
Agent-Oriented Software Engineering
Multiagent Systems LS

Sistemi Multiagente LS

Andrea Omicini & Ambra Molesini
{andrea.omicini, ambra.molesini}@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 1 / 162



Outline

1 General Concepts
Software Engineering
Software Process
Methodologies
Models and Meta-Models

SPEM
OPF & OPEN

Method Engineering
Method Fragment Representation
Method Assembly

2 Agent Oriented Software Engineering
Agent Oriented Methodologies
Agent Oriented Method Engineering

FIPA Method Engineering
OPEN

3 Conclusions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 2 / 162



General Concepts Software Engineering

Outline

1 General Concepts
Software Engineering
Software Process
Methodologies
Models and Meta-Models

SPEM
OPF & OPEN

Method Engineering
Method Fragment Representation
Method Assembly

2 Agent Oriented Software Engineering
Agent Oriented Methodologies
Agent Oriented Method Engineering

FIPA Method Engineering
OPEN

3 Conclusions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 3 / 162



General Concepts Software Engineering

Software

Software is abstract and intangible [Sommerville, 2007]:

it is not constrained by materials, or governed by physical laws, or by
manufacturing process

On the one hand, this simplifies software engineering as there are no
physical limitations on the potential of software

On the other hand, the lack of natural constraints means that
software can easily become extremely complex and hence very difficult
to understand

So, software engineers should

adopt a systematic and organised approach to their work
use appropriate tools and techniques depending on the problem to be
solved, the development constraints and the resources available

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 4 / 162



General Concepts Software Engineering

Software Engineering

What is Software Engineering?

Software Engineering is an engineering discipline concerned with theories,
methods and tools for professional software development
[Sommerville, 2007]

What is the aim of Software Engineering?

Software Engineering is concerned with all aspects of software production
from the early stage of system specification to the system maintenance /
incremental developement after it has gone into use [Sommerville, 2007]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 5 / 162



General Concepts Software Engineering

Software Engineering

What is Software Engineering?

Software Engineering is an engineering discipline concerned with theories,
methods and tools for professional software development
[Sommerville, 2007]

What is the aim of Software Engineering?

Software Engineering is concerned with all aspects of software production
from the early stage of system specification to the system maintenance /
incremental developement after it has gone into use [Sommerville, 2007]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 5 / 162



General Concepts Software Engineering

Software Engineering: Concerns

There is a need to model and engineer both
the development process

Controllable, well documented, and reproducible ways of producing
software

the software

ensuring a given level of quality—e.g., % of errors and performances)
enabling reuse, maintenance, and incremental development

This requires suitable

abstractions
tools

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 6 / 162



General Concepts Software Engineering

Software Engineering Abstractions

Mostly, software deals with abstract entities, having a real-world
counterpart

not necessarily a concrete one
such as numbers, dates, names, persons, documents. . .

In what terms should we model them in software?

data, functions, objects, agents. . .
i.e., what are the abstractions that we could / should use to model
software?

Abstractions might depend on the available technologies

we may adopt OO abstractions for OO programming enviroments
but this is not mandatory: we may use OO abstractions just because
they are better, even for COBOL programming enviroments

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 7 / 162



General Concepts Software Engineering

Tools

Notation tools represent the outcomes of the software development

diagrams, equations, figures. . .

Formal models prove properties of software prior to the development

lambda-calculus, pi-calculus, Petri nets. . .

CASE tools are based on notations and models to facilitate activities

simulators

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 8 / 162



General Concepts Software Engineering

Software Engineering & Computer Science

Computer science is concerned with theory and
fundamentals—modelling computational systems

Software engineering is concerned with the practicalities of developing
and delivering useful software—building computational systems

Deep knowledge of computer science is essential for software
engineering in the same way that deep knowledge of physic is
essential for electric engineers

Ideally, all of software engineering should be underpinned by theories
of computer science. . . but this is not the case, in practice

Software engineers must often use ad hoc approaches to developing
software systems

Elegant theories of computer science cannot always be applied to real,
complex problems that require a software solution [Sommerville, 2007]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 9 / 162



General Concepts Software Engineering

Software Engineering & System Engineering

System engineering is concerned with all aspects of computer-based
systems development including hardware, software and process
engineering

System engineers are involved in system specification, architectural
design, integration and deployment—they are less concerned with the
engineering of the system components

Software engineering is part of this process concerned with developing
the software infrastructure, control, applications and databases in the
system [Sommerville, 2007]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 10 / 162



General Concepts Software Process

Outline

1 General Concepts
Software Engineering
Software Process
Methodologies
Models and Meta-Models

SPEM
OPF & OPEN

Method Engineering
Method Fragment Representation
Method Assembly

2 Agent Oriented Software Engineering
Agent Oriented Methodologies
Agent Oriented Method Engineering

FIPA Method Engineering
OPEN

3 Conclusions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 11 / 162



General Concepts Software Process

Development Process

Development Process [Cernuzzi et al., 2005]

The development process is an ordered set of steps that involve all
the activities, constraints and resources required to produce a specific
desired output satisfying a set of input requirements

Typically, a process is composed by different stages/phases put in
relation with each other

Each stage/phase of a process identify a portion of work definition to
be done in the context of the process, the resources to be exploited to
that purpose and the constraints to be obeyed in the execution of the
phase

Case by case, the work in a phase can be very small or more
demanding

Phases are usually composed by a set of activities that may, in turn,
be conceived in terms of smaller atomic units of work (steps)

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 12 / 162



General Concepts Software Process

Software Process

Software Process [Fuggetta, 2000]

The software development process is the coherent set of policies,
organisational structures, technologies, procedures and deliverables that
are needed to conceive, develop, deploy and maintain a software product

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 13 / 162



General Concepts Software Process

Software Process: Concepts

The software process exploits a number of contributions and concepts
[Fuggetta, 2000]

Software development technology — Technological support used in the
process. Certainly, to accomplish software development
activities we need tools, infrastructures, and environments

Software development methods and techniques — Guidelines on how to
use technology and accomplish software development
activities. The methodological support is essential to exploit
technology effectively

Organisational behavior — The science of organisations and people.

Marketing and economy — Software development is not a self-contained
endeavor. As any other product, software must address real
customers’ needs in specific market settings.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 14 / 162



General Concepts Software Process

Software Process: Activities

Generic activities in all software processes are [Sommerville, 2007]:

Specification — What the system should do and its development
constraints

Development — Production of the software system

Validation — Checking that the software is what the customer wants

Evolution — Changing the software in response to changing demands

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 15 / 162



General Concepts Software Process

The Ideal Software Process

The Ideal Software Process?

There is no an ideal process
[Sommerville, 2007]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 16 / 162



General Concepts Software Process

Many Sorts of Software Processes

Different types of systems require different development processes
[Sommerville, 2007]

real time software in aircraft has to be completely specified before
development begins
in e-commerce systems, the specification and the program are usually
developed together

Consequently, the generic activities, specified above, may be
organised in different ways, and described at different levels of details
for different types of software

The use of an inappropriate software process may reduce the quality
or the usefulness of the software product to be developed and/or
increased

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 17 / 162



General Concepts Software Process

Software Process Model

A Software Process Model is a simplified representation of a software
process, presented from a specific perspective [Sommerville, 2007]

A process model prescribes which phases a process should be
organised around, in which order such phases should be executed, and
when interactions and coordination between the work of the different
phases should be occur

In other words, a process model defines a skeleton, a template,
around which to organise and detail an actual process

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 18 / 162



General Concepts Software Process

Software Process Model: Examples

Examples of process models are

Workflow model — this shows sequence of activities along with their
inputs, outputs and dependencies
Activity model — this represents the process as a set of activities, each
of which carries out some data transformation
Role/action model — this depicts the roles of the people involved in
the software process and the activities for which they are responsible

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 19 / 162



General Concepts Software Process

Generic Software Process Models

Generic process models

Waterfall — separate and distinct phases of specification and
development

Iterative development — specification, development and validation
are interleaved

Component-based software engineering — the system is assembled
from existing components

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 20 / 162



General Concepts Methodologies

Outline

1 General Concepts
Software Engineering
Software Process
Methodologies
Models and Meta-Models

SPEM
OPF & OPEN

Method Engineering
Method Fragment Representation
Method Assembly

2 Agent Oriented Software Engineering
Agent Oriented Methodologies
Agent Oriented Method Engineering

FIPA Method Engineering
OPEN

3 Conclusions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 21 / 162



General Concepts Methodologies

Methodologies vs. Methods: General Issue

Disagreement exists regarding the relationship between the terms
method and methodology

In common use, methodology is frequently substituted for method;
seldom does the opposite occur

Some argue this occurs because methodology sounds more scholarly
or important than method

A footnote to methodology in the 2006 American Heritage Dictionary
notes that

the misuse of methodology obscures an important conceptual
distinction between the tools of scientific investigation (properly
methods) and the principles that determine how such tools are
deployed and interpreted (properly methodologies)

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 22 / 162



General Concepts Methodologies

Methodologies vs. Methods in Software Engineering

In Software Engineering the discussion continues. . .

Some authors argue that a software engineering method is a recipe, a
series of steps, to build software, while a methodology is a codified set
of recommended practices. In this way, a software engineering method
could be part of a methodology
Some authors believe that in a methodology there is an overall
philosophical approach to the problem. Using these definitions,
Software Engineering is rich in methods, but has fewer methodologies

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 23 / 162



General Concepts Methodologies

Method

Method [Cernuzzi et al., 2005]

A method prescribes a way of performing some kind of activity within
a process, in order to properly produce a specific output (i.e., an
artefact or a document) starting from a specific input (again, an
artefact or a document).

Any phases of a process, to be successfully applicable, should be
complemented by some methodological guidelines (including the
identification of the techniques and tools to be used, and the
definition of how artifacts have be produced) that could help the
involved stakeholders in accomplishing their work according to some
defined best practices

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 24 / 162



General Concepts Methodologies

Methodology

Methodology [Ghezzi et al., 2002]

A methodology is a collection of methods covering and connecting
different stages in a process

The purpose of a methodology is to prescribe a certain coherent
approach to solving a problem in the context of a software process by
preselecting and putting in relation a number of methods

A methodology has two important components

one that describe the process elements of the approach
one that focuses on the work products and their documentation

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 25 / 162



General Concepts Methodologies

Methodologies vs. Software Process

Based on the above definitions, and comparing software processes and
methodologies, we can find some common elements in their scope
[Cernuzzi et al., 2005]

both are focusing on what we have to do in the different activities
needed to construct a software system
however, while the software development process is more centered on
the global process including all the stages, their order and time
scheduling, the methodology focuses more directly on the specific
techniques to be used and artifacts to be produced

In this sense, we could say that methodologies focus more explicitly
on how to perform the activity or tasks in some specific stages of the
process, while processes may also cover more general management
aspects, e.g., basic questions about who and when, and how much

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 26 / 162



General Concepts Models and Meta-Models

Outline

1 General Concepts
Software Engineering
Software Process
Methodologies
Models and Meta-Models

SPEM
OPF & OPEN

Method Engineering
Method Fragment Representation
Method Assembly

2 Agent Oriented Software Engineering
Agent Oriented Methodologies
Agent Oriented Method Engineering

FIPA Method Engineering
OPEN

3 Conclusions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 27 / 162



General Concepts Models and Meta-Models

Meta-models

Definition

Meta-modelling is the analysis, construction and development of the
frames, rules, constraints, models and theories applicable and useful for
the modelling in a predefined class of problems

A meta-model enables checking and verifying the completeness and
expressiveness of a methodology by understanding its deep semantics,
as well as the relationships among concepts in different languages or
methods

the process of designing a system consists of instantiating the system
meta-model that the designers have in their mind in order to fulfill
the specific problem requirements [Bernon et al., 2004]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 28 / 162



General Concepts Models and Meta-Models

Using Meta-models

Meta-models are useful for specifying the concepts, rules and
relationships used to define a family of related methodologies

Although it is possible to describe a methodology without an explicit
meta-model, formalising the underpinning ideas of the methodology in
question is valuable when checking its consistency or when planning
extensions or modifications

A good meta-model must address all of the different aspects of
methodologies, i.e. the process to follow and the work products to be
generated

In turn, specifying the work products that must be developed implies
defining the basic modelling building blocks from which they are built

Meta-models are often used by methodologists to construct or modify
methodologies

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 29 / 162



General Concepts Models and Meta-Models

Meta-models & Methodologies

Methodologies are used by software development teams to construct
software products in the context of software projects

Meta-model, methodology and project constitute, in this approach,
three different areas of expertise that, at the same time, correspond
to three different levels of abstraction and three different sets of
fundamental concepts

As the work performed by the development team at the project level
is constrained and directed by the methodology in use, the work
performed by the methodologist at the methodology level is
constrained and directed by the chosen meta-model

Traditionally, these relationships between modelling layers are seen as
instance-of relationships, in which elements in one layer are instances
of some element in the layer above

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 30 / 162



General Concepts Models and Meta-Models

Meta-model

The use of meta-models to underpin object-oriented processes was
pioneered in the mid-1990s by the OPEN Consortium
[OPEN Working Group, 1999] leading to the current version of the
OPEN Process Framework (OPF)

The Object Management Group (OMG) then issued a request for
proposals for what turned into the SPEM (Software Processing
Engineering Metamodel) [SPEM, 2007]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 31 / 162



General Concepts Models and Meta-Models

SPEM

SPEM is an OMG standard object-oriented meta-model defined as an
UML profile and used to describe a concrete software development
process or a family of related software development processes

SPEM is based on the idea that a software development process is a
collaboration between active abstract entities called roles which
perform operations called activities on concrete and real entities
called work products

Each role interacts or collaborates by exchanging work products and
triggering the execution of activities

The overall goal of a process is to bring a set of work products to a
well-defined state

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 32 / 162



General Concepts Models and Meta-Models

SPEM Overview

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 33 / 162



General Concepts Models and Meta-Models

Process Package [SPEM, 2007]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 34 / 162



General Concepts Models and Meta-Models

SPEM Elements

A WorkProduct is anything produced, consumed, or modified by a
process. It may be a piece of information, a document, a model,
source code, and so on

A WorkProductKind describes a category of work product, such as
Text Document, UML Model, Executable, Code Library, and so on

WorkDefinition is a kind of Operation that describes the work
performed in the process

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 35 / 162



General Concepts Models and Meta-Models

WorkDefinition SubClasses

Activity – describes a piece of work performed by one ProcessRole.
An Activity may consist of atomic elements called Steps

Phase – is a specialization of WorkDefinition such that its
precondition defines the phase entry criteria and its goal defines the
phase exit criteria

Iteration – An Iteration is a composite WorkDefinition with a minor
phases

Lifecycle – A process Lifecycle is defined as a sequence of Phases that
achieve a specific goal. It defines the behavior of a complete process
to be enacted in a given project or program

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 36 / 162



General Concepts Models and Meta-Models

SPEM Elements

A ProcessPerformer defines a performer for a set of WorkDefinitions
in a process

ProcessPerformer has a subclass,ProcessRole

ProcessPerformer represents abstractly the whole process or one of its
components, and is used to own WorkDefinitions that do not have a
more specific owner

ProcessRole defines responsibilities over specific WorkProducts, and
defines the roles that perform and assist in specific activities

Guidance provides more detailed information to practitioners about
the associated ModelElement. For instance, Technique is a kind of
Guidance. A Technique is a detailed, precise algorithm used to create
a work product

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 37 / 162



General Concepts Models and Meta-Models

SPEM’s stereotypes [SPEM, 2007]

UMLModel

Document

Process

Phase

ProcessPackage

ProcessRole

Activity

Guidance

WorkDefinition

WorkProduct

NotationStereotype

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 38 / 162



General Concepts Models and Meta-Models

Example

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 39 / 162



General Concepts Models and Meta-Models

Example

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 40 / 162



General Concepts Models and Meta-Models

OPEN

Object-oriented Process, Environment, and Notation (OPEN)
[OPEN Working Group, 1999] is a full lifecycle, process-focussed,
methodological approach that was designed for the development of
software intensive applications

OPEN is defined as a process framework, known as the OPF (OPEN
Process Framework)

This is a process meta-model from which can be generated an
organisationally-specific process (instance)

Each of these process instances is created by choosing specific
Activities, Tasks and Techniques (three of the major metalevel
classes) and specific configurations

The definition of process include not only descriptions of phases,
activities, tasks, and techniques but issues associated with human
resources, technology, and the life-cycle model to be used

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 41 / 162



General Concepts Models and Meta-Models

Metalevel Classes [Henderson-Sellers, 2003]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 42 / 162



General Concepts Models and Meta-Models

Work Product & Language & Producer

A work product is any significant thing of value (e.g., document,
diagram, model, class, application) that is developed during a project

A language is the medium used to document a work product. Use
case and object models are written using a modelling language such
as the Unified Modeling Language (UML) or the OPEN Modelling
Language (OML)

A producer is anything that produces (i.e., creates, evaluates, iterates,
or maintains), either directly or indirectly, versions of one or more
work products. The OPF distinguishes between those direct producers
(persons as well as roles played by the people and tools that they use)
and indirect producers (teams of people, organisations and
endeavours)

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 43 / 162



General Concepts Models and Meta-Models

Work Unit

A work unit is a functionally cohesive operation that is performed by
a producer during an endeavour and that is reified as an object to
provide flexibility during instantiation and tailoring of a process

The OPF provides the following predefined classes of work units:

Task – functionally cohesive operation that is performed by a direct
producer. A task results in the creation, modification, or evaluation of
a version of one or more work products
Technique – describes in full detail how a task are to be done
Activity – cohesive collection of workflows that produce a related set of
work products. Activities in OPEN are coarse granular descriptions of
what needs to be done

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 44 / 162



General Concepts Models and Meta-Models

Stage

A stage is a formally identified and managed duration or a point in
time, and it provides a macro organisation to the work units
The OPF contains the following predefined classes of stage:

Cycle — there are several types of cycle e.g. lifecycle
Phase — consisting of a sequence of one or more related

builds, releases and deployments
Workflow — a sequence of contiguous task performances whereby

producers collaborate to produce a work product
Build — a stage describing a chunk of time during which

tasks are undertaken
Release — a stage which occurs less frequently than a build. In

it, the contents of a build are released by the
development organization to another organisation

Deployment — occurs when the user not only receives the product
but also, probably experimentally, puts it into service for
on-site evaluation

Milestone — is a kind of Stage with no duration. It marks an
event occurring

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 45 / 162



General Concepts Method Engineering

Outline

1 General Concepts
Software Engineering
Software Process
Methodologies
Models and Meta-Models

SPEM
OPF & OPEN

Method Engineering
Method Fragment Representation
Method Assembly

2 Agent Oriented Software Engineering
Agent Oriented Methodologies
Agent Oriented Method Engineering

FIPA Method Engineering
OPEN

3 Conclusions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 46 / 162



General Concepts Method Engineering

Methodologies

As for software development, individual methodologies are often
created with specific purposes in mind [Henderson-Sellers, 2005a]

particular domains
particular segments of the lifecycle

Users often make the assumption that a methodology in not in fact
constrained but, rather, is universally applicable

This can easily lead to methodology failure, and to the total rejection
of methodological thinking by software development organisation

The creation of a single universally applicable methodology is an
unattainable goal

We should ask ourselves how could we create a methodological
environment in which the various demands of different software
developers might be satisfied altogether

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 47 / 162



General Concepts Method Engineering

Method Engineering

Method Engineering [Brinkkemper, 1996]

Method engineering is the engineering discipline to design, construct and
adapt methods, techniques and tools for the development of information
systems

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 48 / 162



General Concepts Method Engineering

Different defitinions [Brinkkemper, 1996]

Method as an approach to perform a systems development project,
based on a specific way of thinking, consisting of directions and rules,
structured in a systematic way in development activities with
corresponding development products

Methodology as the systematic description, explanation and
evaluation of all aspects of methodical information systems
development

. . . these definitions are different from the definitions we have given
in the previous Section. . .

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 49 / 162



General Concepts Method Engineering

Method & Methodology

? ?
?

Method?Methodology?

All the concepts and ideas used
in the Method Engineering are
also applicable in our definitions
of methodology and method

Method Engineering tries to
model methodological processes
and products by isolating
conceptual method fragments

This fragments act as
methodological “building
blocks”

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 50 / 162



General Concepts Method Engineering

Method & Methodology

? ?
?

Method?Methodology? All the concepts and ideas used
in the Method Engineering are
also applicable in our definitions
of methodology and method

Method Engineering tries to
model methodological processes
and products by isolating
conceptual method fragments

This fragments act as
methodological “building
blocks”

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 50 / 162



General Concepts Method Engineering

Method Engineering: Motivations

Adaptability – to specific
projects, companies, needs &
new development settings

Reuse – of best practices,
theories & tools

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 51 / 162



General Concepts Method Engineering

Method Engineering: Motivations

Adaptability – to specific
projects, companies, needs &
new development settings

Reuse – of best practices,
theories & tools

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 51 / 162



General Concepts Method Engineering

Method Engineering: Concerns

Similarly as software engineering is concerned with all aspects of
software production, so is method engineering dealing with all
engineering activities related to methods, techniques and tools

The term method engineering is not new but it was already
introduced in mechanical engineering to describe the construction of
working methods in factories

Even if the work of Brinkkemper is dated, most of the open research
issues presented was not well addressed yet

Meta-modelling techniques
Tool interoperability
Situational method(ology)
Comparative review of method(ologie)s and tools

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 52 / 162



General Concepts Method Engineering

Meta-Modelling Techniques

The design and evaluation of methods and tools require special
purpose specification techniques, called meta-modelling techniques,
for describing their procedural and representational capabilities.

Issues are:

what are the proper constructs for meta-modelling?
what perspectives of meta-models should be distinguished?
is there a most optimal technique for meta-modelling, or is the
adequacy of the technique related to the purpose of the investigation?

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 53 / 162



General Concepts Method Engineering

Tool Interoperability

A lots of tools that only cover part of the development life-cycle exist

So the system development practice is confronted with the proper
integration of the tools at hand, called interoperability of tools.

Open problems are related to the overall architecture of the
integrated tools

Should this be based on the storage structure (i.e. the repository) in a
data-integration architecture, or on a communication structure
between the functional components in a control-integration
architecture?

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 54 / 162



General Concepts Method Engineering

Situational Methods & Comparative Review

As all projects are different, they cannot be properly supported by a
standard method(ology) in a textbook or manual

How can proper methodical guidance and corresponding tool support
be provided to system developers?

Construction principles for methods and techniques need further
investigation

How can the quality of a method or of a tool be expressed in order to
compare them in a sound, scientifically verifiable way?

Quality of methods comprises aspects as completeness, expressiveness,
understandability, effectiveness of resources, and efficiency

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 55 / 162



General Concepts Method Engineering

Situational Methodologies

A situational method is an information systems development method
tuned to the situation of the project at hand

Engineering a situational method requires standardised building
blocks and guide-lines, so-called meta-methods, to assemble these
building blocks

Critical to the support of engineering situational methods is the
provision of standardised method building blocks that are stored and
retrievable from a so-called method base

Furthermore, a configuration process should be set up that guides the
assembly of these building blocks into a situational method

The building blocks, called method fragments, are defined as coherent
pieces of information system development methods

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 56 / 162



General Concepts Method Engineering

Configuration Process [Brinkkemper, 1996]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 57 / 162



General Concepts Method Engineering

Situational Method Engineering I

Every project is different, so it is essential in the method configuration
process to characterize the project according to a list of contingency
factors

This project characterization is input to the selection process, where
method fragments from the method base are retrieved

Experienced method engineers may also work the other way round,
i.e. start with the selection of method fragments and validate this
choice against the project characterization

The unrelated method fragments are then assembled into a
situational method

As the consistency and completeness of the method may require
additional method fragments, the selection and validation processes
could be repeated

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 58 / 162



General Concepts Method Engineering

Situational Method Engineering II

Finally, the situational method is forwarded to the systems developers
in the project

As the project may not be definitely clear at the start, a further
elaboration of the situational method can be performed during the
course of the project

Similarly drastic changes in the project require to change the
situational method by the removal of inappropriate fragments
followed by the insertion of suitable ones

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 59 / 162



General Concepts Method Engineering

Method Fragments

[Brinkkemper et al., 1999] classify method fragments according to
three different dimensions

Perspective — product and process
Abstraction level — conceptual and technical
Layer of granularity — five different level

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 60 / 162



General Concepts Method Engineering

Perspective

Perspective distinguishes product fragments and process fragments

Product fragments model the structures of the products (deliverables,
diagrams, tables, models) of a systems development method
Process fragments are models of the development process. Process
fragments can be either high-level project strategies, called method
outlines, or more detailed procedures to support the application of
specification techniques

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 61 / 162



General Concepts Method Engineering

Abstraction level

Abstraction level distinguishes conceptual level and technical level

Method fragments on the conceptual level are descriptions of
information systems development methods or part thereof
Technical method fragments are implementable specifications of the
operational parts of a method, i.e. the tools

Some conceptual fragments are to be supported by tools, and must
therefore be accompanied by corresponding technical fragments

One conceptual method fragment can be related to several external
and technical method fragments

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 62 / 162



General Concepts Method Engineering

Layer of granularity

A method fragment can reside on one of five possible granularity
layers

Method — addressing the complete method for developing the
information system

Stage — addressing a segment of the life-cycle of the
information system

Model — addressing a perspective of the information system
Diagram — addressing the representation of a view of a Model

layer method fragment
Concept — addressing the concepts and associations of the

method fragments on the Diagram layer, as well as the
manipulations defined on them

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 63 / 162



General Concepts Method Engineering

And Now?

Two important questions

How to represent method
fragments?
How to assembly method
fragments?

To assemble method fragments
into a meaningful method, we
need a procedure and
representation to model method
fragments and impose some
constraints or rules on method
assembly processes

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 64 / 162



General Concepts Method Engineering

Method Fragment Representation

In the last decade a lots of work is done in the context of Method
Engineering

However this technique is not entered in the mainstream of the
Software Engineering

There are no consensus in academia and no industry efforts are done

Each research group has created its method fragment representation

Here we briefly present the work of Ralyté and Rolland, that has
inspired the work of the FIPA group in the context of AOSE

The OPEN by Brian Henderson-Sellers has already presented in one
of the previous Section

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 65 / 162



General Concepts Method Engineering

Method Reengineering [Ralyté and Rolland, 2001a]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 66 / 162



General Concepts Method Engineering

Method Reengineering

In this approach Ralyté and Rolland adopt the notion of method
chunk [Ralyté and Rolland, 2001a]

A method chunk ensures a tight coupling of some process part and its
related product part. It is a coherent module and any method is
viewed as a set of loosely coupled method chunks expressed at
different levels of granularity

The authors present the method meta-model. . .

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 67 / 162



General Concepts Method Engineering

The Method Meta-model [Ralyté and Rolland, 2001a]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 68 / 162



General Concepts Method Engineering

Method Meta-model

According to this meta-model a method is also viewed as a method
chunk of the highest level of granularity

The definition of the method chunk is process-driven in the sense that
a chunk is based on the decomposition of the method process model
into reusable guidelines

Thus, the core of a method chunk is its guideline to which are
attached the associated product parts needed to perform the process
encapsulated in this guideline

A guideline embodies method knowledge to guide the application
engineer in achieving an intention in a given situation

Therefore, the guideline has an interface, which describes the
conditions of its applicability (the situation) and a body providing
guidance to achieve the intention, i.e. to proceed in the construction
of the target product

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 69 / 162



General Concepts Method Engineering

Guidelines

The body of the guideline details how to apply the chunk to achieve
the intention

The interface of the guideline is also the interface of the
corresponding method chunk

Guidelines in different methods have different contents, formality,
granularity, etc.

In order to capture this variety, the authors identify three types of
guidelines: simple, tactical and strategic

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 70 / 162



General Concepts Method Engineering

Guidelines Types

A simple guideline may have an informal content advising on how to
proceed to handle the situation in a narrative form. It can be more
structured comprising an executable plan of actions leading to some
transformation of the product under construction

A tactical guideline is a complex guideline, which uses a tree structure
to relate its sub-guidelines one with the others

A strategic guideline is a complex guideline called a map which uses a
graph structure to relate its sub-guidelines. Each sub-guideline
belongs to one of the three types of guidelines. A strategic guideline
provides a strategic view of the development process telling which
intention can be achieved following which strategy

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 71 / 162



General Concepts Method Engineering

Method Assembly

In the last decade a lots of work is done in the context of Method
Assembly

This leads to a proliferation of different techniques for Method
Assembly, and each of them adopts a peculiar representation and
phases

Here we briefly show some rules from Brinkkemper, the Method
Assembly techniques by Ralyté and Rolland and the OPEN by Brian
Henderson-Sellers

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 72 / 162



General Concepts Method Engineering

Brinkkemper’s Rules I

[Brinkkemper et al., 1999] introduce several general rules for the method
assembly

Rule 1 — At least one concept, association or property should be
newly introduced to each method fragment to be assembled,
i.e. a method fragment to be assembled should not be a
subset of another

Rule 2 — We should have at least one concept and/or association
that connects between two method fragments to be
assembled

Rule 3 — If we add new concepts, they should be connectors to
both of the assembled method fragments

Rule 4 — If we add new associations, the two method fragments to
be assembled should participate in them

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 73 / 162



General Concepts Method Engineering

Brinkkemper’s Rules II

Rule 5 — There are no isolated parts in the resulting method
fragments

Rule 6 — There are no concepts which have the same name and
which have the different occurrences in a method description

Rule 7 — The activity of identifying the added concepts and
associations that are newly introduced for method assembly
should be performed after their associated concepts are
identified

Rule 8 — Let A and B be the two method fragments to be
assembled, and C the new method fragment. In C, we should
have at least one product which is the output of A and
which is the input of B, or the other way round

Rule 9 — Each product fragment should be produced by a
“corresponding” process fragment

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 74 / 162



General Concepts Method Engineering

Brinkkemper’s Rules III

Rule 10 — Suppose a product fragment has been assembled. The
process fragment that produces this product fragment
consists of the process fragments that produce the
components of the product fragment

Rule 11 — A technical method fragment should supports a
conceptual method fragment

Rule 12 — If an association exists between two product fragments,
there should exist at least one association between their
respective components

Rule 13 — There are no “meaningless” associations in product
fragments, i.e. every association is “meaningful” in the sense
that it can semantically consistently connect to specific
concepts

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 75 / 162



General Concepts Method Engineering

A Different Approach

Jolita Ralyté and Colette Rolland have proposed a different approach
for assembling method chunks

In particular they have individuated two different assembly strategies:

association – The assembly process by association consists in
connecting chunks such that the first one produces a product which is
the source of the second chunk
integration – The assembly process by integration consists in
identifying the common elements in the chunks product and process
models and merging them

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 76 / 162



General Concepts Method Engineering

Assembly Based Method Engineering
[Ralyté and Rolland, 2001a]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 77 / 162



General Concepts Method Engineering

Assembly Map [Ralyté and Rolland, 2001b]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 78 / 162



General Concepts Method Engineering

Integration Map [Ralyté and Rolland, 2001b]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 79 / 162



General Concepts Method Engineering

Association Map [Ralyté and Rolland, 2001b]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 80 / 162



General Concepts Method Engineering

OPEN Process Framework [Henderson-Sellers, 2003]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 81 / 162



General Concepts Method Engineering

Usage Guidelines

The core of the Method Assembly in OPF are usage guidelines
covering:

Instantiating the class library to produce actual process components
Choosing the best process components
Tailoring the fine detail inside the chosen process components
Extending the existing class library of predefined process components

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 82 / 162



General Concepts Method Engineering

OPEN Process Framework [OPEN Working Group, 1999]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 83 / 162



General Concepts Method Engineering

Process Construction Guidelines

A process construction guideline is a usage guideline intended to help
process engineers instantiate the development process framework and
then select the best component instances in order to create the
process itself

Specifically, it will provide guidance concerning how to:

Select the work products to develop
Select the producers (e.g., roles, teams, and tools) to develop these
work products
Select the work units to perform
How to allocate tasks and associated techniques to the producers
How to group the tasks into workflows, activities
Select stages of development that will provide an overall organization
to these work units

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 84 / 162



General Concepts Method Engineering

Matrix

OPEN recommends construction of a number of matrices linking, for
example, Activities with Tasks and Tasks with Techniques

The possibility values in these matrices indicate the likelihood of the
effectiveness of each individual pair

These values should be tailored to a specific organization or a specific
project

Typically a matrix should have five levels of evaluation: mandatory,
recommended, optional, discouraged, forbidden

However a two levels evaluation matrix (use/do not use) gives good
results

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 85 / 162



General Concepts Method Engineering

Matrix Example [Henderson-Sellers, 2003]

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 86 / 162



General Concepts Method Engineering

Tailoring Guidelines

Once the process framework has been instantiated and placed into
effect, one typically finds that one needs to perform some fine-tuning
by tailoring the instantiated process components as lessons are
learned during development

Tailoring guidelines are usage guidelines intended to help process
engineers tailor the instantiated process components

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 87 / 162



General Concepts Method Engineering

Extension Guidelines

No class library can ever be totally complete

Because of the large differences between development projects, new
classes of process components will eventually be needed

Also, software engineering is an evolving discipline, and new process
components will need to be added as the field advance

A process framework should therefore come with extension guidelines,
whereby an extension guideline is a usage guideline intended to help
the process engineer extend the existing development process
framework by adding new classes of process components

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 88 / 162



Agent Oriented Software Engineering

Why Agent-Oriented Software Engineering?

Software engineering is necessary to discipline

Software systems and software processes
Any approach relies on a set of abstractions and on related
methodologies and tools

Agent-based computing introduces novel abstractions and asks for

Making the set of abstractions required clear
Adapting methodologies and producing new tools

Novel, specific agent-oriented software engineering approaches are
needed

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 89 / 162



Agent Oriented Software Engineering

Agents: Weak Viewpoint

An agent is a software component with internal (either reactive or
proactive) threads of execution, and that can be engaged in complex
and stateful interactions protocols

A multi-agent system is a software systems made up of multiple
independent and encapsulated loci of control (i.e., the agents)
interacting with each other in the context of a specific application
viewpoint. . .

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 90 / 162



Agent Oriented Software Engineering

SE Viewpoint on Agent-Oriented Computing

We commit to weak viewpoint because
It focuses on the characteristics of agents that have impact on software
development

Concurrency, interaction, multiple loci of control
Intelligence can be seen as a peculiar form of control independence;
conversations as a peculiar form of interaction

It is much more general

Does not exclude the strong AI viewpoint
Several software systems, even if never conceived as agent-based one,
can be indeed characterised in terms of weak multi-agent systems

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 91 / 162



Agent Oriented Software Engineering

SE Implications of Agent Characteristics

Autonomy

Control encapsulation as a dimension of modularity
Conceptually simpler to tackle than a single (or multiple
inter-dependent) locus of control

Situatedness
Clear separation of concerns between

the active computational parts of the system (the agents)
the resources of the environment

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 92 / 162



Agent Oriented Software Engineering

SE Implications of Agent Characteristics

Sociality

Not a single characterising protocol of interaction
Interaction as an additional SE dimension

Openness

Controlling self-interested agents, malicious behaviours, and badly
programmed agents
Dynamic re-organisation of software architecture

Mobility and Locality

Additional dimension of autonomous behaviour
Improve locality in interactions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 93 / 162



Agent Oriented Software Engineering

MAS Characterisation

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 94 / 162



Agent Oriented Software Engineering

Agent-Oriented Abstractions

The development of a multi-agent system should fruitfully exploit
abstractions coherent with the above characterisation

Agents, autonomous entities, independent loci of control, situated in
an environment, interacting with each other
Environment, the world of resources agents perceive
Interaction protocols, as the acts of interactions among agents and
between agents and resources of environment

In addition, there may be the need of abstracting:

The local context where an agent lives (e.g., a sub-organisation of
agents) to handle mobility & opennes

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 95 / 162



Agent Oriented Software Engineering Agent Oriented Methodologies

Outline

1 General Concepts
Software Engineering
Software Process
Methodologies
Models and Meta-Models

SPEM
OPF & OPEN

Method Engineering
Method Fragment Representation
Method Assembly

2 Agent Oriented Software Engineering
Agent Oriented Methodologies
Agent Oriented Method Engineering

FIPA Method Engineering
OPEN

3 Conclusions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 96 / 162



Agent Oriented Software Engineering Agent Oriented Methodologies

What is an AO methodology?

AOSE methodologies mainly try to suggest a clean and disciplined
approach to analyse, design and develop multi-agent systems, using
specific methods and techniques

AOSE methodologies, typically start from a meta-model, identifying
the basic abstractions onto be exploited in development

On this base, they exploit and organise these abstractions so as to
define guidelines on how to proceed in the analysis, design, and
development, and on what output to produce at each stage

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 97 / 162



Agent Oriented Software Engineering Agent Oriented Methodologies

MAS Meta-model

MAS meta-models usually include concepts like role, goal, task, plan,
communication

In the agent world the meta-model becomes a critical element when
trying to create a new methodology because in the agent oriented
context, to date, there are not common denominator

each methodology has its own concepts and system structure

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 98 / 162



Agent Oriented Software Engineering Agent Oriented Methodologies

Methodologies and technologies

Today the engineer often works with technologies that do not support
the abstractions used in the design of the systems

For this reason the research on methodologies becomes the basic
point in the scientific activity

There is a deep gap between the AOSE approaches and the available
technologies

the proposed AOSE methodologies have mostly followed a top-down
approach, where the agent paradigm and the metaphors of the human
organisation have been used to analyse, model and design a system
multi-agent languages and tools have followed a bottom-up approach,
evolving out of necessity from existing programming languages and
development environments

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 99 / 162



Agent Oriented Software Engineering Agent Oriented Methodologies

Informatics Technologies Evolution

Programming
Languages

Infrastructures Software 
Engineering

New abstractions

Traditional

Agent-paradigm

Software 
Engineering

Infrastructures Programming
Languages

Agent abstractions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 100 / 162



Agent Oriented Software Engineering Agent Oriented Methodologies

The Gap

The gap between methodologies and infrastructures and languages
can leads to dangerous inconsistencies between the design and the
actual implementation of the system

These are the consequences of the use of concepts and abstractions in
the analysis and design stages which are different from those used to
deploy and implement the system

On one side the agent-based abstractions available in the design
phase suggest high level of expressivity

On the other side the development tools, that are still in the stage of
academic prototypes, do not support these abstractions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 101 / 162



Agent Oriented Software Engineering Agent Oriented Methodologies

Challenges

Two important challenges that represent the principal objective of the
researchers in the next years [MEnSA Project, ]:

identification of the effective abstractions to model complex systems as
multi-agent systems
integration of these abstractions in methodologies that support the
whole software life cycle and fill the conceptual gap between
agent-oriented methodologies and the infrastructures used to
implement agent-based systems

This leads to the fragmentation of the existing AO methodologies in
order to construct new and ad hoc methodologies. . .

FIPA Method Engineering
OPEN (in short)

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 102 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Outline

1 General Concepts
Software Engineering
Software Process
Methodologies
Models and Meta-Models

SPEM
OPF & OPEN

Method Engineering
Method Fragment Representation
Method Assembly

2 Agent Oriented Software Engineering
Agent Oriented Methodologies
Agent Oriented Method Engineering

FIPA Method Engineering
OPEN

3 Conclusions

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 103 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Method Engineering

The development of complex software systems using the
agent-oriented approach requires suitable methodologies which
provide explicit support for the key abstractions of the agent
paradigm [Cossentino et al., 2007]

To date, several methodologies supporting the analysis, design and
implementation of MAS have been proposed in the context of AOSE

Although such methodologies have different advantages when applied
to specific problems, it is a fact that a unique methodology cannot be
general enough to be useful for everyone without some level of
customisation.

In fact, agent designers, in solving specific problems in a specific
application context, often prefer to define their own methodology,
specifically tailored to their needs, instead of reusing an existing one.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 104 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Method Engineering

Thus an approach that combines the designer’s need to define his/her
own methodology with the advantages and the experiences coming
from the existing and documented methodologies is highly required

A possible solution to this problem is to adopt the method
engineering paradigm, thus enabling designers of MAS to (re)use
parts coming from different methodologies in order to build up a
customised approach to their own problems.

According to this approach, the “development methodology” is
constructed by assembling pieces of other methodologies (method
fragments) from a repository of methods (method base).

The method base is composed of contributions coming from existing
methodologies and other novel and specifically conceived fragment

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 105 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Method Engineering

The Method Engineer 
analyses the problem and 

the development 
context/people to deduce 
new methodology features

Method 
Engineer

Uses

Design 
Methodology

Defines Is adopted by

System
Designer

CAME
ToolsFragments

Repository

Uses

CASE
Tools

Perceives

Problem

Designs Solve

Agents

Instantiate

System 
Specifications

Produce

Specify

The CAME tool is 
used to instantiate 

a methodology 
specific tool

The System Designer 
using the CASE tool 

specifies and 
develops the agent 

solution

The Method
Engineer uses a CAME tool

to compose the new methodology 
by reusing fragments from the 

repository

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 106 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

FIPA Methodology Working Group

This approach has been adopted, in the past few years, by the FIPA
Methodology Technical Committee (TC) (FIPA – Foundation for
Intelligent Physical Agents)[Methodology Working Group, ]

FIPA had recently moved to the IEEE Computer Society under the
name of IEEE FIPA Standards Committee and with this occurrence
the activities of the Methodology TC were stopped

The FIPA Methodology TC was constituted in 2003 with the aim of
capitalising on the efforts of many researchers in the area of MAS
design and contributing to the reuse of parts of existing
methodologies (and the related knowledge), through an appropriate
set of specifications

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 107 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

FIPA TC goals I

Definition of the method fragments meta-model — it is necessary to
formally represent method fragments in order to facilitate their
identification, representation, integration and storage in the method
base.

Identification of the method base architecture — this is the method
base needs of a technological infrastructure for the instantiation of
the previously defined method fragment meta-model.

Collection of method fragments — they can originate from the most
diffused methodologies and other specific contributions. After
formalisation, they can be introduced into the method base.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 108 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

FIPA TC goals II

Description of techniques for methods integration — it is necessary to
define guidelines for methods integration in order to both construct
the new methodology (by retrieving the method fragments from the
method base and integrating them) and apply it to the real design
work.

A more ambitious goal was enabling the use of automating tools.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 109 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Tools: CAPE

Computer-Aided Process Engineering (CAPE) tools that could enable
the construction of the new design process; these tools should be able
to support the definition of the process life-cycle as well as the reuse
of fragments from the method base. They should enable the adoption
of a specific process life-cycle (waterfall, iterative/incremental, spiral,
etc.) and the placing of different fragments in it. The CAPE tool
should ‘instantiate’ a proper CASE tool (see below) that is specifically
customised to support the designer in working with the composed
methodology.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 110 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Tools: CAME

Computer-Aided Method Engineering (CAME) tools that could offer
specific support for the composition/maintenance of a method
fragment; these tools should enable the designer to define a method
fragment according to the definition, provided by the FIPA
Methodology TC, and the prescriptions coming from the method
base. Besides, they would allow the modification of these fragments
when assembling needs or other customisation requests emerge.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 111 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Tools: CASE

Computer-Aided Software Engineering (CASE) tools that assist the
designer in performing the development process based on the
composed methodology. These tools should be the evolution of
existing CASE instruments, since they enforce the execution of the
design phases in the order defined at the time of methodology
composition (according to the adopted process life-cycle and they
guide the designer in profitably applying it.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 112 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

Existing 
Methodologies

Method 
Base

Method 
Fragments 
Extraction

New 
Method 

Fragments

CAME tool Specific 
Methodology

MAS
Meta-
Model

CASE tool Specific 
problem

MAS running 
on agent platforms

MAS
ModelDeployment

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 113 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

All methodologies are
expressed in a 

standard notation

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 114 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

Fragments are identified
and described

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 115 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

New fragments are 
defined if necessary

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 116 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

A method fragments
repository is composed 

with all existing fragments

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 117 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

The desired 
MAS-Meta-Model

is composed according to 
problem specific needs

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 118 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

A CAME tool assists in
the selection of fragments

and composition of 
design process

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 119 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

A new and problem
specific methodology 

is built

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 120 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

A CASE tool is used 
to effectively design the

multi-agent system

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 121 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Agent-Oriented Method Engineering Process

The multi-agent system 
has been coded, 

tested and is ready 
to be deployed

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 122 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

What is a Method Fragment?

A fragment is a portion of the development process, composed as follows:

A portion of process

One or more deliverables

Some preconditions

A list of concepts of MAS Meta-model

Guidelines

A glossary of terms

Composition guidelines

Aspects of the fragment

Dependency relationships

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 123 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Portion of Process

A specification of the portion of the process, which defines what is to
be done by the involved stakeholder(s) and in what order

The fragment specification prescribes the use of SPEM for describing
its procedural aspect

According to SPEM, the FIPA fragment can be regarded as a process
component

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 124 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Deliverables

One or more deliverables such as AUML/UML diagrams and text
documents

These should be part of the fragment specification in the form of a
description of their structure (in order to clarify what is the expected
output of the presented activities)

Also a reference to the suggested (or adopted, in the original
methodology from which this fragment has been extracted) modelling
notation

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 125 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Preconditions

Preconditions represent a kind of constraint, specifying when it is
possible to fire the activities specified in the fragment

They are usually related to the required input data

these preconditions can be thought of as similar to the preconditions
in a contract between two classes

In particular, the preceding fragment (or the n preceding fragments) is
(are) responsible for establishing the conditions that will enable the
successful execution of the following fragment

The formalisation of these preconditions would allow the introduction
of some kind of automatic assistance in the composition of the
fragments, but a formal language has not been specified or adopted
yet and the only considerations that can be easily automated
according to this specification, concerns the required input set in
terms of already-defined MAS meta-model components

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 126 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Concepts of MAS Meta-model

A list of components of the MAS meta-model to be defined or refined
through the specified process (they belong to the MAS meta-model
adopted by the methodology from which the fragment was extracted)

This list could be void (this is, for instance, the case of a fragment
whose purpose consists in selecting between two different paths in the
design process according to the evaluation of some aspects of the
actual design)

However, all the fragments that have been identified up to now are
concerned with some components to be defined/refined, thus showing
that the community is, even now, still more concerned about a
product-oriented identification of fragments than a process-oriented
one

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 127 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Guidelines

Application guidelines that illustrate how to apply the fragment and
the related best practices

The same formalisation of these guidelines in the existing
agent-oriented methodologies has its own specific importance, since
otherwise, except for a few well-documented approaches, guidelines
often remain bound to the personal knowledge of some skilled
designers or the methodology creators

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 128 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Glossary

A glossary of terms used in the fragment

This prevents misunderstandings if the fragment is reused in a context
that is different from the original one

In order to facilitate this part of the fragment documentation, the
members of the TC discussed a list of definitions for many commonly
used terms.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 129 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Composition guidelines & Aspects of the fragment

Composition guidelines which describe the context/problem addressed
by the specific fragment and that are behind the methodology from
which they have been extracted

Aspects of the fragment are textual descriptions of specific issues,
such as the platform to be used for system implementation and
application area; they help in delimiting the proper application field
for the fragment

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 130 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Dependency Relationships

Dependency relationships are useful for assembling fragments

When the fragments’ granularity is fine grained (and the FIPA
repository was conceived to allow the introduction of different-sized
fragments), it is common to reuse more fragments from a specific
methodology since their adoption probably corresponds to adopting
some philosophy for the composition of a specific portion of the
software engineering process

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 131 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Method Fragments Integration

Method fragments integration is the process of composition of the
new software engineering process [Cossentino et al., 2007]

Usually consists of two different and complementary phases:

the selection of the reused fragments from the method base and
their assembly, including the modification of fragments when necessary

Several approaches exist in the literature to deal with these crucial
phases, the FIPA Methodology TC members discussed this topic and
mainly studied two basic approaches for the integration of methods
during the construction of the agent-oriented software engineering
process:

meta-model driven approach
development-process driven approach

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 132 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Meta-model Driven Approach

This is based on the MAS meta-model adopted by the designer for
the development of a MAS for a specific problem in a specific
application domain

To build a software engineering process by exploiting the
meta-model-driven approach, the designer has to:

choose or define the MAS meta-model suitable for the specific problem
and/or the specific application domain
choose the method fragments that are able to produce the identified
meta-model elements
define a development process characterised by a method
fragments-execution order on the basis of the relationship existing
among the meta-model elements produced by each fragment

The obtained software engineering process is able to completely
ensure the MAS meta-model instantiation for the given problem in a
specific application domain.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 133 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Development-process Driven Approach

this is based on the instantiation of a software development process in
which each phase is carried out using appropriate method fragments
selected on the basis of the supported activities and of the resulting
work products

To build a software engineering process by exploiting the development
process-driven approach, the designer must:

choose or define a software engineering process life-cycle suitable for
the specific problem and for the specific application domain
instantiate the development process by selecting, for each phase of the
life-cycle, some suitable method fragments, chosen from the method
base or even defined ad hoc

The work products produced in a given phase might constitute the
input for the subsequent phase, provided that they contain all the
information required for initialising it.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 134 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Comparison: Meta-model-driven Approach

The meta-model-driven approach

provides flexibility for the definition of many aspects of the MAS to be
developed; this is probably the most suitable one if social rules coming
from a specific domain play a relevant role in the problem to be solved
conversely, it is characterised by a difficulty in integrating different
fragments, owing to the different semantics of the concepts they can
represent in the meta-models subsumed by the methodologies from
which they have been extracted
furthermore, the a priori selection and/or definition of the meta-model
to adopt for the specific problem and/or application domain is a
difficult and at the same time crucial task

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 135 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Comparison: Development process-driven Approach

The development process-driven approach

is characterised by the following advantage: flexibility for the
construction of a software engineering process by means of the
instantiation of each stage of the selected process life-cycle
On the other hand, the disadvantages are the following:

low flexibility of the MAS meta-model, since it results from the sum of
elements defined by the selected method fragments
adaptation among the work products, which is sometimes difficult to
achieve
having to choose and define the process life-cycle to instantiate for the
specific problem and/or application context
low level of help in selecting the fragments that descend from the
process life-cycle choice

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 136 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Comparison of The Approaches

Each one of the above-listed points represents an open problem and a
challenge for the agent community

the first one to be explored consists in some peculiarities that are
related to the agent paradigm, the most important probably being the
role that the agent social organisation plays in the composition of the
new process

The proposed approaches to the integration of method fragments are
not mutually exclusive: hybrid approaches containing features of both
of them might be defined as well

An example of a process composition that mixed the two proposed
approaches has been used to create one of the first agile processes for
MAS design, PASSI Agile

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 137 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

A Refinement of the Method Fragment Proposal

In a recent work [Cossentino et al., 2007] a refinement of the proposal
was presented

The authors consider the process as the set of steps to be performed
in order to produce an output, the way of performing some activities,
and the resources and constraints this requires

it is now well recognised that a standard process does not exist, so
each process is specific for a particular development context, which
relates to resources, people and competence aspects, and for a
problem type — it can in fact solve a specific problem or a family of
related problems; these two elements constitute a precise indication of
the requirements of the process

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 138 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Software Engineering Process

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 139 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Process in Agent-Oriented Contex

A process in the agent-oriented context aims at designing a MAS
model whose elements (MAS model elements) are represented in the
work products

A MAS model is obviously an instance of a MAS meta-model that
gives a structural representation, in terms of elements and
relationships, of the concepts belonging to the system under
construction

The fragment is such a complex and fundamental element of the
method engineering approach that it should be explored from several
different points of view in order to achieve the deepest comprehension
of its implications during design time

More specifically, four different views are identified: process, storing,
reuse and implementation

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 140 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Fragment-Process View I

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 141 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Fragment-Process View II

The fragment-process view is aimed at representing the
process-related aspects of the fragment

The most important elements are workflow, activities and work
products

The workflow structures the activities and it is described using
activity diagrams

An activity has a work product as an input and produces other work
products

Each work product could be a graphical work product or a textual
work product (free-text document or structured document)

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 142 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Fragment-Reuse View

This view is concerned with the reuse features of the fragment and
lists the elements that could be helpful in reusing the fragment in the
composition of a new software engineering process.

The elements of the fragment meta-model that belong to this view
are:

MAS Meta-model Element — this defines the scope of the fragment,
the elements that it will instantiate in the produced work products
Aspect, Glossary, Composition Guideline, Fragment Dependency -–
these have the meanings given by the FIPA Methodology TC

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 143 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Fragment-Storing View I

This view concerns the storage of the fragment in the method base
and its retrieval.

This view includes the following elements

Phase — a specialisation of Work Definition that is usually
built up from several finer activities. The need for
phases is evident if we think that a fragment conceived
for use in the early stages of the design process is
unlikely to be useful in later phases such as coding or
testing

Process Role — it would make no sense in some specific development
context to select fragments employing process roles not
available to the intended developing team of the new
software engineering process

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 144 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Fragment-Storing View II

MAS Meta-Model Element — this is one of the central points of our
approach and appears in this view in order to support
the construction of a new SEP starting from the initial
definition of its MAS meta-model. As a consequence,
the method engineer can select all the fragments that
deal with the elements of this meta-model, thus
drastically reducing the dimension of the fragment set
he/she has to choose from

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 145 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Fragment-Implementation View I

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 146 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

Fragment-Implementation View II

This view strictly concerns the implementation of the main elements
we explained in the process view: workflow, activity and work product

The Workflow is implemented by a Workflow Implementation

Each Activity is implemented by a Workflow Activity that corresponds
to a real piece of work

each work product is defined by a work product kind that generates a
set of design rules depending on the kind itself, on some specific
constraints and a set of guidelines

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 147 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

The OPEN Approach

OPEN was originally developed for systems development in an
object-oriented context

However extending OPEN to support agent-oriented software
development is relatively straightforward: it requires the identification
of any new Tasks, Techniques, WorkProducts, Producers. . .
[Henderson-Sellers, 2005a]

In recent years a number of specific method fragments have been
created for the use with the OPF meta-model and the relative
repository [Henderson-Sellers, 2005b]

These fragments have been derived from an analysis of a large
number of stand-alone agent-oriented methodologies

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 148 / 162



Agent Oriented Software Engineering Agent Oriented Method Engineering

The OPEN Approach

Over the last two years, studies have been undertaken of what
method fragments are needed to fully support agent-oriented software
engineering methodologies

These were added to a OPF repository that was originally not
agent-oriented

OPF repository was augmented of method fragments by those derived
from a large number of stand-alone agent-oriented methodologies:

MaSE, Prometheus, Gaia, Cassiopeia, Agent Factory,
MAS-Common-KADS, Tropos, PASSI and CAMLE

Each of these fragments corresponds to one of the classes in the OPF
meta-model

The construction of new AO methodology is the same already
illustrated in the context of traditional Method Engineering

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 149 / 162



Conclusions

Reflections

In this lesson we have spoken about the Software Engineering and the
Agent Oriented Software Engineering

Some reflections are necessary:

What are the aspects related to Engineering?
What are the aspects related to Software Engineering?
What are the aspects related to the paradigms adopted?

Before proceeding it is necessary to clarify what is the Engineering in
general

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 150 / 162



Conclusions

What is Engineering?

In general Engineering is the applied science of acquiring and applying
knowledge to design, analysis, and/or construction of works for
practical purposes

The American Engineers’ Council for Professional Development
defines:

Engineering

The creative application of scientific principles to design or develop
structures, machines, apparatus, or manufacturing processes, or works
utilizing them singly or in combination; or to construct or operate the
same with full cognizance of their design; or to forecast their behavior
under specific operating conditions; all as respects an intended function,
economics of operation and safety to life and property

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 151 / 162



Conclusions

Engineers

Engineers borrow from physics and mathematics to find suitable
solutions to the problem at hand

They apply the scientific method in deriving their solutions: if multiple
options exist, engineers weigh different design choices on their merits
and choose the solution that best matches the requirements

The crucial and unique task of the engineer is to identify, understand,
and interpret the constraints on a design in order to produce a
successful result

Constraints may include available resources, physical, imaginative or
technical limitations, flexibility for future modifications and additions,
and other factors, such as requirements for cost, safety, marketability,
productibility, and serviceability

By understanding the constraints, engineers derive specifications for
the limits within which a viable object or system may be produced
and operated

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 152 / 162



Conclusions

What are the Aspects Related to Engineering?

Following a clear and disciplined development process

Adopting a design methodology

Creating an appropriate (mathematical) model of a problem that
allows to analyse it

Testing potential solutions

Evaluating the different design choices and choosing the solution that
best meets requirements

Using of: prototypes, scale models, simulations, destructive tests,
nondestructive tests, and stress tests

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 153 / 162



Conclusions

What are the Aspects Related to Software Engineering?

Customization to the specific kind of product: Software

Specific software development processes tied to the software lifecycle
Specific methodologies
Specific kinds of model tied to the concept of software product
Testing potential solutions
Using of specific techniques for: prototypes, scale models, simulations,
tests, and stress tests

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 154 / 162



Conclusions

What are the Aspects Related to the paradigm?

The building blocks for creating the models

The level of thinking / abstraction

Functions, objects, agents lead to different ways of thinking both the
problems and the solutions

The paradigm adopted leads to different levels of model complexity:
complicated problems are well captured by objects and agents, while
functions could lead to have very very complex models for representing
the problem
In the same way the models of the solution are heavily influenced by
the paradigm

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 155 / 162



Conclusions

Bibliography I

Bernon, C., Cossentino, M., Gleizes, M. P., Turci, P., and Zambonelli,
F. (2004).
A study of some multi-agent meta-models.
In Odell, J., Giorgini, P., and Müller, J. P., editors, AOSE, volume
3382 of Lecture Notes in Computer Science, pages 62–77. Springer.

Brinkkemper, S. (1996).
Method engineering: engineering of information systems development
methods and tools.
Information & Software Technology, 38(4):275–280.

Brinkkemper, S., Saeki, M., and Harmsen, F. (1999).
Meta-modelling based assembly techniques for situational method
engineering.
Inf. Syst., 24(3):209–228.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 156 / 162



Conclusions

Bibliography II

Cernuzzi, L., Cossentino, M., and Zambonelli, F. (2005).
Process models for agent-based development.
Engineering Applications of Artificial Intelligence, 18(2):205–222.

Cossentino, M., Gaglio, S., Garro, A., and Seidita, V. (2007).
Method fragments for agent design methodologies: from
standardisation to research.
International Journal of Agent Oriented Software Engineering,
1(1):91–121.

Fuggetta, A. (2000).
Software process: a roadmap.
In ICSE ’00: Proceedings of the Conference on The Future of
Software Engineering, pages 25–34, New York, NY, USA. ACM Press.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 157 / 162



Conclusions

Bibliography III

Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2002).
Foundamental of Software Engineering.
Prentice Hall, second edition.

Henderson-Sellers, B. (2003).
Method engineering for oo systems development.
Commun. ACM, 46(10):73–78.

Henderson-Sellers, B. (2005a).
Creating a comprensive agent-oriented methodology: Using method
engineering and the OPEN metamodel.
In Henderson-Sellers, B. and Giorgini, P., editors, Agent Oriented
Methodologies, chapter XIII, pages 236–397. Idea Group Publishing,
Hershey, PA, USA.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 158 / 162



Conclusions

Bibliography IV

Henderson-Sellers, B. (2005b).
Evaluating the feasibility of method engineering for the creation of
agent-oriented methodologies.
In Pechoucek, M., Petta, P., and Varga, L. Z., editors, Multi-Agent
Systems and Applications IV, 4th International Central and Eastern
European Conference on Multi-Agent Systems, CEEMAS 2005,
Budapest, Hungary, September 15-17, 2005, Proceedings, volume
3690 of Lecture Notes in Computer Science, pages 142–152. Springer.

MEnSA Project.
Methodologies for the engineering of complex software systems:
agent-based approach.
http://www.mensa-project.org/news.php.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 159 / 162



Conclusions

Bibliography V

Methodology Working Group.
Ieee-fipa methodology working group home page.
http://www.fipa.org/activities/methodology.html.

OPEN Working Group (1999).
Open home page.
http://www.open.org.au/index.html.

Ralyté, J. and Rolland, C. (2001a).
An approach for method reengineering.
In Kunii, H. S., Jajodia, S., and Sølvberg, A., editors, Conceptual
Modeling, volume 2224 of Lecture Notes on Computer Science, pages
471–484. Springer.
20th International Conference (ER 2001), Yokohama, Japan,
27-30 November 2001. Proceedings.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 160 / 162



Conclusions

Bibliography VI

Ralyté, J. and Rolland, C. (2001b).
An assembly process model for method engineering.
In Dittrich, K. R., Geppert, A., and Norrie, M. C., editors, Advanced
Information Systems Engineering, volume 2068 of Lecture Notes on
Computer Science, pages 267–283. Springer.
13th International Conference (CAiSE 2001), Interlaken, Switzerland,
4-8 June 2001. Proceedings.

Sommerville, I. (2007).
Software Engineering 8th Edition.
Addison-Wesley.

SPEM (2007).
SPEM Software Process Engineering Meta-Model home page.
http://www.omg.org/technology/documents/formal/spem.htm.

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 161 / 162



Conclusions

Agent-Oriented Software Engineering
Multiagent Systems LS

Sistemi Multiagente LS

Andrea Omicini & Ambra Molesini
{andrea.omicini, ambra.molesini}@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

Omicini & Molesini (Università di Bologna) AOSE A.Y. 2007/2008 162 / 162


	Outline
	General Concepts
	Software Engineering
	Software Process
	Methodologies
	Models and Meta-Models
	Method Engineering

	Agent Oriented Software Engineering
	Agent Oriented Methodologies
	Agent Oriented Method Engineering

	Conclusions

