Programming Multi-Agent Systems in
AgentSpeak Using Jason

Published by John Wiley & Sons Ltd., October 2007.

http://jason.sf.net/iBook/

http://jason.sf.net/jBook/
http://jason.sf.net/jBook/

AgentSpeak

e QOriginally proposed by Rao [MAAMAW 1996]
e Programming language for BDI agents

e Elegant notation, based on logic programming

e Inspired by PRS (Georgeff & Lansky), dMARS (Kinny), and BDI Logics (Rao &
Georgeff)

e Abstract programming language aimed at theoretical results

Syntax of AgentSpeak

e The main language constructs of AgentSpeak are:

e Beliefs
e (Goals

e Plans

e The architecture of an AgentSpeak agent has five main components:

e Belief Base
e Plan Library
e Set of Events

e Set of Intentions

Syntax of AgentSpeak (Beliefs and Goals)

e Beliefs represent the information available to an agent (e.g., about the
environment or other agents)

publisher(wiley)

e Goals represent states of affairs the agent wants to bring about (come to
believe, when goals are used declaratively)

e Achievement goals:
lwrite (book)
Or attempts to retrieve information from the belief base

¢ Test goals:

?publisher (P)

Syntax of AgentSpeak (Events and Plans)

e An agent reacts to events by executing plans
e Events happen as a consequence to changes in the agent’s beliefs or goals
® Plans are recipes for action, representing the agent’s know-how
e An AgentSpeak plan has the following general structure:
triggering event : context <- body.

® where:
e the triggering event denotes the events that the plan is meant to handle;
¢ the context represent the circumstances in which the plan can be used,;

¢ the body is the course of action to be used to handle the event if the context is
believed true at the time a plan is being chosen to handle the event.

Syntax of AgentSpeak (Plans Cont.)

e AgentSpeak triggering events:

+b (belief addition)
-b (belief deletion)

achievement-goal addition)

g (
g (achievement-goal deletion)
(

+?g (test-goal addition)

-?g (test-goal deletion)

e The context is logical expression, typically a conjunction of literals to be
checked whether they follow from the current state of the belief base

e The body is a sequence of actions and (sub) goals to achieve.

e NB: This is the original AgentSpeak syntax; Jason allows other things in the
context and body of plans.

AgentSpeak Plans

+green patch(Rock)
not battery charge(low)
<- ?location(Rock,Coordinates);
lat (Coordinates);
lexamine (Rock).

+!lat (Coords)
not at(Coords)
& safe path(Coords)
<- move towards(Coords);
lat (Coords).

+!lat (Coords)

Jason

e Jason implements the operational semantics of a variant of AgentSpeak

¢ \arious extensions aimed at a more practical programming language

e Platform for developing multi-agent systems

e Developed by Jomi F. Hibner and Rafael H. Bordini

e \We'll look at the Jason additions to AgentSpeak and its features

Percepts

Messages

Reasoning Cycle

1
perceive

3
checkMail

»| Belief

Percepts

External
Events

Beliefs Base

External
Events | Events

4
Beliefs to
SocAcc Add and
Delete

Messages

Suspended Intentions
(Actions and Msgs)

-

Beliefs

Relevant
Check Plans
Context

Applicable
Plans

Intended
W Means

Selected
Event

Selected
Intention

Intentions

Push
New Plan

Plan
Library

/

Beliefs

10
Execute

Intention

Updated

Intention

Messages

>

Reasoning Cycle (Steps)

. Perceiving the Environment

. Updating the Belief Base

. Receiving Communication from Other Agents

. Selecting ‘Socially Acceptable’ Messages

. Selecting an Event

Reasoning Cycle (Steps)

6. Retrieving all Relevant Plans

/. Determining the Applicable Plans

8. Selecting one Applicable Plan

9. Selecting an Intention for Further Execution

10. Executing one step of an Intention

10. IntentionkExecution

. Environment actions

b. Achievement goals

. lest goals

. Mental notes

. Internal actions

f. EXpressions

Selief Annotations

e Annotated predicate:

ps(ti;..«,tn)[Q1,¢ .. ,an]

where a; are first order terms

e All predicates in the belief base have a special annotation source(si)
where s; € {self,percept} U AgId

—xample of Annotations

e An agent’s belief base with a user-defined doc annotation (degree of
certainty)

blue(boxl)[source(agl)].
red(boxl)[source(percept)].
colourblind(agl)[source(self),doc(0.7)].
lier(agl)[source(self),doc(0.2)].

Plan Annotations

e Plan labels also can have annotations (e.g., to specify meta-leval information)

e Selection functions (Java) can use such information in plan/intention selection

e Possible to change those annotations dynamically (e.g., to update priorities)

e Annotations go in the plan label

Annotated Plan Example

QaPlan]
chance of success(0.3),
usual payoff(0.9),

any other property]
+1g(X)
c(t)
<- a(X).

Strong Negation

e The operator ‘~’ is used for strong negation

+!leave (home)
: not raining & not ~raining

<- open(curtains); ...

+!leave (home)
: not raining & not ~raining

<- .send(mum,askOne,raining); ...

Belief-

® Prolog-like rules in the belief base
likely color(0bj,C)
:— colour(Obj,C)[degOfCert(D1l)]
& not (
colour (Obj,)[degOfCert(D2)]
& D2 > D1)

& not ~colour(C,B).

Handling Plan Failure

e Goal-deletion events were syntactically defined, but no semantics

e \\We use them for a plan failure handling mechanism (probably not what they
were meant for)

e Handling plan failures is very important as agents are situated in dynamic
environments

e A form of “contingency plan”, possibly to “clean up” before attempting
another plan

Contingency —xample

e To create an agent that is blindly committed to goal g:

<- true.

Internal Actions

e Unlike actions, internal actions do not change the environment
e Code to be executed as part of the agent reasoning cycle

e AgentSpeak is meant as a high-level language for the agent’s practical
reasoning

¢ |Internal actions can be used for invoking legacy code elegantly

Internal Actions (Cont.)

e | ibraries of user-defined interal actions

lib name.action name(...)

¢ Predefined internal actions have an empty library name

¢ |nternal action for communication

.send(r,I|f,pc) where I €
{tell,untell,achieve,unachieve,
askOne,askAll,askHow,
tellHow,untellHow}

Internal Actions (Cont.)

e Examples of BDI-related internal actions:

.desire(literal)
.intend(literal)

.drop desires(literal)
.drop 1ntentions(literal)

e Many others available for: printing, sorting, list/string operations, manipulating
the beliefs/annotations/plan library, creating agents, waiting/generating
events, etc.

A Jason Plan

+green patch(Rock)

~battery charge(low)
& .desire(at())

<- .drop desires(at());
dip.get coords(Rock, Coords);
lat (Coords);

lexamine (Rock).

AgentSpeak X Prolog

e With the Jason extensions, nice separation of theoretical and practical
reasoning

e BDI arcthicture allows
* long-term goals (goal-based behaviour)
* reacting to changes in a dynamic environment
e handling multiple foci of attention (concurrency)

e Acting on an environment and a higher-level conception of a distributed
system

e Direct integration with Java

MAS Configuration File

e Simple way of defining a multi-agent system

MAS my system {

infrastructure: Jade

environment: MyEnv

ExecuctionControl: ...

agents: agl; ag2; ag3;

MAS Definition (Cont.)

e |nfrastructure options: Centralised, Saci, Jade
e Easy to define the host where agents and the environment will run

¢ |f the file name with the code is unusual

agents:
agl at hostl.dur.ac.uk;

agents: agl filel;

MAS Definition (Cont.)

e Multiple instances of an agent
agents: agl #10;
¢ |Interpreter configuration

agents: agl [conf=option];

e Configuration of event handling, frequency of perception, system messages,
user-defined settings, etc.

Agent Customisation

e Users can customise the Agent class to define the selection functions, social
relations for communication, and belief update and revision

e selectMessage()
e selectEvent()

¢ selectOption()

¢ selectintention()
e socAcc()

e buf()

e brf()

Overall Agent Architecture

e Users customise the AgentArch class to change the way the agent interacts
with the infrastrcuture: perception, action, and communication

e Helps switching between simulation for testing and real deployment

e perceive()
e act()

e sendMsg()
e broadcasty)

e checkMail()

Belief Base Customisation

e |_ogical belief base might not be appropriate for large applications

e Jason has an alternative belief base combined with a database

e Users can create other customisations

e add()
e remove()
e contains()

e getRelevant|()

Customised MAS

MAS Custom {
agents:
al agentClass MyAg
agentArchClass MyAgArch

beliefBaseClass Jason.bb.JDBCPersistentBB
"org.hsqgldb. jdbcDriver"”,
"jdbc:hsgldb:bookstore”,

"[count exec(1l,tablece)]”);

—nvironments

* |n actual deployment, there will normally be an environment where the agents
are situated

e As discussed earlier, the AgentArchitecture needs to be customised to get
perceptions and act on such environment

e \We often want a simulated environment (e.g., to test a MAS application)

e This is done in Java by extending Jason’s Environment class and using
methods such as addPercept(String Agent, Literal Percept)

Jason for |Edit

866 jEdit - robot.as! (modified)

SmOs7 48 00«08 AX & 18] & @

g ' # robot.as! (/Users/jomi/jason/examples / DomesticRobot /)
4 robot.as! ' © DomesticRobot.mas2j O owner.as| Frobotasl < supermarket.as! |
§ SINERCEILIN Y/* Initial beliefs and rules */
£ +1has(owner beer)
& +1has{owner, beer)
§ -thasl_,.)
§ +latirobot,P)
§ «lat(robot,P)
§ +delivered(beer,Qt
§ +sockibeer,0)
§ +stockibeer,N)
& +7Ume(T)

available(beer,fridge). // initially, I believe that there are some beer in t
Timit(beer,10). // my owner should not consume more than 10 beers a

too_much(B) :=-
.date(YY,MM,DD) & .count(consumed(YY,MM,DD,_,_,_,B),QtdB) &
Timit(B,Limit) & QtdB > Limit.

H
3
&
5
[
7
8|
9

|/* Plans */

+!has(owner,beer) : available(beer,fridge) & not too_much(beer)
<- lat(robot,fridge);
open(fridge);
get(beer);
close(fridge);
tat(robot,owner);
hand_in(beer);
?has(owner, beer);

[SIUGUTEBBNERT Project Viewer|Ant Farm | 4| %
ek

P
- O v &

- e
o @ o

“Jason console 1 Project agents
'Lounching DomesticRobot .mas2] || robor,

Parsing project file... parsed successfully! owner,
Parsing AgentSpeok file 'supermarket.asl'... parsed successfully! supermarket.

‘ e
(=) Ver [x]w|Error List EGRIDE
13,20 Top (as!,none,ISO-BB859-1)- - - - UNEIIEMb

Jason’s Mind Inspector

:: Jason Mind Inspector :: cycle 22 ::

~Agent Inspection

Inspection of agent r1 (cycle #12)

- Beliefs pos(back,3,0)
pos(r1,3,0)
pos(r2,3,3)

[source(self)]
[source(percept)]®
[source(percept)]”

garbage(r1)[source(percept)]'

Sel Trigger Intention
X +lensure_pick(garb) 4

+ Options

- Intentions Sel Id Pen Intended Means Stack (show details)

X 4 +lensure_pick(S) {S=garb}
+Itake(S,L) {S=garb,L=r2}
+Icarry_to(R) {R=r2,Y=0,X=3}
+garbage(r1)[source(percept)]

Pend Feed Sel Term Result Intention

X X pick(garb) false 4

~Agent History

1 1 1 | | 1 ! ! | | 1 1

| ! |
Cycle 0 10 20 Cycle 22

'B* Run!| S cycle(s) for all agents v view as: html B:

Jason
Ope

under GNU LGPL at:

IS avallable
N Source

http://jason.sf.net

(kindly hosted by
Sourceforge)

by Gustave Moreau (1865)

Qil on canvas, 204 x 115.5 cm.
Musée d'Orsay, Paris.

© Photo RMN. Photograph by
Hervé Lewandowski.

http://jason.sf.net
http://jason.sf.net

WILEY SERIES |N AGENT TECHNOLOGAY WILEY

programming
multi-agent systems

in AgentSpeak
using Jason £

et Moy

’
¥

Rafael H. Bordini
Jomi Fred Hiibner
Michael Wooldridge

