
The SODA AOSE Methodology
Multiagent Systems LS

Sistemi Multiagente LS

Andrea Omicini & Ambra Molesini
{andrea.omicini, ambra.molesini}@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

Overview

SODA Foundations: A&A Meta-Model, Layering Principle
The Agents and Artifacts Meta-model
Principles and Mechanisms

The SODA Methodology
Analysis Phase
Design Phase
Web Resources and Conclusions

SODA: Societies in Open and Distributed Agent spaces

SODA . . .

I . . . is an agent-oriented methodology for the
analysis and design of agent-based systems

I . . . focuses on inter-agent issues, like the
engineering of societies and environment for
MAS [Omicini, 2001]

I . . . adopts agents and artifacts – after the
A&A meta-model – as the main building
blocks for MAS development
[Molesini et al., 2005]

I . . . introduces a simple layering principle in
order to cope with the complexity of system
description [Molesini et al., 2006b]

I . . . adopts a tabular representation

SODA: Overview

Requirement
Analysis Analysis

Architectural
Design

Detailed
Design

References
Tables

Transitions
Tables

Mapping
Tables

Requirements Tables

Domain Tables

Relations Tables

Responsibilities Tables

Dependencies Tables

Topologies Tables

Entities Tables

Interaction Tables

Topological Tables

Agent/Society
Design Tables

Environment Design
Tables

Analysis

Design

SODA: Meta-model

Requirement Analysis

Analysis

Architectural Design
Detailed Design

Society Aggregate

Act ion Operation

Interaction

*

*

*

*

*

*

*

*

Actor

Dependency

Requirement** **

Agent
0..n1..n 0..n1..n

Artifact

1..n1..n 1..n1..n use

0..n 1..n0..n 1..n

Environment

Resource

1..n

1..n

1..n

1..n
* ** *Role

1..n

1..n

1..n

1..n

** **

Task

** **
partecipate

Workspace
1..n

1..n

1..n

1..n

perceive
*

*

*

*

is allocated

0..n0..n connect ion

1..n1..n

*

*

*

*

is allocated in

1..n

1..n

1..n

1..n

perceive

ExternalEnvironmentRelat ion

** **

Function
* ** *

partecipate

Topology *

*

*

*

affect

*

*

*

*influence

LegacySystem
*** ** *

Artifacts

I Artifacts take the form of objects or tools that agents share
anduse to

I support their activities
I achieve their objectives

I Artifacts are explicitly designed to provide some functions
which guide their use by agents

Example: Coordination Artifacts [Omicini et al., 2006]

I Govern social activities

I Enable and mediate agent interaction

I Mediate the interaction between individual agents and their
environment

I Capture, express and embody the parts of the environment
that support agents’ activities

Cognitive Features of Artifacts

I In order to promote its own use by cognitive agents, an
artifact should expose

Usage interface — the set of operations provided by an
artifact

Operating instructions — are a description of the procedure
an agent has to follow to meaningfully interact
with an artifact over time

Function description — a description of the functionality
provided by the artifact, which agents can use
essentially for artifact selection

Features for Artifact Classification

I Other features of artifacts, among the many others, are

Inspectability — the state of an artifact, the laws governing
its behaviour might be all or partially inspectable
by agents

Malleability — the behaviour of an artifact could be
modifiable at execution time in order to adapt
to the changing needs or mutable external
conditions of a MAS.

Linkability — in order to scale up with complexity it might
be useful to compose artifacts, by allowing
artifacts to invoke operations on other artifacts

Classification

A possible classification for artifacts

Individual artifacts — exploited by one agent only in order to
mediate its interaction with the environment. In
general, individual artifacts are not directly affected
by the activity of other agents, but can, through
linkability, interact with other artifacts in the MAS

Social artifacts — exploited by more than one agent, mediate
between two or more agents in a MAS. In general,
social artifacts typically provide MAS with a service
which is in the first place meant to achieve a social
goal of the MAS, rather than an individual agent goal

Environmental artifacts — mediate between a MAS and an
external resource. In principle, environmental artifacts
can be conceived as a means to raise external MAS
resources up to the agent cognitive level

Agents & Artifacts (A&A)

I Artifacts constitute the basic building blocks both for
I MAS analysis/modelling
I MAS development

I Agents and artifacts can be assumed as two fundamental
abstractions for modelling MAS structure

I Agents speaking with other agents
I Agents using artifacts to achieve their objectives

Meta-model Ingredients

I Agents & artifacts lead to new ontological meta-model for
MAS

I Artifacts allow to
I model the environment as a first-class entity
I engineer the space of interaction among agents (not only mere

conversations between agents, but complex agent interaction
patterns)

I enrich MAS design with social/organisational structure,
topological models, as well as (complex) security models

I In particular in SODA [Molesini et al., 2006a]. . .
I agents model individual/social activities
I artifacts glue agents together, as well as MAS and the

enviromnent
I they mediate between individual agents and MAS
I they build up agent societies
I they wrap up and bring MAS resources to the cognitive level

of agents

Layering, Systems, and MAS

I In many branches of sciences, systems are represented as
organised on different layers

I Each level is essential to the general understanding of the
system’s wholeness, but at the same time, no level can be
understood in isolation

I When applied to the engineering of MAS, this principle
suggests

I that MAS models, abstractions, patterns and technologies can
be suitably categorised and compared using a layered
description

I that agent-oriented processes and methods should support
some forms of MAS layering

Layering in SODA: The Meta-Model
I The layering principle is

achieved by means of the
zoom and projection
mechanisms
[Molesini et al., 2006b,
Molesini et al., 2007]

I Two kinds of zoom

in-zoom — from an
abstract to a
more detailed
layer

out-zoom — from a
detailed to a
more abstract
layer

I The projection mechanism
projects entities from one to
another layer

Zoom Projection

in-zoom out-zoom

Layering

Layer

Layering Principle

I In general, when working with SODA, we start from a certain
layer, we could call core layer, and it is labelled with “c”

I The core layer is always complete

I In the other layer we find only the in/out zoomed entities and
the projection entities.

I The in-zoomed layers are labelled with “c+1”, “c+2” and the
out-zoomed layers are labelled “c-1”, “c-2”. . .

I The projection entities will be labelled with “+” if the
projection is from abstract layer to detailed layer, “-”
otherwise

I The only relations between layers are the zooming relation
express by means of zooming table (in the following)

I If we have relation between entities belonging different layers
we have to project these entities in the same layer

Example

E9

Core
Layer

C-1

C+1

C+2E8E6 E7

E4 E5

E1

-E1 E0

E3E2

+E2

+E2 E10 E11

System’s views

Horizontal view: analyse the
system in one level of detail

E9

Core
Layer

C-1

C+1

C+2E8E6 E7

E4 E5

E1

-E1 E0

E3E2

+E2

+E2 E10 E11

Vertical view: analyse one kind of
abstract entity

E9

Core
Layer

C-1

C+1

C+2E8E6 E7

E4 E5

E1

-E1 E0

E3E2

+E2

+E2 E10 E11

Zooming Artifact 1/2

L L+1

Artifact

print

scan
Social
Artifact

Environmental
Artifact

Physical

Environmental
Artifact

Zooming out

Zooming in

Zooming Artifact 2/2

L L+1

Artifact

op1

op2

interface

Artifact

op1.1

op2

interface

op1.2

op1.3

Zooming out

Zooming in

SODA

SODA is organised in two phase and each of them is composed of
two steps

I Analysis phase —
I Requirement Analysis — the system’s requirements and the

external environment are analysed and modelled.
I Analysis — the system’s requirements are modelled in terms of

tasks, functions, topologies and dependencies

I Design phase —
I Architectural Design phase: in this phase we analyse the

solution domain, the system is modelled in terms of roles,
resources, actions, operations, interactions, workspaces and
environment

I Detailed Design phase — in this phase we design the system in
terms of agents, societies, artifacts, composition of artifacts,
workspaces and environment

Requirements

The requirements can be categorised in:

I Functional Requirement — statements of services the system
should provide, how the system should react to particular
inputs and how the system should behave in particular
situations.

I Non-Functional Requirement — constraints on the services or
functions offered by the system such as timing constraints,
constraints on the development process, standards, etc.

I Domain Requirement — requirements that come from the
application domain of the system and that reflect
characteristics of that domain.

Requirement Analysis Meta-model

Requirement

Actor

*

*

*

*

Relation
** **

Legacy-System

* ** *

External-Environment

*

*

*

*

Requirement Analysis

I Actor is a user of the systems that needs several
functionalities from the systems. We use the system as an
actor in order to express several non-functional requirements
as security, standards and so on. The actors are used in order
to facilitated the trace of the sources of requirements.

I Requirement is a functional, non-functional or domain
description of the system service and constraint of the system.

I External-Environment is the external world of the system
made by legacy systems that will interact with the system.

I Legacy-System is a single legacy system.

I Relation is a relationship among requirements and contexts.

Requirement Analysis: Tabular Representation

I Requirements Tables: (L)ARt and (L)Ret

Actor Requirement

actor name requirement names

Requirement Description

requirement name requirement description

I Domain Tables: (L)EELSt and (L)LSt

External-Environment Legacy-System

external-environment Legacy-System
name names

Legacy-System Description

legacy-system legacy-system
name description

Requirement Analysis: Tabular Representation

I Requirements Tables define and describe the abstract entities
tied to the concept of “requirement”

I Actor-Requirement Table ((L)ARt) specifies the list of the
requirements for each actors

I Requirement Table ((L)Ret) lists all the requirement and
describe them.

I Domain Tables define and describe the abstract entities tied
to the external environment

I ExternalEnvironment-LegacySystem Table ((L)EELSt) specifies
the list of the contexts for external-environment

I Legacy-System Table ((L)LSt) lists all the contexts and
describe them

Requirement Analysis: Tabular Representation

I Relations Tables: (L)Relt , (L)RRt and (L)RLSt

Relation Description

relation name relation description

Requirement Relation

requirement name relation names

Legacy-System Relation

legacy-system name relation names

Requirement Analysis: Tabular Representation

I Relations Tables relate the abstract entities among them
I Relation Table((L)Relt) lists all the relationship among

abstract entities and provides a description to them
I Requirement-Relation Table((L)RRt) specifies the list of

relations where requirement is involved
I LegacySystem-Relation Table ((L)LSRt) specifies the list of

relations where context is involved

Analysis Meta-model

DependencyTask
** **

participate

Topology

*

*

*

*influence

Function

* ** *

participate

*

*

*

*

affect

Analysis

I Task — is an activity that requires one or more competences
and the use of functions

I Function — is an reactive activity that aimed at supporting
tasks

I Dependency — is any relationship (interactions,
constraints. . .) among other (tasks and/or functions)
abstract entities

I Topology — is any topological necessity of the environment’s
structure, often could be derived from functions. It is
important to note that topology could influence the tasks
because topology could constrains the achievement of tasks

From Requirement Analysis to Analysis (I)

I References Tables in top- down order: (L)RRTt , (L)RRFt ,
(L)RLSFt , (L)RLSTt and (L)RRDt

Requirement Task

requirement name task names

Requirement Function

requirement name function names

Legacy-System Function

legacy-system name function names

Legacy-System Topology

legacy-system name topology names

Relation Dependency

relation name dependency names

From Requirement Analysis to Analysis (II)

References Tables identify the relations among the abstractions of
the requirement analysis phase and the abstractions used in
analysis phase.

I Reference Requirement-Task Table((L)RRTt) specifies the
mapping between requirement and tasks.

I Reference Requirement-Function Table ((L)RRFt) specifies
the mapping between requirement and resources.

I Reference LegacySystem-Function Table ((L)RLSFt) specifies
the mapping between legacy-system and functions.

I Reference LegacySystem-Topology Table ((L)RLSTt) specifies
the mapping between legacy-system and topologies.

I Reference Relation-Dependency Table ((L)RRDt) specifies the
mapping between relations and dependencies.

Analysis: Tabular Representation
I Responsibilities Tables: (L)Tt and (L)Ft

Task Description

task name task description

Function Description

function name function description

I Dependencies Tables: (L)Dt , (L)TDt and (L)FDt

Dependency Description

dependency name dependency description

Task Dependency

task name dependency names

Function Dependency

function name dependency names

Analysis: Tabular Representation I

I Responsibilities Tables define and describe the abstract
entities tied to the concept of “responsibility”

I Task Table ((L)Tt) lists all the tasks and describes them
I Function Table ((L)Ft) lists all the functions and describe them

I Dependencies Tables relate the abstract entities among them.
I Dependency Table ((L)Dt) lists all the dependency among

abstract entities and provides a description to them
I Task-Dependency Table ((L)TDt) specifies the list of

dependencies where task is involved
I Function-Dependency Table ((L)FDt) specifies the list of

dependencies where function is involved

Analysis: Tabular Representation II

Topologies Tables in top-down order – (L)Topt , (L)TTopt ,
(L)FTopt

Topology Description

Topology name topology description

Task Topology

task name topology names

Function Topology

function name topology names

Topologies Tables express the topological needs

Analysis: Tabular Representation III

I Topology Table ((L)Topt) lists all the topological
requirements and provides a description to them.

I Task-Topology Table ((L)TTopt) specifies the list of
topological requirements those influence the task.

I Function-Topology Table ((L)FTopt) specifies the list of
topological requirements affected by the function.

Zooming: Tabular Representation

I Zooming Table: (L)Zt

Layer L Layer L+1

out-zoomed entity in-zoomed entities

Example: In-zoom task

T1

T1a T1b T1c

L

L+1

I Zooming Table: (L)Zt

Layer L Layer L+1

T1 T1a,T1b,T1c,. . .

Example: Out-zoom tasks

T0

T1 T2 T3

L-1

L

I Zooming Table: (L)Zt

Layer L-1 Layer L

T0 T1,T2,T3,. . .

Remarks

I The organisational structure of the system is implicitly
managed by means of zooming relation

I For example when we in-zoom a task, we obtain new tasks,
new dependencies and potentially new functions and
topologies.

I By means of new dependencies we can express all the social
rules that allow to new task to work together to achieve the
original tasks.

I In the same way in the architectural design phase when we
in-zoom a role, we obtain new roles, new actions, new
interactions and potentially new resources and operations. By
means of new interactions we can express all the social rules
that allow to new roles to work together to achieve the “social
task(s)” assigned to the original role.

Complete Example: in-zoom task

T1

T1a T1b T1c

L

L+1

D1

D2

D3

I Zooming Table: (L)Zt

Layer L Layer L+1

T1 T1a,T1b,T1c
D1,D2,D3

Architectural Design Meta-model

OperationAction

Interaction

*

*

*

*

*

*

*

*

Environment

Resource

1..n

1..n

1..n

1..n
* ** *

Role

1..n

1..n

1..n

1..n
** **

Workspace

1..n

*

*

is allocated in

1..n

1..n

1..n

1..n

perceive

0..n

0..n

0..n connect ion

0..n

1..n

*

*

Architectural Design

Role — is defined as the abstraction responsible for the
achievement of one or more tasks

Resource — is defined as the abstraction that provides some
functions

Action — represents an action that the role potentially
could be able to do

Operation — represents the operation that the resource is
potentially able to provide

Interaction — is defined as “rules” aimed to enable and bound
both the behaviour of the abstract entities and the
space of interactions. Bounds could be expressed by
means of authorisation, prohibition and obligation
concepts. Enabling could be expressed by means of
rules that tie the actions with operations that
support them

Environment — is the environment of the system

Workspace — is a conceptual locus in the environment

From Analysis to Architectural Design I

Transition Tables in top-down order – (L)TRTt , (L)TRFt ,
(L)TIDt , (L)TTopWt

Role Task

role name task names

Resource Function

resource name function names

Dependency Interaction

dependency name interaction names

Topology Workspace

topology name workspace names

Transition Tables identify the relations among the abstractions
of the requirement analysis phase and the abstractions used in
analysis phase

From Analysis to Architectural Design II

I Transition Role-Task Table ((L)TRTt) specifies the mapping
between tasks and roles.

I Transition Resource-Function Table ((L)TRFt) specifies the
mapping between functions and resources.

I Transition Interaction-Dependency Table ((L)TIDt) specifies
the mapping between dependencies and interaction.

I Transition Topology-Workplace Table ((L)TTopWt) specifies
the mapping between topologies and workplaces.

Architectural Design: Tabular Representation I

Entities Tables in top-down order – (L)At , (L)Ot , (L)RAt ,
(L)ROt

Action Description

action name description

Operation Description

operation name description

Role Action

role name action names

Resource Operation

resource name operation names

The Entities Tables that describe roles and resources of the
system

Architectural Design: Tabular Representation II

I Action Table((L)At) specifies the actions that roles could be
able to execute and describes them the mapping between
tasks and roles.

I Operation Table ((L)Ot) specifies the operations that
resources could provide and describes them the mapping
between tasks and roles.

I Role-Action Table ((L)RAt) specifies the list of actions that a
specific role is able to do.

I Resource-Operation Table ((L)ROt) specifies the list of
operations that a specific resource is able to provide.

Interactions Tables in top-down order – (L)It , (L)RoIt , (L)ReIt

Architectural Design: Tabular Representation III

Interaction Description

interaction name description

Role Interaction

role name interaction names

Resource Interaction

resource name interaction names

The Interactions Tables that describe the interaction where
roles and resources are involved

Architectural Design: Tabular Representation IV

I Interaction Table ((L)It) specifies the interactions and
describes them. the mapping between tasks and roles.

I Role-Interaction Table ((L)RoIt) specifies the list of
interactions where roles are involved

I Resource-Interaction Table ((L)ReIt) specifies the list of
interactions where resources are involved

Topological Tables in top-down order – (L)Wt , (L)WCt ,
(L)WRet and (L)WRot

Architectural Design: Tabular Representation V

Workspace Description

workspace name description

Workspace Connection

workspace name workspace names

Workspace Resource

workspace name resource names

Role Workspace

role name workspace names

Topological Tables

Architectural Design: Tabular Representation VI

I Workspace Table ((L)Wt) specifies the workspaces and
describes them.

I Workspace-Connection Table ((L)WCt) shows the connections
between workspaces at the same layer of abstraction (the
hierarchical relations among workspaces are managed by
means of zooming table)

I Workspace-Resource Table ((L)WRet) shows the allocation of
the resources to workspaces. A resource could be allocated in
several different workspaces. In particular, a single, distributed
resource can in principle be used to model a distributed
service, accessible from more nodes of the network.

I Workspace-Role Table ((L)WRot) shows the list of workspace
that the roles can perceive in the system.

Design Views

I In this phase potentially our system could be composed by all
the layers detected in the previously steps

I But the deliverable of the Detailed Design step will be
composed of only one layer

I So, for each entity, we choose the appropriate layer of
representation

A4
Society

A1
Society

R2

+R2

R1

R5

R9R8

R4

R7R6

C+1

C

C+2

A6 A7

A5

Carving Operation Detailed DesignArchitectural Design

R2

+R2

R1

R5

R9R8

R4

R7R6

A2

Detailed Design Phase Meta-model

Workspace

Environment

AggregateSociety

0..n

0..n

0..n
connection

0..n

1..n1..n

Artifact

0..n

1..n

0..n

1..n

*

*

*

*

is allocated in

Agent

0..n

1..n

0..n

1..n

1..n

1..n

1..n

1..n

perceive

1..n1..n 1..n1..n

use

Detailed Design

Agent — is an autonomous entity able to play several roles

Society — is defined as the abstraction responsible for a
collection of agents

Artifact — is an object able to provides several service.

Aggregate — is defined as the abstraction responsible for a
collection of artifacts

Environment — is the environment of the system.

Workspace — is a conceptual locus in the environment

From Architectural Design to Detailed Design I

Mapping Tables in top-down order – (L)MARt , (L)MArRt ,
(L)MArIt

Agent Role

agent name role names

(Environmental) Artifact Resource

artifact name resource names

Interaction (Social) Artifact

interaction name artifact names

Mapping Tables

From Architectural Design to Detailed Design II

I Mapping Agent-Role((L)MARt) maps roles onto the agents

I Mapping Artifact-Resource Table ((L)MArRt) maps resources
onto the artifacts

I Mapping Artifact-Interaction Table ((L)MArIt)maps the rules
specified in architectural design onto the artifacts that
improve them

Detailed Design: Tabular Representation I

Agent/Society Design Tables in top-down order – (L)AAt ,
(L)SAt , (L)SArt

Agent (Individual) Artifact

agent name artifact names

Society Agent

society name agent names

Society (Social)Artifact

society name artifact names

Agent/Society Design Tables

Detailed Design: Tabular Representation II

I Agent-Artifact Table ((L)AAt) specifies the (individual)
artifacts related to agents.

I Society-Agent Table ((L)SAt) specifies which agents work in
the society

I Society-Artifact Table ((L)SArt) specifies the (social) artifacts
related to societies.

Environment Design Tables in top-down order – (L)AUIt ,
(L)AggAt , (L)WAt

Detailed Design: Tabular Representation III

Artifact Usage Interface

artifact name list of operations

Aggregate Artifact

aggregate name artifact names

Workspace Artifact

workspace name artifact names

Environment Design Tables

Detailed Design: Tabular Representation IV

I Artifact-UsageInterface Table ((L)AUIt) specifies the
operations provided by artifacts.

I Aggregate-Artifact Table ((L)AggAt) specifies which artifact
compose the composition.

I Workspace-Artifact Table ((L)WAt) specifies the artifact
located in the workspace

WebSite

I http://www.alice.unibo.it/soda/

Conclusions and Future Works

I SODA allows to
I design societies
I design environments
I support the complexity of system description (layering

principle)

I Future works
I refining the meta-model
I building the tools
I modelling SODA according to SPEM (Software Process

Engineering Meta-Model)
I extracting fragments from SODA according to IEEE-FIPA

Method Engineering

Bibliography I

Molesini, A., Denti, E., and Omicini, A. (2005).
MAS meta-models on test: UML vs. OPM in the SODA case
study.
In Pěchouček, M., Petta, P., and Varga, L. Z., editors,
Multi-Agent Systems and Applications IV, volume 3690 of
LNAI, pages 163–172. Springer.
4th International Central and Eastern European Conference on
Multi-Agent Systems (CEEMAS’05), Budapest, Hungary,
15–17 September 2005, Proceedings.

Molesini, A., Denti, E., and Omicini, A. (2007).
Agent-based conference management: A case study in SODA.
Submitted to the International Journal of Agent-Oriented
Software Engineering (IJAOSE).

Bibliography II

Molesini, A., Omicini, A., Denti, E., and Ricci, A. (2006a).
SODA: A roadmap to artefacts.
In Dikenelli, O., Gleizes, M.-P., and Ricci, A., editors,
Engineering Societies in the Agents World VI, volume 3963 of
LNAI, pages 49–62. Springer.
6th International Workshop (ESAW 2005), Kuşadası, Aydın,
Turkey, 26–28 October 2005. Revised, Selected & Invited
Papers.

Molesini, A., Omicini, A., Ricci, A., and Denti, E. (2006b).
Zooming multi-agent systems.
In Müller, J. P. and Zambonelli, F., editors, Agent-Oriented
Software Engineering VI, volume 3950 of LNCS, pages 81–93.
Springer.
6th International Workshop (AOSE 2005), Utrecht, The
Netherlands, 25–26 July 2005. Revised and Invited Papers.

Bibliography III

Omicini, A. (2001).
SODA: Societies and infrastructures in the analysis and design
of agent-based systems.
In Ciancarini, P. and Wooldridge, M. J., editors,
Agent-Oriented Software Engineering, volume 1957 of LNCS,
pages 185–193. Springer-Verlag.
1st International Workshop (AOSE 2000), Limerick, Ireland,
10 June 2000. Revised Papers.

Omicini, A., Ricci, A., and Viroli, M. (2006).
Coordination artifacts as first-class abstractions for MAS
engineering: State of the research.
In Garcia, A. F., Choren, R., Lucena, C., Giorgini, P., Holvoet,
T., and Romanovsky, A., editors, Software Engineering for
Multi-Agent Systems IV: Research Issues and Practical
Applications, volume 3914 of LNAI, pages 71–90. Springer.
Invited Paper.

The SODA AOSE Methodology
Multiagent Systems LS

Sistemi Multiagente LS

Andrea Omicini & Ambra Molesini
{andrea.omicini, ambra.molesini}@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

	Outline
	Overview
	SODA Foundations: A&A Meta-Model, Layering Principle
	The Agents and Artifacts Meta-model
	Principles and Mechanisms

	The SODA Methodology
	Analysis Phase
	Design Phase
	Web Resources and Conclusions

