SOCS

A COMPUTATIONAL LOGIC MODEL FOR THE DESCRIPTION, ANALYSIS AND VERIFICATION
OF GLOBAL AND OPEN SOCIETIES OF HETEROGENEOUS COMPUTEES

IST-2001-32530

Further Examples for the functioning
of computees

Project number:

Project acronym:
Document type:
Document distribution:
CEC Document number:
File name:

Editor:

Contributing partners:

Contributing workpackages:

Estimated person months:
Date of completion:

Date of delivery to the EC:
Number of pages:

IST-2001-32530

SOCS

DN (discussion note)

I (internal to SOCS and PO)
I1ST32530/UCY//DN/1/a2
4-a2[MB].ps

Antonis Kakas
UCY,UNIBO

WP4

1

29 January 2004

31 January 2004

33

ABSTRACT

This document is a companion to the document [Aea03b] identifying further testing examples
for the KGP model of computees proposed in deliverable D4 [KMS*03]. These examples are
developed under a common scenario, which was posed in [KMO03] together with challenging
problems to be addressed. They are integrated examples in the sense that they bring together
several of the components of an individual computee and they also involve non-trivially
interaction between computees.

The examples are used to test further several Global Computing requirements of the model
according to the (success) criteria for self-assessment and evaluation put forward in D3. They
are also used to illustrate the integrated functionality of computees where most of their
capabilities and reasoning with their cycle theory need to be involved together and how this
can lead to an enhanced operation of the computees.

Copyright © 2004 by the SOCS Consortium.
The SOCS Consortium consists of the following partners: Imperial College of Science, Technology and Medicine,
University of Pisa, City University, University of Cyprus, University of Bologna, University of Ferrara.

Further Examples for the functioning
of computees

Neophytos Demetriou*,
Antonis Kakas*,
Paolo Torroni™

Departments of Computer Science,
* University of Cyprus, Cyprus
+ University of Bologna, Italy

ABSTRACT

This document is a companion to the document [Aea03b] identifying further testing examples
for the KGP model of computees proposed in deliverable D4 [KMS*03]. These examples are
developed under a common scenario, which was posed in [KMO03] together with challenging
problems to be addressed. They are integrated examples in the sense that they bring together
several of the components of an individual computee and they also involve non-trivially
interaction between computees.

The examples are used to test further several Global Computing requirements of the model
according to the (success) criteria for self-assessment and evaluation put forward in D3. They
are also used to illustrate the integrated functionality of computees where most of their
capabilities and reasoning with their cycle theory need to be involved together and how this
can lead to an enhanced operation of the computees.

Contents

1

2

Introduction

The Music for Beer scenario
2.1 Relevance of Music for Beerto GC

Integrated Examples for WP1: individual interacting computees

3.1 Cycle theory of Peter and John 0oL
3.2 State: Knowledge Bases of the Computees
3.3 Behaviour of the Computees o

Variations on the Standard Integrated Example
4.1 Varying the Goal Decision circumstances and KBgp

Examples for WP1 and WP2: Society expectations

Conclusions

12

17
17

18

20

1 Introduction

The companion document [Aea03b] of this document uses as its basis the Leaving San Vincenzo
scenario [Sta02] to develop testing examples for the KGP model. Another scenario for the
demonstration examples is the Music for Beer scenario. This is taken from the recent work
of [KMO03] who proposed this scenario in order to demonstrate their approach to cooperative
problem solving via Linear Logic. The scenario was presented in [Tor03] as a challenging
problem to be addressed in the SOCS project.

We will use the Music for Beer scenario extending its example in several ways in order
to demonstrate various evaluation criteria for the SOCS model as presented in [LMM™*03].
This scenario complements the Leaving San Vincenzo scenario in demonstrating many of the
same features thus reaffirming the desired properties of the model as general properties. It
also demonstrates additional features particularly pertaining to the interaction between the
computees in their attempt to solve their problems.

The structure of this document is as follows. First we describe the scenario that we will use,
to formulate all examples in this document. We then present a standard integrated example
in this scenario as presented in [KMO03] to test the behaviour of individual and interacting
computees (WP1). Variations of this standard example are developed to test further the model.
Then we present briefly examples that link the behaviour of the interacting computees to the
society that they belong and the expectations that this may raise.

2 The Mwusic for Beer scenario

The Music for Beer scenario. as presented in [KMO03] can be summarised as follows. Two
students (computess for us in this document) John and Peter have the following goals. John
has the goal to listen to music and Peter the goals of retuning his books to the library and
drink beer.

John has 10 Euro!, a CD, and a Broken CD player. He is able to play Music - by doing
so he would consume the resources CD and CDPlayer - and additionally he would be able to
return books to the library at zero cost (its on its way), consuming in this way the resource
Books. Peter has 15 Euro and a bunch of Books to be returned. To get the Beer he needs 25
Euro. He is able to return the Books to the library, by paying 10 Euro for the taxi. He is also
able to repair broken CD Players (whereas John does not have this ability himself).

Both computees are aware of each other but they do not necessarily know each others current
resources or capabilities. Each computee simply knows which of its own goals or subgoals can
be requested without knowing if a request can be satisfied by the other computee or not.Hence
as in the Leaving San Vincenzo scenario we assume that for each computee a subset of the
fluents in its language are like resource that therefore can be requested and exchanged between
computees. For example, for John the fluent working CDPlayer is such a fluent like the
resource of money. Then the computees can request directly from another computee to ”bring
about” the truth or falsity of this fluent.

The main features that will be demonstrated in this scenario are:

e Adaptation of operation and decisions of computee in the face of new information acquired
from other computees or the society at large.

I The original example in [KMO03] uses dollars instead of Euro.

e Negotiation between the two computees in their attempt to satisfy their respective goals.
e Change of plan of a computee to satisfy goals as a result of the negotiation.

e Comparative executions of the same scenario under identical conditions except the policy
of each computee to be cooperative or non-cooperative.

The main focus of this scenario and its examples is to demonstrate how the KGP model of
computee allows for autonomous agents to interact together in different ways (cooperative or
non co-operative) thus distributing their tasks and dynamically adapting there decisions in the
face of new information provided by the other computees.

2.1 Relevance of Music for Beer to GC

The scenario and its examples are designed to test several of the evaluation criteria for the KGP
model of computees in [LMM103] which have been set out to address requirements of Global
Computing. Specifically, this scenario and its examples address the criteria of:

Adaptability: Adjustment where the computee decides to respond differently to requests
depending on the needs it can currently satisfy and/or on the needs that it currently has
for itself.

Adaptability: Adjustment where the computee changes its requests according to new in-
formation from its environment (namely the other computee in this case).

Adaptability: Suspension/Introduction where the computee through its behaviour pat-
tern of operation (defined via its cycle theory) introduces goals of response and prefers to
suspend operation on other goals in favour of such response goals.

Partial Information: Conditional decisions where computees develop plans conditional
on the assumption that a request for a need within the plan will be accepted and thus
provided.

Distribution: Decentralization where a computee decides to achieve a goal with a plan
which also involves other computees. The computee has thus distributed its task.

Heterogeneity: Overall Behaviour where the cycle theory and goal decision preference
policies of a computee regulate its cooperative or not behaviour and the relative im-
portance that a computee gives to requests from other computees.

Heterogeneity: Personality where the personality policy of the computee within its goal
decision policy affects its decisions as to whether to accept or not a request to provide a
need.

The examples to be developed will be integrated examples in the sense that they bring
together several of the components of an individual computee and they also involve non-trivially
interaction between computees. As such they will illustrate the integrated functionality of
computees where most of their capabilities and reasoning with their cycle theory need to be
involved together and how this can lead to an enhanced operation of the computees.

This scenario also tests to a large extend the criterion of Modularity of the KGP model
where modular changes on the cycle theory or the goal decision policy of the computee are
easily accomplished producing different required behaviour.

3 Integrated Examples for WP1: individual interacting
computees

In this section, we will show the behaviour of the two computees John and Peter on a standard
integrated example taken and extended from [KMO3]. This is an integrated example where
several features of the computee model will be illustrated.

We will first define the two computees by giving all their knowledge bases and their cycle
theories and then describe their evolving behaviour in this standard example. In describing the
knowledge bases of the computees we will give their main components here with more details
in the appendices of this document.

3.1 Cycle theory of Peter and John

The cycle theory of the two computees will be the same. This is the normal cycle theory, as
specified in deliverable [Aea03a] and in the companion example document for the Leaving San
Vincenzo scenario [Aea03b], extended to cover a wider spectrum of behaviour. This extension
is given by the following additional rules in the theory TCT;"C’Z?“’.

In the normal cycle theory after a passive observation (POI) the preferred next transition

is goal introduction (GI), as ensured by the following priority rule:

h-p(rponei(S'),rpor«(S,S"))-

In particular, this means that computees perform a goal introduction immediately after they
receive new messages from other computees. The basic rule rpor (S, -) that introduces the
GI transition as the next transition is given by:

rporci(S) : GI(S') « POI(S,0bs, S"), non_terminal(Obs).

where non_terminal(Obs) is defined using the auxiliary predicate terminal/1 which specifies
which communication messages received need no reply (see appendix for details).

More generally, we can impose that if a computee has unanswered messages then this will
give higher priority to goal introduction (GI) in order to decide how to answer these messages.
We achieve this by the following preference rule:

hp(ryc1(S,-),74x(S,) ¢ unanswered(msg(from(_), Message), Trow)-

where unanswered(msg(from(.), Message),Tnow) is an auxiliary predicated (see appendix)
defined via the temporal reasoning capability of the computee and T}, is the current time at
which the cycle theory is called to decide the next transition.

In addition, the normal pattern of behaviour that we will use in our examples gives preference
to planning communication goals and executing communication actions. This is accomplished
via the following preference rules:

hp(rarpr(S,Gs),rar«(S,-)) < communication_goal(G's).

where communication_goal /1 is a heuristic function that selects messaging goals, i.e. goals of
the form msg(to(.), -), and:

h_p(r.ag(S, As),7..(S, -)) + communication_action(As).

where communication_action/1 is also a heuristic function that selects communication actions,
i.e. actions of the form tell(_,.).
The full Tn°7™! theory is found in the first appendix.

cycle

3.2 State: Knowledge Bases of the Computees

In this subsection, we will present the various general knowledge bases, K Bgp, K By, and
K By of the two computees. These will include domain (example) independent parts and parts
of specific knowledge for the examples.

For the standard example both computees will have the same theory of K Bgp encoding the
same policy of deciding how to respond to requests and negotiate. Informally, this policy says:

Accept a request for a need when this does not invalidate your current tasks. Prefer
to get in return for accepting request a need, i.e set terms for accepting, that you
(currently) have. Accept terms when these do not invalidate your current tasks
otherwise if they do ask for alternative terms. When no alternative terms are offered
then you can either accept the last term offered or refuse depending on other criteria
relevant to the your needs and terms. Also you may have reasons to prefer some
terms over other terms.

Needs and Terms are both a list of fluent literals referring to the special set of requestable
fluents. This set of fluents will typically be different for different computees. Terms can be the
empty list. Requests, can be any non-empty set of needs. A special case of a need fluent is
has(Resource) where Resource names a resource.

Below the fluent msg(to(ComputeeName), Message) will denote the property that the
computee, with id Computee Name, has the message, Message, e.g. a request or a response.
Similarly, for msg(from(ComputeeName), Message).

A K Bgp theory consists of three parts. We give the main components of each part here
with more details in the appendix.

e KBYy:

A computee may accept or refuse an (initial) request.

— A computee could accept a request only if it is able to satisfy the given request. A
computee accepts the request under some Terms that are part of its own (current)
needs which it asks in return:

9doeteni ™" (Peer, Reply) :
msg(to(Peer), Reply)[RT] +
unanswered(msg(from(Peer), request(Request)), Thow),
satis fiable(Request),
current_terms(Terms),
Reply = (accept, request(Request), Terms),

response_time(Tpow, RT).

Note that the list of T'erms could be empty in which case the acceptance of the Request
is unconditional. Here the various predicates that appear in the body of this rule are
auxiliary predicates that belong to K B&4S and may refer to the current state (Goals and
Plan) of the computee. These will be presented in the appendix. Similarly, we have a
rule, with name gdii?gfft, that generates a reply of rejection (see appendix) to an (initial)
request.

When a computee is offered Terms to its request these become a request back to it. It
can either accept these (when it can satisfy them) or it can ask for alternative terms, e.g.
when it cannot satisfy them or when they are incompatible with its current needs, etc.

— The case of asking for alternative terms is given by the following rule:

gd,5bei” (Peer, Reply) :
msg(to(Peer), Reply)[RT] +
unanswered(msg(from(Peer), (accept, request(Request), Terms)), Tnow),
unsatis fiable(Terms),
Reply = (reject, response(Request, Terms), alt terms),

response_time(Tpow, RT).

To complete the policy we need to formulate the response policy for the case when alter-
native terms are asked.

— A computee can offer alternative terms when requested to do so:

gdyeteni” ™" (Peer, Reply) :
msg(to(Peer), Reply)[RT] +
unanswered(msg(from(Peer), (reject, response(Request, Terms), alt terms)), Tnow),
alternative_terms(Alt_Terms),
Reply = (accept, request(Request), Alt_Terms),

response_time(Tyow, RT).

Note that alternative_terms/2 (an auxiliary predicate) may return an empty list
and thus this rule also provides t he option for the computee to eventually accept
the initial request with no terms in return (after all its terms offered were rejected).

— If the computee has no alternative terms left to offer then it could reject the request.

gd:E?Z:tSt’alt (Peer, Reply) :
msg(to(Peer), Reply)[RT] <
unanswered(msg(from(Peer), (reject, response(Request, Terms), alt terms)), Tnow);
alternative_terms(Alt_Terms), Alt Terms =],
Reply = (reject, request(Request), []),
response_time(Tpow, RT).

Note that these two last rules are two contradictory options of reply when there are
no alternative terms left.

o K Bgil’i,h: The following priorities are applied on the generation rules above to complete
the preference policy. In general, a computee prefers to accept requests, ie. the rule
gdZiZg;ft”mt has priority over the rule gdii??ﬁft”mt Computees also prefer to accept
with some terms over accepting unconditionally, i.e. with empty terms:

request

gd_prefaccept’cond (Peer, Reply) :
h_p(gdiea“sb* (Peer, (accept, request(R), Terms)),

accept

gdc2tesb* (Peer, (accept, request(R),[]))) « Terms # .

accept

Accepting with empty Terms has no personal gain for a computee and thus a computee
may prefer to reject the request over accepting it with no Terms:

gd_prefrei“st(Peer, Reply) :

reject

h_p(gd-t4““*"* (Peer, Reply),

reject

gdieue s> (Peer, (accept, request(R), []))).-

accept

Then higher order preferences can be used to distinguish between what we might consider a
cooperative and a non-cooperative computee. A simple example for a cooperative computee
gives preference to accepting a request even with no terms:

gd_pref.: g:zsctcept(Peer, Reply) :
h_p(gd_prefrti“st(Peer, Reply), gd_prefr¢1“* (Peer, Reply')).

accept reject

A non cooperative computee gives preference to rejecting a request over accepting it with
no terms. This is captured by::

gd_prefreavest (Peer, Reply) :

non—coop,reject

h_p(gd_pref 9" (Peer, Reply), gd_pref?, .., (Peer, (accept, request(), [])))-

reject accept

e KB4, - Domain Independent:

Both computees contain a domain independent part in their K Bp,, to help them plan
to achieve their message communication goals, i.e. plan how to send a message. We will
assume that this is very simple and that it is simply captured via the rule:

initiates(tell(Peer, msg(from(self), Message)), T, msg(to(Peer), Message)).

i.e. to satisfy a goal of msg(to(Peer), Message), we generate a simple plan with the only
action of tell(Peer, msg(from(Self), Message)).2

2For ease of presentation, we have used a tell action with only two arguments. An action
tell(Peer,msg(from(Self), Message)) stands for tell(Self, Peer,msg(from(Self), Message), D) where D is
a unique dialog id.

More importantly, their K Bpqp contains the following domain independent rules:

initiates(get(from(Peer), Need), T, Need).
precondition(get(from(Peer), Need), ass_promise(from(Peer), Need))).

that allows them, during planning to generate an action get in their plan, when a computee
wants to satisfy a goal or subgoal, Need, that it knows it could be provided by some
computee. In order to execute such a get action the computee needs the precondition of a
promise from the Peer computee from whom it will get the Need. Therefore, in a plan get
will need to be preceded by an action that generates the promise. This is accomplished
by the rule:

initiates(tell(Peer, msg(from(self), request(Need))), T,
ass_promise(from(Peer), Need))

Hence in this way when a computee plans for a (sub)goal, which it knows can be asked
from some other computee, it can generate a plan consisting of a tell action to request
this and assuming that this will succeed (i.e. the request will be accepted) a get action
will achieve the (sub)goal.

Tt is important though that a computee does not execute a get(from(Peer), Need) action
until it has a real promise for the Need after its request for this. One way to ensure that
the computee will indeed wait before executing the get action is to include a suitable check
in the core action selection function, of the cycle theory, so that get(from(Peer), Need)
is selected only if holds_at(promise(from(Peer), Need), Tpow) is true (see appendix).

K Bpion - Domain Dependent:

Following the example as presented in [KMO3] the two computees have the following
simple specific planning knowledge that captures what [KMO03] calls the capabilities of
each agent(computee).

— K Bpjqn for computee John: John can return books and play music. This means that
it knows what these actions do. We express this simply by

initiates(return(Books), T, books_returned(Books))
initiates(play(CD), T, music) « holds_at(working_CD Player,T)
precondition(return(Books), has(Books))
precondition(play(CD), has(CD))
terminates(play(CD), T, has(CD))

— K Bpqn for computee Peter: Peter can repair cd players, return books and buy beer.
Its planning knowledge base thus contains:

initiates(return(Books), T, books_returned(Books)) + holds_at(has(money(books, 10),T)

initiates(buy(beer), T, has(beer)) < holds_at(has(money(beer,25),T)

10

initiates(repair CDPlayer, T, working-C D Player)
precondition(return(Books), has(Books))
precondition(repair_C D Player, neg(working_C D Player))
terminates(buy(beer), T, has(money(beer, 25)))
terminates(return(books), T, has(money(books, 10)))

Note that we could use here a general theory of how needs which are having resources,
e.g. has(money(_) or has(CD) are consumed and when these are available or not. This
is not important for the examples and it is beyond the scope of this example document.
KBrgr and K Bg;

As mentioned above, promises for requests are evaluated using the temporal reasoning
capability of the computee. Both computees contain a domain independent part of K By g
to reason about promises.

A computee keeps a record, via Passive Observation and Action Execution transitions, of
requests and responses as executed actions (i.e. events) in the K By part of its knowledge
base. The K Byg of the computee is then extended with the following axioms so that the
computee can reason from these events to promises held by itself to other computees and
vice-versa.

For an unconditional acceptance (i.e. without terms), we have rules of the form:

initiates(tell(Peer,msg(from(Self), (accept, request(Request),[])), T,
promise(to(Peer), Request)).

Similarly, for promises for terms offered, we have rules such as:

initiates(tell(Sel f,msg(from(Peer), (accept, response(Request, Terms),|[])), T,

promise(from(Peer), Terms))

generating a promise from the Peer computee since it has accepted the computee’s T'erms.

For conditional acceptance the response only initiates a conditional promise pending (for-
ward in time) on the acceptance of the terms asked for. So we have for example:

initiates(tell(Peer, msg(from(Self), (accept, request(Request), Terms))), T,
cond_promise(to(Peer), Request, Terms))

where cond_promise(to(Peer), Request, Terms) means that the computee has promised
the Request provided that the other computee shall promise back the T'erms.

The conditional promise of a request under some terms together with an unconditional
promise of the terms link together to give an unconditional promise of the request. This
is captured rules such as:

initiates(tell(Sel f,msg(from(Peer), (accept, response(Request, Terms),|[]))), T,
promise(to(Peer), Request))
holds_at(cond_promise(to(Peer), Request, Terms), T).

11

The ”book keeping” of recognizing to which requests/responses a computee has al-
ready replied to and which ones are left unanswered is done, as mentioned already
above using the auxiliary (for the cycle theory and K Bgp knowledge base) predicate
of unanswered(msg(from(Sender), Message),T). This is evaluated via the temporal
reasoning capability in a way analogously to promises. The details of this are in the
appendix.

e Initial state of Computees

Finally, initially the state of the two computees contains, according to the standard ex-
ample of [KMO03], the following facts. For John we have:

holds _initially(—~working_C D Player)

holds_initially(has(cd))
holds initially(has(money, 10)).

For Peter we have:
holds initially(has(books))

holds_initially(has(money, 15)).

For both computees, Goals and Plan starts empty.

3.3 Behaviour of the Computees

In this subsection, we describe the behaviour of the two computees on the standard example
of [KMO03]. We give a summary of this behaviour as an operational trace for each computee
stating the next transition and its effect on the state of the computee. At various points
as the example evolves we will show in bold the specific evaluation criterion/characteristic
demonstrated at those points.

The example shows how the integrated capabilities of an individual computee work together
in order for the computee to exhibit various Global Computing characteristics such as adapt-
ability, conditional decisions and decentralization of task. We note again that this example will
also demonstrate how the operation of the computee is enhanced when it uses all its various
capabilities and cycle theory together according to the KGP model proposed in this project.

In general, the two computees start together but operate asynchronously. For this standard
example we will assume only one point of synchronization, namely that the computees start
communicating with each other before they start executing any other actions in their plans.
In the following section of variations of the standard example we will consider (briefly) various
other examples with different synchronization (or lack of synchronization).

In this standard example, we will also not be concerned how the computees generate their
top-level goals (via their GD capability). Again below in the section of variations we will see
examples of this. Hence we assume that the state of the computees starts with empty Plan
and Goals given by:

Goals(John) :
gl = (music[T), L,{T > 10,T < 15})

12

Goals(Peter) :
g7 = (beer[T], L, {T < 20})
= (books_returned(books)[T1], L,{T1 < 20})

Then the behaviour (operational trace) of the computees evolves as follows.

e Next at time 1, via PI transition(s) the two computees plan for these goals changing their

states to:
State(John) :
Goals :
g1 (music[T], L,{T > 10,T < 15})
g} = (working_CDPlayer[T1], g, {})

Plan :
| = (play(cd)[T"), g1, {has(cd)[T"]},{T" < T1})
= (tell(peter,msg(from(john), request(working-C D Player)))[T"],
@ AT <))
al = (get(from(peter) working-C D Player)[T"],
g2, {ass_promise(from(peter), working.CDPlayer)}, {T" < T""})

Note here that John has made some choices in the planning. He has chosen to use his
own cd rather than request one. For the goal working_CDPlayer[T] John knows that
it cannot plan for it (it does not have actions that can bring it about) and therefore he
necessarily treats this as a need which he plans by adding a request action, namely aj.
Note also that we are assuming here that John’s top level goal of music is not of the type
that he can request it.

State(Peter) :
Goals :
beer[T1], L,{T1 < 20})
books_returned(books)[T'2], L, {})

=/
=/
= (has(money(beer, 10))[T1], g7, {})
g4 = (has(money(books, 10))[T2'], g5, {})

Plan :
a? = (tell(john, msg(from(peter), request(has(money(beer, 10)))))[T],
g, {1, {T <T1", T <T2"})
ab = (tell(john, msg(from(peter), request(has(money(books, 10)))))[T"],
g (1, T < T1", T < T2"})
ak = (get(from(john), has(money(beer,10))[T1"], g5,
{ass_promise(from(john), has(money(beer,10)))}, {T1" < T1"'})

13

al = (get(from(john), has(money(books, 10))[T2"], ¢,
{ass_promise(from(john), has(money(books, 10)))}, {T2" < T2"'})
at = (buy(beer)[T1"], g7, {},{T1" < T1})

p
5
af = (return(books)[T2"'], g5, {has(books)}, {T2" < T2})

Note that we have assumed here that when Peter plans for these two goals he uses 15
euros that he has for the goal of drinking beer. Therefore, Peter needs to request 10 euros
for the goal of returning the books, namely g%, and also request 10 euros for buying beer.
We are also assuming that Peter contains rules in its knowledge base that enable him to
reason about the cumulative resource of having money. With this, he can work out what
amount of money he needs with respect to the amount of money it has.

[Distribution - Decentralization]: of goals by requesting tasks from other computees.
[Partial Information - Conditional decisions]: operating in an unknown environment
under the assumption that a computees will accept request made to it.

At time 2 the cycle theory of John will choose an Action Execution (AE) transition for
the communication action a}. Executing this action adds the following in John’s K By:

executed(tell (peter, msg(from(john), request(working_-C D Player))), 2).

Now assume that at time 5 Peter receives this message of request. Then via a POI
transition it ecords in its K By:

observed(msg(from(john), request(working-CD Player)),5).

Peter’s cycle theory will choose as the next transition GI to decide how to respond to
this. The GD capability called by this transition will generate the new goal to accept
this with some terms. We assume that Peter asks as Terms all its current needs, i.e.
[has(money(beer,10)) and has(money(books,10)). We also assume that Peter knows
how to add these two needs together and ask for has(money(20)).

Therefore, goal introduction (GI) for Peter introduces the communication goal of

g4 = (msg(to(john), (accept, request(working_-C D Player),
[has(money(20)))]))[9], L, {},{})

to be achieved by time 9 say, arranged by the auxiliary predicate response_time/2 in
KBgp.

Actually, Peter has a choice here between asking as T'erms 20 euro or 10 euros and the
task of books_returned(books) since we assume that this type of goal is one that can be
possibly asked for from other computees.

Next Peter through a Planning Introduction (PI) for this goal the following action in its
Plan:

ab = (tell(john,msg(from(peter),
(accept, request(working_-C D Player), [has(money(20))])))[T],
91, {H{T <9}))

14

e Peter immediately afterwards at time 5 chooses an AE for this communication action
adding in its K Bo

executed(tell(john, msg(from (peter),
(accept, request(working-C D Player|[T]), { has(money(20))}))), 5)

e John will receive this response through a Passive Observation and record this message in
its K By.

e Then as above for Peter, John’s cycle theory will choose GI to decide on a response and
then PI and AE in order to send the response back to Peter. The GI transition will set
the new goal:

g3 = {(msg(to(peter), (reject, response(working_C D Player, { has(money(20))}), alt terms)[8], L, {},{})

since the GD policy will prefer to ask for alternative terms in view of the fact that it
cannot satisfy the requested terms. The AE transition at time 7 will update John’s K By
by:

executed(tell (peter, msg(from(john),
(reject, response(working_C D Player, { has(money(20))}), alt terms))), 7)

[Adaptability - Adjustment:] of decision to the current circumstances of the computee.

e Now assume that Peter receives this (rejection) message at time 8, via a POI, and therefore
its cycle theory will choose next GI, PI and AE in order to send back a reply in the same
way as we have seen above. The GI transition will produce the new communication goal
that in effect replaces the goal gf:

g% = (msg(to(john), (accept, request(working_C D Player),
{has(money(10))}))[T], L, {},{T < 11})

where the GD capability chooses the preferred answer of asking for the terms of
has(money(10)), selected via the auxiliary predicate alternative terms/2 to satisfy at
least one of its goals.

[Adaptability - Adjustment:] of decision to the new information received.
e Again, via PI and AE transitions, Peter communicates this to John who receives it via a
PO transition and decides (via GI and GD) to accept the terms since now they can be

satisfied.

e John communicates its acceptance of the terms via subsequent PI and AE transitions as
above and Peter receives this acceptance via a new POIL

e This message is a terminal message and when Peter receives it, its cycle theory will not
choose GI now as the next transition as there is no need to reply back.

15

e At this stage, at time 11, the cycle theory for both computees chooses AE transitions
since PI cannot be choosen as there are no unplanned goals in the states of the two
computees. Amongst the actions to be chosen for action execution (AE), the normal
cycle theory will choose the get actions for John and Peter, i.e.:

get(from(peter),working_C D Player) and get(from(john), has(money(10))),

respectively (Peter chooses one of the two get actions for 10 euros that it has).

This is because now, the computees can reason with their Temporal Reasoning capability
(inside the cycle theory) to conclude that promises hold true on either side, i.e.: John will
be able to conclude

promise(from(peter), request(working_C D Player))
holds and similarly, Peter will be able to conclude

promise(from(john), has(money(10))).

[Adaptability - Adjustment:] of decision (of cycle theory now) to new information
received and reasoned from.

e Then, at time 13 say, John will have a working C'DPlayer and its cycle theory would
choose action execution (AE) for the remaining action for play(cd) that generates music
from time 14 onwards.

e John’s operation then continues with GR and PR transitions whose execution makes its
Goals and Plan both empty.

e For Peter at time 13 its cycle theory will choose AE for one of the actions of buy beer or
return books. Let us assume that it chooses the first one. It therefore executes this and
thus satisfies the goal of beer.

o After this the cycle theory of Peter proposes as the next transition to be that of GR since
there are no executable actions left in its plan (the action return(books) is not executable
since its preconditions are now false). This GR will be followed by PR and Peter’s state
becomes such that it only includes the goal:

g5 = (books_returned(books)[T1], L,{T1 < 20})

e The next transition for Peter is a PI transition for this goal that introduces a new plan
that consists of the actions
af = (tell(john, msg(from(peter), request(books_returned(books))))[T1'],
{ass_promise(from(john), books_returned(books))}, {},{T1' < T1"})
ab = (get(from(john), books_returned(books))[T1"],
g5, {ass_promise(from(john), books_returned(books))},{T1" < T1}).

[Adaptability - Adjustment:] different plan (request) is chosen in the face of the new
state of affairs (of no money).

16

e Now, via an action execution (AE) transition Peter will execute aj.

e John will receive (via POI) the message of the request which will prompt a GI
transition to decide his reply. John will accept this unconditionally as he has
no current needs now and so has no terms to ask for in return. John and Pe-
ter both have a KBgp policy for cooperative negotiation. It sends this reply,
msg(from(John)(accept, request(books_returned(books))),[])), via an AE as we have
seen above.

e Now Peter can reason with its Temporal reasoning that he has a promise for the re-
quest and its cycle theory would select an AE transition to execute the get action
get(from(john), books_returned(books)).

e Finally, as there are no actions left Peter’s cycle theory chooses a GR and then PR
transitions that leaves him also with empty Goals and Plan.

4 Variations on the Standard Integrated Example

In this section, we discuss briefly variations of the standard example (from [KMO03]) presented
above in order to show the scope of the solution to this type of problems offered by the KGP
model of computees. Also these variations show strongly the modularity of the KGP model as
local changes in the definition of the computees can accommodate different required behaviour.

There are at least three factors that give interesting variations to the RAP problem. These
are: (1) changing the personalities (e.g. cooperative or non-cooperative) of the two computees,
(2) the relative timing at which each computees top goals are introduced in its state (i.e acquire
top priority via the computees goal decision policy), and (3) the relative timing between the
execution of the different operations of the two computees, e.g. which one requests first and
what it requests.

The examples below mainly demonstrate the Heterogeneity of the computees in their
overall behaviour stemming from their heterogeneity in Personality.

4.1 Varying the Goal Decision circumstances and K Bgp

The standard example has made the assumption that both computees were cooperative, i.e.
they would satisfy a request even if they could not get anything in return. This is exactly what
happens in the latter stages where John satisfies Peter’s request of books_returned(books) even
though he no longer had any needs.

e Non-Cooperative Computees: On the contrary, if John had been a non-cooperative

high request

computee and therefore his KB, included the preference rule gd_pref, ., " oop reject
request

instead of gd_pref,,op accept> then Peter would have not been able to achieve its other
goals. In that case, John would refuse the request of Peter to return the books as he
would not have had any terms to ask for in return. Note that John would still get what
he wants — working_C' D Player — by giving 10 euros in the first round of negotiation.

Note that the only difference between a cooperative and non-cooperative computee is

the modular local change in the KB of replacing the rule gd_pre froauest ¢ With
request

gd—prefnonfcoop,reject .

17

Consider another variation example where the goal of returning books for Peter is of much
higher priority (under the circumstances) and it was therefore the only one introduced initially
in its state and so the only one when John sends its request. Then Peter gets the request from
John to fix the CD player. Peter does not have any current needs as he can achieve his only
goal of returning the books on his own using his 10 euros.

e Cooperative Computees:

— At this stage since Peter has a cooperative K Bgp policy he will decide to uncondi-
tionally accept the request. Then John gets his working CDPlayer and Peter executes
by himself the return of books.

— After this Peter generates as a new top goal to have beer for which he needs an
extra 20 euros from what he has. He plans for this via a request from John but now
John, despite the fact that he is cooperative, he refuses because he cannot satisfy
the request. Peter is left with one of his goals unachieved.

e Non-Cooperative Computees:

— At this stage Peter with a non-cooperative K Bgp policy will reject the request as
currenty he has no terms to ask in return.Therefore John will not be able to satisfy
his goal.

— After this Peter as above will also not be able to satisfy the new goal of beer as his
request of 20 euros will again be rejected.

5 Examples for WP1 and WP2: Society expectations

In this section, we examine another variation of the standard example where now we bring in
the factor of the Society in which the computees operate and the expectations that a society
may raise on the computees.

Expectations are received by computees via Passive Observation introduction at some cur-
rent time 7 and therefore they are recorded in their K By as facts of the form:

observed(E(A, T,C[T]), 1)

where C[T] is a list of temporal constraints, e.g. [T < tans], on the (existential) time T of the
expectation. Note that we have added these inside the expectation so that they be recorded
with the expectation.

e State: K Blg;g The goal decision knowledge base K Bgp of each computee will contain
the following rules in order to reason from expectations of the society to goals and actions
that the society requires it to do.

9dezpectation(Ag) :
goal(Ay[T"), T" < tans +
holds_at(E(A, T, [T < tans]), Tnow),
unsatis fied(goal(A), Tnow),
ground_expectation(A, Trow, Ag)-

18

where E(G,T,[T < tqns)) is an expectation that the computee has become aware off and
updated its K By via a Passive Observation transition. Note that this is really a schema to
generate goals from expectations. For consistency of syntax since expectations are defined
to be actions we have wrapped these with the special predicate ”goal” to make them goals.
We assume that these goals are planned simply by the action that they enclose.

The variables of an expectation are all existentially quantified so we need to
ground them when we are generating goals from them. The auxiliary predicates
ground_expectation(A, Tnow, Ay) do this. It is defined for each type of expectation A
specifically to ground the expectation. For example, for the expectation of replying with
a message we have:

ground_expectation(tell(Asker, Receiver, message((accept, request(Request), []))), Trnow,

tell(Asker, Receiver,msg((accept, request(Need), [])))) «

unanswered(msg(from(Receiver), request(Need)),T).
in order to ground the Request to the Need actually requested.

State: K Bg’f,h Now depending on the type of the computee its K Bgp will also contain
priority rules to assign the relative preference of these goals generated via expectations.
For example, a computee which is totally conforming to the expectations will have a
priority rule:

gd—pTefCOHformant : h—p(gdewpectation (—)7ngame(—)) < Name 7é empeCtation'

Society SOK B We assume that the society contains the following social integrity con-
straint for generating expectations about the behaviour of a computee according to the
”demand” of its manager.

ICl .

H (tell(M anager, Receiver, message(accept, requests(from(Asker), Request)), Deadline),T),
manager(Manager, Receiver) =

E N (tell(Receiver, Asker, message(accept, Request, []), Tans) : Tans < Deadline.

Hence when an event happens where a manager tells a computee to accept requests, e.g.
an event:

H (tell(bob, peter, message(accept, requests(from(john), Request)), tans),2)

where bob is the manager of peter then the expectation is raised for peter to accept
requests from john before t,,;.

Behaviour: We will consider now the standard example described above but where we
will assume that before John executes its request to Peter for working C'D Player the
society posts an expectation that Peter should accept unconditionally (without terms)
requests from John when and if such such a request exists. This expectation is raised by
an event, of:

H (tell(bob, peter, message(accept, requests(from(john), Request)), tans), 1)

19

as described above. Hence the expectation will be:
E(tell(peter, john, message(accept, request(Request),[])), T, [T < tans])
where t,,5 is a fixed deadline by which this expectation must be met by Peter.

— Peter via a POI transition, at time 3 say, will add the following observation in its
KB():

observed(E(tell(peter, john, message(accept, request(n_request), []))), T, [T < tans]),3)-

where n_request is a unique ground term that names the existential variable Request.

— Peter then receives, as in the standard example (via POI), the request for
working_C D Player from John and adds this in its K By exactly as before.

— The next transition for Peter is Goal Introduction (GI) to decide the reply to this
request. But now the Goal Decision capability decides via the expectation generation
rule and its priority over all other rules of KBY% to accept unconditionally this
request. The existential n_request request in the expectation has been grounded
with the particular request of working_C D Player.

Hence Peter updates its Goals with the communication goal:
gb = (msg(to(john), (accept, request(working-C D Player),[]))[9], L, {},{})

Hence we see that get a different behaviour from the standard example where at this
stage the goal g}, is added, instead of g7, where Peter accepts but under the terms
of 20 euros.

— From this stage onwards the example continues in an analogous way. John has a
promise so he executes the get action to get the working_-C D Player and then plays
music. Peter is left with its goals unsatisfied still.

— Then Peter will start executing its tell actions to request the money that it needs
for its goals. Now if John is non-cooperative he will refuse. Then Peter will do GR
and PR and then PI to plan its goals in another way. If John is cooperative he will
accept the request and so Peter will at least be able to satisfy one of its two goals
now. Then it will do GR and PR and then PI to plan it one remaining goals in
another way.

6 Conclusions

We have presented several examples within the Music for Beer scenario that demonstrate the
behaviour of (interacting) computees. This serves to show (additionally to the companion
document [Aea03b]) how the KGP model meets several criteria of Global computing as these
were set out in the evaluation document of [LMM™*03].

The main characteristics that are illustrate through these examples are the autonomy of
computees to make their own decision in an open and changing environment, the heterogeneity
of computees (cooperative or non co-operative), their ability to distribute their tasks and to
adapt their decisions and behaviour in the face of new information e.g. as provided by the other
computees.

20

The relatively complex scenario and examples illustrate how the different capabilities of the
computee are composed together in order to produce the enhanced functionality required by
the global computing setting. They show the synthesis of the isolated components of the model
together with the cycle theory and how it is possible to exploit different parts of the knowledge
of the computee specified modularly in different components of the model.

References

[Aea03a] M. Alberti and A. Bracciali et al. A computational approach to (societies of)
computees. Technical report, SOCS Consortium, 2003. Deliverable D8.

[Aea03b] M. Alberti and A. Bracciali et al. Examples of the functioning of computees and
their societies. Technical report, SOCS Consortium, 2003. Examples Document.

[KMO03] P. Kiingas and M. Matskin. Linear logic, partial deduction and cooperative problem
solving. In J. A. Leite, A. Omicini, L. Sterling, and P. Torroni, editors, Declara-
tive Agent Languages and Technologies, First International Workshop, DALT 2003.
Melbourne, Victoria, July 15th, 2003. Workshop Notes, pages 97-112, 2003.

[KMS103] A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. A logic-based approach
to model computees. Technical report, SOCS Consortium, 2003. Deliverable D4.

[LMM™*03] E. Lamma, P. Mello, P. Mancarella, A. Kakas, K. Stathis, and F. Toni. Self-
assessment: parameters and criteria. Technical report, SOCS Consortium, 2003.
Deliverable D3. Distribution restricted to the GC programme.

[Sta02] K. Stathis. Location-aware socs: The ”leaving san vincenzo” scenario. Technical
report, SOCS Consortium, 2002. IST32530/CITY/002/IN/PP/a2.

[Tor03] P. Torroni. A new example for the demonstration? Technical report, SOCS Con-
sortium, 2003. Presentation Slides, SOCS Meeting, Ferrara, 15-17 September, 2003.

Appendix A: Normal Cycle theory

In this appendix we reproduce the normal cycle theory of computees essentially as given in
deliverable [Aea03a].

The normal cycle theory, specifies a pattern of operation where the computee prefers to
follow a sequence of transitions that allows it to achieve its goals in a way that matches an
expected “normal” behaviour. Basically, the “normal” computee first introduces goals (if it
has none to start with) via GI, then reacts to them, via RE, and then repeats the process of
planning for them, via PI, executing (part of) the chosen plans, via AE, revising its state, via
GR and PR, until all goals are dealt with (successfully or revised away). At this point the
computeee returns to introduce new goals via GI and repeats the process above.

Whenever in this process the computee is interrupted via a passive observation, via POI, it
chooses to introduce new goals via GI, to take into account any changes in the world. Whenever
it has actions which are “unreliable”, in the sense that their preconditions definitely need to
be checked, the computee senses them (via SI) before executing the action. Whenever it has
actions which are “unreliable”, in the sense that their effects definitely need to be checked, the

21

computee actively introduces actions that aim at sensing these effects, via AOI, after having
executed the original actions.
We will also add to this at the end of this appendix an extra element in this normal behaviour
to treat the processing of communication goal and actions with higher priority over other tasks.
The normal cycle theory has (as any other cycle theory) three parts Tinitiat, Toasic, Tinterrupt
and Tpehaviour together with an auxiliary part.

o Tpusic defines the basic cycle steps allowed by the theory. For the normal cycle theory this
consists of the following rules.

— The rules for deciding what might follow an AE transition are as follows:
rappr(S',Gs) : PI(S',Gs) «+ AE(S, As,S'),Gs' = cgs(S',7),Gs" # {}
rap|ae(S', As') : AE(S', As') <~ AE(S, As,S'), As' = cas(S',7), As' # {}
rapjaor(S', Fs) : AOI(S',Fs) + AE(S, As,S"),Fs = cps(S',7),Fs # {}
ragpr(S') : PR(S') + AE(S,S')

Namely, AE could be followed by another AE, or by a PI, or by an AQOI, or by a PR.
Any other possibility, e.g. for GR to follow AE, is excluded within this particular
tﬁnasic theory.

— The rules for deciding what might follow GR are as follows
raripr(S') : PR(S') + GR(S,S")

Namely, GR can only be followed by PR. Indeed, GR and PR are naturally coupled,
since removing some goals in the state might lead to removing some actions.

— The rules for deciding what might follow PR are as follows
rprp1(S') : PI(S',Gs) < PR(S,S'),Gs = cgs(S',7),Gs # {}
rprar(S') : GI(S') + PR(S,S'),Gs = cgs(S',7),Gs = {}

Namely, PR can only be followed by PI or GI, depending on whether there are goals
to plan for or not in the state.

— The rules for deciding what might follow PI are as follows
rprae(S', As) : AE(S', As) < PI(S,Gs,S'),As = cas(S',7),As # {}
rprsi(S', Ps) : SI(S', Ps) < PI(S,Gs,S"), Ps = cps(S',7), Ps # {}

The second rule is here to allow the possibility of sensing the preconditions of an
action before its execution.

— The rules for deciding what might follow GI are as follows
rarre(S’,Gs) : RE(S',Gs) + GI(S,S')
rarpr(S',Gs) : PI(S',Gs) + GI(S,S"),Gs = cgs(S',7),Gs # {}
Namely, GI can only be followed by RE or PI, if there are goals to plan for.

— The rules for deciding what might follow RE are as follows
rre|p1(S',Gs) : PI(S',Gs) + RE(S,S'),Gs = cgs(S',7),Gs # {}
rre|si(S', Ps) : SI(S', Ps) < RE(S,S"), Ps = cps(S',7), Ps # {}

— The rules for deciding what might follow SI are as follows
rsiae(S', As) : AE(S', As) + SI(S, Ps,S'), As = cas(S',7), As # {}
rsipr(S') : PR(S') «+ SI(S, Ps, S')

22

— The rules for deciding what might follow AQOI are as follows
raorae(S',As) : AE(S', As) <~ AOI(S,F's,S"), As = cas(S',7), As # {}
raorar(S') : PR(S') + AOI(S, Fs,S")
raors1(S', Ps) : SI(S', Ps) « AOI(S, Fs,S")Ps = cps(S',7), Ps # {}.
— The Tinterrupt cOmponent of any cycle theory consists of the following rules:
rporiar(S') : GI(S') «+ POI(S,S")
rponre(S') : RE(S') < POI(S,S')
rponar(S') : GR(S') + POI(S,S')
rporipor(S') : POI(S') «+ POI(S,S")

e The Tpehaviour part of the normal cycle theory consists of the following rules:

— GI should be given higher priority if there are no goals in Goals and actions in Plan
in the state: 3

RgI‘T, s hp(rriar(S), rojr (S, X)) < empty_goals(S), empty_plan(S)
for all transitions T, T', T' # GI.

— After GI, the transition RE should be given higher priority:

RG L - hp(rarre(S),ranr(S, X))
for all transitions T' # RE.

— After RE, the transition PI should be given higher priority:
Rﬁﬁrp : hp(rrep1(S,Gs),rre/T(S, X))
for all transitions T # PI;

— After PI, the transition AE should be given higher priority, unless there are actions
in the actions selected for execution whose preconditions are “unreliable” and need
checking, in which case SI will be given higher priority:

Rfjfg‘T s hp(rpriae(S, As),rprr(S, X)) + notunreliable_pre(As)
for all transitions T' # AE;
Rgl iy : hp(rpnsi(S, Ps),rprr(S; As)) < unreliable_pre(As)
for all transitions T # ST,
Here we assume that the auxiliary part of 7Tcyce specifies whether a given set of
actions contains any “unreliable” action, in the sense described above.

— After SI, the transition AE should be given higher priority

R+ hp(rsnan(S; As),rsnr(S, X))
for all transitions T' # AE.

— After AE, the transition AE should be given higher priority until there are no more
actions to execute in Plan, in which case either AOI or GR should be given higher
priority, depending on whether there are actions which are “unreliable”, in the sense
that their effects need checking, or not:

RA% 1+ hp(rap|an(S, As),7ap1(S, X))

3Instead of the conditions empty_goals(S), empty_plan(S) in this rule, we could have these conditions in each
rule in 73445 which indicates as viable any transition that could be a competitor of GI after any given transition.

23

for all transitions T' # AE. Note that, by definition of Ty,si. below, the transition
AE is applicable only if there are still actions to be executed in the state.

Rﬁgm : h_p(rAE|AOI(S, Fs),rAE‘T(S, X)) « BCﬁgI‘T(S, Fs)
for all transitions T' # AOI, where the behaviour condition BC’ﬁgﬂT(S, Fs) is de-
fined (in the auxiliary part) by:
BCﬁgI‘T(S, FS) + empty_executable_plan(S), unreliable_post(S)
Similarly, we have:
RGhr : hp(rapiar(S),mamr(S, X)) + BCSE 1(S)
for all transitions T' # GR where:
BC&%T(S) + empty_executable_plan(S), not unreliable_post(S)

Here, we assume that the auxiliary part of 7.y specifies whether a given set of ac-
tions contains any “unreliable” action, in the sense expressed by unreliable_post, and
defines the predicate empty_executable_plan. Intuitively, empty_executable_plan(S)
succeeds if all the actions which can be selected for execution have already been
executed.

— After GR, the transition PR should have higher priority:
R%‘%‘T : hp(rgripr(S,-),TarT(S))
for all transitions T' # PR;
— After PR, the transition PI should have higher priority:
Rpfr : hp(rpr pr(S,Gs),rpri(S))
for all transitions 7" # PI. Note that, by definition of 7p4s;c below, the transition

PI is applicable only if there are still goals to plan for in the state. If there are no
actions and goals left in the state, then rule Rg Inr would apply.

— After any transition, POI is preferred over all other transitions:
REpip + hp(rripor(S), rryr (S, X))
for all transitions T, T', T' # POI, i.e. POI acts as an interrupt.

Extending the normal cycle theory

The normal cycle theory can be extended to cove an extra element in its normal behaviour to
treat the processing of communication goal and actions with higher priority over other tasks.
This extension is given by the following additional rules in the theory Tmo7mal,

In the normal cycle theory after a passive observation (POI) the preferred next transition

is goal introduction (GI), as ensured by the following priority rule (T" # GI):

hp(rponai(S"),rporr(S,S")).

In particular, this means that computees perform a goal introduction immediately after they
receive new messages from other computees. The basic rule rpor (S, -) that introduces the
GI transition as the next transition is given by:

rporcr(S) : GI(S') « POI(S,0bs, S"), non_terminal (Obs).

24

where non_terminal(Obs) is defined using the auxiliary predicate terminal/1 which specifies
which communication messages received need no reply (see appendix for details).

More generally, we can impose that if a computee has unanswered messages then this will
give higher priority to goal introduction (GI) in order to decide how to answer these messages.
We achieve this by the following preference rule:

hp(rc1(S;) 741+ (S,) unanswered(msg(from(.), Message), Tnow)-

where unanswered(msg(from(.), Message), Tnow) is an auxiliary predicated (see appendix)
defined via the temporal reasoning capability of the computee and T, is the current time at
which the cycle theory is called to decide the next transition.

In addition, the normal pattern of behaviour that we will use in our examples gives preference
to planning communication goals and executing communication actions. This is accomplished
via the following preference rules:

hp(rarpr(S,Gs),rar«(S,-)) + communication_goal(G's).

where communication_goal /1 is a heuristic function that selects messaging goals, i.e. goals of
the form msg(to(-),-), and:

hp(reae(S, As), 1.+ (S,) + communication_action(As).

where communication_action/1 is also a heuristic function that selects communication actions,
i.e. actions of the form tell(_,).

Appendix B: Knowledge Bases of Example Computees

In this appendix we give more details on the different knowledge bases and the cycle theory of
the two computees of Peter and John.

The K Bgp knowledge base

For the standard example both computees will have the same theory of K Bgp encoding the
same policy of deciding how to respond to requests and negotiate. Informally, this policy says:

Accept a request for a need when this does not invalidate your current tasks. Prefer
to get in return for accepting request a need, i.e set terms for accepting, that you
(currently) have. Accept terms when these do not invalidate your current tasks
otherwise if they do ask for alternative terms. When no alternative terms are offered
then you can either accept the last term offerred or refuse depending on other criteria
relevant to the your needs and terms. Also you may have reasons to prefer some
terms over other terms.

Needs and Terms are both a list of fluent literals referring to a special set of fluents. Terms
can be possibly the empty list. Requests, Request, can be any need. A special case of a need
fluent is has(Resource) where Resource names a resource.

Below the fluent msg(to(ComputeeName), Message) will denote the property that the
computee ComputeeName has the Message, e.g. a request or a response. Similarly, for
msg(from(ComputeeName), Message).

A K Bgp theory consists of three parts, K B% KB and K B2

25

e KBY5: There are two possible answers for a request, i.e. either to accept (with terms)
or reject the request.

— A computee can reject a request 4;

gdzi;l-gfft’imt (Peer, Reply) :
msg(to(Peer), Reply)[RT] +
unanswered(msg(from(Peer), request(Request)), Thow),
Reply = (reject, request(Request), []),
response_time(Tpow, RT).
— A computee could accept a request only if it is able to satisfy the given request. A
computee accepts the request under some T'erms that are part of its own (current)
needs which it asks in return:

gdoeten"™" (Peer, Reply) :
msg(to(Peer), Reply)[RT] <

unanswered(msg(from(Peer), request(Request)), Thow),

satis fiable(Request),

current_terms(Terms),

Reply = (accept, request(Request), Terms),

response_time(Tyow, RT).
Note that the list of Terms could be empty in which case the acceptance of the Request
is unconditional. Here the various predicates that appear in the body of this rule are
auxiliary predicates that belong to K B&43 and may refer to the current state (Goals and
Plan) of the computee. Some like satis fiable/1 use the temporla reasoning capability of
the computee.

When a computee is offered Terms to its request this becomes a request back to it. It
can either accept these (when it can satisfy them) or it can ask for alternative terms, e.g.
when it cannot satisfy them or when they are incompatible with its current needs, etc.

— The following rule captures the case when the computee can satisfy the required
terms:

9dgerept - (Peer, Reply)[RT] :
msg(to(Peer), Reply) <
unanswered(msg(from(Peer), (accept, request(Request), Terms)), Tnow),
satis fiable(Terms),
Reply = (accept, response(Request, Terms), []),

response_time(Tpoy, RT).

4Here and below the predicates unanswered and response_time are auxiliary. The first uses temporal
reasoning to evaluate it and we will see more details about it when we describe K Brg.

26

— The case of asking for alternative terms is given by the following rule:

gd, 3o (Peer, Reply) :
msg(to(Peer), Reply)[RT] <
unanswered(msg(from(Peer), (accept, request(Request), Terms)), Tnow),
unsatis fiable(Terms),
Reply = (reject, response(Request, Terms), alt terms),

response_time(Lyow, RT).
To complete the policy we need to formulate the response policy for alternative terms.

— A computee can offer alternative terms when requested to do so:

gdyelesit " (Peer, Reply) :
msg(to(Peer), Reply)[RT] +
unanswered(msg(from(Peer), (reject, response(Request, Terms), alt_terms)), Tnow),
alternative_terms(Alt_Terms),
Reply = (accept, request(Request), Alt_Terms),

response_time(Tyow, RT).

Note that alternative_terms/2 (an auxiliary predicate) may return an empty list
and thus this rule also provides t he option for the computee to eventually accept
the initial request with no terms in return (after all its terms offered were rejected).

— If the computee has no alternative terms left to offer then it can reject the request.

gdii??ﬁft’“lt(Peer, Reply) :
msg(to(Peer), Reply)[RT] +
unanswered(msg(from(Peer), (reject, response(Request, Terms), alt_terms)), Trow),
alternative terms(Alt_Terms), Alt Terms = [],
Reply = (reject, request(Request), []),

response_time(Tpow, RT).

Note that these two last rules are two condradictory options of reply when there are
no alternative terms left.

Finally, we show here other rules that K Bg%h may contain (although these will not
take part in the examples of this document) that relate to the generation of new

goals for a computee as a result of promises that it has made.

A promised need becomes an own goal in order to be able to deliver this as promised.
Hence we have:

27

9dpromise (Peer, Need) :
delivery(Need,to(Peer))[RT] +
holds_at(promise(to(Peer), Need), Thow),
delivery_time(Need, Ty, RT).

where delivery(Need, to(Peer)) are goals of a special type, that informally are sat-
isfied when a computee satisfies the goal Need and then with a final action delivers
(or gives) this to Peer.

o K Bgijgh: The following priorities are applied on the generation rules above to complete
the preference policy. In general, a computee prefers to accept requests, ie. the rule

tinit L ¢ init
gdgigg;f ™Y has priority over the rule gdjg‘;gjf m

gd-prefocept (Peer, Reply) :
h_p(gdie9“cst (Peer, Reply), gd"¢1“** (Peer, Reply')).

accept reject

Computees also prefer to accept with some terms over accepting uncoditionally, i.e. with
empty terms:

gd_prefr¢i“est (Peer, Reply) :

accept,cond

h_p(gd=e® cst* (Peer, (accept, request(R), Terms)),

accept

gd.c1 s> (Peer, (accept, request(R),[]))) < Terms # [].

accept

Accepting with empty Terms has no personal gain for a computee and thus a computee
may prefer to reject the request over accepting it with no Terms:

request

gd-pref, oo (Peer, Reply) :
h_p(gdie9“s"* (Peer, Reply),

reject
gdyeleni”” (Peer, (accept, request(R), [))))-
Then higher order preferences can be used to distinguish between a cooperative or a non-

cooperative computee. A simple example for a cooperative computee gives preference to
accepting a request even with no terms:

gd_prefcr(fg;”t (Peer, Reply) :

accept
h_p(gd_pre fredat’ (Peer, Reply), gd_prefl e (Peer, Reply')).

28

A non cooperative computee gives preference to rejecting a request over accepting it with
no terms. This is captured by::

gd—pref:;?:iej;op,reject (Peer, Reply) :
h-p(gdpref e (Peer, Reply), gd pre fq.,(Peer, (accept, request(.), [])))-
This part of the theory would contain also priority rules to specify the preference between
own goals and promised goals (generated by gdpromise rules) for other computees, de-
pending on the personality of the computee and the relative role of the other computees
to which the promise has been made. As this is beyond the scope of this document we
will not give any details here.

KBES:

KB&4% contains the definition of the special predicate incompatible/2 that renders any
two distinct reply goal messages incompatible:

incompatible((msg(to(Peer), Reply), T), (msg(to(Peer), Reply'),T)) < dif ferent(Reply, Reply')
where dif ferent/2 is defined in the obvious way.

K Bg4% also includes definitions, in terms of an ordinary (normal - but deterministic) logic
program, of the following auxiliary predicates:

— current_terms/1 — Returns a list of terms based on the current needs of the computee
as in its current state. If there are no current needs the returned list is empty.

— alternative terms/2 — Returns a list of terms based on the current needs of the
computee, however, excluding a given list of terms (those terms already rejected by
the other computeee).

— satisfiable/1 — Checks whether it can satisfy a given list of predicates/needs. This
can make use the temporal reasoning capability, e.g. for needs that are resources
it checks whether currently it has such a resource. For more complicated needs it
can also check to see if it can satisfy them through a viable plan using its planning
capability.

— unsatisfiable/1 — True whenever any of the given predicates/needs cannot be sat-
isfied.

— unanswered/2 — Checks whether a message is unanswered at a given timepoint, i.e.
if the computee has not responded to it already. This uses the temporal reasoning
capability. It is explained below in K Brpg.

— communication_goal /1 — Returns a communication goal currentlly present in the
state of the computee.

— communication_action/1 — Returns a communication action currentlly present in
the state of the computee.

— response_time/2 — Given a timepoint (e.g. the current timepoint), it computes an
appropriate response time for a message.

— delivery_time/3 — Given a timepoint (e.g. the current timepoint), and a need it
computes an appropriate delivery time for the need.

Some of these auxixliary predicates are also used by the cycle theory as well.

29

The K By, knowledge base

Both computees contain a domain independent part in their K Bp,, to help them plan to
achieve their message communication goals, i.e. plan how to send a message. We will assume
that this is very simple and that it is simply captured via the rule:

initiates(tell(Peer,msg(from(self), Message)), T, msg(to(Peer), Message)).

i.e. to satisfy a goal of msg(to(Peer), Message), we generate a simple plan with the only action
of tell(Peer,msg(from(Self), Message)).?
More importantly, their K Bpjq, contains the following domain independent rules:

initiates(get(from(Peer), Need), T, Need).
precondition(get(from(Peer), Need), ass_promise(from(Peer), Need))).

that allows them, during planning to generate an action get in their plan, when a computee
wants to satisfy a goal or subgoal, Need, that it knows it could be provided by some computee.
In order to execute such a get action the computee needs the precondition of a promise from
the Peer computee from whom it will get the Need. Therefore, in a plan get will need to be
preceded by an action that generates the promise. This is accomplished by the rule:

initiates(tell(Peer,msg(from(self),request(Need))), T,

ass_promise(from(Peer), Need))

This ass_promise(from(Peer), Need) can be terminated by an action from the Peer that
refuses the requested Need. Specifically,

terminates(tell(Sel f,msg(from(Peer), (reject, request(Need),[]))), T,

ass_promise(from(Peer), Need))

Hence in this way when a computee plans for a (sub)goal, which it knows can be asked
from some other computee, it can generate a plan consisting of a tell action to request this and
assuming that this will succeed (i.e. the request will be accepted) a get action will achieve the
(sub)goal.

It is important though that a computee does not execute a get(from(Peer), Need) action
until it has a real promise for the Need after its request for this. One way to ensure that the
computee will indeed wait before executing the get action is to include a suitable check in the
core action selection function, of the cycle theory, so that get(from(Peer), Need) is selected
only if holds_at(promise(from(Peer), Need), Tpow) is true.

Specifically, the core selection function c4s would need an extra condition check_promise/1
in its definition when the selected action is a get action. This is defined as follows:

check_promise(A) «+
A= ((get(from(Peer), NGEd)J) - = —)7
holds_at(promise(from(Peer), Need), Thow)

5For ease of presentation, we have used a tell action with only two arguments. An action
tell(Peer,msg(from(Self), Message)) stands for tell(Self, Peer,msg(from(Self), Message), D) where D is
a unique dialog id.

30

The computees also have an analogous standard planning theory for deliver actions.

initiates(deliver(Need, to(Peer)), T, delivery(Need, to(Peer))).
precondition(deliver(Need,to(Peer)), Need))).

where again the cycle theory will not allow a deliver action to be selected unless Need holds.
Deliver actions when executed terminate (fulfil) the promise:

terminates(deliver(Need, to(Peer)), T, promise(to(Peer), Need)).

K Bpian - Domain Dependent

Following the example as presented in [KMO3] the two computees have the following sim-
ple specific planning knowledge that captures what [KMO3] calls the capabilities of each
agent(computee).

o K Bpin for computee John: John can return books and play music. This means that it
knows what these actions do. We express this simply by

initiates(return(Books), T, books_returned(Books))
initiates(play(CD), T, music) + holds_at(working_C D Player,T)
precondition(return(Books), has(Books))
precondition(play(CD), has(CD))
terminates(play(CD), T, has(CD))

o K Bpian for computee Peter: Peter can repair cd players, return books and buy beer. Its
planning knowledge base thus contains:

initiates(return(Books), T, books_returned(Books)) + holds_at(has(money(books, 10),T')

initiates(buy(beer), T, has(beer)) < holds_at(has(money(beer,25),T)
initiates(repair _C D Player, T, working_C D Player)
precondition(return(Books), has(Books))
precondition(repair_C D Player, neg(working_-C D Player))
terminates(buy(beer), T, has(money(beer, 25)))

terminates(return(books), T, has(money(books, 10)))

Note that we could use here a general theory of how needs which are having resourses,
e.g. has(money(_) or has(CD) are consumed and when these are available or not. This is not
importnat for the examples and it is beyond the scope of this example document.

31

The K Brr knowledge base

A computee keeps a record (via Passive Observation and Action Execution transitions) of
requests and responses as executed actions (i.e. events) in the K By part of its knowledge base
alongside other actions that it executes, e.g. the get and deliver actions. The K Brpg of the
computee is then extended with the following axioms so that the computee can reason from
these events to promises held by itself to other computees and vice-versa.

For an unconditional acceptance (i.e. without terms), we have the rules:

initiates(tell(Peer,msg(from(Self), (accept, request(Request),|])), T,
promise(to(Peer), Request)

initiates(tell(Sel f, msg(from(Peer), (accept, request(Request), [])), T,
promise(from(Peer), Request).®

Similarly, for promises for terms offered, we have the following two rules:

initiates(tell(Sel f,msg(from(Peer), (accept, response(Request, Terms),|[])), T,
promise(from(Peer), Terms)

initiates(tell(Peer,msg(from(Self), (accept, response(Request, Terms),|])), T,
promise(to(Peer), Terms).

The first rule generates a promise from the Peer computee since it has accepted the com-
putee’s T'erms. The second rule generates a promise to the Peer computee for the Terms it
has asked in exchange of the Request from the computee.

For conditional acceptance the response only initiates a conditional promise pending (for-
ward in time) to the acceptance of the terms asked for. So we have for example:

initiates(tell(Peer,msg(from(Self), (accept, request(Request), Terms))), T,
cond_promise(to(Peer), Request, Terms))

where cond_promise(to(Peer), Request, Terms) means that the computee has promised the
Request provided that the other computee shall promise back the Terms. Also

initiates(tell(Sel f,msg(from(Peer), (accept, response(Request, Terms),|[]))), T,
cond_promise(from(Peer), Request, Terms))

where cond_promise(from(Peer), Request, Terms) means that the computee has promised the
Terms in exchange of the computee to satisfy the Request.

The conditional promise of a request under some terms together with an unconditional
promise of the terms link together to give an unconditional promise of the request. This is
captured by the following rules:

initiates(tell(Sel f, msg(from(Peer), (accept, response(Request, Terms),[]))), T,
promise(to(Peer), Request)) <
holds_at(cond_promise(to(Peer), Request, Terms),T).

32

initiates(tell(Peer,msg(from(Self), (accept, response(Request, Terms),[]))), T,
promise(from(Peer), Request)) +
holds_at(cond_promise(from(Peer), Request, Terms),T).
The book keeping of recognizing to which requests/responses a computee has already replied
to and which ones are left unanswered is done via the temporal reasoning capability, using the
auxiliary predicate unanswered/2.

An unanswered message is defined as a message which was introduced in the state of the
computee as a passive observation and there does not exist a corresponding communication
action to reply back to the sender of the message. This is easily captured via the following
temporal reasoning rules in the K Brg of the computee:

unanswered(msg(from(Sender), Message),T)
holds_at(msg(from(Sender), Message),T),
not terminal(Message).
terminates(tell(Peer, msg(from(Self), Reply)),T,msg(from(Peer), Message))
isreplyto(Reply, Message).
The predicate terminal/1 is an auxiliary predicate that defines which messages do not need a
reply and hence they are considered answered.
terminal ((accept, request(_), X)).
terminal ((accept, response(_,), []))-

terminal((reject, request(_),[])).

The isreplyto/2 predicate defines which message is a reply to a received message.”

isreplyto(Reply, Message) <
Reply = (-, request(Request),),
Message = request(Request).

isreplyto(Reply, Message) <
Reply = (_, response(Request, _),),
Message = (_, request(Request), _).
isreplyto(Reply, Message) <
Reply = (-, request(Request),),
Message = (reject, response(Request,), altierms).
More generally, this definition of isreplyto/2 would refer to unique message ids which we are

not using here for simplicity. The reference in our case is the content of the message itself, i.e.
request(Need) or response(Need, Terms).

"Note that, isreplyto/2 is used here in K Brg as an auxiliary predicate which in the strict syntax of K Brgr
is not allowed. If we want to use the strict syntax, we can apply the definition of isreplyto/2 inside the head of
the aforementioned rule for terminates/2.

33

