A set of Integrity Constraints.

13

Table 3.1 Syntax of events and expectations

FEventLiteral ::= [not]FEvent
Event ::= H(GroundTerm]|, Integer])
ExpLiteral ::= PosExpLiteral | NegExpLiteral
PosEzxpLiteral := [-]PosExp
NegEzxpLiteral ::= [-|NegEzp
PosExp = E(Term|, Variable | Integer])
NegEzp == EN(Term[, Variable | Integer])
EzistLiteral = PosExpLiteral | AbducibleLiteral | Literal
NbfLiteral ::= not Atom | not Abducible Atom
Literal := [not|Atom
AbducibleLiteral = [not]AbducibleAtom

3.2.1 Knowledge Base

The Knowledge Base (K B) is a set of Clauses in which the body can contain (besides
defined and abducible literals), expectation literals and constraints.

Intuitively, the KB is used to express declarative knowledge about the specific
application domain.

Table 3.2 Syntax of the Knowledge Base

KB == [Clause]*
Clause := Head «— Body
Head := Atom
Body := FEuxtLiteral | A ExtLiteral |* | true
ExtLiteral := Literal | AbducibleLiteral | ExpLiteral | Restriction

The syntax of the Knowledge Base is given in Tab. 3.2, and it will be used as
such also in Tab. 3.3.

Allowedness conditions The operational semantics (Sect. 5) will require some
syntactic restrictions, which we will now introduce. In the sequel and throughout
this article, we will assume that such restrictions hold in all cases we consider.

As usual in Logic Programming, we need to avoid floundering of variables in
negative literals [73]:

14

Definition 3.8 A clause Head < Body is allowed if and only if every variable that
occurs in a NbfLiteral in Body, also occurs in the Head or in at least one ExistLiteral.

Variable quantification and scope The quantification and scope of variables is
implicit. In each clause, the variables are quantified as follows:

e universally with scope the Clause if they occur in the Head or in at least one
FExistLiteral,

e otherwise (if they occur only in negative expectations and possibly restrictions)
universally, with scope the Body.

This means that clauses will be quantified as in most other abductive logic pro-
gramming languages, and in particular, in the language interpreted by the IFF
proof-procedure, except for negative expectations. Variables that occur only in a
negative expectation will be universally quantified with scope the Body. Let us see
an example:

Example 3.9 In order to have a task completed, it is expected that an agent per-
forms it, and no agent is expected to interrupt the agent performing that task.

completed(Task) «— E(perform(A, Task)), EN(interrupt(B, A)).

The quantification of the variables is most intuitive:
(VTask,VA) (
completed(Task) «— E(perform(A, Task)), (VB) (EN(interrupt(B, A)))

) -

Definition 3.10 A Clause is restriction allowed if the variables that are univer-
sally quantified with scope the body do not occur in quantifier Restrictions, and each
variable that occurs in a restriction also occurs in at least one positive expectation
PosEzxp, or in AbducibleLiteral in the body.

For example, the clause:
p— EN(X),X <10

is not restriction allowed, because it contains a variable X that is universally quan-
tified with scope the Body, and that is also in a quantifier restriction. Similarly, the
clause:

p—aY),Y <10

4Def. 3.10 is needed for a correct handling of defined predicates literals in the integrity con-
straints. In fact, it turns out that unfolding a clause which is not restriction allowed could generate
an integrity constraint which is not restriction allowed (see Def. 3.14). This will be clearer when
we present the operational semantics in Sect. 5.

15

is not restriction allowed, because it contains an existentially quantified variable Y,
with scope the Body, which does not appear in any PosEzp literal (E) in the Body.

3.2.2 Goal

Thanks to the abductive interpretation, goal-directed societies are possible in the
SCIFF framework; non-goal directed societies are also supported, by considering
the atom true as goal.

The syntax of the goal is the same as the body of a clause (Tab. 3.2). In order
to avoid floundering, variables in the goal cannot occur only in NbfLiteras. The
quantification rules are the following:

e All variables that occur in an FxistLiteral are existentially quantified.
e All remaining variables are universally quantified.

Note that these rules are equivalent to those of the variables in the body of a clause
(Sect. 3.2.1), considering that VX.(H < B) is equivalent to H « (3X.B) when X
does not occur in H.

3.2.3 Integrity Constraints

Integrity Constraints (also ICs, for short, in the following) are implications that,
operationally, are used as forward rules, as will be explained in Sect. 5. Declara-
tively, they relate the various entities in the SCIFF framework, i.e., expectations,
events, abducibles, and constraints/restrictions, together with the predicates in the
knowledge base. The syntax of ICs is given in Tab. 3.3: the Body of ICs can contain

Table 3.3 Syntax of Integrity Constraints (ICs)

Ic == [ICT
IC = Body— Head
Body := (FEventLiteral | ExpLiteral | AbducibleLiteral) [N BodyLiteral |*
BodyLiteral ::= FEwventLiteral | ExtLiteral
Head := HeadDisjunct [V HeadDisjunct |* | false
HeadDisjunct = FEztLiteral [N ExtLiteral]*

conjunctions of all elements in the language (namely, H, E, and EN literals, defi-
nite and abducible literals and restrictions), and their Head contains a disjunction
of conjunctions of all the literals in the language, except for H literals.

Let us now consider an interaction protocol taken from the MAS literature:

16

Table 3.4 Integrity Constraints and Knowledge Base for the query_ref specification.

H(tell(A, B, query_ref(Info), D), T) A
gr-deadline(TD)
— E(tell(B, A, inform(Info, Answer), D), T1) A
T < T+ TD
V E(tell(B, A, refuse(Info), D), T1) A
T < T+ TD

H(tell(A, B, inform(Info, Answer), D), Tt)
— EN(tell(A, B, refuse(Info), D), Tr)
gr-deadline(10).

Example 3.11 Tab. 3.4 shows the ICs for the query_ref [50] specification.
Intuitively, the first IC means that if agent A sends to agent B a query_ref

message, then B is expected to reply with either an inform or a refuse message by

TD time units later, where T'D is defined in the Knowledge Base by the qr_deadline

predicate.

The second IC means that, if an agent A sends an inform message, then it is
expected not to send a refuse message about the same Info, to the same agent B and
i the context of the same interaction D at any time.

Variable quantification and scope All variables in an integrity constraint should
occur in an FventLiteral, ExpLiteral, or AbducibleAtom. The rules of scope and quan-
tification for the variables in an integrity constraint Body — Head are as follows:

1. Each variable that occurs both in Body and in Head is quantified universally,
with scope the integrity constraint.

2. Each variable that occurs only in Head cannot occur only in NbfLiterals and

e if it occurs in at least one FxistLiteral is existentially quantified and has
as scope the disjunct where it occurs;

e otherwise it is quantified universally.

3. Each variable that occurs only in Body is quantified with scope Body as follows:

(a) existentially if it occurs in at least one ExistLiteral or Event;

(b) universally, otherwise.

17

The given quantification rules let the user write integrity constraints without ex-
plicitly stating the quantification of the variables, and typically capture the intuitive
meaning of the rules in protocols. Let us show it with an example.

Example 3.12 Consider the following example:
H(p(X,Y)), not H(q(Z, X)) — E(r(X, K)), EN(f(Y, J))

Variables X and Y occur both in the body and in the head. Coherently with the
literature in abduction, they will be universally quantified with scope the whole IC.
Variables K and J occur only in the Head. The quantification rules for those
variables are the same as for the Goal (see Sect. 3.2.2), i.e., existential for K and
universal for J.
Finally, -H(q(Z, X)) means that, if no event happens matching q(Z,X), then
the IC’s head should be true. For instance, if the set of happened events is

H(p(2,1)),H(4(3,2))

it is quite natural to understand the Body as false (the second event makes not H(q(Z, X))

false). So, the existence of one atom (H(q(3,2)) in the example) is enough for mak-
ing not H(q(Z, X)) false. This means that the IC should be read as “if H(p(X,Y))

and for all values Z, H(q(Z, X)) is false, the Head must hold”. Variable Z should
be quantified as follows:

VZ...,not H(¢(Z,X))] — ...
thus, the quantification rules give the quantification

VX, Y3Z KVJ. H(p(X,Y)),not H(q(Z, X)) — E(r(X,K)),EN(f(Y,J))

Allowedness conditions As in the case of the Knowledge Base syntax, the fol-
lowing syntactic restrictions are motivated by the operational semantics, and will
be supposed to hold throughout the paper.

A variable cannot occur in an IC only in NbfLiterals. If it does occur in a literal
with negation by failure, it necessarily has to appear in the same IC also in at least
another literal within predicate symbol H, E, EN, or an abducible atom.

Since variables in positive expectations are existentially quantified, integrity con-
straints should not entail universally quantified positive expectations. For example,

not H(p(A)) — E(q(4))

would entail in an empty history that VA.E(q(A)). We avoid such situations with
the following allowedness condition.

18

Definition 3.13 An Integrity Constraint Body — Head is quantifier allowed if

e cach wvariable that occurs in an FxistLiteral in Head either does not occur in
Body, or it occurs in the Body in at least one Event or in a PosExpLiteral, or
in an AbducibleAtom;

e cach wvariable that occurs in a NbfLiteral in Body also occurs in at least one
Event or PosExpLiteral or in an AbducibleAtom in Body’.

Definition 3.14 An integrity constraint is restriction allowed if

e all the variables that are universally quantified with scope Body do not occur
i Restrictions;

e the other variables (that occur only in Head, or both in Head and in Body) can
occur in Restrictions. FEach Restriction occurring in the integrity constraint
should:

— either involve only variables that also occur in PosExpLiterals, Events or
AbducibleAtom (in the same disjunct, or in the body),

— or inwvolve one variable that also occurs in at least one NegFExpLiteral, and
possibly other variables which only occur in Events.

3.2.4 Abductive Specification

Given a Knowledge Base K B and a set ZC of Integrity Constraints, we call the pair
(KB,ZC) an Abductive Specification. We will often use the symbol S to denote an
abductive specification.

Definition 3.15 An abductive specification S = (K B,ZC) is quantifier allowed if
all the integrity constraints in ZC are quantifier allowed. S is restriction allowed if
all the clauses in KB and all the integrity constraints in ZC are restriction allowed.
S is allowed if it is quantifier allowed and restriction allowed, and KB is allowed.

As a recap on allowedness conditions, we have the following table. For all the
three syntactic elements (Clauses, Goal, and ICs), variables cannot occur only in
NbfLiterals. Besides, the following conditions must hold in order for Clauses/ICs to
be restriction-/quantifier-allowed:

5This rule descends from the previous one, considering that not(A), B — C is equivalent to
C — AV B.

19

’ Clause Integrity Constraint

if no QR appears in V vars with

is restriction- | if QRs only appear on vars scope Body

allowed in 3 abducibles and QRs do not involve more
than one V var

if FxistLiterals in Head do not

is quantifier- | always contain vars that occur in the

allowed Body only in not H, [-]EN

and all vars of NbfLiterals in
Body also occur in other H,
[-]E, or abducibles in Body

4 Declarative Semantics

In the following, we describe the (abductive) declarative semantics of the SCIFF
framework, which is inspired by other abductive frameworks, but introduces the
concept of fulfilment, used to express a correspondence between the expected and
the actual observations. The declarative semantics of a social specification is given
for each specific history (see Sect. 3.1). We call a specification grounded on a history
an instance of the society.

Definition 4.1 Given an abductive specification S = (K B,ZC) and a history HAP,
Suap represents the pair (S,HAP), called the HAP-instance of S (or simply an
instance of S).

In this way, Sgyapi, Sgaps Will denote different instances of the same abductive
specification S, based on two different histories: HAP? and HAP/.

We adopt an abductive semantics for the society instance. The abductive com-
putation produces a set A of hypotheses, which is partitioned in a set AA of general
hypotheses and a set EXP of expectations. The set of abduced literals should entail
the goal and satisfy the integrity constraints.

Definition 4.2 Given an abductive specification S = (K B,ZIC), an instance SHAP
of §, and a goal G, Ais an abductive explanation of Sgap if:

Comp(KBUHAP UA)UCET UTy = IC (5)

Comp(KBUA)UCET UTy =G (6)

where Comp represents the completion of a theory, CET is Clark’s Equational
Theory [31], and Ty is the theory of constraints [61].

20

The symbol |= can be interpreted in two or in three valued logics, depending on the
type of application we are envisaging, and on the situation.

We also require consistency with respect to explicit negation [20] and between
positive and negative expectations.

Definition 4.3 A set EXP of expectations is —-consistent if and only if for each
(ground) term p:

{E(p), -E(p)} £ EXP and {EN(p), "EN(p)} £ EXP. (7)

Definition 4.4 A set EXP of expectations is E-consistent if and only if for each
(ground) term p:

{E(p),EN(p)} £ EXP (8)

The following definition establishes a link between happened events and expec-
tations, by requiring positive expectations to be matched by events, and negative
expectations not to be matched by events.

Definition 4.5 Given a history HAP, a set EXP of expectations is HAP-fulfilled
if and only if

VE(p) € EXP = H(p) € HAP VEN(p) € EXP = H(p) ¢« HAP (9)
Otherwise, EXP is HAP-violated.

When all the given conditions (5-9) are met, we say that the goal is achieved and
HAP is compliant to Sgap with respect to G, and we write Sgap Fa G.

In the remainder of this article, when we simply say that a history HAP is
compliant to an abductive specification S, we will mean that HAP is compliant to
S with respect to the goal true. We will often say that a history HAP wviolates a
specification S to mean that HAP is not compliant to S. When HAP is apparent
from the context, we will often omit mentioning it.

Example 4.6 Consider the query_ref abductive specification S = (K B,ZIC), where
KB and IC are defined in Tab. 3.4. The history

{H(tell(alice, bob, query_ref(phone_number), dialog-id), 10),

10
H(tell(bob, alice, inform(phone_number, 5551234), dialog_id), 12)} (10)

is compliant to S.

21

5 The SCIFF proof procedure

The operational semantics of SCIFF is given by an abductive proof procedure.

Since the language and declarative semantics of the SCIFF framework are closely
related with the IFF abductive framework [56], the SCIFF proof procedure has
also been inspired by the IFF proof procedure. However, some modifications were
necessary, as mentioned in the introductory sections of this article. As a result,
SCIFF is a substantial extension of IFF, and the main differences between the
frameworks are, in a nutshell:

e SCIFF supports the dynamical happening of events, i.e., the insertion of new
facts in the knowledge base during the computation;

e SCIFF supports universally quantified variables in abducibles;
e SCIFF supports quantifier restrictions;

e SCIFF supports the concepts of fulfilment and violation (see Def. 4.5).

5.1 Data Structures

The SCIFF proof procedure is based on a rewriting system transforming one node
to another (or to others). In this way, starting from an initial node, it defines a
proof tree.

A node can be either the special node false, or defined by the following tuple

T = (R,CS, PSIC, AA,AP,HAP,AF,AV). (11)

We partition the set of expectations EXP into the confirmed (AF), disconfirmed
(AV), and pending (AP) expectations. The other elements are:

e R is the resolvent: a conjunction, whose conjuncts can be literals or disjunc-
tions of conjunctions of literals

e ('S is the constraint store: it contains CLP constraints and quantifier restric-
tions

e PSIC is a set of implications, called partially solved integrity constraints

e AA is the set of general abduced hypotheses (the set of abduced literals, except
those representing expectations)

e HAP is the history of happened events, represented by a set of events, plus a
open/closed attribute (see transition closure in the following)

If one of the elements of the tuple is false, then the whole tuple is the special node
false, which cannot have successors. In the following, we indicate with A the set
AAUAPUAFUAYV.

22

5.1.1 Initial Node and Success
A derivation D is a sequence of nodes
To—Ty— - —Th1 =T,

Given a goal G, a set of social integrity constraints ZC, and an initial history
HAP?, we build the first node in the following way:

TO = <{g}7 ®7 IC7 ®7 ®7 HAPI? @, ®>

i.e., the resolvent R is initially the query (Ry = {G}) and the set of partially solved
integrity constraints PSIC is the set of integrity constraints (PSICy = ZC).

The other nodes T}, j > 0, are obtained by applying the transitions that we will
define in the next section, until no further transition can be applied (we call this
last condition quiescence).

Definition 5.1 Given an instance Sgap: of a social specification S = (K B,IC)
and a set HAPT D HAP? there exists a successful derivation for a goal G iff the
proof tree with root node ({G},0,ZC,0,0, HAP* 0,0) has at least one leaf node

0,CS, PSIC,AA, AP, HAP/ AF,0)

where CS is consistent, and AP contains only negations of expectations —-E and
-EN. In such a case, we write:

f
SHAP "ZIAP g.
From a non-failure leaf node NV, answers can be extracted in a very similar way to the
IFF proof procedure. Answers of the SCIFF proof procedure are called expectation
answers. To compute an expectation answer, a substitution ¢’ is computed such
that

e o’ replaces all variables in N that are not universally quantified by a ground
term

e o' satisfies all the constraints in the store C'Sy.

If the constraint solver is (theory) complete [61] (i.e., for each set of constraints c,
the solver always returns true or false, and never unknown), then there will always
exist a substitution ¢’ for each non-failure leaf node N. Otherwise, if the solver
is incomplete, ¢/ may not exist. The non-existence of ¢’ is discovered during the
answer extraction phase. In such a case, the node N will be marked as a failure
node, and another success node can be selected (if there is one).

Definition 5.2 Let 0 = 0'|,qr5(c) e the restriction of o' to the variables occurring
in the initial goal G. Let Ay = (AFN UAPNUAAN)0'. The pair (An, o) is the
expectation answer obtained from the node N.

23

5.2 Variables
5.2.1 Quantification

Concerning variable quantification, SCIFF differs from IFF in the following aspects:

e in IFF, all the variables that occur in the resolvent or in abduced literals
are existentially quantified, while the others (that occur only in implications)
are universally quantified; in SCIFF, variables that occur in the resolvent or
in abducibles can be universally quantified (as EN expectations can contain
universally quantified variables);

e in IFF, variables in an implication are existentially quantified if they also occur
in an abducible or in the resolvent, while in SCIFF variables in implications
can be existentially quantified even if they do not occur elsewhere (see Exam-
ple 3.12).

For these reasons, in the SCIFF proof procedure the quantification of variables is
explicit.

5.2.2 Scope

The scope of the variables differs depending on where they occur:

e if they occur in the resolvent or in abducibles, their scope is the whole tuple
representing the node (see Sect. 5.1);

e otherwise they occur in an implication; their scope, in such a case, is the
implication in which they occur.

In the first case, we say that the variable is flagged. In the following, when we want
to make explicit the fact that a variable X is flagged (when it is not clear from the
context), it will be indicated with X , while if we want to highlight that it is not
flagged, it will be indicated with X.

Copy of a formula Since the SCIFF syntax allows for abducibles with both
existentially and universally quantified variables, the classical concept of renaming
of a formula should be extended. Intuitively, universally quantified variables are
renamed, in a sense, doubling the original formula, while existentially quantified
variables are not. Let us call this operation copy of the formula.

When making a copy of a formula, we keep into account the scope of the variables
it contains by means of their flagging status, as follows.

24

Definition 5.3 Given a formula F, we call copy of F a formula F' where the
universally quantified variables and the non flagged variables are renamed. We write

F' = copy(F).
For example,

35V 05072 E(@(Y) AEN(g(X',Y)) A EN(H(Y, 2)) — 3z E(p(K"))]

is a copy of the formula:

39V 5507 2E@(Y)) ANEN(¢(X,Y)) A [EN(r(Y, 2)) — 3 E(p(K))]

Notice that, by Definition 5.3, if F' contains only flagged existentially quantified
variables, then copy(F) = F (so, for instance, the selected literal of SLD resolution
would not be renamed, as in SLD resolution), while a universally quantified formula
would be renamed (for instance, a clause would be renamed, as in SLD resolution).

Intuitively, by copying a formula we obtain a new fresh copy (unrelated to pre-
vious ones) of universally quantified variables and non flagged variables.

5.3 Transitions

The transitions are based on those of the IFF proof procedure, enlarged with those
of CLP [60], and with specific transitions accommodating the concepts of fulfilment,
dynamically growing history and consistency of the set of expectations with respect
to the given definitions (Defs. 4.3, 4.4 and 4.2).

5.3.1 IFF-like transitions

The IFF proof-procedure The IFF is based on rewriting. It starts with a
formula (that replaces the concept of resolvent in logic programming) built as a
conjunction of the initial query and the ICs. Then it repeatedly applies one of its
inference rules. By such rules, each node is always translated into a (disjunction of)
conjunctions of atoms and implications; e.g., it can look like:

(Al A Ao A [Ag — B1 A BQ] VAN [A4 «— B3 /\B4D
V (Az A Aj NAR N [AZ — By] VAN [false — B5])

The atoms have a similar meaning to those in the resolvent in LP, while the
implications are (partially solved) integrity constraints.
Given a formula, its variables’ quantification is defined by the following rules:

e if a variable is in the initial query, then it is free;

e c¢lse if it occurs in an atom, it is existentially quantified;

25

. else (it occurs only in implications) it is universally quantified.

A negated atom not A is rewritten as false «+ A. Notice that this does not change
the existential quantification of the atom because of the allowedness condition. A
variable can occur in a negated atom only if it also occurs in a positive atom. A
variable is universally quantified only if it occurs only in implications. Thus, if an
implication false «— A was generated by the transformation of a negated atom
not A, the variables in A necessarily occur also in a positive atom, and must be
considered existentially quantified.
The inference rules which IFF is based on are:

Unfolding: replaces resolution;
Propagation: propagates ICs;

Splitting: distributes conjunctions and disjunctions, making the final formula
in a sum-of-products form;

Case analysis: if the body of an IC contains X = t, case analysis nondeter-
ministically tries X =t or X #t,

Factoring: tries to reuse a previously made hypothesis;
Rewrite rules for equality: use the inferences in the Clark Equality Theory;

Logical simplifications: try to simplify a formula through equivalences like
AN false < false, [A — true] < true, etc.

In the following, we will show how these IFF transitions are adapted for the
purposes of SCIFF.

Unfolding Is adapted from the IFF proof-procedure.

Let L; be the selected literal in the resolvent Ry = Li,...,L,. Suppose that
L; is a predicate defined in the K B of the social specification. Unfolding generates
a child node for each of the definitions of L;; in each node, L; is replaced with its
definition.

More formally, if Hy « Bi, ..., H, «— B, are the clauses in the KB such that
Hiy, ..., H, unify with L;, unfolding generates n nodes. In the j-th node:

e first, a copy with fresh new variables of the clause is obtained H j/ — B§~ =
copy(Hj < Bj);

e then, all the variables in B} (that do not occur in the head) are flagged;

26

e the constraints of unification are added to the constraint store C' Sy, = C'SiU
{H} = L;} (where H} = L; is a shorthand for the conjunction of equations
between corresponding arguments of H']’ and L;);

. B;- is substituted to L; in the new resolvent, i.e.,
Rgy1=L1,..., Li—1, B}, Lit1,. .., Ly

Moreover, as in the IFF proof procedure, unfolding is also applied to a defined
atom in the body of an implication. In this case, only one child node is generated,
which contains a new implication for each definition of the atom.

Formally, if

PSIC), = {Atom, BodyIC — HeadIC} U PSIC’,

unfolding replaces Atom with all its definitions; i.e., if the clauses H; «— B, ...,
H, «— B, belong to the KB and Hy, ..., H, unify with Atom,

PSICy 1 = {Bj,BodylC' — HeadIC!,

By, BodyIC™ — HeadIC™} U PSIC'

CSiy1 = CS,U{By = Atom, ..., B,, = Atom}
where, for all i, BodyIC'" — HeadIC" is a copy of BodylC — HeadIC.

Abduction Since the SCIFF proof procedure (differently from the IFF) keeps the
set of abducibles separate from the resolvent, a transition has been introduced for
abduction which, intuitively, moves an abducible from the resolvent to the set of
abduced atoms.

More precisely:

o if R = L4,...,L,, and the selected literal L; is of type E, EN, -E, or —_EN,
then Ry41 =ILq, ..., Li—1, Liy1, ..., Ly and APk—i—l = AP, U {Ll}

e otherwise, if the selected literal L; is an abducible then Ry, 1 = L1, ..., L;—1,
Liyq1, ..., L, and AAk+1 =AAU {Lz}

Propagation Let Li,...,L, — HyV---V H; be an implication belonging to the
set PSICy, and let A be a literal that unifies with L; in the body, such that A is

e cither an event belonging to HAP, (in which case A is an H event),

e or an abducible belonging to Ag,

then, Propagation produces a new node Ng1:

27

o PSICysy = PSIC,U{A =L\, Ly, ..., L,_ L} \...,Ll, > H{ V-V H},

where (Ly,..., L, — H{ V.- -V H}) = copy(L1,...,Ln — HyV---V Hj), and
A" = copy(A).

The equality in the body of the implication will be handled by transition case
analysis.

Splitting Given a node with
e Rp=1"L1,...,Li—1,(L;V Li+1), Lit2,..., Ly

splitting produces two nodes, N' and N? such that in node N'!
° R}Hl =Li,..., L, Lito.... L,

and in node N?
e R? \=1Li,....Li-1,, Liz1,..., Ly

In the SCIFF proof procedure, disjunctions may appear also in the constraint store.
Depending on the type of underlying Constraint Solver, clever reasoning can be
possible. For instance, when using a CLP(FD) solver, constructive disjunction [99]
or the cardinality operator [98] can be used to handle disjunctions of constraints.

If the adopted constraint solver does not provide such facilities, splitting can be
applied also to disjunctions in the store. In such a case, given a node with

o OS,=0C1,...,Ci1,(Ci vV Cit1),Ciya,...,C,

splitting produces two nodes, N' and N? such that in node N'!
® CSI}:H =C1,...,Ci1,Ci,Ciya, ..., Cy

and in node N2

° CS]%+1 = Cl, cee ’Cifl,CiJ’»l,CZLFQ, .. .,CT.
Case Analysis Given a node with an implication
PSICk:PSIC/U{A:B,Ll,...,Ln—>H1\/"-\/Hj}

the node is replaced by two identical nodes, except for the following.
In Node 1 we hypothesise that the equality A = B holds:

e PSIC},, =PSIC'"U{Ly,...,Ly — H,V---V H;}
o S} =CS,U{A =B}

28

In Node 2, we hypothesise the opposite:
° PSIC’,?+1 = PSIC’
° CS,%Jrl =CS, U{A # B}

Since our proof procedure also needs to deal with constraints in the body, we also
extend case analysis to the following situation: Given a node with an implication

PSICkZPSIC/U{C,Ll,...,Ln—>H1V---\/Hj}

where c¢ is a constraint, if all the variables in vars(c) are flagged, then case analysis
can be applied. Notice that if a variable is flagged then it occurs in some abduced
literal or in the resolvent.

If all the variables in wvars(c) are existentially quantified, then case analysis
generates two nodes.
Node 1:

e PSICY,, =PSIC'"U{Ly,...,Ly — H1V---V H;}
e CS. , =CS,U{c}
Node 2:
o PSICE,, = PSIC
o CSZ., =CS,U{not c}

If all the variables in vars(c) are universally quantified, then only one node is
generated, in which the quantifier restriction Vycyqps(c):.c is added to the constraint
store, and

o PSICyy, = PSIC' U{Ly,..., L, — H,V ---V H;}

For example, R X
Vy PSIC, ={Y >0 — EN(q(Y))}

becomes

Vyoo PSICy 1 = {true — EN(q(Y))}

that will result in (see transitions logical equivalence and abduction):

A~

Vyoo APy = {EN(q(Y))}.

V>0

If vars(c) contain both universally and existentially quantified variables, case
analysis will not be applied. However, we make the hypothesis that the social
specification is Constraint Allowed (Definition 3.15), so this case is forbidden by the
syntax.

29

Factoring In the IFF proof procedure, transition factoring separates answers in
which abducible atoms are merged from answers in which they are distinct. It is
important for keeping the set of assumptions small (ideally, minimal). It generates
two nodes: in one node two hypotheses unify, in the other one a constraint is imposed
in order to avoid the unification of the hypotheses.

In the SCIFF proof procedure, abducibles can contain universally quantified
variables; it is not reasonable to unify atoms with universally quantified variables,
because we would lose some of the information given by the abduced atoms.

Example 5.4 Suppose that the set of expectations, in a node Ny, is:
VX,Y AP, = {EN(p(1,X)),EN(p(Y,2))}.
By unifying the two hypotheses, we would obtain
AP ={EN(p(1,2))}

which has a different meaning from the union of the two previous hypotheses: now,
e.g., p(1,7) is no longer expected not to happen.

For this reason, we apply factoring only if the two atoms only contain existentially
quantified variables. Notice that this coincides with the factoring transition of the
IFF proof procedure.

Factoring can be applied in a node Nj, in which:

o Ap D {A;, A}

where A; and Ay are (abducible) atoms in which all the variables are existentially
quantified (and, of course, flagged). Factoring generates two children nodes, N! and
N2?. In N

° C’S,Lrl =CSrU{4; = Ay}
and in N2:

o CSL,, = CSyU{A; # As}

Equivalence Rewriting The equivalence rewriting operations are delegated to
the constraint solver. Note that a constraint solver works on a constraint domain
which has an associated interpretation. In addition, the constraint solver should
handle the constraints among terms derived from unification. Therefore, beside
the specific constraint propagation on the constraint domain, we assume that the
constraint solver is equipped with further inference rules for coping with unification.
In other words we will suppose that:

30

e the constraint theory contains rules for the equality constraint

e the constraint solver contains the same rules for equality that are in the IFF
proof procedure, i.e., the function infer(C'S) (see Sect. 5.3.5) performs the
following substitutions in the constraint store:

1. Replaces f(t1,...,t;)

2. Replaces f(t1,...,t;)
distinct or j # [.

:f(Sl,...,Sj) Withtlzsl/\-"/\thSj.
=49

(s1,...,8) with false whenever f and g are

3. Replaces t =t with true for every term t.
4. Replaces X =t by false whenever ¢ is a term containing X.

5. (a) Replaces t = X with X =t if X is a variable and ¢ is not

(b) Replaces Y = X with X =Y whenever X is a universally quantified
variable and Y is not.

6. (a) If X =t € CSy, applies the substitution X /¢ to the entire node.

Moreover, we also have to consider that our language is more expressive than
that of the IFF proof-procedure, as we can abduce atoms with universally quantified
variables. For this reason, we introduced flagged variables, and we need to deal with
them in the theory of unification. We add the following rules:

5. If X =t e CSi, X is existentially quantified and not flagged, then replace
X =1t with false.

5. If X =Y € CSy, Y is an existentially quantified, not flagged variable, and X
is existentially quantified or it has some (non trivially true) quantifier restric-
tions, then replace X =Y with false.

Thus, an existentially quantified variable which is not flagged, unifies only with
universally quantified variables that do not have quantifier restrictions.

Logical Equivalence The rule
“true — A is equivalent to A”

of the IFF proof procedure is translated as follows. If PSICy, = PSIC'U{true — A},
we generate a new node such that:

o PSICy.; = PSIC’
® Ry = Ry, A

31

where A’ is obtained from A by flagging all the variables that were not already
flagged.
We also have the following rules, as in the IFF proof procedure:

AN false < false
AV false «— A
ANtrue «— A
AVitrue <« true
false = A — true
not A <~ A — false
not AB—C < B—AVC

The last two rules are used only when applied to negation by failure of abducibles
and definite predicates; they are not applied to not H literals (see transition non-
happening, Sect. 5.3.2). For what concerns the negation of atoms E or EN, they
are dealt with through explicit negation, i.e., for a negative literal —E we have an
abducible (positive) literal nonE that cannot be true together with the correspond-
ing literal E (see rules in Sect. 5.3.4), and symmetrically, the negative literal ~EN
is represented by an abducible nonEN.

5.3.2 Dynamically growing history

A set of transitions deals with a dynamically growing history HAP. The transitions
are used to reason upon the happening (or non-happening) of events.

Closure In order to reason about non-happening of events, we adopt Closed World
Assumption (CWA, [79]) on the set of currently happened events. Of course, this
assumption is not acceptable if other events will happen in the future. For this
reason, we non-deterministically assume that no other event will happen, i.e., we
generate two child nodes. In the first we assume that no other events will happen,
in the second that there will be other events. The open/closed attribute of the
history (see Sect. 5.1) records if closed world is assumed on the happening of events.
Transition Closure is only applicable when no other transition is applicable. In
other words, it is only applicable at the quiescence of the set of the other transitions.
Given a state where:

e closed(HAPy) = false

in which no other transition is applicable, transition Closure produces two nodes.
Node N is the following:

e closed(HAPy) = true

32

and node N? is identical to its father. In order to avoid infinite loops, transition
Closure cannot be again applied to (descendants of) the node N? before a Happening
transition has been applied.

Happening of Events The happening of events is handled by a transition Hap-
pening. This transition takes an event H(Fvent) from an external queue and puts
it in the history HAP; the transition Happening is applicable only if an Fvent such
that H(Event) ¢ HAP is in the external queue.

Given a state in which

o closed(HAPy) = false
the transition Happening produces a single successor node, where:
HAP;., = HAP, U {H(Event)}.
Otherwise, given a state in which

e closed(HAPy) = true

the transition Happening produces a single successor
false.

This means that a previously made CWA was wrong: we had assumed that no more
events would have happened, but a new event has instead happened.

Non-happening The Non-happening transition can be considered an application
of comstructive negation. Constructive negation is a powerful inference that is par-
ticularly well suited in CLP [95].

Rule non-happening applies when the history is closed and a literal not H is in
the body of a PSIC.

Given a node where:
o PSIC, = {not H(Ey), Lo, ..., L, — H; \/--'\/Hm}UPSIC/
e closed(HAPy) = true

non-happening produces a new node. Intuitively, we hypothesise that all the events
matching with F that are not in the history, do not happen at all.

The child node is produced as follows; we first give the intuition, then formalise
the definition. We hypothesise that every event that would be able to match with Ej,
and is not in the current history, will not happen. This can be seen as abducing an
atom nonH(E]) where all the variables are substituted with universally quantified
variables. We impose that the hypothesis holds in all cases except those already in

33

the HAP}; we can state this by means of the quantifier restrictions, i.e., we impose
that the hypothesis nonH(E]) does not unify with any of the happened events. This
is equivalent to imposing a conjunction (for all the events in the history that match
with E}) of a disjunction (for all the variables appearing in Ff) of non unification
restrictions (written #).

Let E{ be a renaming of E; (i.e., all the variables in F; are substituted with fresh
new variables). Let all the new variables in E| be universally quantified and flagged.
For each variable X; € vars(Ey), let ren(X;) be the corresponding, renamed variable
in vars(E}). For all atoms H(E) € HAPy, that unify with H(E]), we impose the
quantifier restrictions on the variables in E) given by the following disjunction:

/\ \/ ren(X;) # t;
H(E) € HAP, \X;€vars(£)
s.tunifies(E, EY)

where ¢; is the term in E corresponding to X; in Ej.
The child node, k + 1, is then defined by:

e PSICk1 = {El :Ei,LQ’...,Ln — Hl\/"'\/Hm}UPSIC/
Example 5.5
—H(tell(A, B, propose(I))) — EN(tell(B, A, accept(I))) (12)

Suppose that the history contains H(tell(yves,thomas, propose(nail))). The
condition in the body of the IC (12) is true, thus the IC triggers and the head is
evaluated.

HAP;, = {H(tell(yves,thomas, propose(nail)))}
|

Y & syesy Brtthomasy i nail. DPk+1 = {EN(tell(B', A’ accept(I)))}

The last node states, correctly, that all events matching with H(tell(B', A, accept(I')))
are forbidden, except H(tell(thomas,yves, accept(nail)))

5.3.3 Fulfilment and Violation

They are a group of transitions that nondeterministically try and match expectations
with events. In general, these transitions generate two child nodes: in one we assume
that one expectation and one event match, while in the other we assume they will
not match.

34

Violation EN Given a node N with the following situation:
e AP, = AP U{EN(FE))}
e HAP, = HAP' U {H(E»)}
violation EN produces two nodes N' and N2, where N! is as follows:
e AV, =AV,U{EN(E)}
o CSL,1 =CS,U{E| = Ey}
and N2 is as follows:
e AV, =AVy
o CSZ. =CS,U{E| # Ey}

Example 5.6 Suppose that HAP, = {H(p(1,2))} and 3XVY AP, = {EN(p(X,Y))}.
Violation EN will produce theAton following nodes:
XYY AP, = {EN(p(X,V))} HAP, = {H(p(1,2))}

CSt, ={X=1AY =2} OS2, ={X#1VY #2}

AV = {EN(p(1,2))} |

CSpio ={X #1}
where the last simplification in the right branch is due to the rules of the constraint
solver (see Sect. 5.3.5).

Fulfilment E Starting from a node N as follows:
e AP; = AP U{E(Event;)}
e HAP, = HAP' U {H(Eventy)}

Fulfilment E builds two nodes, N! and N2, that are identical to their father except
for the following.
In node N'! we hypothesise that the expectation and the happened event unify:

e AP}, =AP

e AF},, = AF,U{E(Event;)}

o CSi. = CSyU{Event; = Eventy}

In node N? we hypothesise that the two will not unify:
o AP}, =AP;

o AF? | =AFy

o CS;, = CSpU{Event, # Eventy}

35

Violation E Violation of an E expectation can be proven only if there will not
be an event matching the expectation. It is possible when we assume that no other
event will happen; i.e., given a state where

e closed(HAPy) = true
e AP; = AP U{E(Event;)}
transition Violation E creates a successor node in which
o AV = AV U{E(Event;)}.
o APy 1 =AP

Note that, since the transition closure can be applied only if no other transition
is applicable, the transition Fulfilment E has been already tried for each event in
the history.

Another case in which violation of an E expectation can be proven is when its
deadline has passed.

Given a node:

1. AP, ={E(X,T)} UAF'

HAP, = {H(Y,T.)} UHAP’

VEvent, : H(Eventy) € HAP, Eventy does not unify with Fventy
closed(HAPy) = false

CSy, =T <T.

AN O

transition Violation E is applicable and creates the following node:
[] APk+1 = AP/
. AVk+1 = AV, U {E(X, T)}

Notice that one can avoid the expensive check of unification with all the elements
in the history (condition 3) by choosing a preferred order of application of the
transitions. By applying Violation E only if no other transition is applicable (except,
possibly, for closure), the check (3) can be safely avoided.

Notice that this transition infers the current time from any happened event
(condition 2); i.e., it infers that the current time cannot be less than the time of
another happened event. In particular, there can be an event current_time that
happens at every time tick. Of course, it is not necessary to perform the check for
every event in the history; checking the last element in the history is enough.

A brief discussion is worth for the entailment C'Sy =T < T,.. The entailment of
constraints from a constraint store is, in general, not easy to verify. In this particular
case, however, we have that:

36

e the constraint 7" < T is unary (7, is always ground), thus a CLP(FD) solver
is able to infer it very easily if the store contains only unary constraints (it is
enough to check the maximum value in the domain of T');

e cven if the store contains also non-unary constraints (thus a CLP(FD) solver
performs, in general, incomplete propagation), the transition will not under-
mine soundness and completeness of the proof procedure. If the solver performs
a powerful propagation, the violation will be detected very early. If the solver
does not perform propagation at all, the violation will be detected later on,
when the history gets closed.

Fulfilment EN Symmetrically to violation E, we can prove fulfilment of EN
expectations. Given a state

e closed(HAPy) = true

e AP; = AP U{EN(Event;)} does not unify with Fvent;
transition Fulfilment EN creates a successor node in which

o AFy 1 =AF; U{EN(FEvent;)}

o AP, .1 =AP.

As for transition Violation E, the check of unification with all the atoms in the
history can be avoided by establishing a preferred order of application of the tran-
sitions.

5.3.4 Consistency

E-Consistency In order to ensure E-consistency (see Def. 4.4) of the set of ex-
pectations, we impose the following integrity constraint:

E(T) NEN(T) — false (13)

Example 5.7 Suppose that (3X)E(p(X)) and (VY)EN(p(Y)) have been abduced.
By triggffring the g’ntegrity constraint (13) we have that:
E(T) NEN(T) — false

EN(p(X)) — false
o
X =Y — false

|
false

37

Example 5.8 Suppose that (3X)E(p(X)) and (3Y)EN(p(Y)) have been abduced.
By triggering the integrity constraint (18) we have that:
EN(p(X)) — false

E(T) AEN(T) — false

X =Y — false
A
X=Y X#4Y
false success

—-Consistency In order to ensure —-consistency (see Def. 4.3) of the set of ex-
pectations, we impose the following integrity constraints:

E(T) N -E(T) — false (14)
EN(T) AN —-EN(T) — false

Example 5.9 Suppose that AP, = {E(p(X)),nonE(p(1))}. The integrity con-
straint (14) can trigger, and we have that:

E(T) AnonE(T) — false

|
E(p(1)) — false

|
X=1— false

A

~

X=1 X #£1
false success

5.3.5 CLP

The SCIFF proof-procedure inherits the same transitions of CLP [60]. We suppose
that the symbols = and # are in the constraint language and the theory behind them
is, for equality, the one described in Sect. 5.3.1. Concerning #, we will again suppose
that it is possible to syntactically distinguish the CLP-interpreted terms and atoms;
the solver will perform some inference on the interpreted terms (typically, depending
on the CLP sort, e.g., by deleting inconsistent values from domains in CLP(FD)),
and will moreover contain the following rules, for uninterpreted terms:

1. Replaces f(t1,...,tj) # f(s1,...,sj) with t1 # 51V --- V t; # s5.

2. Replaces f(t1,...,t;) # g(s1,...,5) with true whenever f and g are distinct
or j #1.

38

3. Replaces t # t with false for every term t.
4. Replaces X # t by true whenever t is a term containing X.

5. (a) Replaces t # X with X # ¢ if X is a variable and ¢ is not

(b) Replaces Y # X with X # Y whenever X is a universally quantified
variable and Y is not.

6. (a) Replace A # B with false if A is a universally quantified variable without
quantifier restrictions (i.e., QR(A) = 0)

(b) If Ais auniversally quantified variable with quantifier restrictions QR(A)
{c1(A),...,cq(A)}, and B is not universally quantified, replace A # B
with =1 (B) V- -+ V =¢cq(B).

(c) If A and B are universally quantified, with quantifier restrictions QR(A)
and QR(B) then

e if ~\QR(A)N-QR(B) =0, replace A # B with true.”
e otherwise, replace A # B with false.

Note that we do not introduce explicitly a rule for existentially quantified variables.
In this case, we delegate to the specific solver (we do not make assumptions on its
behavior). Some solvers can easily propagate constraints of this type. E.g., given
X # 1 a Finite Domain solver can delete the value 1 from the domain of X. If the
second term is not ground, the constraint is typically suspended (thus we do not
have a transition). We will delay the # constraint until it can be propagated by the
given rules.

The constraint solver deals also with quantifier restrictions. If a quantifier re-
striction (due to unification) gets all the variables existentially quantified, then we
replace it with the corresponding constraint. E.g., if in the tuple we have two vari-
ables X and Y quantified as follows:

~

IV, Vs

and variable X is unified with Y, we obtain that 3V, YV # 1 (the quantifier restriction
X # 1 becomes a constraint on the variable V).

SIntuitively, A is universally quantified, thus it assumes every possible value except the ones
forbidden by one of the ¢;. Thus, the only way to satisfy this constraint is to impose that B
assumes one of the values excluded for A.

"Intuitively, if the values taken by A have no intersection with the values taken by B, then
A # B is true.

39

Constrain Given a node with
e Rp=14,...,L,

and the selected literal, L; is a quantifier restriction, constrain produces a node with
e Riyv=1Ly,...,Li—1,Litq,..., Ly,
o CSpi1 =CSpU{L;}

Infer Given a node, the transition Infer modifies the constraint store by means of
a function infer(CS). This function is typical of the adopted constraint sort. E.g.,
the function infer in a FD (Finite Domain) sort will typically compute (generalised)
arc-consistency.

o CSii1 = infer(CSk)

Consistent Given a node, the transition Consistent will check the consistency of
the constraint store (by means of a solver of the domain) and will generate a new
node. The new node can either be a special node fail or a node identical to its
father. Again, this transition is typical of the chosen constraint solver: in CLP(FD),
for example, failures are discovered when a domain is empty.

If consistent(CSy) then

o Ty1="Tg
If =consistent(CSk) then

[} Tk+1 = f(l’ll

6 Properties

We give the statements of soundness, completeness and termination of the SCIFF
proof procedure. We provide the sketch of the proofs, while the interested reader
can find the full proofs on publicly available technical reports (for soundness and
termination, see [58]; for completeness, see [57]).

6.1 Termination of SCIFF

Termination is proven, as for SLD resolution [19], for acyclic knowledge bases and
bounded goals and implications. The notion of acyclicity of an abductive logic pro-
gram is an extension of the corresponding notion given for SLD resolution. Intu-
itively, for SLD resolution a level mapping must be defined, such that the head of
each clause has a higher level than the body. For the IFF, since it contains integrity

40

constraints that are propagated forward, the level mapping should also map atoms
in the body of an IC to higher levels than the atoms in the head; moreover, this
should also hold considering possible unfoldings of literals in the body of an IC
[103]. Similar considerations hold also for SCIFF. We extended the level mapping
for considering also CLP constraints. For definitions of boundedness and acyclicity
for the society Knowledge Bases, the reader can refer to [103].

Theorem 6.1 (Termination of SCIFF) LetG be a query to a society S = (KB, ZC),

where KB, IC and G are acyclic w.r.t. some level mapping, and G and all impli-

cations in IC are bounded w.r.t. the level-mapping. Then, every S CIFF derivation

for G for each instance of G is finite, assuming that happening is not applied.
Moreover, under the following conditions:

e the number of happened events is finite
e happening is applied only after the other transitions have reached quiescence
e non-happening has higher priority than other transitions

S CIFF terminates also with dynamically incoming events.

Proof.[sketch]

The proof of termination is given with a generic constraint solver (that must
nevertheless contain the rules for equality and disequality). We first state some
reasonable assumptions on the constraint solver, then we prove that under such
assumptions, substituting equivalence rewriting with constraint solving does not
undermine the proof of termination of the IFF.

We then adapted to our extended language the proof of termination of the IFF
proof procedure [103]. Such a proof affirms that when the history is given initially
(i.e., no happening transition is ever applied), SCIFF terminates.

Finally, we showed that the proof can be extended to the dynamic case. We
assume that the event happening rate is low, i.e., between two happening transi-
tions the SCIFF reaches the quiescence. We divide the derivation in two parts:
an open and a closed part (before and after the application of closure transition).
In the open part, between the happening of two events, SCIFF is applied, and
it terminates. Assuming that the number of happened events is finite, the open
derivation terminates. Closure is applicable only once. After application of closure,
non-happening transitions are applicable. Since the number of not H literals is fi-
nite, non-happening will be applied finitely many times. After that, static SCIFF
is applied and it terminates. [J

41

6.2 Soundness of SCIFF

The SCIFF proof-procedure uses a constraint solver, so its soundness depends on
the solver. We proved soundness for a limited solver, containing only the rules for
equality and disequality given in the operational semantics.

Theorem 6.2 (Soundness of SCIFF) Given a society instance Sgaps, if
Suapi FRAP G
for some HAP? C HAP/, with expectation answer (A, 0), then

Saap/ Fac Go

Proof.[sketch] The proof of soundness relies on the proof of soundness of the IFF
[55], and on a set of lemmas [58]. Such lemmas draw a correspondence between IFF
and SCIFF, in order to apply the soundness theorem of the IFF.

1. A first lemma maps a correspondence between how disequalities are handled
in IFF and in SCIFF.

2. A second lemma proves that if the set of abducibles of the final node of a
derivation does not contain universally quantified variables, then no universally
quantified abducible has been generated during the derivation.

3. Third, we proved that for each successful derivation starting with an initial
history HAP? and ending in a node containing a final history HAP/, there
exists a successful derivation starting with HAP/ and ending in the same node
of the previous derivation. Such a lemma allows us to prove soundness of the
static version of the SCIFF, and derive immediately soundness of the dynamic
version.

4. We then defined the IFF-like rewritten program: the SCIFF knowledge base
can be translated into IFF syntax, by mapping universally quantified ab-
ducibles to constant symbols. To the IFF-like rewritten program, the the-
orem of soundness of the IFF is applicable. We proved that each derivation
in which abduced literals do not contain universally quantified variables has a
correspondent in an IFF derivation.

Thus, each SCIFF derivation that does not abduce literals with universally
quantified variables is sound with respect to the semantics of the IFF. We
proved then that soundness also holds with respect to the SCIFF semantics
(i.e., that the resulting set of expectations is also E- and —-consistent and
fulfilled).

42

5. Finally, we extended the result to the derivations in which SCIFF abduces
literals containing universally quantified variables. Considering a derivation
D, we build a derivation D’ for a program that contains the literals in the
final node of D as definition of a predicate in the K B. Derivation D’ does
not abduce universally quantified literals (and, thus, it is sound, as shown in
step 4), and terminates in a node that is the same obtained by D.

This proves that SCIFF is sound. [J

6.3 Completeness of SCIFF

Completeness states that if goal G is achieved under the expectation set EXP, then
a successful derivation can be obtained for G, possibly computing a set EXP’ of the
expectations whose grounding (according to the expectation answer) is a subset of
EXP.

Theorem 6.3 Given a society instance Spap, a (ground) goal G, for any ground
set A such that Spap FEa G then IA" such that Sy I—E/AP G with an expectation
answer (A’, o) such that A'c C A.

Proof.[sketch] Completeness is currently proven for a limited set of programs,
namely those without universally quantified variables in the abducibles, and without
—H literals.

Similarly to the case of soundness, the proof is based on the IFF-like rewritten
program, and on the lemma stating that equality rewriting is equivalent to constraint
solving.

We first proved that for every IFF derivation there exists a SCIFF derivation
reaching the same node, starting from an initial node containing the final history
HAP. Together with soundness results of the IFF, this proves that

SHAP):A G = SHAP FIAI/AP G.

Extending to the dynamic case is trivial: given a derivation D starting from
Suap, we can build a derivation starting from Sy by adding happening transitions
before the first node of D. [J

7 Implementation

In this section, we briefly sketch the current implementation of SCIFF, which con-
sists of a program for SICStus Prolog [90] and, in particular, its CHR [54] library.
Due lack of space, we do not introduce CHR here; the reader can refer to [54] for a
complete introduction.

43

The most usual technique for implementing (abductive) proof procedures has
probably been meta-interpretation, which lets the programmer adjust the built-in
search strategy of Prolog to application-specific requirements in a compact (if com-
putationally expensive) way. However, the common understanding of abducible and
constraints suggested by Kowalski et al. [71] paved the way for some authors to
implement abduction in the Constraint Handling Rules language [1, 59, 28|, with
advantages in execution time with respect to meta-interpretation. For the SCIFF
implementation, we followed the CHR approach: a C'HR-based implementation of-
fers, as a byproduct, the possibility of the seamless integration of a high-level imple-
mentation of constraint solvers, which SCIFF needs in order to manage quantifier
restrictions.

In the SCIFF implementation, CHR constraints have been used to implement
most of the data structures. In particular, events (HAP), abducibles (the AA, AP,
AF, AV sets, see Sect. 5.1) and integrity constraints (the PSIC set) are represented
as CHR constraints. In this way, many transitions can be implemented as CHR rules.
Handling of constraints is delegated to the CLP constraint solvers.

The SCIFF operational semantics defines the proof tree, but delegates the search
strategy in the tree to the implementation. The current SCIFF implementation
employs a depth-first search strategy of the proof tree. This choice enabled us to
tailor the implementation upon the operational semantics of Prolog: in particular,
the resolvent of the proof (see Sect. 5.1) is represented by the Prolog resolvent, and
thus the Prolog stack is used directly for chronological backtracking.

The inputs to the SCIFF implementation are those defining an instance of an
abductive specification (see Sect. 4), i.e.:

e The Knowledge Base
e the set of ICs;
e the history HAP.

Success and failure of the implementation map directly the corresponding notions
of SCIFF. In particular, the implementation returns success when a state of goal
achievement is found; instead, all the failure conditions, such as inconsistency (both
with respect to E-consistency and —-consistency, see Defs. 4.4 and 4.3), inconsistent
constraint store and violation generate a failure, possibly causing backtracking.

The current implementation of the SCIFF proof-procedure is publicly avail-
able on the web (lia.deis.unibo.it/research/sciff/). It is at the core of the
SOCS-SI tool [7], whose Graphical User Interface written in Java, shows the state
of the proof (i.e., the components of the tuple in Eq. 11), the derivation tree (with
violated nodes), the agents involved in the interaction (Fig. 1). SOCS-SI is also
equipped with interfaces that make it compatible with a number of agent platforms,
including JADE [23], ProSOCS [24], and tuProlog [40].

44

& S0CS Demo - Society Infrastructure ‘s’

File Run 7

@ Bt? L @@ Ex&cminnmnd&:,ﬂﬂlﬂi' E

Al 4[internal state
3
o
<c73> h(tell(svs,f,inforn e(trlza),1032),d),6) |4
[Messages ccar> hitell (svs,f,refuse e(tr1z3)],d],5)
[Intearity Constraints | 7| | <c8> hitell(f,svs, que r123]) d),3)
3 <c12> tie (tr123)},4),0)
O 103>
@ [Messages viol (en(tell(svs, £, informiarrival_tine(tr123),_172922) ,d,_11270
sent n)
<cB6>
[Received pendinglenitell (svs, £, refuse (arrival_tine (trl23)),d),_1536811)
& [Expectations

LT

@ svs

(e Dl

Events

SocelDs |_contetld |_Sender | Receivers| Perormative| Content | Time [Local Time

0 T svs ry_tel |armival_fime(irl 23) 3 1074006050609
50 o = i refuse arrival_timedr 23) 5 1074006080640
0 o s i iform arrival_time(ir! 23), 1032 6 1074006050643

| Stopped [

Figure 1. Screenshot of the GUI of the application

8 Sample Applications

In this section, we demonstrate the features of the SCIFF framework by examples
taken from different domains. Our first example is the Abductive Event Calculus
(AEC) [46]. We use AEC to show how SCIFF operates in a classical application
of abductive proof-procedures that has been used by many other authors before
[88, 66, 45]. Then we show an application of SCIFF in the MAS domain. To this
end, we take a protocol defined by the Foundation for Intelligent Physical Agents
(FIPA),® one of the main agent standardization bodies, and demonstrate the usage
of SCIFF for the specification of well-known protocols, and for a verification of
compliance that can be done at agent execution time. We show cases of compliance,
violation by uttering a communicative act forbidden by the protocol, and violation
by not respecting a deadline. We conclude by showing a case taken from the domain
of normative systems. In this example, a number of norms dictate the protocol
to be followed in order for a customer to have a telephone line installed. The
purpose of this example is to demonstrate the interaction between E, EN, and
H predicates, CLP constraints and predicates defined in the K'B. The protocol
is taken from real life, and the authors have reasons to believe that it would be
difficult to specify it using other protocol definition languages, such as FSM, Petri
nets, or AUML interaction diagrams. The declarative nature of SCIFF makes such
an intricate protocol understandable, modular in its representation, and verifiable,
as our examples of fulfilment and violation show.

Shttp://www.fipa.org/.

45

8.1 Planning with the Abductive Event Calculus

AEC [46] is a classical application of abductive proof-procedures, and it can be
used for planning in agent systems [67, 74]. In order to understand it we must give
some background. The Event Calculus (EC) [70, 87] is a framework to reason about
properties (called fluents) that may hold in a system inside time intervals. The EC
consists of four ingredients:

1. A set of known causal relations, stating which events initiate or terminate the
validity of a fluent. For example, in the description of a robot in the block
world we can imagine the fluents ontable(X) (block X is on the table) and
holding(X) (the robot holds in its hand the block X). Rules could state that
if the robot is holding the block, then the action of putting a block on the
table initiates the fluent “block X is on the table”:

initiates(putdown(X), ontable(X),T) < holdsat(holding(X),T).

On the contrary, the fluent “block X is on the table” is terminated by the
action of picking X up. Therefore the definition:

terminates(pickup(X), ontable(X)).

2. The initial situation provided by the initially predicate. For example, the
robot is initially holding block number 1:

initially(holding(1)).

3. A narrative of happened events; for example

happens(putdown(1), 3).
happens(pickup(1),5).

4. The general theory of EC, defined as a set of domain-independent rules which
state that a fluent holds at a given time if it was either initially true, or if it
has become true after an event, and it has not ever since been clipped, i.e., its
truth has not been terminated in the meanwhile.

holdsat(F,T) «— initially(F"),not clipped(0, F,T).
holdsat(F,T) «— happens(E,Ty),initiates(E, F),
not clipped(Th, F,T).
clipped(Ty, F,T) «— happens(E,T),Ty < T < Ty, terminates(E, F).
(15)

46

Based on this theory, by deduction one can infer for instance that the fluent
ontable(1) is true at time 4 and it is false at times 2 and 10.

Building on this result, Eshghi [46] pointed that planning problems can be solved
by interpreting the event calculus in abduction. The user states the initial situation
(through the initially predicate) and a goal, typically requiring the validity of some
fluents in the final situation. The narrative of events is no longer given, but is
considered as a set of actions that should be performed in order to obtain the goal;
i.e., happens atoms are abducible. In the example, if the goal was

holdsat(ontable(1),10) (16)

the Abductive Event Calculus (AEC) would reply that in order to obtain the goal,
the putdown action should be performed before time 10.

Many other authors address planning through abduction. Some of them con-
sider the precedence relationship between events to be abducible [88]. Others use a
discrete representation of time and thus rely on efficient constraint solvers [66, 45].

The SCIFF framework easily accommodates the AEC. Additionally, it keeps
happened events separate from expected events, which we consider to be an im-
provement, in terms of representation: what is planned or supposed to happen, not
necessarily coincides with what is actually happening. An agent could plan to per-
form an action, but the action might fail. In the blocks world example, a block could
slip, thus making a pickup action unsuccessful. The robot expected to pickup the
block, but the actual action did not match. This unexpected event generates the
need for alternative possible course of events, such as a retrial, or a totally different
plan.

Therefore, in this implementation of AEC via SCIFF, plans are defined through
E predicates rather than H events. If the agent wants to get to a goal state, it
should perform plan for and execute actions, which makes such actions ezxpected: by
no means, the actions in the plan are already happened at planning time.

Positive E expectations state actions that should be taken in order for the plan
to be effective. Negative EN expectations (which do not exist in previous abductive
event calculus proposals) inform about those actions that should not be executed in
order for the plan to be successful.

The SCIFF implementation of the AEC theory is shown in Tab. 8.1.

The rules in the KB are direct translation of the first two in Eq. (15). We intro-
duce a new abducible predicate, unclipped, to represent the not(clipped) literals
found in the classical event calculus. In order for the plan to be successful, the fluent
should not be clipped in the given time interval. This is ensured by the application
of the integrity constraint in Tab. 8.1, which imposes that every event that would
terminate the validity of the fluent is expected not to happen (in the given time
interval). This mechanism lets us exploit better the underlying constraint solver,
which is tailored to reason about positive and negative expectations. Moreover, the

47

Table 8.1 Abductive Event Calculus theory in SCIFF.

IC:
unclipped(T7y, F, T3), terminates(A, F) — EN(A,T), Ty <T < Ts.

KB :
holdsat(F,T) « initially(F'), unclipped (0, F, T').
holdsat(F,T) «— E(A,T1),0 < Ty < T, initiates(A, F,Ty), unclipped(T1, F, T).

planner will explicitly provide, in the form of negative (EN) expectations, which
actions should be avoided in order not to endanger the execution of the plan.
In the blocks world example SCIFF provides

E(putdown(1),T1), EN(pickup(1),T>), Ty < T < 10
which we read as:
I, V1,1 < <10 E(putdown(1),Ty), EN(pickup(1), Ts),

i.e., in order to achieve the goal holdsat(ontable(1),10), expressed in Eq. (16), the
robot should drop block 1, and avoid picking it up before time 10. The times
of these planned actions are given in terms of domains (intervals), thanks to the
underlying constraint solver. In order to obtain punctual times, one can anytime
resort to grounding. This very useful feature is present in SCIFF as well as in other
frameworks of literature, such as ACLP [65] and .A-System [66] (for a discussion, see
Sect. 9).

8.2 Specifying and verifying agent interaction

In this section, we demonstrate the the usage of SCIFF in MAS domains, via a
simple agent interaction protocol.” We show first the SCIFF-based implementation
of the FIPA Request Interaction Protocol, then we propose three sample dialogue
instances and we discuss the outcome of SCIFF when they are confronted with the
specified protocol.

8.2.1 The FIPA Request Interaction Protocol

The FIPA Request Interaction Protocol [51], depicted in Fig. 2 allows one agent to
request another to perform some action. The normal protocol flow is composed of
the following steps:

9A collection of sample protocols and protocol runs can be found in [2, 93].

48

FIPA Request Protocol)

Initiator Participant

]
i
|
request |
|

refuse

[refused]

agree

[agreed and
notification necessary]

failure

inform-done : inform

[agreed]

inform-result : inform

B e e e L

Figure 2. FIPA Request Interaction Protocol.
1. The Initiator agent issues a request to a Participant agent to perform an action
P.
2. Participant can either

e refuse to perform P, in which case the protocol ends; or

e accept to perform P; in this case, after performing the action,
3. Participant will issue to Initiator one of the following:

e inform_done(P), which simply tells Initiator that P has been performed;

e inform_result(P,R), which also contains, in R, some information about
the result of performing the action;

e failure(P), which reports a failure.

49

Table 8.2 7C and K B for the FIPA Request interaction protocol.

IC:
H(tell(Initiator, Participant, request(P), D), T)
— E(tell(Participant, Initiator, agree(P), D), T1) N T < T1
V E(tell(Participant, Initiator, refuse(P), D), T1) N T < T1I.

H(tell(Participant, Initiator, agree(P), D), T1)
— EN(tell(Participant, Initiator, refuse(P), D), T2).

H(tell(Initiator, Participant, request(P), D), T) A
H(tell(Participant, Initiator, agree(P), D), T1) A T < T1

— E(tell(Participant, Initiator, failure(P), D), T2) N T1 < T2 A
t-failure(Td) N T2 < T1 + Td

v E(tell(Participant, Initiator, inform_done(P), D), T2) N T1 < T2 A
t_done(Td) N T2 < T1 + Td

V E(tell(Participant, Initiator, inform_result(P, R), D), T2) N T1 < T2 A
tresult(Td) A T2 < T1 + Td.

H(tell(Participant, Initiator, failure(P), D), T)
— EN(tell(Participant, Initiator, inform_done(P), D), T1) A
EN(tell(Participant, Initiator, inform_result(P, R), D), T2).

H(tell(Participant, Initiator, inform_done(P), D), T)
— EN(tell(Participant, Initiator, failure(P), D), T1) A
EN(tell(Participant, Initiator, inform_result(P, R), D), T2).

KB:
t_failure(10).
t_done(20).
t_result(50).

50

The SCIFF-based specification of the protocol is shown in Tab. 8.2.

The first IC imposes to a Participant who has received a request to perform an
action, to reply with either agree or refuse. The second IC imposes mutual exclusion
between agree and refuse: if Participant has agreed, it cannot refuse at any time.
The third IC imposes request and agree to be followed by one among inform_done,
inform_result, and failure. In order to make this protocol more realistic, we have
introduced some time constraints that are not present in its original FIPA speci-
fications. The messages inform_done, inform_result, and failure should be uttered
within a certain deadline: the deadline is determined by the instant in which the
Participant agreed, plus an interval defined in the knowledge base. The last two ICs
impose mutual exclusion among the three possible utterances.

The knowledge base in this case contains only predicates defining timeout values.

8.2.2 A dialogue instance satisfying the protocol
First of all, we discuss a dialogue instance that fulfils the protocol specifications:

H(tell(a, b, request(check_balance), r1), 3).
H(tell(b, a, agree(check_balance), r1), 6).
H(tell(b, a, inform_result(check_-balance, balance(300,usd)), r1), 7).

In this dialogue instance, a first agent a requests to check a bank account to an
agent b (let us imagine that a represents a customer, b a bank). Agent b agrees to
provide the information, and later it communicates the balance.

The SCIFF proof procedure elaborates several alternative sets of hypotheses
about which events should be expected and which not. When the Closure (see
Sect. 5.3.2) transition is applied, however, only one such set is confirmed, and the
expectation about the inform_result is fulfilled (as shown in Fig. 3).1°

8.2.3 Uttering a message that is not permitted

In this second example, we discuss a dialogue instance that violates the protocol.
In particular, agent b, after agreeing to provide the information requested, later
“contradicts itself” by uttering a refuse message.

H(tell(a, b, request(check_balance), r1), 3).
H(tell(b, a, agree(check_balance), r1), 6).
H(tell(b, a, refuse(check_balance), r1), 8).

This dialogue instance clearly violates the second integrity constraint shown in
Tab. 8.2. In Fig. 4 it is possible to see how this violation is detected by the SCIFF

10T SOCS-SI, logical variables are preceded by underscore, like _65615. SOCS-Slalso shows the
internal identifier of CHR constraints among angles, like (c74).

o1

= 50CS Demo - Society Infrastructure 's0*
File Run 7

Jofa] [+ 14 m [8]4] oo - EOEE
Al - Proof
e
[} Messages et ; m
D tsarity Constral | | (£€11 (v &, inform_result (check balance,balance (300, currency (usd))), rl),7)
= <c34> hitell (b, a,agree (check balance),rl), 6)
= <cl2> h(tell (a, b, request (check_balance),rl),3)
<clhe> fulf(en(tell(b, a,refuse(check balance), rl), 199055))
<e150>
fulf(e(tell(b,a, inform result(check balance, balance(300, currency(usd))) rl) 1))
<cd0> fulf(e(tell(b, a,agree(check balance),rl),6))
<e151> close_history
il v

SocsiDs contexld Sender | Receivers | F i [Content [Time [L
b Irequest |check_balance | 3

50 il b la laoree [check_balance | il

50 [id (3 a linform_resut [check_balance, balance(300,currency(usd) |

I |CLOSE_HISTORY |

£l
| 1144078478968/

Terminated [

Figure 3. A dialogue instance satisfying the protocol

proof procedure. In particular, the violation is shown by functor viol (corresponding
to an item in the AV set of the SCIFF operational semantics).

8.2.4 A participant does not respect a deadline

In this example, b fulfils the protocol specifications as for what concerns the messages
and their content. However, the inform_result message is sent at time 58, whereas
the agree message has been sent at time 6. Hence, the deadline specified in the third
integrity constraint of Tab. 8.2 is not respected.

H(tell(a, b, request(check_balance), r1), 3).
H(tell(b, a, agree(check_balance), r1), 6).
H(tell(b, a, inform_result(check_balance, balance(300, usd)), r1), 58).

Fig. 5 shows how this situation is detected (gt_current_time(...) implements the
transition “Violation E”, see Sect. 5.3.3).

8.3 Reasoning with norms and events

Many specifications of norms, such as those dictating the correct behaviour of agents
in institutionalized transactions, are not so different from the agent interaction pro-
tocols of which we have given one example above. Let the reader not be mislead:
by no means do we intend to compete with frameworks for the specification of nor-
mative systems, as this is not the purpose of SCIFF. However, we argue that the
SCIFF framework can be used to specify normative elements of MAS, and that a

92

< SOCS Demo - Society Infrastructure 's0°

(— EnoE|

<c7d> h{tellib,a, refuse (check_balance) rl), %) =

[Messages

D3 rtegriy constraimss | || <347 h(tell{b,a, agree (check balance),rl),6)
- <e12> h(tell (a, b, request (check_balance), rl), 3)
b= <cd40> fulf{e(tell(b,a,agree{check balance),rl) 6))
<cBO> viol(en(tell(b,a, refuse{check balance),rl), 65615))
<cd7> pending (e (tell (b, a, Tailure (check_balance),rl),_27220)), _27220 »>= 7,

_27220 <= 15

Le]

SocsiDs | contetid | Sender | Receivers | I Content | Time Lacal Time

al a reuest check_balance i 3| 1144079199329
50 in b “agree check_balance p 1144075199331
50 i) la a tefuse |check_balante g 1144079199333

I

Terminated |

Figure 4. Uttering a message that is not permitted

mapping can be cast between the SCIFF abductive framework and classical deontic
logic. A proposal in this sense is shown in [11].

In this section, we intend to demonstrate how to specify, inside the SCIFF frame-
work, agent interaction protocols that may result too intricate for a representation
based on other formalisms, such as FSM, coloured Petri nets, and the AUML dia-
grams seen above. The example we give is a simplified version of a real life situation,
describing the activation of a telephone line (carrier) by a customer. We consider
the clauses of the contract a user must sign as the building blocks of an interaction
protocol, which makes use of expressive combinations of E, EN, and H predicates,
CLP constraints and predicates defined in the K B. With SCIFF we give a faith-
ful representation of such a protocol, which makes it understandable, modular, and
verifiable. Despite all effort put by the telephone company into making things as
obscure as possible, at any time we (as customers) will be able to detect, via SCIFF,
whether the telephone company (telco in the following) has the right to interrupt the
service or to request a payment from us, and whether we have the right to complain
with telco, and not to pay part of the bill. Similarly, telco will receive indications
about when to send requests for payment, or when (not) to activate or (not) to
de-activate the carrier.

8.3.1 Description of the contract

The procedures that regulate the concession of a carrier to a customer are contained
in a contract, that the parties (telco and the customer) agree upon. The contract
is composed of several parts, stating what to do when the customer request a new

93

ciety Infrastru
L o e m| &% Execution mode: o -
i Al 4| Proof
o | ; <
[tessages <c78> h(current_time,57)
[intgrity Constraints <c38> hi{tell({b,a,agree (check_balance),rl}, 6)
e <c36> h{current_time, 5}
o <c14> hi{tell({a,b, request (check balance),rl},3}
<cl2> hicurrent_time, 2}
<cdd> fulf (e(tell (b, a, agree (check balance) rl) 6))
<c77> pending (en{tell (b, a, refuse (check_balance),rl), 69113}}
<c51> pending (e (tell(b, a, failure (check balance),rl), 123621}), 123621
>= 7, _123621 <= 15
<e80> gt_current time(_123621,57), _123621 >= 7, _123621 <= 15
Kl

SocelDs | contextd | Sender | Receivers | Performative Content Tirne
current_time
0 ol a 0 request check_balance

0 fl b a agree check_balance
curtent_time 57,
0 i b a inform_tesull__|check_balance, balance (300, 58]

Terminated

Figure 5. A Participant does not respect a deadline

carrier, the procedures for paying the bills, for handling complaints, what obliga-
tions/penalties apply in case of late payments, and how to delegate authority to the
relevant bureaus, to make any necessary determination as to whether the parties
have complied with all requirements as set forth in the contract. We enucleated a
set of clauses in the contract, and gave their specifications in the SCIFF framework.
The ICs are reported in Tab. 8.3, and the KB is reported in Tab. 8.4. We chose a
set of clauses about bill and complaint handling. Before we proceed onto explaining
them one by one, we point out that the contract never obliges the customer to pay
money to telco, although it gives telco the right to send a request for payment if the
customer does not pay by a deadline. If after the request for payment the customer
still does not pay, telco has the right to de-activate the carrier. On the other hand,
the customer can decide to complain about (part of) the bill, provided that he has
not received a request for payment about it. In case of complaint, the customer can
no longer be expected to pay, and telco cannot request further payments about that

bill.

8.3.2 Specifications in terms of ICs

Given the double reading (protocol vs. contract) of this example, we will sometimes
use terms such as “it cannot”, “it is obliged”, or “it may”/“it is possible” /“it has
the right to” where we should say, in terms of SCIFF, “it is expected not to”, “it is
expected to”, or “it is not expected not to”. We do this for the sake of readability.
Let the reader not be confused by this terminological shift, as the semantics of the

54

Table 8.3 ZC in the contract between telco (T) and a customer (C).

[IC1] H(tell(T, C, phone_bill(Phone_No, Bill_Id, Bill_Amnt), D), T1) A
default_wait(T Wait)
— EN(tell(T, C, request_payment(Phone_No, Bill_Id, Any_Amnt), D), T2),
T2 > T1, T2 < T1 + TWait.

[IC2] H(tell(T, C, phone_bill(Phone_No, Bill_Id, Bill_Amnt), D), T1) A
default_wait(TWait)
— E(tell(C, T, pay(Phone_No, Bill_Id, Bill_Amnt, Paymt_Rcpt), D), T2),

T2 < T1 + TWait

v E(tell(C, T, complain(Phone_No, Bill_Id, Partl_Amnt), D), T3),
T3 < T1 4+ TWait

Vv —EN(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_Amnt), D), T4),
T/ > T1 + TWait.

[IC3] H(tell(T, C, phone_bill(Phone_No, Bill_Id, Bill_Amnt), D), T1) A
H(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_Amnt), D), T2) A
—EN(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_Amnt), D), T2) A
default_wait(TWait)

— —EN(tell(T, C, de_activate(Phone_No, reason(Bill_Id)), D), T'3),
T3 > T2 + TWait
V E(tell(C, T, pay(Phone_No, Bill_1d, Bill_Amnt, Paymt_Rcpt), D), T4),
T4 < T2 + TWast.

[IC4] H(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_Amnt), D), T1) A
H(tell(C, T, pay(Phone_No, Bill_Id, Bill_Amnt, Paymt_Rcpt), D), T2) A
default_wait(TWait) AN T2 < T1 + TWait

— EN(tell(T, C, de_activate(Phone_No, reason(Bill_Id)), D), T3).

[IC5]) H(tell(T, C, phone_bill(Phone_No, Bill_Id, Bill_Amnt), D), T1) A
H(tell(C, T, complain(Phone_No, Bill_Id, Partl_ Amnt), D), T2) A
default_wait(TWait) AN T2 < T1 + TWait A
is_admissible_complaint(Bill_Id, Partl_Amnt)

— =E(tell(C, T, pay(Phone_No, Bill_Id, Partl_Amnt, Paymt_Rcpt), D), TS),
T8 > Ti,
EN(tell(T, C, request_payment(Phone_No, Bill_Id, Bill_Amnt), D), T4).

95

Table 8.4 KB in the contract between telco and a customer.

de fault_wait(10).

is_admissible_complaint(Bill_Id, Partl_Amnt) —
list_of_bills(L1),
member((Bill_Id, Total_Amnt), L1),
Partl_Amnt < Total_Amnt.

member(X, [X|Tail]).
member(X, [Y|Tail]) «—
member(X, Tail).

list_of-bills([(145886,205), (114477, 407), (168945, 126)]).

SCIFF framework remains unchanged.

Tab. 8.3 contains five ICs: roughly speaking, the first three ones describe in
general what is the expected behaviour of telco, regarding bill handling, whereas the
last two ones are about the rights of the customer (C). The ICs state the following:

by [IC1], after sending a bill at time T, telco may not send requests for
payments before time T'1 4+ T Wait,

by [IC2], after telco sends a bill at time T'1, one of the following three expecta-
tions hold: either C pays the bill in full by 71+ TWait, or C complains about
(part of) the bill by T'1 + T'Wait, or telco gains the right to send a request or
payment at some time T4 later than T1 4+ T Wait.

by [IC3], if telco sent a bill, and later a request for payment at a time in which
it had the right to do so, and if the request for payment concerns the bill in
full, then ether C pays the bill, or telco gains the right to de-activate the carrier
(although telco is not obliged to do so);

by [IC4], if C has paid the bill by the deadline, then telco cannot de-activate
the carrier. The deadline is specified by predicate default_wait. Notice that
[IC4] fires independently of telco actually having the right to send a request
for payments;

by [IC5], after C makes a complaint about some part of the bill (Partl_Amnt),
he is no longer expected to pay Bill_ Amnt (provided that the complaint is
admissible).

o6

In the K B part of the SCIFF program, shown in Tab. 8.4, we specify deadlines,
as in the previous example, and we define what an “admissible complaint” is. To this
end, we define a predicate is_admissible_complaint/2, which relies upon a database
of bills (“list of bills”). In this simplified example, the database is mimicked by a
predicate named list_of-bills/1.

8.3.3 Sample interactions

Let us consider the following case: telco sends the bill, and C does not pay. As a
consequence, after T'Wait time units telco sends C' a request for payment.

This sequence of events, i.e., the first three messages in (17), marked by =,
generates a set of fulfilled expectations. What happens is, after the first message
at time 19 (the notification of the phone_bill), [IC2] generates three alternative and
equally plausible sets of expectations: either C is expected to pay before time 29,
or C'is expected to complain before time 29, or otherwise telco has the right (-EN)
to issue a request for payment after time 29. In all cases telco does not have the
right to send a request for payment before time 29, because of [IC1]. At time 29
the first two alternatives become invalid due to the expired deadline. The message
request_payment at time 33 is indeed acceptable, according to the protocol, and it
gives telco explicit permission to de-activate the carrier at any time later than 29. In
particular, by [IC3], it generates a new choice point in the tree of expectation sets:
in one case telco has the right to de-activate the carrier after time 39, in the other
case C'is expected to pay. Because of [IC4], the last message, in which C notifies
his payment to telco, has as a side effect that telco loses its right to de-activate the
carrier at any time in connection to the bill N°145886.

As the second example shows (17), a violation can be generated if telco de-
activates the carrier. In that case, SCIFF detects a violation because the fourth
message violates the protocol, and in particular [/C4], by which telco is expected
not to de-activate the carrier if C pays within 10 time units after receipt of telco’s
request for payment.

H(tell(telco, ¢, phone_bill(390512093086, 145886, 205), 19).

H(tell(telco, ¢, request_payment(390512093086, 145886, 205), 33). | (%)
H(tell(c, telco, pay(390512093086, 145886, 205, 1674521), 37).

H(tell(telco, ¢, de_activate(390512093086, reason(145886)), 38).

(17)

Let us consider a third example (18), starting by telco sending C'a bill, as in all
other examples. C complains, but he does it at time 33, which unfortunately is after
the deadline of 10 time units after the bill. This complaint, although not specifically
disallowed by the protocol, does not change the state of expectations in the system,
since no IC fires. In particular, [IC5] says that if C complains before the deadline,
he is not expected any more to pay the amount he complained about, and telco loses

57

the right to send requests for payment concerning either the amount C' complained
about or concerning the full amount of the bill. But [/C5] (as well as the other
ICs) does not say what happens in case of a late complaint. telco therefore sends
him a request to payment, since it is its right, and the only options for C are either
to pay, or to have the carrier de-activated. C pays and telco has no more right to
de-activate the line, which incidentally makes that second option (have the carrier
de-activated) inconsistent, besides fulfilling all the expectations of the first branch.

H(tell
tell
tell

tell

telco, ¢, phone_bill(390512093086, 145886, 205), 19).

¢, telco, complain(3905120935086, 145886, 150), 33).

telco, ¢, request_payment(890512093086, 145886, 205), 34).
¢, telco, pay(390512093086, 145886, 205, 1674521), 37).

H
o (18)
H

/_\/_\AA
_ ==

In the last example (19), telco as usual sends C'a bill. However, this time C'sends
his complaint before the deadline. C complains about an amount of €150 out of
€205. As a consequence, if telco sends C' a request for payment, it causes a protocol
violation. Due to [IC5], telco can no longer issue a request for payment. Unfortu-
nately, telco does so at time 34, and consequently SCIFF detects the violation of
[IC5]. Note that, in order to demonstrate the role of predicate definitions in the
K B, we have written [IC5] so that it fires only if is_admissible_complaint (defined
in the K B) holds.

H(tell(telco, ¢, phone_bill(390512093086, 145886, 205), 19).
H(tell(c, telco, complain(390512093086, 145886, 150), 24). (19)
H(tell(telco, ¢, request_payment(390512093086, 145886, 205), 34).

9 Related Work and Discussion

In this section we relate the SCIFF framework with other relevant work of literature.
We will focus on other ALP frameworks and on other applications of computational
logic to multi-agent systems. We do not intend to give an exhaustive account of the
work done, but we will only touch the most closely related proposals and focus on
the differences with respect with our own work.

9.1 ALP frameworks

By reading Kakas and colleagues’ survey on ALP [63], one will be impressed by the
amount of work done on this topic. The reasons why we are proposing yet another
ALP framework are in the introductory section of this article. Now, we will try to
relate our work with some of the most influential proposal of literature, although we
are aware that many others will have to be left out.

o8

Kakas and Mancarella [64] define a proof procedure (herein and below referred
to as KM) for ALP, building on previous work by Eshghi and Kowalski [47]. KM
assumes that the integrity constraints are in the form of denials, with at least one
abducible literal in the conditions.!! The semantics given by KM to the integrity
constraints is that at least one of the literals in the integrity constraint must be
false (otherwise, procedurally, false is derived). The procedure starts from a query
and a set of initial assumptions A; and results in a set of consistent hypotheses
(abduced literals) A, such that A, O A; and A, together with the program P
entails the query. The proof procedure uses the notion of abductive and consistency
derivations.'?

Operationally, in KM abducibles must be ground when they are considered by the
proof, and the procedure flounders if a selected abducible is not ground. Moreover,
it treats constraint predicates, such as <, <, #, ..., as ordinary predicates, thus being
unable to use specialised constraint solvers for such predicates. Therefore, extensions
to KM have been proposed to cope with such limitations. Notably, ACLP [65] ex-
tends KM to deal with non-ground abduction and with constraints. ACLP programs
can contain constraints on finite domains. ACLP interleaves consistency checking
of abducible assumptions and constraint satisfaction.

Denecker and De Schreye [37, 39] introduce a proof procedure for normal ab-
ductive logic programs by extending SLDNF resolution to the case of abduction.
The procedure is called SLDNFA and it is correct with respect to the completion
semantics, and interestingly, it presents a crucial property: the treatment of non-
ground abductive queries. [37] does not consider general integrity constraints, but
only constraints of the kind a,not a = false. In later work [38], they propose
adding integrity constraints by extending the program with rules false «— —F, for
each integrity constraint F'; the literal —false is then added as an extra literal to the
query. SLDNFA has been extended towards CLP constraints handling, giving rise
to SLDNFA(C) [100].

The A-System [66] is a merger of ACLP and SLDNFA(C), but it differs from
them by its explicit treatment of non-determinism, which permits to perform heuris-
tic search with different types of heuristics. Also A-System, like SCIFF, copes with

HThe syntax of integrity constraints varies from framework to framework; while some frameworks
require integrity constraints to be denials of literals, this is not true of other frameworks, such as
SCIFF, and IFF, as we will see.

2Tntuitively, an abductive derivation is a standard SLD-derivation suitably extended in order to
consider abducibles. As soon as an abducible atom ¢ is encountered which does not already occur in
the current set of hypotheses, it is added to the current set of hypotheses, and it must be proved that
any integrity constraint such that § unifies with an abducible in it is satisfied. For this purpose, a
consistency derivation for ¢ is started. Since the integrity constraints are denials only (i.e., queries),
this corresponds to proving that every such query fails to hold. Therefore, ¢ is removed from all the
denials with which it unifies, and it is proved that all the resulting queries fail. In this consistency
derivation, when an abducible is encountered, an abductive derivation for its complement is started
in order to prove the abducible’s failure, so that the initial integrity constraint is satisfied.

99

non-ground abduction.

The Active-KM proof procedure by Terreni et al. [75] integrates in the original
abductive computational scheme a limited but powerful type of implicative-form
integrity constraints. It supports forward reasoning via integrity constraints (impli-
cations) which fire when their conditions (body) are satisfied. However, this proce-
dure does not deal with non-ground abducibles. Finally, the KM proof-procedure
has been used and extended in the context of MAS. In particular, Ciampolini et
al.’s ALIAS framework [29] and the LAILA language [30] define mechanisms for the
coordination of agent reasoning based on it.

Surely the most related abductive framework to SCIFF is Fung and Kowalski’s
IFF proof-procedure [56], on which SCIFF is based. The IFF proof procedure uses
backward reasoning with the selective Clark completion [31] of the logic program?!?
to compute abductive explanations for given queries. Forward reasoning is applied
based on the conjunction of queries plus integrity constraints, which is done at the
beginning of the abductive process. The integrity constraints can be any (closed)
implications. The authors describe IFF as a sort of “hybrid of the proof procedure
of Console et al. [35] and the SLDNFA procedure of Denecker and De Schreye (see
[37]),” mainly due to its use of the Clark completion semantics and because neither
of them requires a safe selection rule for abducibles and negation.

IFF has been used to model the rational part of logic-based agents, since Kowalski
and Sadri’s seminal paper [68], and in further developments and refinements [69, 82,
72]. SCIFF also applies ALP to the context of MAS, but differently from other work
it does it at the social level, its initial purpose being to perform the compliance check
of externally observable agent behaviour.

Recently, IFF has been refined to deal with negation as failure in integrity con-
straints [81], and extended with the definition of frameworks that treat abducibles
and constraints uniformly [71, 45]. This last work also presents an implementation
of IFF (the only one published, to the best of our knowledge), based on a meta-
interpreter. Although these extensions improve IFF in several aspects, none of them
handles universally quantified variables in abducible predicates, and of course do
not deal with expectations. Finally, SCIFF is implemented in CHR with attributed
variables, which is a considerably efficient technology.

Given the CHR-based implementation of SCIFF, we will also mention Abden-
nadher and Christiansen’s work [1], which further developed into the HYPROLOG
system [28]. HYPROLOG is not limited to abduction, but also encloses assumptive
logic programming features. The abductive part of HYPROLOG, however, is much
more restrictive in scope than SCIFF: it has a limited use of negation, and integrity
constraints cannot involve defined predicates (but only abducibles and built-ins).
Thanks to these simplifications, the necessary machinery is much simpler than the

13The term “selective” refers to the fact that IFF does completion, but only of non-abducible
predicates.

60

one used by SCIFF. We implemented (and tested) a subset of the SCIFF language
based on ideas similar to HYPROLOG; this is documented in previous publications
[59, 10].

Finally, related to our work on ALP are the abductive query evaluation method
proposed by Satoh and Iwayama [85], and Abdual [16]: a system to perform abduc-
tion from extended logic programs grounded on the well-founded semantics. Abdual,
which relies on tabled evaluation inspired to SLG resolution [27], handles only ground
programs.

A little bit outside of ALP, but related to our work, Sergot [86] proposed a frame-
work, query-the-user, in which some of the predicates are labelled as “askable”; the
truth of askable atoms can be asked to the user. Our E predicates may be under-
stood as information asking, while H atoms may be considered as new information
provided during search. However, differently from Sergot’s query-the-user, SCIFF
is not intended to be used interactively, but rather to provide a means to generate
and to reason upon generated expectations, be them positive or negative. Moreover,
SCIFF presents expectations in the context of an abductive framework (integrating
them with other abducibles). Hypotheses confirmation was studied also by Kakas
and Evans [48], where hypotheses can be corroborated or refuted by matching them
with observable atoms: an explanation fails to be corroborated if some of its logical
consequences are not observed. The authors suggest that their framework could be
extended to take into account dynamic events, possibly, queried to the user: “this
form of reasoning might benefit from the use of a query-the-user facility”. In is work
about AEC-based planning, Shanahan [89] also introduces a concept of expectation:
a robot moves in an office, and has expectations about where it is standing, based on
the values obtained by sensors. While our expectations should match with actual
events, in Shanahan’s work events and expectations are of the same nature, and
both are abduced. We deal with expectations in a larger sense, as SCIFF permits
to express positive and negative expectations. We also have a different focus: while
we assume that the history is known, Shanahan proposes to abduce the events.

In a sense, our work can be considered as a merger and extension of these works:
it has confirmation of hypotheses, as in corroboration, and it provides an operational
semantics for dynamically incoming events, as in query-the-user.

Also related to reasoning with dynamic incoming events are two additional works,
which we briefly mention before we conclude this roundup. Speculative Computation
[84] is a propositional framework for a multi-agent setting with unreliable commu-
nication. When an agent asks a query, it also abduces a default answer; if the
real answer arrives within a deadline, the hypothesis is (dis-)confirmed; otherwise
the computation continues with the default. In our work, expectations can be con-
firmed by events, with a wider scope: they are not only questions, and they can
have variables, possibly constrained. The dynamics of incoming events can be seen
as an instance of an Evolving Logic Program [17]. In EvoLP, the knowledge base

61

can change both because of external events or because of internal results. SCIFF
does not generate new events, but only expectations about external events. Our
focus is more on the expressivity of the expectations than on the evolution of the
knowledge base.

9.2 Computational Logic and societies of agents

To the best of our knowledge, the SOCS approach to agent societies, upon which
SCIFF found its main motivations, is the first attempt to use ALP to reason about
agent interaction at a social level. Many other logics have been proposed to represent
richer social and institutional entities, such as normative systems and electronic
institutions. Here also the literature is broad, and slightly aside of the focus of this
article. However, our work shares some concepts with normative systems, being
E related with the O (obligation) operator of deontic logic [83], and EN with the
F (forbidden) operator.!* We enucleate similarities and differences in [11], and
comment on the main differences between our approach and others based on social
semantics in a number of published papers [9, 12, 6]. Below we will only give a
very synthetic and by no means exhaustive account of work based on computational
logic, applied to agent interaction and social agent systems in the broader sense.

The social approach to the semantic characterisation of agent interaction is
adopted by many researchers to allow for flexible, architecture-independent and
verifiable protocol specification. Prominent schools, including Castelfranchi’s [26],
Singh et al’s [91, 104], and Colombetti et al.’s [52, 33, 34] indicate commitments
as first class entities in social agents, to represent the state of affairs in the course
of social agent interaction. The resulting framework is more flexible than tradi-
tional approaches to protocol specification, as it does not necessarily define action
sequences, nor it prescribes initial /final states or necessary transitions.

In [104], a variant of the Event Calculus is applied to commitment-based proto-
col specification. The semantics of messages (i.e., their effect on commitments) is
described by a set of operations whose semantics, in turn, is described by predicates
on events and fluents; in addition, commitments can evolve, independently of com-
municative acts, in relation to events and fluents as prescribed by a set of postulates.
Similarly, [52] defines an operational specification of an ACL in an object-oriented
framework by means of the commitment class. A commitment represents an obliga-
tion for its debtor towards its creditor. A commitment is described by a finite state
automaton, whose states (which can take the values of empty, pre-commitment, can-
celed, conditional, active, fulfilled and violated) can change by application of methods

1The reduction of deontic concepts such as obligations and prohibitions has been the subject of
several past works: notably, by [18] (according to which, informally, A is obligatory iff its absence
produces a state of violation) and by [76] (where, informally, an action A is prohibited iff its being
performed produces a state of violation).

62

of the commitment class, or of rules triggered by external conditions. The semantics
of communicative acts is specified in terms of methods to be applied to a commit-
ment when a communicative act is issued. We discuss in [9] the use of the SOCS
framework for the social semantic specification of agent interaction protocols.

Artikis et al. [22] present a theoretical framework for providing executable spec-
ifications of particular kinds of multi-agent systems, called open computational so-
cieties, and present a formal framework for specifying, animating and ultimately
reasoning about and verifying the properties of systems where the behaviour of the
members and their interactions cannot be predicted in advance. Three key compo-
nents of computational systems are specified, namely the social constraints, social
roles and social states. The specifications of these concepts is based on and moti-
vated by the formal study of legal and social systems (a goal of the ALFEBIITE
project), and therefore operators of Deontic Logic are used for expressing legal so-
cial behaviour of agents [102, 96]. ALFEBIITE has investigated the application of
formal models of norm-governed activity to the definition, management and regula-
tion of interactions between info-habitants in the information society. Their logical
framework comprises a set of building blocks (including doxastic, deontic and prax-
eologic notions) as well as composite notions (including deontic right, power, trust,
role and signalling acts).

Differently from [22] (and from other work on normative systems), we do not
explicitly represent concepts such as institutional power of the society members and
validity of action. Instead, permitted are all social events that do not determine
a violation, i.e., all events that are not explicitly forbidden are allowed. Permis-
sion instead, if explicitly needed, is mapped the negation of a negative expectation
(-EN).

[80] provides a first-order framework of deontic reasoning that can model and
compute social regulations and norms, and among the organizational models, [41, 43,
42] exploit deontic logic to specify the society norms and rules. Several papers discuss
“sub-ideal” situations, i.e., how to manage situations in which some of the norms
are not respected. For instance, [97] show the relation between diagnostic reasoning
and deontic logic, importing the “principle of parsimony” from diagnostic reasoning
into their deontic system, in the form of a requirement to minimize the number
of violations. [77] proposes a solution to the problem and paradoxes stemming
from earlier logical representations of contrary-to-duty obligations, i.e., obligations
that become active when other obligations are violated. The Interactive Maryland
Platform for Agents Collaborating Together (IMPACT) [21, 44] also uses deontic
operators: not to describe social stances, but to program intelligent agents. A lot
more work is surely relevant to SCIFF and we indeed aim to incorporate some more
advanced aspects of normative agent systems reasoning in the future: but for the
economy of this article, we will redirect the interested reader to [11].

63

10 Conclusions

The operational framework presented in this article, based on the SCIFF, represents
an important improvement with respect to the state-of-the-art. Not only can it be
used to specify a broad range of interaction protocols and verify agent interaction
at runtime: SCIFF abstracts away from the domain of multi-agent systems, and
can be applied to specification and verification of interaction independently of the
architecture of the participants in the interaction. SCIFF presents a conjunction of
features which is novel in the ALP literature, namely a particularly rich and intu-
itive treatment of variable quantification, the new concept of positive and negative
expectations, an automatic way to verify compliance to specifications on-the-fly, an
efficient implementation based on CHR, its embedding in an agent verification soft-
ware tool able to interact with other standard components, and three important
theoretical results: soundness, termination, and completeness for an important class
of programs. This article focusses on the theoretical side of SCIFF: it presents for
the first time its operational semantics and proof of formal properties. In other pub-
lications we have demonstrated more in detail the use of SCIFF in the multi-agent
domain, and situated our approach inside the MAS literature.

Directions for future research include the definition of an extended SCIFF which
can be used to perform automatic verification of formal protocol properties. To
this end, may rely on g-SCIFF, as we demonstrate in [8]. We aim to produce a
unified framework where protocol properties can be studies and verified statically, to
produce specifications that can be used with no further translation steps in operating
agent systems that we can monitor and verify at run time. We have already done
some work in this sense, motivated by the need to reduce the number of steps
involved in the complicated process of engineering and executing distributed and
open computer systems applications. Other application domains for SCIFF that
we are considering are the medical domain (both for diagnosis, one of the classical
ALP applications, and for medical guidelines specification), normative systems, open
network computer systems, and web services choreography.

Acknowledgements

We would like to thank Luis M. Pereira and Marek J. Sergot, as well as the partici-
pants to the SOCS project, for many interesting and fruitful discussions.

This work is partially funded by the Information Society Technologies pro-
gramme of the European Commission under the IST-2001-32530 SOCS Project
(http://lia.deis.unibo.it/research/socs/), and by the MIUR COFIN 2003
projects Sviluppo e verifica di sistemi multiagente basati sulla logica (http://www.
di.unito.it/massive/), and La Gestione e la negoziazione automatica dei diritti
sulle opere dell’ingegno digitali: aspetti giuridici e informatici.

64

References

1]

Slim Abdennadher and Henning Christiansen. An experimental CLP plat-
form for integrity constraints and abduction. In H.L. Larsen, J. Kacprzyk,
S. Zadrozny, T. Andreasen, and H. Christiansen, editors, FQAS, Flexible
Query Answering Systems, LNCS, pages 141-152, Warsaw, Poland, Octo-
ber 25-28 2000. Springer-Verlag.

Marco Alberti, A. Bracciali, Federico Chesani, Anna Ciampolini, U. En-
driss, Marco Gavanelli, A. Guerri, Antonis Kakas, Evelina Lamma, W. Lu,
Paolo Mancarella, Paola Mello, Michela Milano, Fabrizio Riguzzi, Fariba
Sadri, Kostas Stathis, G. Terreni, Francesca Toni, Paolo Torroni, and
A. Yip. Experiments with animated societies of computees. Technical re-
port, SOCS Consortium, 2005. Deliverable D14. Available electronically from
the SOCS project web site: http://lia.deis.unibo.it/research/socs/
guests/publications/.

Marco Alberti, Federico Chesani, Marco Gavanelli, Alessio Guerri, Evelina
Lamma, Paola Mello, and Paolo Torroni. Expressing interaction in combi-
natorial auction through social integrity constraints. Intelligenza Artificiale,
I1(1):22-29, 2005.

Marco Alberti, Federico Chesani, Marco Gavanelli, and Evelina Lamma. The
CHR-based Implementation of a System for Generation and Confirmation of
Hypotheses. Number 2005-01 in Ulmer Informatik-Berichte, pages 111-122,
2005.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola
Mello, and Paolo Torroni. A logic based approach to interaction design in
open multi-agent systems. In Proceedings of the 13th IEEE international
Workshops on Enabling Technologies: Infrastructures for Collaborative En-
terprises (WETICE-2004), 2nd international workshop “Theory And Practice
of Open Computational Systems (TAPOCS)”, pages 387-392, Modena, Italy,
June 14-16 2004. IEEE Press.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola
Mello, and Paolo Torroni. The SOCS computational logic approach for the
specification and verification of agent societies. In Corrado Priami and Paola
Quaglia, editors, Global Computing: IST/FET International Workshop, GC
2004 Rowvereto, Italy, March 9-12, 2004 Revised Selected Papers, volume 3267
of Lecture Notes in Artificial Intelligence, pages 324-339. Springer-Verlag,
2005.

65

[7]

[11]

[12]

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola
Mello, and Paolo Torroni. Compliance verification of agent interaction: a
logic-based tool. Applied Artificial Intelligence, 20(2-4):133-157, February-
April 2006.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola
Mello, and Paolo Torroni. Security protocols verification in Abductive Logic
Programming: a case study. In Oguz Dikenelli, Marie-Pierre Gleizes, and
Andrea Ricci, editors, Proceedings of ESAW’05, Kusadasi, Aydin, Turkey,
October 26-28, 2005, volume 3963 of Lecture Notes in Artificial Intelligence,
pages 106-124. Springer-Verlag, 2006.

Marco Alberti, Anna Ciampolini, Marco Gavanelli, Evelina Lamma, Paola
Mello, and Paolo Torroni. A social ACL semantics by deontic constraints.
In V. Marik, J. Miiller, and M. Péchoucek, editors, Multi-Agent Systems and
Applications III. Proceedings of the 3rd International Central and FEastern Fu-
ropean Conference on Multi-Agent Systems, CEEMAS 2003, volume 2691 of
Lecture Notes in Artificial Intelligence, pages 204213, Prague, Czech Repub-
lic, June 16-18 2003. Springer-Verlag.

Marco Alberti, D. Daolio, Marco Gavanelli, Evelina Lamma, Paola Mello, and
Paolo Torroni. Specification and verification of agent interaction protocols in
a logic-based system. In Hisham M. Haddad, Andrea Omicini, and Roger L.
Wainwright, editors, Proceedings of the 19th Annual ACM Symposium on Ap-
plied Computing (SAC 2004). Special Track on Agents, Interactions, Mobility,
and Systems (AIMS), pages 72-78, Nicosia, Cyprus, March 14-17 2004. ACM
Press.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, Giovanni Sar-
tor, and Paolo Torroni. Mapping deontic operators to abductive expectations.
Computational and Mathematical Organization Theory, 2006. To appear.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo
Torroni. An Abductive Interpretation for Open Societies. In A. Cappelli and
F. Turini, editors, AT*IA 2003: Advances in Artificial Intelligence, Proceed-
ings of the 8th Congress of the Italian Association for Artificial Intelligence,
Pisa, volume 2829 of Lecture Notes in Artificial Intelligence, pages 287—-299.
Springer-Verlag, September 23-26 2003.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Tor-
roni. Specification and verification of agent interactions using social integrity
constraints. Electronic Notes in Theoretical Computer Science, 85(2), 2003.

66

[14]

[15]

[18]

[19]

[20]

21]

[23]

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo
Torroni. Specification and verification of interaction protocols: a compu-
tational logic approach based on abduction. Technical Report CS-2003-03,
Dipartimento di Ingegneria di Ferrara, Ferrara, Italy, 2003. Available at
http://www.ing.unife.it/informatica/tr/.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Tor-
roni. Modeling interactions using Social Integrity Constraints: A resource shar-
ing case study. In Joao Alexandre Leite, Andrea Omicini, Leon Sterling, and
Paolo Torroni, editors, Declarative Agent Languages and Technologies, volume
2990 of Lecture Notes in Artificial Intelligence, pages 243—262. Springer-Verlag,
May 2004. First International Workshop, DALT 2003. Melbourne, Australia,
July 2003. Revised Selected and Invited Papers.

J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics
and generalized stable models via tabled dual programs. Theory and Practice
of Logic Programming, 4:383-428, July 2004.

J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs.
In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of the 8th
European Conference on Logics in Artificial Intelligence (JELIA’02), volume
2424 of Lecture Notes in Artificial Intelligence, pages 50—61. Springer-Verlag,
September 2002.

A. Anderson. A reduction of deontic logic to alethic modal logic. Mind,
67:100-103, 1958.

Krzysztof R. Apt and Marc Bezem. Acyclic programs. New Generation Com-
puting, 9(3/4):335-364, 1991.

Krzysztof R. Apt and Roland N. Bol. Logic programming and negation: A
survey. Journal of Logic Programming, 19/20:9-71, 1994.

K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and S. Kraus.
IMPACT: a Platform for Collaborating Agents. IEEFE Intelligent Systems,
14(2):64-72, March/April 1999.

A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational
societies. In C. Castelfranchi and W. Lewis Johnson, editors, Proceedings of the
First International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2002), Part III, pages 1053-1061, Bologna, Italy, July 15—
19 2002. ACM Press.

Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi.
Jade - a java agent development framework. In Rafael H. Bordini, Mehdi

67

[27]

[28]

[29]

Dastani, Jiirgen Dix, and Amal El Fallah-Seghrouchni, editors, Multi-Agent
Programming: Languages, Platforms and Applications, volume 15 of Multi-
agent Systems, Artificial Societies, and Simulated Organizations, pages 125—
147. Springer-Verlag, 2005.

Andrea Bracciali, Ulle Endriss, Neophytos Demetriou, Antonis C. Kakas, Wen-
jin Lu, and Kostas Stathis. Crafting the mind of prosocs agents. Applied
Artificial Intelligence, 20(2-4):105-131, February-April 2006.

H.J. Biirckert. A resolution principle for constrained logics. Artificial Intelli-
gence, 66:235-271, 1994.

C. Castelfranchi. Commitments: From individual intentions to groups and
organizations. In Proceedings of the First International Conference on Mul-
tiagent Systems, San Francisco, California, USA, pages 41-48. AAAI Press,
1995.

W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of the ACM, 43(1):20-74, January 1996.

Henning Christiansen and Verdénica Dahl. HYPROLOG: A new logic pro-
gramming language with assumptions and abduction. In Maurizio Gabbrielli
and Gopal Gupta, editors, Logic Programming, 21st International Conference,
ICLP 2005, Sitges, Spain, October 2-5, 2005, Proceedings, volume 3668 of Lec-
ture Notes in Computer Science, pages 159-173. Springer, 2005.

Anna Ciampolini, Evelina Lamma, Paola Mello, Francesca Toni, and Paolo
Torroni. Co-operation and competition in ALIAS: a logic framework for agents
that negotiate. Computational Logic in Multi-Agent Systems. Annals of Math-
ematics and Artificial Intelligence, 37(1-2):65-91, 2003.

Anna Ciampolini, Evelina Lamma, Paola Mello, and Paolo Torroni. LAILA: A
language for coordinating abductive reasoning among logic agents. Computer
Languages, 27(4):137-161, February 2002.

K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 293—-322. Plenum Press, 1978.

P. R. Cohen and C. R. Perrault. Elements of a plan-based theory of speech
acts. Cognitive Science, 3(3), 1979.

M. Colombetti, N. Fornara, and M. Verdicchio. The role of institutions in
multiagent systems. In Proceedings of the Workshop on Knowledge based and
reasoning agents, VIII Convegno AI*IA 2002, Siena, Italy, 2002.

68

[34]

[37]

[38]

[41]

[42]

Marco Colombetti, Nicoletta Fornara, and Mario Verdicchio. A social ap-
proach to communication in multiagent systems. In Joao Alexandre Leite,
Andrea Omicini, Leon Sterling, and Paolo Torroni, editors, Declarative Agent
Languages and Technologies, volume 2990 of Lecture Notes in Artificial Intel-
ligence, pages 191-220. Springer-Verlag, May 2004. First International Work-
shop, DALT 2003. Melbourne, Australia, July 2003. Revised Selected and
Invited Papers.

L. Console, D. Theseider Dupré, and P. Torasso. On the relationship between
abduction and deduction. Journal of Logic and Computation, 1(5):661-690,
1991.

P. Dell’Acqua, Fariba Sadri, and Francesca Toni. Combining introspection
and communication with rationality and reactivity in agents. In Jiirgen Dix,
L. Farinas del Cerro, and U. Furbach, editors, Logics in Artificial Intelligence,
FEuropean Workshop, JELIA’98, Dagstuhl, Germany, October 12-15, 1998,
Proceedings, volume 1489 of Lecture Notes in Computer Science, pages 17-32.
Springer-Verlag, October 1998.

M. Denecker and D. De Schreye. SLDNFA: An abductive procedure for normal
abductive programs. In Krzysztof R. Apt, editor, Proceedings of the Joint

International Conference and Symposium on Logic Programming, Washington,
USA, pages 686-702, Cambridge, MA, November 9-13 1992. MIT Press.

M. Denecker and D. De Schreye. Representing Incomplete Knowledge in Ab-
ductive Logic Programming. In Logic Programming, Proceedings of the 1993
International Symposium, Vancouver, British Columbia, Canada, pages 147—
163, Cambridge, MA, 1993. MIT Press.

M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for ab-
ductive logic programs. Journal of Logic Programming, 34(2):111-167, 1998.

Enrico Denti, Andrea Omicini, and Alessandro Ricci. Multi-paradigm Java-
Prolog integration in tuProlog. Science of Computer Programming, 57(2):217—
250, August 2005.

V. Dignum, J. J. Meyer, F. Dignum, and H. Weigand. Formal specification of
interaction in agent societies. In Proceedings of the Second Goddard Workshop
on Formal Approaches to Agent-Based Systems (FAABS), Maryland, October
2002.

V. Dignum, J. J. Meyer, and H. Weigand. Towards an organizational model
for agent societies using contracts. In C. Castelfranchi and W. Lewis John-
son, editors, Proceedings of the First International Joint Conference on Au-

69

[43]

[47]

[48]

[50]

[51]

[52]

tonomous Agents and Multiagent Systems (AAMAS-2002), Part II, pages 694—
695, Bologna, Italy, July 15-19 2002. ACM Press.

V. Dignum, J. J. Meyer, H. Weigand, and F. Dignum. An organizational-
oriented model for agent societies. In Proceedings of International Workshop
on Regulated Agent-Based Social Systems: Theories and Applications. AA-
MAS’02, Bologna, 2002.

T. Eiter, V.S. Subrahmanian, and G. Pick. Heterogeneous active agents, I:
Semantics. Artificial Intelligence, 108(1-2):179-255, March 1999.

Ulle Endriss, Paolo Mancarella, Fariba Sadri, Giacomo Terreni, and Francesca
Toni. The CIFF proof procedure for abductive logic programming with con-
straints. In José Julio Alferes and Jodao Alexandre Leite, editors, Logics in
Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Por-
tugal, September 27-30, 2004, Proceedings, volume 3229 of Lecture Notes in
Artificial Intelligence, pages 31-43. Springer-Verlag, 2004.

K. Eshghi. Abductive planning with the event calculus. In Logic Programming,
Proceedings of the Fifth International Conference and Symposium, Seattle,
Washington, Cambridge, MA, 1988. MIT Press.

K. Eshghi and R. A. Kowalski. Abduction compared with negation by failure.
In G. Levi and M. Martelli, editors, Proceedings of the 6th International Con-
ference on Logic Programming, pages 234-255, Cambridge, MA, 1989. MIT
Press.

C.A. Evans and A.C. Kakas. Hypotheticodeductive reasoning. In Proc. Inter-
national Conference on Fifth Generation Computer Systems, pages 546-554,
Tokyo, 1992.

T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication
language. In J. Bradshaw, editor, Software Agents. MIT Press, Cambridge,
MA, 1997.

FIPA Communicative Act Library Specification, August 2001. Published on
August 10th, 2001, available for download from the FIPA website, http://
www.fipa.org.

FIPA Request Interaction Protocol Specification. Standard SC00026H, Foun-
dation for Intelligent Physical Agents, December 2002. Published on December
3, 2002, available for download from the FIPA website.

N. Fornara and M. Colombetti. Operational specification of a commitment-
based agent communication language. In C. Castelfranchi and W. Lewis

70

[55]

[56]

[57]

Johnson, editors, Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2002), Part II, pages
535-542, Bologna, Italy, July 15-19 2002. ACM Press.

N. Fornara and M. Colombetti. Defining interaction protocols using a
commitment-based agent communication language. In J. S. Rosenschein,
T. Sandholm, M. Wooldridge, and M. Yokoo, editors, Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS-2003), pages 520-527, Melbourne, Victoria, July 14-18 2003.
ACM Press.

T. Frihwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, 37(1-3):95-138, October 1998.

T. H. Fung. Abduction by Deduction. PhD thesis, Imperial College London,
1996.

T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151-165, November 1997.

Marco Gavanelli, Evelina Lamma, and Paola Mello. Proof of completeness
of the SCIFF proof-procedure. Technical Report CS-2005-02, Dipartimento di
Ingegneria, Universita di Ferrara, 2005. Available at http://www.ing.unife.
it/informatica/tr/CS-2005-02.pdf.

Marco Gavanelli, Evelina Lamma, and Paola Mello. Proof of properties of
the SCIFF proof-procedure. Technical Report CS-2005-01, Dipartimento di
Ingegneria, Universita di Ferrara, 2005. Available at http://www.ing.unife.
it/informatica/tr/CS-2005-01.pdf.

Marco Gavanelli, Evelina Lamma, Paola Mello, Michela Milano, and Paolo
Torroni. Interpreting abduction in CLP. In Francesco Buccafurri, editor,
APPIA-GULP-PRODE Joint Conference on Declarative Programming, pages
25-35, Reggio Calabria, Italy, September 3-5 2003. Universita Mediterranea
di Reggio Calabria.

J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal
of Logic Programming, 19-20:503-582, 1994.

J. Jaffar, M.J. Maher, K. Marriott, and P.J. Stuckey. The semantics of con-
straint logic programs. Journal of Logic Programming, 37(1-3):1-46, 1998.

A. C. Kakas, R. A. Kowalski, and Francesca Toni. Abductive Logic Program-
ming. Journal of Logic and Computation, 2(6):719-770, 1993.

71

[63]

[64]

[65]

[66]

[67]

[70]

[71]

[72]

A. C. Kakas, R. A. Kowalski, and Francesca Toni. The role of abduction
in logic programming. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 5, pages 235-324. Oxford University Press, 1998.

A. C. Kakas and Paolo Mancarella. On the relation between Truth Mainte-
nance and Abduction. In T. Fukumura, editor, Proceedings of the 1st Pacific
Rim International Conference on Artificial Intelligence, PRICAI-90, Nagoya,
Japan, pages 438-443. Ohmsha Ltd., 1990.

A. C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive Constraint Logic
Programming. Journal of Logic Programming, 44(1-3):129-177, July 2000.

A. C. Kakas, B. van Nuffelen, and M. Denecker. A-System: Problem solving
through abduction. In B. Nebel, editor, Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence, Seattle, Washington, USA
(IJCAI-01), pages 591-596, Seattle, Washington, USA, August 2001. Morgan
Kaufmann Publishers.

A.C. Kakas, Paolo Mancarella, Fariba Sadri, Kostas Stathis, and Francesca
Toni. The KGP model of agency. In R. Lopez de Mantaras and L. Saitta,
editors, Proceedings of the Sixteenth European Conference on Artificial Intel-
ligence, Valencia, Spain (ECAI 2004). 10S Press, August 2004.

R. A. Kowalski and Fariba Sadri. From logic programming towards multi-agent
systems. Annals of Mathematics and Artificial Intelligence, 25(3/4):391-419,
1999.

R. A. Kowalski, Fariba Sadri, and Francesca Toni. An agent architecture that
combines backward and forward reasoning. In B. Gramlich and F. Pfenning,
editors, Proceedings of the CADE-15 Workshop on Strategies in Automated
Deduction, pages 49-56, November 1998.

R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Gener-
ation Computing, 4(1):67-95, 1986.

R.A. Kowalski, Francesca Toni, and G. Wetzel. Executing suspended logic
programs. Fundamenta Informaticae, 34:203-224, 1998.

Robert A. Kowalski. The logical way to be artificially intelligent. In Paolo
Torroni and Francesca Toni, editors, Computational Logic in Multi-Agent Sys-
tems, 6th International Workshop, CLIMA VI, London, UK, June 27-29,
2005, Revised Selected and Invited Papers, Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, 2006.

72

[73]

[74]

[75]

[79]

[80]

[81]

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd ex-
tended edition, 1987.

Paolo Mancarella, Fariba Sadri, Giacomo Terreni, and Francesca Toni. Plan-
ning partially for situated agents. In Joao Leite and Paolo Torroni, editors,
Computational Logic in Multi-Agent Systems, 5th International Workshop,
CLIMA 'V, Lisbon, Portugal, September 29-30, 200/, Revised Selected and In-
vited Papers, volume 3487 of Lecture Notes in Artificial Intelligence, pages
230-248. Springer-Verlag, 2005.

Paolo Mancarella and Giacomo Terreni. An abductive proof procedure han-
dling active rules. In A. Cappelli and F. Turini, editors, AI*IA 2003: Ad-
vances in Artificial Intelligence, Proceedings of the 8th Congress of the Italian
Association for Artificial Intelligence, Pisa, volume 2829 of Lecture Notes in
Artificial Intelligence, pages 105—-117. Springer Verlag, September 23—-26 2003.

J. J. Ch. Meyer. A different approach to deontic logic: Deontic logic viewed
as a variant of dynamic logic. Notre Dame J. of Formal Logic, 29(1):109-136,
1988.

Henry Prakken and Marek Sergot. Contrary-to-duty obligations. Studia Log-
ica, 57(1):91-115, 1996.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-
architecture. In R. Fikes and E. Sandewall, editors, Proceedings of Knowledge
Representation and Reasoning (KRE&R-91), pages 473-484. Morgan Kaufmann
Publishers, April 1991.

R. Reiter. On closed-word data bases. In H. Gallaire and J. Minker, editors,
Logic and Data Bases, pages 55—76. Plenum Press, 1978.

Young U. Ryu and Ronald M. Lee. Defeasible deontic reasoning: A logic
programming model. In J.-J.Ch. Meyer and R.J. Wieringa, editors, Deontic
Logic in Computer Science: Normative System Specification, pages 225-241.
John Wiley & Sons Ltd, 1993.

Fariba Sadri and Francesca Toni. Abduction with negation as failure for active
and reactive rules. In Evelina Lamma and Paola Mello, editors, AT*IA’99: Ad-
vances in Artificial Intelligence, Proceedings of the 6th Congress of the Italian
Association for Artificial Intelligence, Bologna, number 1792 in Lecture Notes
in Artificial Intelligence, pages 49-60. Springer-Verlag, 2000.

Fariba Sadri, Francesca Toni, and Paolo Torroni. An abductive logic program-
ming architecture for negotiating agents. In Sergio Greco and Nicola Leone,

73

[85]

[86]

[93]

editors, Proceedings of the 8th European Conference on Logics in Artificial In-
telligence (JELIA), volume 2424 of Lecture Notes in Computer Science, pages
419-431. Springer-Verlag, September 2002.

Giovanni Sartor. Legal Reasoning, volume 5 of Treatise. Kluwer, Dordrecht,
2004.

Ken Satoh, K. Inoue, K. Iwanuma, and C. Sakama. Speculative computation
by abduction under incomplete communication environments. In Proceedings
of the Fourth International Conference on Multi-Agent Systems, Boston, Mas-
sachusetts, USA, pages 263-270. IEEE Press, 2000.

Ken Satoh and N. Iwayama. A Query Evaluation Method for Abductive Logic
Programming. In K. Apt, editor, Proceedings of the Joint International Con-

ference and Symposium on Logic Programming, Washington, USA, pages 671—
685, Cambridge, MA, 1992. MIT Press.

M. J. Sergot. A query-the-user facility of logic programming. In P. Degano and
E. Sandwell, editors, Integrated Interactive Computer Systems, pages 27—41.
North Holland, 1983.

Murray Shanahan. The event calculus explained. In Michael Wooldridge and
Manuela M. Veloso, editors, Artificial Intelligence Today: Recent Trends and
Developments, volume 1600 of Lecture Notes in Computer Science, pages 409—
430. Springer Verlag, 1999.

Murray Shanahan. An abductive event calculus planner. Journal of Logic
Programming, 44(1-3):207-240, 2000.

Murray P. Shanahan. Reinventing Shakey. In J. Minker, editor, Logic-based
Artificial Intelligence, volume 597 of Kluwer Int. Series In Engineering And
Computer Science, pages 233-253, 2000.

SICStus prolog user manual, release 3.11.0, October 2003. http://www.sics.
se/isl/sicstus/.

M. Singh. Agent communication language: rethinking the principles. IEEFE
Computer, pages 40-47, December 1998.

Societies Of ComputeeS (SOCS): a computational logic model for the de-
scription, analysis and verification of global and open societies of hetero-
geneous computees. I1ST-2001-32530, 2002-2005. Home Page: http://lia.
deis.unibo.it/research/socs/.

The SOCS protocol repository, 2005. Available at http://edub9.deis.
unibo.it:8079/S0CSProtocolsRepository/jsp/index. jsp.

74

[94]

[95]

[96]

[100]

[101]

102]
[103]

[104]

SOCS-ST home page, 2006. http://lia.deis.unibo.it/research/socs_
si/.

P.J. Stuckey. Negation and constraint logic programming. Information and
Computation, 118(1):12-33, 1995.

L. van der Torre. Contextual deontic logic: Normative agents, violations and
independence. Annals of Mathematics and Artificial Intelligence, 37(1):33-63,
2003.

Leendert W. N. van der Torre and Yao-Hua Tan. Diagnosis and decision
making in normative reasoning. Artificial Intelligence and Law, 7(1):51-67,
1999.

P. van Hentenryck and Y. Deville. The Cardinality Operator: A new Logi-
cal Connective for Constraint Logic Programming. In K. Furukawa, editor,
Logic Programming, Proceedings of the Figth International Conference, Paris,
France, volume 2, pages 745-759, 1991.

P. van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation,
and evaluation of the constraint language cc(fd). Technical Report CS-93-02,
Department of Computer Sciences, Brown University, January 1993.

B. van Nuffelen and M. Denecker. Problem solving in ID-logic with aggre-
gates. In Proceedings of the 8th International Workshop on Non-Monotonic
Reasoning, NMR’00, Breckenridge, CO, pages 1-9, 2000.

M. Wooldridge. Introduction to Multi-Agent Systems. John Wiley & Sons,
Ltd., 2002.

G.H. Wright. Deontic logic. Mind, 60:1-15, 1951.

I. Xanthakos. Semantic Integration of Information by Abduction. PhD the-
sis, Imperial College London, 2003. Available at http://www.doc.ic.ac.uk/
~ix98/PhD.zip.

P. Yolum and M.P. Singh. Flexible protocol specification and execution: ap-
plying event calculus planning using commitments. In C. Castelfranchi and
W. Lewis Johnson, editors, Proceedings of the First International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part
11, pages 527-534, Bologna, Italy, July 15-19 2002. ACM Press.

75

