Thin Film Photovoltaics

 Thin film modules are fabricated by depositing
extremely thin layers of photosensitive materials
onto a low-cost backing such as glass, stainless

steel or p
e This resu

astic.
ts in lower production costs compared

to the more material-intensive crystalline
technology, a price advantage which is currently
counterbalanced by substantially lower
efficiency rates.



Thin Film Photovoltaics

« Three types of thin film modules are
commercially available at the moment. These
are manufactured from

- amorphous and u-crystalline silicon (a-Si, uc-Si),
- copper indium diselenide (CIS, CIGS)
- cadmium telluride (CdTe).



Advantages of thin film PV
technologies:

savings in material and energy consumption
large area deposition
monolithic integration
energy pay back time

implementation in building industry



Comparison Thin

Table 1.1: Module and cell efficiencies

Technology | Thin Him
Amomhous Cadmium CliG)S
siicon (a-sl) teluride (CdTe)
Cell Efficien- | 5-7% 8-11% 7-11%
cy at STC*
Module
Efficiency
Areaneeded | 151 11 mé 10 e
per kW™ (for
modules)

* Standard Testing Conditions: 25°C, light intensity of 1,0000Wme, airmazs = 1.5

Film - Crystalline

Crystalline wafer based

a-Sim-Si Monocrystalline | Multicrnystaline

8% 16 -10% 14 -15%
13-15% 12 - 14%

12m app. 7 e app. 8 m?

™ KW = kilowatt, Solar PV products and amays ane rated by the power they generate at Standard Testing Corditions



Market Share ¢-Si vs. thin-film

N

Cl= 0.5%

a-sipc-5i 5.2%

Ribbon o-Si 2.2%
Othars 0.1%

CdTe 4.7%

miulti c-=1 45.2% mono c-=i 42.2%

Source: Fhoton Internaticral, March 2008




Thin-film silicon solar cells

Thin-film silicon solar cells usually contain
amorphous silicon layers deposited by plasma
enhanced chemical vapor deposition (PECVD).

*This CVD method has the advantage that large-
area devices can be manufactured at a low
processing temperature, thus facilitating low-cost
solar cells on glass, metal foil, or polymer foill.



Thin Film Si Photovoltaic cells

« Material: Silicon in different phase: amorphous;
microcrystalline; crystalline

 Most common one: amorphous hydrogenated
Si (a-Si:H)
« a-Si:H: short-range order; H plays a role in the

fabrication and in the passivation of dangling
bonds

* Due to deviation from the ideal crystalline
structure the density of states features band
tails; defects lead to mid-gap states
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Architecture for Thin Film
Photovoltaic cells
« Defects cause large recombination rates;

* As a consequence the simple PN junction with
extended neutral regions, requiring large
diffusion length is not suitable

* The P-I-N structure with two thin doped (N, P)
regions and an extended (100 nm — 1um)
intermediate intrinsic (i) region is adopted
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P-1-N Photovoltaics cells

* The workfunction difference between the N and
P regions supports an electric field inside the
intrinsic layer

* Most of carrier generation occurs in the intrinsic
layer (thanks to its large extension)

« Generated carriers drift towards the N
(electrons) and to the P (holes) regions, pushed
by the built-in field



Optical properties of amorphous and
u-crystalline Si

« aSi:H behaves as a direct gap semiconductor
with bandgap of 1.7-1.8 EV

* The absorption rate is large, allowing the use of
thin layers (200 — 400 nm for single-junction
devices)

* u-c Si (nanocrystals embedded in a-Si:H)
features optical characteristics similar to c-Si
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Optical properties of amorphous and
u-crystalline Si

| 5 20 2.3

: Soga, “Nanostructured
materials for solar energy
conversion”, Elsevie, 2006



Amorphous and u-crystalline Si

* The possiblility to control bandgap opens the
opportunity to overcome one of the limitations to
conversion efficiency (loss of hv —E )

* Adoption of multi-junction architecture

e The 1.1 eV — 1.8 eV combination is ideal for the
case of conversion of solar light.

« Additional possible improvement with a three-
junction architecture including an a-SiGe:H
layer



Micromorph TF a-Si:h and uc-Si:H Solar Cells

single-junction
amorphous (a-Si:H)
microcrystalline (uc-Si:H)

surface-textured TCO

Record n (confirmed)
9.5% (a-Si) Un. Neuchatel
10.1% (Mc-Si) Kaneka

double-junction
micromorph
a-Si:H/uc-Si:H

/ /

surface-textured TCO

_ ZnO:Al

7 SIS,
u a-Si:H absorber '
ey

-

uc=Si:H absorber

11.7% (a-Si/ pc-Si) Kaneka
12.4% (a-Si/a-SiGe) USSC*

triple-junction
e.g. a-Si:H/a-SiGe:H/
uc-Si:H

13.0% (Si/SiGe/SiGe) USSC*

Slides from M.Zeman (Delft University of technology) 16



Multi Junction a-Si:H - muc-Si:H
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Multi Junction PV cells

Eg bottom [eV]

1.6
Eo top [eV]

Semi-empirical upper limit of the efficiency g as a function of the
energy gap Eg of the bottom and top cells of a tandem solar cell
Journal of Non-Crystalline Solids 338-340 (2004) 639-645



Si-based Thin-Film Technology

 The common deposition process is Plasma
Enhanced Chemical Vapor Deposition (PECVD)

- RF-generated plasma promotes the deposition of
silicon starting from a gaseous precursor

- Silane (SiH4) molecules dissociate due to
interactions with energetic electrons of the plasma,
generating neutral radicals, molecules and ions

- Reactions in the plasma with formation of species
(Si, H) that permeates through the surface

- Realization of hydrogenated Si network and release
of H

- Deposition rate is critical for defect concentration

19



Si-based Thin-Film PECVD
Technology
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Long-term reliability

« a-Si:H-based PV cells are affected by
degradation (Staebler Wronsky effects)

* This is mainly due to a photo-induced removal
of Si-H bonds that passivate dangling bonds

» This degradation tends to saturate and can be
partially recovered by thermal treatments

21
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Roadmap for THIN FILM SOLAR CELLS

» Process simplification
* Photonic crystals
» Higher performance materials

Module Efficiency > 12 %
Target cost: 0.95 Eu/Wp

Module Efficiency > 15 %
Target cost: 0.65 Eu/Wp

 Improved substrates and light
trapping strategies

. Advanggd techniques for absorber Stable Cell Efficiency > 17 %

deposition

Target cost: < 0.4 Eu/Wp

 High-rate deposition techniques
« Substrate quality improvement

2008 2013 2018 2023



Geometrical light confinement:
surface texturing

ALO

Zn(}
Ti (}3

*The geometrical size of texture elements (w, p, h)
IS typically much smaller than A. 25



Geometrical light confinement:
surface texturing
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I

SEM picture of Asahi
U-Type surface

26



Light trapping techniques

Reflectance

{a) 151 generation (b) 2nd generation
(Flat Back Hefleclor] [ Textured Back Pellacion
with Thuinneer poly-3i Byer)

E.O.E.

Fig. 3. Crosssections through light-trapping microcrystalline siicon solar cell devices: (a) first generation (flat back reflector); (b)
second generation (textured back reflector, thinner polvervstalline sihoon laver).

(b) Wavelength (nm)

K. Yamamoto et al. / Solar Energy 77 (2004) 939-949



Light trapping techniques
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Non Silicon-based thin film PV cells

e CdS, CulnSe2 (CIS) are promising materials for
thin film cells at low cost

« CdS/CIS solar cells offer efficiencies up to 17%
thanks to the large absorption coeff. of CIS

« p-CIS and n-CdS form an heterojunction with
bandgaps 1.02 eV and 2.41 eV, respectively

« CdS acts as a window for photons with hv <
2.41 eV that are absorbed by CIS

« Charge separation occurs at the junction

29



CdS/CIS solar cells

e A —_—
i I, . T
W = |Lgdey +_—-‘fr_-
.H______f ]
.‘_
I I W -l

Fig. |. Energy band dizgram of CIS/CdS lelerajunction.

Soga, “Nanostructured X
materials for solar energy
conversion”, Elsevier, 2006

0



CdTe — based thin-film PV cells

Among the candidates for thin-film solar cells capable
CdTe has shown considerable promise

CdTe has the advantage of a nearly ideal band gap for
solar terrestrial photoconversion (1.45 eV) and a short
absorption length when compared to grain sizes
typically encountered

This latter property reduces recombination at grain
boundaries a major problem with other polycrystalline
materials

As a result, a large fraction of the photogenerated
carriers are generated within the depletion layer
allowing more efficient collection. 31



CdTe — based thin-film PV cells

« Because it is difficult to produce thin-film CdTe
solar cells with thin n-CdTe layers,
heterojunctions utilizing wide-band-gap n-type
semiconductors and p-CdTe are most common

e CdS has a band gap of 2.42 eV and is the most
commonly employed heterojunction partner to
p-CdTe due to its similar chemical properties.

* Necessity to use a small thickness of CdS for
enhanced short-wavelength response.

32



CdTe — based thin-film PV cells
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FIG. 2. Current-voltage characteristics of a thin-film CdS/CdTe solar  FIG. 3. The quantum efficiency of the thin-film CdS/CdTe solar cell
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J. Britt and C. Ferekides Appl. Phys. Lett., Vol. 82, No. 22, 31 May 1993
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CdTe — based thin-film PV cells

» Recently, cheap fabrication process have been
developed and this technology is gaining great

relevance

» Approximately 10% efficiency at less than

1$/Watt insta

e Prospect for -

led

2% efficiency in commercial

products by 2012

34



CdTe — based thin-film PV cells

R ST e A 1 Mwatt PV field
B Sy e v ] ) installed on the roof
of the Bentegodi

Stadium in Verona
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