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Intuitive Idea of Self-Organisation

I Self-organisation generally refers to the internal process
leading to an increasing level of organisation

I Organisation stands for relations between parts in term of
structure and interactions

I Self means that the driving force must be internal, specifically,
distributed among components



History of Self-Organisation

I The idea of the spontaneous creation of organisation can be
traced back to René Descartes

I According to the literature, the first occurrence of the term
Self-Organisation is due to a 1947 paper by W. Ross Ashby
[Ashby, 1947]

I Ashby defined a system to be self-organising if it changed its
own organisation, rather being changed from an external
entity



Elements of Self-Organisation

I Increasing order — due to the increasing organisation

I Autonomy — interaction with external world is allowed as
long as the control is not delegated

I Adaptive — suitably responds to external changes

I Dynamic — it is a process not a final state



Self-Organisation in Sciences

I Initially ignored, the concept of self-organisation is present in
almost every science of complexity, including

I Physics
I Chemistry
I Biology and Ecology
I Economics
I Artificial Intelligence
I Computer Science



History of Emergence

I Emergence is generally referred as the phenomenon involving
global behaviours arising from local components interactions

I Although the origin of the term emergence can be traced back
to Greeks, the modern meaning is due to the English
philosopher G.H. Lewes (1875)

I With respect to chemical reactions, Lewes distinguished
between resultants and emergents

I Resultants are characterised only by their components, i.e.
they are reducible

I Conversely, emergents cannot be described in terms of their
components



Definition of Emergence

I We adopt the definition of emergence provided in
[Goldstein, 1999]

Emergence [..] refers to the arising of novel and coherent
structures, patterns, and properties during the process of
self-organisation in complex systems. Emergent
phenomena are conceptualised as occurring on the macro
level, in contrast to the micro-level components and
processes out of which they arise.



Emergence vs. Holism

I Emergence is often, and imprecisely, explained resorting to
holism

I Holism is a theory summarisable by the sentence the whole is
more than the sum of the parts

I While it is true that an emergent pattern cannot be reduced
to the behaviour of the individual components, emergence is a
more comprehensive concept



Properties of Emergent Phenomena

I Novelty — unpredictability from low-level components

I Coherence — a sense of identity maintained over time

I Macro-level — emergence happens at an higher-level w.r.t. to
components

I Dynamical — arise over time, not pre-given

I Ostensive — recognised by its manifestation



Requirements for Emergency

I Emergence can be exhibited by systems meeting the following
requirements

I Non-linearity — interactions should be non-linear and are
typically represented as feedback-loops

I Self-organisation — the ability to self-regulate and adapt the
behaviour

I Beyond equilibrium — non interested in a final state but on
system dynamics

I Attractors — dynamically stable working state



Definition of Self-Organisation

I Consider the widespread definition of Self-Organisation
provided in [Camazine et al., 2001]

Self-organisation is a process in which pattern at the
global level of a system emerges solely from numerous
interactions among the lower-level components of the
system. Moreover, the rules specifying interactions
among the system’s components are executed using only
local information, without reference to the global pattern.



Definition of Self-Organisation

I It is evident that the authors conceive self-organisation as the
source of emergence

I This tendency of combining emergence and self-organisation is
quite common in biological sciences

I In the literature there is plenty of misleading definitions of
self-organisation and emergence [De Wolf and Holvoet, 2005]



Self-Organisation of Matter

I Self-organisation of matter happens in several fashion

I In magnetisation, spins spontaneously align themselves in
order to repel each other, producing and overall strong field

I Bérnard Rolls is a phenomena of convection where molecules
arrange themselves in regular patterns because of the
temperature gradient

Figure: The left hand side picture display Bérnard Rolls. The right hand
side picture display the magnetisation phenomena.



Belousov-Zhabotinsky Reaction I

I Discovered by Belousov in the 1950s and later refined by
Zhabontinsky, BZ reactions are a typical example of far from
equilibrium system

I Mixing chemical reactants in proper quantities, the solution
color or patterns tend to oscillate

I These solutions are referred as chemical oscillators

I There have been discovered several reactions behaving as
oscillators



Belousov-Zhabotinsky Reaction II

Figure: A snapshot of the Belousov-Zhabotinsky reaction.



Prey-Predator Systems

I The evolution of a prey-predator systems leads to interesting
dynamics

I These dynamics have been encoded in the Lotka-Volterra
equation [Solé and Bascompte, 2006]

I Depending on the parameters values the system may evolve
either to overpopulation, extinction or periodical evolution

Figure: The Lotka-Volterra equation.



Lotka-Volterra Equation

Figure: A chart depicting the state space defined by the Lotka-Volterra
equation.



Synchronised Flashing in Fireflies I

I Some species of fireflies have been reported of being able to
synchronise their flashing [Camazine et al., 2001]

I Synchronous flashing is produced by male during mating

I This synchronisation behaviour is reproducible using simple
rules

I Start counting cyclically
I When perceive a flash, flash and restart counting



Synchronised Flashing in Fireflies II

Figure: A photo of fireflies flashing synchronously.



Schools of Fishes

Figure: School of fishes exhibit coordinated swimming: this behaviour
can be simulated based on speed, orientation and distance perceptions
[Camazine et al., 2001].



Flocks of Birds

Figure: The picture displays a flock of geese: this behaviour can be
simulated based on speed, orientation and distance perceptions
[Camazine et al., 2001].



Insects Colonies

I Behaviours displayed by social insects have always puzzled
entomologist

I Behaviours such as nest building, sorting, routing were
considered requiring elaborated skills

I For instance, termites and ants build very complex nests,
whose building criteria are far than trivial, such as inner
temperature, humidity and oxygen concentration



Termites Nest in South Africa

Figure: The picture displays the Macrotermes michealseni termite mound
of southern Africa.



Definition of Stigmergy

I In a famous 1959 paper [Grassé, 1959], Grassé proposed an
explanation for the coordination observed in termites societies

The coordination of tasks and the regulation of
constructions are not directly dependent from the
workers, but from constructions themselves. The worker
does not direct its own work, he is driven by it. We name
this particular stimulation stigmergy.



Elements of Stigmergy

I Nowadays, stigmergy refers to a set of coordination
mechanisms mediated by the environment

I For instance in ant colonies, chemical substances, namely
pheromone, act as markers for specific activities

I E.g. the ant trails between food source and nest reflect the
spatial concentration of pheromone in the environment



Trail Formation in Ant Colonies

Figure: The picture food foraging ants. When carrying food, ants lay
pheromone, adaptively establishing a path between food source and the
nest. When sensing pheromone, ants follow the trail to reach the food
source.



Simulating Food Foraging

Figure: The snapshots display a simulation of food foraging ants
featuring a nest and three food sources. Ants find the shortest path to
each sources ad consume first the closer sources. When no longer
reinforced, the pheromone eventually evaporates.



Stigmergy and the Environment

I In stigmergy, the environment play a fundamental roles,
collecting and evaporating pheromone

I In its famous book [Resnick, 1997], Resnick stressed the role
of the environment

The hills are alive. The environment is an active process
that impacts the behavior of the system, not just a
passive communication channel between agents.



Swarm Intelligence

I Is a problem solving approach inspired by collective behaviours
displayed by social insects
[Bonabeau et al., 1999, Bonabeau and Théraulaz, 2000]

I It is not a uniform theory, rather a collection of mechanisms
found in natural systems having applications to artificial
systems

I Applications of Swarm Intelligence include a variety of
problems such as task allocation, routing, synchronisation,
sorting

I In Swarm Intelligence, the most successful initiative is Ant
Colony Optimisation



ACO: Ant Colony Optimisation

I ACO [Dorigo and Stützle, 2004] is a population-based
metaheuristic that can be used to find approximate solutions
to difficult optimisation problems

I A set of software agents called artificial ants search for good
solutions to a given optimisation problem

I To apply ACO, the optimisation problem is transformed into
the problem of finding the best path on a weighted graph

I ACO provided solutions to problems such as VRP-Vehicle
Routing Problem, TSP-Travelling Salesman Problem and
packet routing in telecommunication networks



Amorphous Computing

amorphous medium. All of the particles have the same
program. As a result of the program, the particles “dif-
ferentiate” into components of the pattern.

Coore’s language represents processes in terms of
the botanical metaphor of “growing points.” A grow-
ing point is an activity of a group of neighboring com-
putational particles that can be propagated to an
overlapping neighborhood. Growing points can split,
die off, or merge with other growing points. As a grow-
ing point passes through a neighborhood, it may mod-
ify the states of the particles it visits. We can interpret
this state modification as the growing point laying
down a particular material as it passes. The growing
point may be sensitive to particular diffused messages,
and in propagating itself, it may exhibit a tropism
toward or away from a source, or move in a way that
attempts to keep constant the “concentration” of some
diffused message. Particles representing particular
materials may “secrete” appropriate diffusible messages
that attract or repel specific growing points.

Figure 1 shows a fragment of a program written in
GPL; the program defines a growing point process

called make-red-branch
that takes one parameter
called length. This grow-
ing point “grows” material
called red-stuff in a
band of size 5. It causes
each particle it moves
through to set a state bit
that identifies the particle
as red-stuff and also
causes the particle to prop-
agate a wave of extent 5
hops that similarly converts
nearby particles to be red-
stuff. The growing point
moves according to a tro-
pism that directs it away
from higher concentrations
of red-pheromone in
such a way that the concen-
trations of pheromone-1
and pheromone-2 are kept
constant, so as to avoid any
source of green-
pheromone. All particles
that are red-stuff secrete
red-pheromone; conse-
quently, the growing point
tends to move away from
the material it has already
laid down. The value of the
length parameter deter-

mines how many steps the growing point moves.
Notice how this language encourages the program-

mer to think in terms of abstract entities, like growing
points and pheromones. The GPL compiler translates
these high-level programs into an identical set of direc-
tives for each of the individual computational particles.
The directives are supported by the GPL runtime sys-
tem running on each particle. In effect, the growing
point abstraction provides a serial conceptualization of
the underlying parallel computation.

Figure 2(a) shows the first stages of a pattern being
generated by a program in GPL. For simplicity, we
assume the horizontal bands at the top and bottom
were generated earlier, and that an initial growing
point is at the left. Growth proceeds, following a tro-
pism that tries to stay equidistant from the top and
bottom bands. After a short while, the initial growing
point splits in two; one branch of growth is attracted
toward the top, and one is attracted toward the bot-
tom. Figure 2(b) shows the process somewhat further
along; the two branches, which are repelled by short-
range pheromones secreted by the top and bottom
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Figure 2. Evolution of a complex design—the connection graph of 
a chain of CMOS inverters—being generated by a program in Coore’s

growing-point language. (a) An initial “poly” growth divides to form two
branches growing toward “Vdd” and “ground.” (b) The branches 
start moving horizontally and sprout pieces of “diffusion.” (c) The 

completed chain of inverters.

a. b.

c.

 

Figure: An amorphous computing [Abelson et al., 2000] medium is a
system of irregularly placed, asynchronous, locally interacting identical
computing elements.



Autonomic Computing

I An industry driven research field initiated by IBM
[Kephart and Chess, 2003], mostly motivated by increasing
costs in systems maintenance

I Basic idea: applying self-organising mechanisms found in
human nervous system to develop more robust and adaptive
systems

I Applications range from a variety of problems such as power
saving, security, load balancing



Robocup I

By the year 2050, develop a team of fully autonomous
humanoid robots that can win against the human world
soccer champion team.

I Robocup objective consists in pushing robotics research
applying the techniques developed to eventually win soccer
match

I Robocup matches are organised in leagues reflecting different
robot capabilities

I Self-organising techniques are extensively applied since the
robots have to be autonomous rather than remotely controlled



Robocup II

Figure: A few robots that have participated to Robocup 2006 edition.



SWARM-BOTS

Figure: SWARM-BOTS [Dorigo et al., 2005] was a project funded by
European Community tailored to the study of self-organisation and
self-assembly of modular robots.



AGV – Automated Guided Vehicles

I Stigmergy has been successfully applied to several
deployments of Automated Guided Vehicles
[Weyns et al., 2005, Sauter et al., 2005]

I Basically, the AGVs are driven by digital pheromones fields in
the same way ants perform food-foraging

Figure: Various pictures of AGVs



MAS 4 SOS

I Is the agent paradigm the right choice for modelling and
developing SOS?

I In order to answer this question we have to compare
requirements for SOS with features of MAS



SOS Requirements

I From previous discussion on self-organisation and emergence
we can identify this basic requirements list

I Autonomy and encapsulation of behaviour
I Local actions and perceptions
I Distributed environment supporting interactions
I Support for organisation and cooperation concepts



MAS Checklist

I It is easy to recognise that the agent paradigm provides
suitable abstractions for each aspect

I Indeed, MAS are currently the reference for both
self-organisation modelling and engineering

I In self-organisation literature not having a background in
computer science, it is often the case that the term agent is
used with a different meaning

I For instance, in biology and chemistry complex chemical
compounds are often called agents without actually referring
to the agent paradigm



Current MAS Methodologies

I Most MAS methodologies were developed because of the need
to address specific issues

I For instance Gaia was initially concerned more with
intra-agent aspect, while SODA dealt with aspects at the
society level

I Engineering methodologies are related to the paradigm in use

I Being interested in SOSs, we need a methodology that
supports the basic requirements previously identified



MAS Methodologies for SOS

I Unfortunately there are only a few methodologies soundly
supporting organisation and environmental aspects
[Molesini et al., 2007]

I The ADELFE methodology is a proposal for Adaptive MAS
where properties emerges by self-organisation
[Bernon et al., 2004]

I Although considering cooperation and environmental issues of
self-organisation, in our opinion ADELFE provide no
pragmatic approach for the engineering of emergence



Designing Self-Organising Emergent Systems

I In developing artificial self-organising systems displaying
emergent properties we identify two main issues
[Gardelli et al., 2007a, Gardelli et al., 2007b]

1. How do we design individual agent behaviour that collectively
produce the target emergent property? : Due to non-linearities
both in agent behaviour and environmental dynamics devising
a strategy that eventually leads to the target property is a very
difficult problem.

2. How do we evaluate a specific solution and provide actual
guarantees of its quality? : Because of dependability
requirement, we cannot deploy a system without having
profiled the possible evolutions and framed the working
environmental conditions.



Intro

I In the rest of the seminar we describe our approach for the
engineering self-organising MAS with emergent properties

I In particular we consider issues related both to workflow and
tools

I The material presented from now on is mostly based on
[Gardelli et al., 2007a, Gardelli et al., 2007b]

I We now start considering the two previous issues, one at a
time



Issue 1: Forward vs. Reverse Engineering

I How do we design individual agent behaviour that collectively
produce the target emergent property?

I It is generally acknowledged that forward engineering of
emergent properties is feasible only for small/trivial problems

I Indeed, most of the artificial self-organising systems have been
inspired by natural systems



Issue 1: Inspiration

I Although pervasive, ”inspiration” process is not a scientific
approach and it is hardly reproducible

I We need a way to map computer science problems into
successful natural strategies

I Only recently, it has been recognised the need of a more
formal approach when designing SO MAS: a few proposal
involve design patterns [Babaoglu et al., 2006,
De Wolf and Holvoet, 2007, Gardelli et al., 2007c]



Issue 1: Design Patterns

I Initially introduced in architectural engineering, design
patterns have been popularised in computer science in the
1990s along with the object-oriented paradigm
[Gamma et al., 1995]

I A design pattern provide a reusable solution to a recurrent
problem in a specific domain

I In our context design patterns are a viable approach to encode
successful solution provided by natural systems to computer
science problems [Babaoglu et al., 2006,
De Wolf and Holvoet, 2007, Gardelli et al., 2007c]

I Although there have been already proposed several patterns,
we are confident that we will not find a suitable pattern for
every computer science problem: we will discuss it later when
dealing with Issue 2



Issue 1: Feedback Loop

I Self-organisation and Emergence involve the existence of a
feedback loop

I Such feedback loop is often produced by a functional coupling
between agents and the environment

I E.g. consider the ants depositing pheromone while the
environment evaporates it



Issue 1: Architectural Pattern I

I When designing a SO MAS according to the Agents &
Artifacts metamodel [Ricci et al., 2006] we identify a
recurrent architectural solution

I Since, it is often the case that the agent environment is
partially or completely given, such as in case of legacy
resources, we do not have complete control over the
environment

I Hence, being difficult to embed self-organisation into artifacts,
we introduce environmental agents whose role is to close the
feedback loop between agents properly managing artifacts
behaviour

I Furthermore, environmental agents allow a finer control
isolating normal behaviour from the one responsible of
emergent properties



Issue 1: Architectural Pattern II

Figure: The architectural pattern featuring environmental agents
encapsulating self-organising behaviour and managing artifacts.



Issue 1: Summarising

I Forward engineering of emergent properties is not feasible,
hence we rely on the existence of a natural system providing a
suitable solution

I Such solution should be encoded as a design pattern
eventually leading to the creation of a coherent pattern
catalogue

I In particular the design pattern should provide behaviours for
the three roles identifies in the architectural pattern: agents,
artifacts and environmental agents



Issue 2: Towards a Workflow

I How do we evaluate a specific solution and provide actual
guarantees of its quality?

I In order to fulfill this issue we promote the following iterative
engineering process

1. Modelling
2. Simulation
3. Verification
4. Tuning (if needed then back to step 2)



Issue 2: Exploiting Formal Tools

I Since we are going to perform several tasks on a given model
we promote the use of formal tools

I Formal languages allow the specification of selective and
unambiguous models and provide a solid basis for automatic
processing

I Hence, having a model expressed in a suitable formal language
we can

1. run simulations by specifying only operating parameters
2. verify the system by model-checking just providing the

properties in a suitable temporal logic



Workflow: Modelling

I During the modelling phase we have, according to the
architectural pattern, identify the roles of each entity, namely
agents, artifacts and environmental agents

I The individual behaviour is to be found within the design
pattern catalogue

I Modifications to the pattern may be required to fit the actual
requirements: this is a non-trivial step and requires expertise
in the domain

I In this phase the model should not be too detailed, rather
reflect the abstract architecture of the system: indeed a
fine-grained model can prevent further automatic processing



Workflow: Simulation

I Simulation allows us to qualitatively preview the global system
dynamics

I Before running the simulation we have to provide working
parameters for agents and artifacts, while parameters set for
environmental agents is our unknown variable

I Needless to say that in order for the simulation results to be
valid parameters should reflect the actual deployment
conditions

I Although the use of simulation is a common practice in system
engineering, it is almost unused in software development

I In self-organisation literature, the need for simulation has been
recognised only recently [Gardelli et al., 2006]
[Gardelli et al., 2007a] [Bernon et al., 2006]
[De Wolf et al., 2006]



Workflow: Verification

I Simulation alone does not provide sound guarantees because
of incompleteness

I Conversely, model checking [Edmund M. Clarke et al., 1999]
is a formal technique for verifying automatically the properties
of a target system against its model

I The model to be verified is expressed in a formal language,
typically in a transition system fashion

I Then, properties to be verified are formalised using a variant
of temporal logic depending on the current model

I The main drawback of model checking is dependence upon
model state space which grows very quickly, becoming
unfeasible



Workflow: Tuning

I If the current system model does not meet requirements we
have to tune its parameters

I This implies a further cycle, of simulation-verification-tuning

I If the results display discrepancies with requirements we may
consider also altering the model



Workflow: Tools

I In order to ease the workflow we need a tool supporting the
whole process

I The tool must meet the following requirements
I provide a formal modelling language allowing to express

stochastic aspects
I provide a built-in stochastic simulator able to run directly from

the specified model
I provide a built-in probabilistic model checker and support the

specifications of temporal logic properties



Tools: PRISM

I Among the various available tools we selected PRISM –
Probabilistic Symbolic Model Checker developed at University
of Birmingham [PRISM, 2007]

I PRISM language allows the specification of models in a
transition-system fashion

I The built-in stochastic simulator is very simple but has
plotting and exporting capabilities, although more
sophisticated tools would have been appreciated

I The built-in probabilistic model checker is very robust: it
provides alternative engines and allows the specification of
properties both in PCTL – Probabilistic Computational Tree
Logic and CSL – Continuous Stochastic Logic



Problem Statement

I Provided a networked set of nodes not fully connected where
each node hosts a certain amount of data items

I Given that each node knows only (i) the number of local
items, and (ii) the neighbouring nodes, while has no
information about network size and total amount of items

I Devise a self-organising strategy for implementing a plain
diffusion strategy that eventually leads the system to a state
where each node has the same amount of items



Reference Network Topology
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Figure: The reference topology: starting from state
A = 36, B = C = D = E = F = 0 the system must evolve into
A = B = C = D = E = F = 6.



Equivalent A&A Topology
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Figure: Notice that this topology is equivalent to the previous one.



Modelling

I We have to provide a strategy for environmental agents that
exchanging items with neighbouring artifacts based on local
information eventually produce the desired dynamics

I The key is the dynamical equilibrium established by agents
exchanging items at different rates: if the exchange rates are
identical the situation remains statistically unchanged

I Agents have to exchange items proportionally to the local
number of items, i.e. working faster when having large
number of items and slower in the other case

I Furthermore, agents should exchange items proportionally to
the number of neighbouring nodes: hubs have to work faster
to avoid congestion!



PRISM Model

I We describe the model using the PRISM language in order to
allow further automatic elaborations

I PRISM language define a transition system

1-4 Agents, Simulation and Applications

From the requirements and the basic strategy we now provide a formal model using
the PRISM modelling language: the whole specification is listed in Figure 1.2.2. Since
PRISM language allows the definition of stochastic transition systems [PRI07], we have
to reinterpret the system dynamics in terms of transitions. To the purpose of or model,
artifacts are represented as variables: indeed, in the plain diffusion model artifacts provide
no service but storage and other details are irrelevant. Conversely, agents are encoded in
modules, that is a collection of transitions: hence, agents manipulate local and neighbouring
artifacts simply by modifying the respective variable. With respect to the topology defined
in Figure 1.2.1, the definition of the environmental agent A is

module agentA
[] tA > 0 & tB < MAX & tC < MAX & tD < MAX ->
rA : (tA’=tA-1) & (tB’=tB+1) +
rA : (tA’=tA-1) & (tC’=tC+1) +
rA : (tA’=tA-1) & (tD’=tD+1) +
rA : (tA’=tA-1) & (tE’=tE+1);
endmodule

where tA is the local artifact, tB, tC, tD are neighbouring artifacts, rA is the rate of the tran-
sition defined by formula rA = tA / base_rate;. Each transition models the movement
of an item from the local artifact to a neighbouring one: the choice between neighbours is
probabilistic and in this case all the transitions are equiprobable. It is worth noting that
the rate formula does not explicitly take into account the number of neighbouring nodes:
indeed, this factor is implicitly encoded in the transition rules. Since the model is inter-
preted as a Markov Chain the overall rate is the sum of all the transitions rates: in the
previous code sample we have four top level possible transitions having rate rA, hence the
overall working rate of agentA is 4rA. The definition of the other agents is very similar to
the one of agentA but for the number of neighbouring artifacts.

1.2.3 Simulating Plain Diffusion

In order to qualitatively evaluate the dynamics of the system, in this section we run some
simulations: PRISM allows the execution of simulations directly from the formal specifica-
tion as long as we provide values for all the parameters. In our model the only parameter
is the base_rate: this parameter allows the tuning of the system speed according to de-
ployment requirements. Since at the moment we are not interested in performance issues
we set it to the arbitrary value of 100. We consider now a few scenarios modelling extreme
deployment scenarios to evaluate the robustness and adaptiveness of the solution.

The first instance we consider has all the items clustered into a single node, specifically
the node A, the hub: using the compact notation the system initial sate is ((A, 600), (B,
0), (C, 0), (D, 0), (E, 0), (F, 0)). As can be observed from Figure 1.2.3, all the nodes
eventually reach the average value of 100 and then stay close to it: in particular, the node
F requires more time to reach the value because it is two hops far from the node A, while
all the other nodes are just one hop far.

The next instance we consider is the one having all the items clustered into the peripherical
node F: specifically, the system initial state is ((A, 0), (B, 0), (C, 0), (D, 0),(E, 0), (F, 600)).
As can be observed from Figure 1.2.3, all the nodes eventually converge to the average value
of 100: in particular, the node C converges quickly because it is one hop far from the node
F, while all the other nodes are two hops far. It is also worth noting that before node C
reach the dynamic equilibrium it goes over the average value: this phenomenon is due to
the fact that the node A works may times faster than node C which slowly diffuses items

Figure: The code snippet show the description of the agent hosted by the
hub, node A.



Simulation

I Providing values for system parameters we can run
simulations directly from PRISM
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Figure: Two sample simulations from different initial states (left) all
items in one node (right) almost sorted



PRISM Model Checking

I Which is the steady-state probability for the node X to
contain Y items?: using the PRISM syntax for CSL properties
S =? [tA = Y ]
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Figure: The chart displays the distribution of the probability for a node
to contain a specific number of items: further experiments show that the
chart is the same for each node.



Tuning

I Is the probability of reaching the dynamic equilibrium
condition within 200 time units greater or equals to 90% ?:
using the PRISM syntax for PCTL properties P >= 0.9
[true U <= 200 tB = 6] for the node tB
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Figure: The chart displays the probability values for the node tB varying
base rate parameter: we can guess that the desired value is within the
range 30..40.
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la stigmergie: Essai d’interprétation du comportement des
termites constructeurs.
Insectes Sociaux, 6(1):41–80.

Kephart, J. O. and Chess, D. M. (2003).
The vision of autonomic computing.
Computer, 36(1):41–50.



Bibliography X

Molesini, A., Omicini, A., and Viroli, M. (2007).
Environment in agent-oriented software engineering
methodologies.
International Journal on Multiagent and Grid Systems.
In Press. Special Issue on Engineering Environments for
Multiagent Systems.

PRISM (2007).
PRISM: Probabilistic symbolic model checker.
Developed at University of Birmingham. Version 3.1.1
available online at http://www.prismmodelchecker.org/.

Resnick, M. (1997).
Turtles, termites, and traffic jams: explorations in massively
parallel microworlds.
MIT Press, Cambridge, Massachusetts 02142, USA.



Bibliography XI

Ricci, A., Viroli, M., and Omicini, A. (2006).
Programming MAS with artifacts.
In Bordini, R. P., Dastani, M., Dix, J., and
El Fallah Seghrouchni, A., editors, Programming Multi-Agent
Systems, volume 3862 of LNAI, pages 206–221. Springer.
3rd International Workshop (PROMAS 2005), AAMAS 2005,
Utrecht, The Netherlands, July 26, 2005. Revised and Invited
Papers.

Sauter, J. A., Matthews, R. S., Parunak, H. V. D., and
Brueckner, S. (2005).
Proceedings of the 4th international joint conference on
autonomous agents and multiagent systems (aamas 2005).
In Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh,
M. P., and Wooldridge, M., editors, Proceedings of the 4th
International Joint Conference on Autonomous Agents and



Bibliography XII

Multiagent Systems (AAMAS 2005), pages 903–910, Utrecht,
The Netherlands. ACM Press.
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