
Programming Languages for Multiagent Systems
Multiagent Systems LS

Sistemi Multiagente LS

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 1 / 49



Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 2 / 49



Spaces for PL in SE Paradigm Shifts

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 3 / 49



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in Software
Engineeringa

new meta-models / new ontologies for artificial systems build up new spaces
new spaces have to be “filled” by some suitably-shaped new (class of) programming
languages, incorporating a suitable and coherent set of new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits, and become
cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are proposed
finally, new well-founded languages are defined, which cover new spaces adequately
and coherently

aSE here is taken in its broadest acceptation as the science of building software system, rather than
the strange “theoretically practical” discipline you find at ICSE. . . Otherwise, one may easily see the
thing the other way round

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 4 / 49



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in Software
Engineeringa

new meta-models / new ontologies for artificial systems build up new spaces
new spaces have to be “filled” by some suitably-shaped new (class of) programming
languages, incorporating a suitable and coherent set of new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits, and become
cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are proposed
finally, new well-founded languages are defined, which cover new spaces adequately
and coherently

aSE here is taken in its broadest acceptation as the science of building software system, rather than
the strange “theoretically practical” discipline you find at ICSE. . . Otherwise, one may easily see the
thing the other way round

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 4 / 49



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in Software
Engineeringa

new meta-models / new ontologies for artificial systems build up new spaces
new spaces have to be “filled” by some suitably-shaped new (class of) programming
languages, incorporating a suitable and coherent set of new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits, and become
cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are proposed
finally, new well-founded languages are defined, which cover new spaces adequately
and coherently

aSE here is taken in its broadest acceptation as the science of building software system, rather than
the strange “theoretically practical” discipline you find at ICSE. . . Otherwise, one may easily see the
thing the other way round

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 4 / 49



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in Software
Engineeringa

new meta-models / new ontologies for artificial systems build up new spaces
new spaces have to be “filled” by some suitably-shaped new (class of) programming
languages, incorporating a suitable and coherent set of new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits, and become
cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are proposed
finally, new well-founded languages are defined, which cover new spaces adequately
and coherently

aSE here is taken in its broadest acceptation as the science of building software system, rather than
the strange “theoretically practical” discipline you find at ICSE. . . Otherwise, one may easily see the
thing the other way round

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 4 / 49



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in Software
Engineeringa

new meta-models / new ontologies for artificial systems build up new spaces
new spaces have to be “filled” by some suitably-shaped new (class of) programming
languages, incorporating a suitable and coherent set of new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits, and become
cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are proposed
finally, new well-founded languages are defined, which cover new spaces adequately
and coherently

aSE here is taken in its broadest acceptation as the science of building software system, rather than
the strange “theoretically practical” discipline you find at ICSE. . . Otherwise, one may easily see the
thing the other way round

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 4 / 49



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in Software
Engineeringa

new meta-models / new ontologies for artificial systems build up new spaces
new spaces have to be “filled” by some suitably-shaped new (class of) programming
languages, incorporating a suitable and coherent set of new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits, and become
cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are proposed
finally, new well-founded languages are defined, which cover new spaces adequately
and coherently

aSE here is taken in its broadest acceptation as the science of building software system, rather than
the strange “theoretically practical” discipline you find at ICSE. . . Otherwise, one may easily see the
thing the other way round

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 4 / 49



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in Software
Engineeringa

new meta-models / new ontologies for artificial systems build up new spaces
new spaces have to be “filled” by some suitably-shaped new (class of) programming
languages, incorporating a suitable and coherent set of new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits, and become
cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are proposed
finally, new well-founded languages are defined, which cover new spaces adequately
and coherently

aSE here is taken in its broadest acceptation as the science of building software system, rather than
the strange “theoretically practical” discipline you find at ICSE. . . Otherwise, one may easily see the
thing the other way round

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 4 / 49



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in Software
Engineeringa

new meta-models / new ontologies for artificial systems build up new spaces
new spaces have to be “filled” by some suitably-shaped new (class of) programming
languages, incorporating a suitable and coherent set of new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits, and become
cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are proposed
finally, new well-founded languages are defined, which cover new spaces adequately
and coherently

aSE here is taken in its broadest acceptation as the science of building software system, rather than
the strange “theoretically practical” discipline you find at ICSE. . . Otherwise, one may easily see the
thing the other way round

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 4 / 49



Spaces for PL in SE Paradigm Shifts

Paradigm Shifts in Software Engineering

New classes of programming languages

New classes of programming languages come from paradigm shifts in Software
Engineeringa

new meta-models / new ontologies for artificial systems build up new spaces
new spaces have to be “filled” by some suitably-shaped new (class of) programming
languages, incorporating a suitable and coherent set of new abstractions

The typical procedure

first, existing languages are “stretched” far beyond their own limits, and become
cluttered with incoherent abstractions and mechanisms
then, academical languages covering only some of the issues are proposed
finally, new well-founded languages are defined, which cover new spaces adequately
and coherently

aSE here is taken in its broadest acceptation as the science of building software system, rather than
the strange “theoretically practical” discipline you find at ICSE. . . Otherwise, one may easily see the
thing the other way round

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 4 / 49



Spaces for PL in SE Paradigm Shifts

The Problem of PL & SE Today

Things are running too fast

New classes of programming languages emerge too fast from the needs of
real-world software engineering
However, technologies (like programming language frameworks) require a
reasonable amount of time (and resources, in general) to be suitably
developed and stabilised, before they are ready for SE practise

→ Most of the time, SE practitioners have to work with languages (and
frameworks) they know well, but which do not support (or, incoherently /
insufficiently support) required abstractions & mechanisms

→ This makes methodologies more and more important with respect to
technologies, since they can help covering the “abstraction gap” in
technologies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 5 / 49



Spaces for PL in SE Paradigm Shifts

The Problem of PL & SE Today

Things are running too fast

New classes of programming languages emerge too fast from the needs of
real-world software engineering
However, technologies (like programming language frameworks) require a
reasonable amount of time (and resources, in general) to be suitably
developed and stabilised, before they are ready for SE practise

→ Most of the time, SE practitioners have to work with languages (and
frameworks) they know well, but which do not support (or, incoherently /
insufficiently support) required abstractions & mechanisms

→ This makes methodologies more and more important with respect to
technologies, since they can help covering the “abstraction gap” in
technologies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 5 / 49



Spaces for PL in SE Paradigm Shifts

The Problem of PL & SE Today

Things are running too fast

New classes of programming languages emerge too fast from the needs of
real-world software engineering
However, technologies (like programming language frameworks) require a
reasonable amount of time (and resources, in general) to be suitably
developed and stabilised, before they are ready for SE practise

→ Most of the time, SE practitioners have to work with languages (and
frameworks) they know well, but which do not support (or, incoherently /
insufficiently support) required abstractions & mechanisms

→ This makes methodologies more and more important with respect to
technologies, since they can help covering the “abstraction gap” in
technologies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 5 / 49



Spaces for PL in SE Paradigm Shifts

The Problem of PL & SE Today

Things are running too fast

New classes of programming languages emerge too fast from the needs of
real-world software engineering
However, technologies (like programming language frameworks) require a
reasonable amount of time (and resources, in general) to be suitably
developed and stabilised, before they are ready for SE practise

→ Most of the time, SE practitioners have to work with languages (and
frameworks) they know well, but which do not support (or, incoherently /
insufficiently support) required abstractions & mechanisms

→ This makes methodologies more and more important with respect to
technologies, since they can help covering the “abstraction gap” in
technologies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 5 / 49



Spaces for PL in SE Paradigm Shifts

The Problem of PL & SE Today

Things are running too fast

New classes of programming languages emerge too fast from the needs of
real-world software engineering
However, technologies (like programming language frameworks) require a
reasonable amount of time (and resources, in general) to be suitably
developed and stabilised, before they are ready for SE practise

→ Most of the time, SE practitioners have to work with languages (and
frameworks) they know well, but which do not support (or, incoherently /
insufficiently support) required abstractions & mechanisms

→ This makes methodologies more and more important with respect to
technologies, since they can help covering the “abstraction gap” in
technologies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 5 / 49



Spaces for PL in SE Examples

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 6 / 49



Spaces for PL in SE Examples

An Example: CORBA & Distributed Objects

OOP technologies moving too slow

As soon as OOP moved out of academia to enter SE practises, new
needs had already emerged

Distribution of software applications required new solutions, and
created new spaces for programming languages

Distributed objects were the first answer, and distributed
infrastructures like CORBA were developed

On the one hand, new (classes of) languages like IDL were introduced

On the other hand, the development of a stable & reliable technology
was so slow, that the first “usable” CORBA implementation (3.0)
came too late, and never established itself as the standard reference
technology

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 7 / 49



Spaces for PL in SE Examples

An Example: CORBA & Distributed Objects

OOP technologies moving too slow

As soon as OOP moved out of academia to enter SE practises, new
needs had already emerged

Distribution of software applications required new solutions, and
created new spaces for programming languages

Distributed objects were the first answer, and distributed
infrastructures like CORBA were developed

On the one hand, new (classes of) languages like IDL were introduced

On the other hand, the development of a stable & reliable technology
was so slow, that the first “usable” CORBA implementation (3.0)
came too late, and never established itself as the standard reference
technology

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 7 / 49



Spaces for PL in SE Examples

An Example: CORBA & Distributed Objects

OOP technologies moving too slow

As soon as OOP moved out of academia to enter SE practises, new
needs had already emerged

Distribution of software applications required new solutions, and
created new spaces for programming languages

Distributed objects were the first answer, and distributed
infrastructures like CORBA were developed

On the one hand, new (classes of) languages like IDL were introduced

On the other hand, the development of a stable & reliable technology
was so slow, that the first “usable” CORBA implementation (3.0)
came too late, and never established itself as the standard reference
technology

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 7 / 49



Spaces for PL in SE Examples

An Example: CORBA & Distributed Objects

OOP technologies moving too slow

As soon as OOP moved out of academia to enter SE practises, new
needs had already emerged

Distribution of software applications required new solutions, and
created new spaces for programming languages

Distributed objects were the first answer, and distributed
infrastructures like CORBA were developed

On the one hand, new (classes of) languages like IDL were introduced

On the other hand, the development of a stable & reliable technology
was so slow, that the first “usable” CORBA implementation (3.0)
came too late, and never established itself as the standard reference
technology

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 7 / 49



Spaces for PL in SE Examples

An Example: CORBA & Distributed Objects

OOP technologies moving too slow

As soon as OOP moved out of academia to enter SE practises, new
needs had already emerged

Distribution of software applications required new solutions, and
created new spaces for programming languages

Distributed objects were the first answer, and distributed
infrastructures like CORBA were developed

On the one hand, new (classes of) languages like IDL were introduced

On the other hand, the development of a stable & reliable technology
was so slow, that the first “usable” CORBA implementation (3.0)
came too late, and never established itself as the standard reference
technology

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 7 / 49



Spaces for PL in SE Examples

An Example: CORBA & Distributed Objects

OOP technologies moving too slow

As soon as OOP moved out of academia to enter SE practises, new
needs had already emerged

Distribution of software applications required new solutions, and
created new spaces for programming languages

Distributed objects were the first answer, and distributed
infrastructures like CORBA were developed

On the one hand, new (classes of) languages like IDL were introduced

On the other hand, the development of a stable & reliable technology
was so slow, that the first “usable” CORBA implementation (3.0)
came too late, and never established itself as the standard reference
technology

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 7 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in SE Examples

Another Example: Java & Web Technologies

What is the standard framework for distributed systems today?

Java, for distributed objects
The Web, for most distributed applications

None of them, however, was born for this
Java was born as a programming language

today Java is typically conceived as a platform, or a distributed framework

The Web was born as a mere concept, implemented via HTML pages, server &
browsers

today the Web is a sort of cluster of related technologies in ultra-fast growth

Both of them suffer from a lack of conceptual coherence

in Java, syntax and basic language mechanisms are the only glue
in Web technologies, the client / server pattern is the only unifying model
conceptual integrity is lost in principle

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 8 / 49



Spaces for PL in MAS Programming Agents

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 9 / 49



Spaces for PL in MAS Programming Agents

The Agent Abstraction

MAS programming languages have agent as a fundamental abstraction

An agent programming language should support one (or more) agent
definition(s)

so, straightforwardly supporting mobility in case of mobile agents,
intelligence somehow in case of intelligent agents, . . . , by means of
well-defined language constructs

Required agent features play a fundamental role in defining language
constructs

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 10 / 49



Spaces for PL in MAS Programming Agents

The Agent Abstraction

MAS programming languages have agent as a fundamental abstraction

An agent programming language should support one (or more) agent
definition(s)

so, straightforwardly supporting mobility in case of mobile agents,
intelligence somehow in case of intelligent agents, . . . , by means of
well-defined language constructs

Required agent features play a fundamental role in defining language
constructs

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 10 / 49



Spaces for PL in MAS Programming Agents

The Agent Abstraction

MAS programming languages have agent as a fundamental abstraction

An agent programming language should support one (or more) agent
definition(s)

so, straightforwardly supporting mobility in case of mobile agents,
intelligence somehow in case of intelligent agents, . . . , by means of
well-defined language constructs

Required agent features play a fundamental role in defining language
constructs

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 10 / 49



Spaces for PL in MAS Programming Agents

The Agent Abstraction

MAS programming languages have agent as a fundamental abstraction

An agent programming language should support one (or more) agent
definition(s)

so, straightforwardly supporting mobility in case of mobile agents,
intelligence somehow in case of intelligent agents, . . . , by means of
well-defined language constructs

Required agent features play a fundamental role in defining language
constructs

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 10 / 49



Spaces for PL in MAS Programming Agents

Agent Architectures

MAS programming languages support agent architectures

Agents have (essential) features, but they are built around an agent
architecture, which defines both its internal structure, and its
functioning

An agent programming language should support one (or more) agent
architecture(s)

e.g., the BDI (Belief, Desire, Intention) architecture
[Rao and Georgeff, 1991]
see Rosenschein’s slides for some basic agent architectures

Agent architectures influence possible agent features

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 11 / 49



Spaces for PL in MAS Programming Agents

Agent Architectures

MAS programming languages support agent architectures

Agents have (essential) features, but they are built around an agent
architecture, which defines both its internal structure, and its
functioning

An agent programming language should support one (or more) agent
architecture(s)

e.g., the BDI (Belief, Desire, Intention) architecture
[Rao and Georgeff, 1991]
see Rosenschein’s slides for some basic agent architectures

Agent architectures influence possible agent features

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 11 / 49



Spaces for PL in MAS Programming Agents

Agent Architectures

MAS programming languages support agent architectures

Agents have (essential) features, but they are built around an agent
architecture, which defines both its internal structure, and its
functioning

An agent programming language should support one (or more) agent
architecture(s)

e.g., the BDI (Belief, Desire, Intention) architecture
[Rao and Georgeff, 1991]
see Rosenschein’s slides for some basic agent architectures

Agent architectures influence possible agent features

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 11 / 49



Spaces for PL in MAS Programming Agents

Agent Architectures

MAS programming languages support agent architectures

Agents have (essential) features, but they are built around an agent
architecture, which defines both its internal structure, and its
functioning

An agent programming language should support one (or more) agent
architecture(s)

e.g., the BDI (Belief, Desire, Intention) architecture
[Rao and Georgeff, 1991]
see Rosenschein’s slides for some basic agent architectures

Agent architectures influence possible agent features

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 11 / 49



Spaces for PL in MAS Programming Agents

Agent Architectures

MAS programming languages support agent architectures

Agents have (essential) features, but they are built around an agent
architecture, which defines both its internal structure, and its
functioning

An agent programming language should support one (or more) agent
architecture(s)

e.g., the BDI (Belief, Desire, Intention) architecture
[Rao and Georgeff, 1991]
see Rosenschein’s slides for some basic agent architectures

Agent architectures influence possible agent features

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 11 / 49



Spaces for PL in MAS Programming Agents

Agent Architectures

MAS programming languages support agent architectures

Agents have (essential) features, but they are built around an agent
architecture, which defines both its internal structure, and its
functioning

An agent programming language should support one (or more) agent
architecture(s)

e.g., the BDI (Belief, Desire, Intention) architecture
[Rao and Georgeff, 1991]
see Rosenschein’s slides for some basic agent architectures

Agent architectures influence possible agent features

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 11 / 49



Spaces for PL in MAS Programming Agents

Agent Architectures

MAS programming languages support agent architectures

Agents have (essential) features, but they are built around an agent
architecture, which defines both its internal structure, and its
functioning

An agent programming language should support one (or more) agent
architecture(s)

e.g., the BDI (Belief, Desire, Intention) architecture
[Rao and Georgeff, 1991]
see Rosenschein’s slides for some basic agent architectures

Agent architectures influence possible agent features

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 11 / 49



Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 12 / 49



Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 12 / 49



Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 12 / 49



Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 12 / 49



Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 12 / 49



Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 12 / 49



Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 12 / 49



Spaces for PL in MAS Programming Agents

Agent Observable Behaviour

MAS programming languages support agent model of action

Agents act

through either communication or pragmatical actions

Altogether, these two sorts of action define the admissible space for
agent’s observable behaviour

a communication language defines how agents speak to each other
a “language of pragmatical actions” should define how an agent can
act over its environment

A full-fledged agent language should account for both languages

so little work on languages of pragmatical actions, however

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 12 / 49



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 13 / 49



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 13 / 49



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 13 / 49



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 13 / 49



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 13 / 49



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 13 / 49



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 13 / 49



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 13 / 49



Spaces for PL in MAS Programming Agents

Agent Behaviour

Agent computation vs. agent interaction / coordination

Agents have both an internal behaviour and an observable, external
behaviour

this reproduce the “computation vs. interaction / coordination”
dichotomy of standard programming languages

computation the inner functioning of a computational component
interaction actions determining the observable behaviour of a computational

component

so, what is new here?

Agent autonomy is new

the observable behaviour of an agent as a computational component is
driven / governed by the agent itself
e.g., intelligent agents do practical reasoning—reasoning about
actions—so that computation “computes” over the interaction
space—in short, agent coordination

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 13 / 49



Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Languages to be, languages to interact

Agent programming languages should be either / both

languages to be languages to define (agent) computational behaviour
languages to interact languages to define (agent) interactive

behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of agent languages “to interact”

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 14 / 49



Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Languages to be, languages to interact

Agent programming languages should be either / both

languages to be languages to define (agent) computational behaviour
languages to interact languages to define (agent) interactive

behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of agent languages “to interact”

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 14 / 49



Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Languages to be, languages to interact

Agent programming languages should be either / both

languages to be languages to define (agent) computational behaviour
languages to interact languages to define (agent) interactive

behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of agent languages “to interact”

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 14 / 49



Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Languages to be, languages to interact

Agent programming languages should be either / both

languages to be languages to define (agent) computational behaviour
languages to interact languages to define (agent) interactive

behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of agent languages “to interact”

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 14 / 49



Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Languages to be, languages to interact

Agent programming languages should be either / both

languages to be languages to define (agent) computational behaviour
languages to interact languages to define (agent) interactive

behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of agent languages “to interact”

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 14 / 49



Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Languages to be, languages to interact

Agent programming languages should be either / both

languages to be languages to define (agent) computational behaviour
languages to interact languages to define (agent) interactive

behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of agent languages “to interact”

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 14 / 49



Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Languages to be, languages to interact

Agent programming languages should be either / both

languages to be languages to define (agent) computational behaviour
languages to interact languages to define (agent) interactive

behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of agent languages “to interact”

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 14 / 49



Spaces for PL in MAS Programming Agents

Agent (Programming) Languages

Languages to be, languages to interact

Agent programming languages should be either / both

languages to be languages to define (agent) computational behaviour
languages to interact languages to define (agent) interactive

behaviour

Example: Agent Communication Languages (ACL)

ACL are the easiest example of agent languages “to interact”

they just define how agents speak with each other
however, these languages may have some requirements on internal
architecture / functioning of agents

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 14 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming Agents

Agents Without Agent Languages

What if we do not have an agent language available?

For either theoretical or practical reasons, it may happen

we may need an essential Prolog feature, or be required to use Java

What we do need to do: (1) define

adopt an agent definition, along with the agent’s required / desired features
choose agent architecture accordingly, and according to the MAS needs
define a model and the languages for agent actions, both communicative and
pragmatical

What we do need to do: (2) map

map agent features, architecture, and action model / languages upon the
existing abstractions, mechanisms & constructs of the language chosen
thus building an agent abstraction layer over our non-agent language foundation

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 15 / 49



Spaces for PL in MAS Programming MAS

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 16 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Programming the Interaction Space

The space of MAS interaction

Languages to interact roughly define the space of (admissible) MAS
interaction
Languages to interact should not be merely seen from the viewpoint of the
individual agent (subjective viewpoint)
The overall view on the space of (admissible) MAS interaction is the MAS
engineer’s viewpoint (objective viewpoint)

subjective vs. objective viewpoint over interaction
[Schumacher, 2001, Omicini and Ossowski, 2003]

Enabling / governing / constraining the space of MAS interaction

A number of inter-disciplinary fields of study insist on the space of (system)
interaction

coordination
organisation
security

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 17 / 49



Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination
[Schumacher, 2001, Omicini and Ossowski, 2003]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 18 / 49



Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination
[Schumacher, 2001, Omicini and Ossowski, 2003]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 18 / 49



Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination
[Schumacher, 2001, Omicini and Ossowski, 2003]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 18 / 49



Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination
[Schumacher, 2001, Omicini and Ossowski, 2003]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 18 / 49



Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination
[Schumacher, 2001, Omicini and Ossowski, 2003]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 18 / 49



Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination
[Schumacher, 2001, Omicini and Ossowski, 2003]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 18 / 49



Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination
[Schumacher, 2001, Omicini and Ossowski, 2003]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 18 / 49



Spaces for PL in MAS Programming MAS

Coordination

Coordination in short

Many different definitions around

we will talk about this later on in this course—we need to simplify, here

In short, coordination is managing / governing interaction in any
possible way, from any viewpoint

Coordination has a typical “dynamic” acceptation

that is, enabling / governing interaction at execution time

Coordination in MAS is even a more chaotic field

again, a useful definition to harness the many different acceptations in
the field is subjective vs. objective coordination—the agent’s vs. the
engineer’s viewpoint over coordination
[Schumacher, 2001, Omicini and Ossowski, 2003]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 18 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Organisation

Organisation in short

Again, a not-so-clear and shared definition
It mainly concerns the structure of a system

it is mostly design-driven

It affects and determines admissible / required interactions permissions /
commitments / policies / violations / fines / rewards / . . .
Organisation is still enabling & ruling the space of MAS interaction

but with a more “static”, structural flavour
such that most people mix-up “static” and “organisation” improperly

Organisation in MAS is first of all, a model of responsibilities & power

typically based on the notion of role
requiring a model of communicative & pragmatical actions
e.g. RBAC-MAS [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 19 / 49



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 20 / 49



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 20 / 49



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 20 / 49



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 20 / 49



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 20 / 49



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 20 / 49



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 20 / 49



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 20 / 49



Spaces for PL in MAS Programming MAS

Security

Security in short

You may not believe it, but also security means managing interaction

you cannot see / do / say this, you can say / do / see that

Typically, security has both “static” and “dynamic” flavours

a design- plus a run-time acceptation

But tends to enforce a “negative” interpretation over interaction

“this is not allowed”

It is then dual to both coordination and organisation

So, in MAS at least, they should to be looked at altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 20 / 49



Spaces for PL in MAS Programming MAS

Coordination, Organisation & Security

Governing interaction in MAS

Coordination, organisation & security all mean managing (MAS)
interaction

They all are meant to shape the space of admissible MAS interactions

to define its admissible space at design-time (organisation/security
flavour)
to govern its dynamics at run-time (coordination/security flavour)

An overall view is then required

could artifacts, and the A&A meta-model help on this?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 21 / 49



Spaces for PL in MAS Programming MAS

Coordination, Organisation & Security

Governing interaction in MAS

Coordination, organisation & security all mean managing (MAS)
interaction

They all are meant to shape the space of admissible MAS interactions

to define its admissible space at design-time (organisation/security
flavour)
to govern its dynamics at run-time (coordination/security flavour)

An overall view is then required

could artifacts, and the A&A meta-model help on this?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 21 / 49



Spaces for PL in MAS Programming MAS

Coordination, Organisation & Security

Governing interaction in MAS

Coordination, organisation & security all mean managing (MAS)
interaction

They all are meant to shape the space of admissible MAS interactions

to define its admissible space at design-time (organisation/security
flavour)
to govern its dynamics at run-time (coordination/security flavour)

An overall view is then required

could artifacts, and the A&A meta-model help on this?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 21 / 49



Spaces for PL in MAS Programming MAS

Coordination, Organisation & Security

Governing interaction in MAS

Coordination, organisation & security all mean managing (MAS)
interaction

They all are meant to shape the space of admissible MAS interactions

to define its admissible space at design-time (organisation/security
flavour)
to govern its dynamics at run-time (coordination/security flavour)

An overall view is then required

could artifacts, and the A&A meta-model help on this?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 21 / 49



Spaces for PL in MAS Programming MAS

Coordination, Organisation & Security

Governing interaction in MAS

Coordination, organisation & security all mean managing (MAS)
interaction

They all are meant to shape the space of admissible MAS interactions

to define its admissible space at design-time (organisation/security
flavour)
to govern its dynamics at run-time (coordination/security flavour)

An overall view is then required

could artifacts, and the A&A meta-model help on this?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 21 / 49



Spaces for PL in MAS Programming MAS

Coordination, Organisation & Security

Governing interaction in MAS

Coordination, organisation & security all mean managing (MAS)
interaction

They all are meant to shape the space of admissible MAS interactions

to define its admissible space at design-time (organisation/security
flavour)
to govern its dynamics at run-time (coordination/security flavour)

An overall view is then required

could artifacts, and the A&A meta-model help on this?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 21 / 49



Spaces for PL in MAS Programming MAS

Coordination, Organisation & Security

Governing interaction in MAS

Coordination, organisation & security all mean managing (MAS)
interaction

They all are meant to shape the space of admissible MAS interactions

to define its admissible space at design-time (organisation/security
flavour)
to govern its dynamics at run-time (coordination/security flavour)

An overall view is then required

could artifacts, and the A&A meta-model help on this?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 21 / 49



Spaces for PL in A&A Generality

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 22 / 49



Spaces for PL in A&A Generality

MAS Interaction Space in the A&A Meta-model

MAS interaction & A&A

Agents speak with agents

Agents use artifacts

Artifacts link with artifacts

Artifacts manifest to agents

these four sentences completely describe interaction within a MAS in
the A&A meta-model

What about programming languages now?

what about languages to be and languages to interact?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 23 / 49



Spaces for PL in A&A Generality

MAS Interaction Space in the A&A Meta-model

MAS interaction & A&A

Agents speak with agents

Agents use artifacts

Artifacts link with artifacts

Artifacts manifest to agents

these four sentences completely describe interaction within a MAS in
the A&A meta-model

What about programming languages now?

what about languages to be and languages to interact?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 23 / 49



Spaces for PL in A&A Generality

MAS Interaction Space in the A&A Meta-model

MAS interaction & A&A

Agents speak with agents

Agents use artifacts

Artifacts link with artifacts

Artifacts manifest to agents

these four sentences completely describe interaction within a MAS in
the A&A meta-model

What about programming languages now?

what about languages to be and languages to interact?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 23 / 49



Spaces for PL in A&A Generality

MAS Interaction Space in the A&A Meta-model

MAS interaction & A&A

Agents speak with agents

Agents use artifacts

Artifacts link with artifacts

Artifacts manifest to agents

these four sentences completely describe interaction within a MAS in
the A&A meta-model

What about programming languages now?

what about languages to be and languages to interact?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 23 / 49



Spaces for PL in A&A Generality

MAS Interaction Space in the A&A Meta-model

MAS interaction & A&A

Agents speak with agents

Agents use artifacts

Artifacts link with artifacts

Artifacts manifest to agents

these four sentences completely describe interaction within a MAS in
the A&A meta-model

What about programming languages now?

what about languages to be and languages to interact?

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 23 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts

Artifacts as MAS computational entities

Artifacts are computational entities

with a computational (internal) behaviour
and an interactive (observable) behaviour

Artifact programming languages are required

possibly covering both aspects
to be artifact, and to interact with agents and other artifacts

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 24 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts

Artifacts as MAS computational entities

Artifacts are computational entities

with a computational (internal) behaviour
and an interactive (observable) behaviour

Artifact programming languages are required

possibly covering both aspects
to be artifact, and to interact with agents and other artifacts

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 24 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts

Artifacts as MAS computational entities

Artifacts are computational entities

with a computational (internal) behaviour
and an interactive (observable) behaviour

Artifact programming languages are required

possibly covering both aspects
to be artifact, and to interact with agents and other artifacts

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 24 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts

Artifacts as MAS computational entities

Artifacts are computational entities

with a computational (internal) behaviour
and an interactive (observable) behaviour

Artifact programming languages are required

possibly covering both aspects
to be artifact, and to interact with agents and other artifacts

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 24 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts

Artifacts as MAS computational entities

Artifacts are computational entities

with a computational (internal) behaviour
and an interactive (observable) behaviour

Artifact programming languages are required

possibly covering both aspects
to be artifact, and to interact with agents and other artifacts

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 24 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts

Artifacts as MAS computational entities

Artifacts are computational entities

with a computational (internal) behaviour
and an interactive (observable) behaviour

Artifact programming languages are required

possibly covering both aspects
to be artifact, and to interact with agents and other artifacts

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 24 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Computation

Languages to be for artifacts

Artifact computational behaviour is reactive

artifact languages should essentially be event-driven

Artifacts belong to the agent interaction space within a MAS

artifact languages should be able to compute over MAS interaction

Given the prominence of interaction in computation, artifact
languages are likely to embody both aspects altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 25 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Computation

Languages to be for artifacts

Artifact computational behaviour is reactive

artifact languages should essentially be event-driven

Artifacts belong to the agent interaction space within a MAS

artifact languages should be able to compute over MAS interaction

Given the prominence of interaction in computation, artifact
languages are likely to embody both aspects altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 25 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Computation

Languages to be for artifacts

Artifact computational behaviour is reactive

artifact languages should essentially be event-driven

Artifacts belong to the agent interaction space within a MAS

artifact languages should be able to compute over MAS interaction

Given the prominence of interaction in computation, artifact
languages are likely to embody both aspects altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 25 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Computation

Languages to be for artifacts

Artifact computational behaviour is reactive

artifact languages should essentially be event-driven

Artifacts belong to the agent interaction space within a MAS

artifact languages should be able to compute over MAS interaction

Given the prominence of interaction in computation, artifact
languages are likely to embody both aspects altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 25 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Computation

Languages to be for artifacts

Artifact computational behaviour is reactive

artifact languages should essentially be event-driven

Artifacts belong to the agent interaction space within a MAS

artifact languages should be able to compute over MAS interaction

Given the prominence of interaction in computation, artifact
languages are likely to embody both aspects altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 25 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Computation

Languages to be for artifacts

Artifact computational behaviour is reactive

artifact languages should essentially be event-driven

Artifacts belong to the agent interaction space within a MAS

artifact languages should be able to compute over MAS interaction

Given the prominence of interaction in computation, artifact
languages are likely to embody both aspects altogether

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 25 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Interaction

Languages to interact for artifacts

Artifact interactive behaviour deals with agents and artifacts

artifact languages should provide operations for agents to use them
artifact languages should provide links for artifacts to link with them

Artifacts work as mediators between agents and the environment

artifact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artifacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 26 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Interaction

Languages to interact for artifacts

Artifact interactive behaviour deals with agents and artifacts

artifact languages should provide operations for agents to use them
artifact languages should provide links for artifacts to link with them

Artifacts work as mediators between agents and the environment

artifact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artifacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 26 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Interaction

Languages to interact for artifacts

Artifact interactive behaviour deals with agents and artifacts

artifact languages should provide operations for agents to use them
artifact languages should provide links for artifacts to link with them

Artifacts work as mediators between agents and the environment

artifact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artifacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 26 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Interaction

Languages to interact for artifacts

Artifact interactive behaviour deals with agents and artifacts

artifact languages should provide operations for agents to use them
artifact languages should provide links for artifacts to link with them

Artifacts work as mediators between agents and the environment

artifact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artifacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 26 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Interaction

Languages to interact for artifacts

Artifact interactive behaviour deals with agents and artifacts

artifact languages should provide operations for agents to use them
artifact languages should provide links for artifacts to link with them

Artifacts work as mediators between agents and the environment

artifact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artifacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 26 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Interaction

Languages to interact for artifacts

Artifact interactive behaviour deals with agents and artifacts

artifact languages should provide operations for agents to use them
artifact languages should provide links for artifacts to link with them

Artifacts work as mediators between agents and the environment

artifact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artifacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 26 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Interaction

Languages to interact for artifacts

Artifact interactive behaviour deals with agents and artifacts

artifact languages should provide operations for agents to use them
artifact languages should provide links for artifacts to link with them

Artifacts work as mediators between agents and the environment

artifact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artifacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 26 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: Interaction

Languages to interact for artifacts

Artifact interactive behaviour deals with agents and artifacts

artifact languages should provide operations for agents to use them
artifact languages should provide links for artifacts to link with them

Artifacts work as mediators between agents and the environment

artifact languages should be able to react to environment events, and
to observe / compute over them

In the overall, artifacts may subsume agent’s pragmatical actions, as
well as environment’s events & change

thus providing the basis for an engineering discipline of MAS interaction

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 26 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: A&A Features

A&A artifact features in languages

An artifact language may deal with artifact’s usage interface

An artifact language may deal with artifact’s operating instructions

An artifact language may deal with artifact’s function description

Other artifact features in languages

An artifact language may allow an artifact to be inspectable,
controllable, malleable/forgeable, linkable, . . .

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 27 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: A&A Features

A&A artifact features in languages

An artifact language may deal with artifact’s usage interface

An artifact language may deal with artifact’s operating instructions

An artifact language may deal with artifact’s function description

Other artifact features in languages

An artifact language may allow an artifact to be inspectable,
controllable, malleable/forgeable, linkable, . . .

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 27 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: A&A Features

A&A artifact features in languages

An artifact language may deal with artifact’s usage interface

An artifact language may deal with artifact’s operating instructions

An artifact language may deal with artifact’s function description

Other artifact features in languages

An artifact language may allow an artifact to be inspectable,
controllable, malleable/forgeable, linkable, . . .

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 27 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: A&A Features

A&A artifact features in languages

An artifact language may deal with artifact’s usage interface

An artifact language may deal with artifact’s operating instructions

An artifact language may deal with artifact’s function description

Other artifact features in languages

An artifact language may allow an artifact to be inspectable,
controllable, malleable/forgeable, linkable, . . .

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 27 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: A&A Features

A&A artifact features in languages

An artifact language may deal with artifact’s usage interface

An artifact language may deal with artifact’s operating instructions

An artifact language may deal with artifact’s function description

Other artifact features in languages

An artifact language may allow an artifact to be inspectable,
controllable, malleable/forgeable, linkable, . . .

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 27 / 49



Spaces for PL in A&A Generality

Programming Languages for Artifacts: A&A Features

A&A artifact features in languages

An artifact language may deal with artifact’s usage interface

An artifact language may deal with artifact’s operating instructions

An artifact language may deal with artifact’s function description

Other artifact features in languages

An artifact language may allow an artifact to be inspectable,
controllable, malleable/forgeable, linkable, . . .

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 27 / 49



Spaces for PL in A&A Generality

Programming Languages for A&A Agents

A&A agents deal with artifacts

An agent programming language may deal with artifact’s usage
interface for artifact use

An agent programming language may deal with artifact’s operating
instructions for practical reasoning about artifacts

An agent programming language may deal with artifact’s function
description for artifact selection

Other features for agent programming languages

An agent programming language may allow an A&A agent to inspect,
control, forge, compose, . . . , artifacts of a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 28 / 49



Spaces for PL in A&A Generality

Programming Languages for A&A Agents

A&A agents deal with artifacts

An agent programming language may deal with artifact’s usage
interface for artifact use

An agent programming language may deal with artifact’s operating
instructions for practical reasoning about artifacts

An agent programming language may deal with artifact’s function
description for artifact selection

Other features for agent programming languages

An agent programming language may allow an A&A agent to inspect,
control, forge, compose, . . . , artifacts of a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 28 / 49



Spaces for PL in A&A Generality

Programming Languages for A&A Agents

A&A agents deal with artifacts

An agent programming language may deal with artifact’s usage
interface for artifact use

An agent programming language may deal with artifact’s operating
instructions for practical reasoning about artifacts

An agent programming language may deal with artifact’s function
description for artifact selection

Other features for agent programming languages

An agent programming language may allow an A&A agent to inspect,
control, forge, compose, . . . , artifacts of a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 28 / 49



Spaces for PL in A&A Generality

Programming Languages for A&A Agents

A&A agents deal with artifacts

An agent programming language may deal with artifact’s usage
interface for artifact use

An agent programming language may deal with artifact’s operating
instructions for practical reasoning about artifacts

An agent programming language may deal with artifact’s function
description for artifact selection

Other features for agent programming languages

An agent programming language may allow an A&A agent to inspect,
control, forge, compose, . . . , artifacts of a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 28 / 49



Spaces for PL in A&A Generality

Programming Languages for A&A Agents

A&A agents deal with artifacts

An agent programming language may deal with artifact’s usage
interface for artifact use

An agent programming language may deal with artifact’s operating
instructions for practical reasoning about artifacts

An agent programming language may deal with artifact’s function
description for artifact selection

Other features for agent programming languages

An agent programming language may allow an A&A agent to inspect,
control, forge, compose, . . . , artifacts of a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 28 / 49



Spaces for PL in A&A Generality

Programming Languages for A&A Agents

A&A agents deal with artifacts

An agent programming language may deal with artifact’s usage
interface for artifact use

An agent programming language may deal with artifact’s operating
instructions for practical reasoning about artifacts

An agent programming language may deal with artifact’s function
description for artifact selection

Other features for agent programming languages

An agent programming language may allow an A&A agent to inspect,
control, forge, compose, . . . , artifacts of a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 28 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Outline

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 29 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artifacts: The Environment

Artifacts & MAS Environment

Artifacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artifacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artifacts are our main places to model & engineer
coordination, organisation & security in MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 30 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artifacts: The Environment

Artifacts & MAS Environment

Artifacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artifacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artifacts are our main places to model & engineer
coordination, organisation & security in MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 30 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artifacts: The Environment

Artifacts & MAS Environment

Artifacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artifacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artifacts are our main places to model & engineer
coordination, organisation & security in MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 30 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artifacts: The Environment

Artifacts & MAS Environment

Artifacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artifacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artifacts are our main places to model & engineer
coordination, organisation & security in MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 30 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artifacts: The Environment

Artifacts & MAS Environment

Artifacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artifacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artifacts are our main places to model & engineer
coordination, organisation & security in MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 30 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artifacts: The Environment

Artifacts & MAS Environment

Artifacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artifacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artifacts are our main places to model & engineer
coordination, organisation & security in MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 30 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artifacts: The Environment

Artifacts & MAS Environment

Artifacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artifacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artifacts are our main places to model & engineer
coordination, organisation & security in MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 30 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Programming Languages for Artifacts: The Environment

Artifacts & MAS Environment

Artifacts are our conceptual tools to model, articulate and shape
MAS environment

to govern the agent interaction space
to build up the agent workspace

Artifacts for coordination, organisation & security

Governing the interaction space essentially means coordination,
organisation & security

More or less the same holds for building agent workspace

As a result, artifacts are our main places to model & engineer
coordination, organisation & security in MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 30 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy

Individual artifacts

handling a single agent’s
interaction

Social artifacts

handling interaction among a
number of agents / artifacts

Environment artifacts

handling interaction between
MAS and the environment

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 31 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy

Individual artifacts

handling a single agent’s
interaction

Social artifacts

handling interaction among a
number of agents / artifacts

Environment artifacts

handling interaction between
MAS and the environment

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 31 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy

Individual artifacts

handling a single agent’s
interaction

Social artifacts

handling interaction among a
number of agents / artifacts

Environment artifacts

handling interaction between
MAS and the environment

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 31 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy

Individual artifacts

handling a single agent’s
interaction

Social artifacts

handling interaction among a
number of agents / artifacts

Environment artifacts

handling interaction between
MAS and the environment

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 31 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy

Individual artifacts

handling a single agent’s
interaction

Social artifacts

handling interaction among a
number of agents / artifacts

Environment artifacts

handling interaction between
MAS and the environment

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 31 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy

Individual artifacts

handling a single agent’s
interaction

Social artifacts

handling interaction among a
number of agents / artifacts

Environment artifacts

handling interaction between
MAS and the environment

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 31 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy

Individual artifacts

handling a single agent’s
interaction

Social artifacts

handling interaction among a
number of agents / artifacts

Environment artifacts

handling interaction between
MAS and the environment

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 31 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy

Individual artifacts

handling a single agent’s
interaction

Social artifacts

handling interaction among a
number of agents / artifacts

Environment artifacts

handling interaction between
MAS and the environment

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 31 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Layering Agent Workspace

A conceptual experiment

A layered taxonomy

Individual artifacts

handling a single agent’s
interaction

Social artifacts

handling interaction among a
number of agents / artifacts

Environment artifacts

handling interaction between
MAS and the environment

 I 

I 

I 

I

I 

S

S

 E

 E

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 31 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Organisation / Security

Individual artifacts

Individual artifacts are the most natural place where to rule individual agent interaction
within a MAS

on the basis of organisational / security concerns

If an individual artifact is the only way by which an agent can interact within a MAS

organisation there, role, permissions, obligations, policies, etc., should be encapsulated
security working as a filter for any perception / action / communication between

the agent, MAS and the environment
autonomy it could work as the harmoniser between the clashing needs of agent

autonomy and MAS control
boundaries it could be used as a criterion for determining whether an agent belongs to

a MAS

Our example: Agent Coordination Contexts (ACC)

infrastructural abstraction associated to each agent entering a MAS

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 32 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Organisation / Security

Languages for individual artifacts

Declarative languages (KR-style) for our “quasi static” perception of
organisation
Formal languages (like process algebras) for action / policy denotation
Operational languages for modelling actions
Our example: Agent Coordination Contexts (ACC)

first-order logic (FOL) rules [Ricci et al., 2006a]
process algebra denotation [Omicini et al., 2006]

Declarative does not mean static, actually

organisation structure may change at run-time
agents might reason about (organisation) artifacts, and possibly adapt
their own behaviour, or change organisation structures

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 33 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Coordination

Social artifacts

Social artifacts are the most natural place where to rule social interaction within a
MAS

on the basis of (objective) coordination concerns

Coordination policies could be distributed upon social artifacts, and there
encapsulated

inspectability there, coordination policies could be explicitly represented and made
available for inspection

controllability functioning of coordination engine could be controllable by engineers
/ agents

malleability coordination policies could be amenable to change by agents /
engineers

Our example: Tuple Centres [Omicini and Denti, 2001]

coordination abstractions for MAS coordination
logic tuple centres for coordinative / awareness artifacts
ReSpecT tuple centres for A&A [Omicini, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 34 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifact Languages for MAS Coordination

Languages for social artifacts

Typically operational, event-driven languages for our “dynamic”
perception of coordination

interaction happens, the artifact has just to capture interaction and to react
appropriately

Our example: ReSpecT

first-order logic (FOL) language
semantics given operationally [Omicini, 2006]
ongoing work on multiset rewriting semantics (with Maude)

Operational does not mean static, too

coordinative behaviour may change at run-time
agents might reason about (coordination) artifacts, and possibly adapt
their own behaviour, or change coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 35 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Spaces for PL in A&A Environment, Coordination, Organisation & Security

Artifacts for MAS Environment

Environment artifacts

Environment artifacts are the most natural place where to rule
interaction between a MAS and its environment

on the basis of artifact reactivity to change

Spatio-temporal fabric as a source of events

time time events for temporal concerns
space spatial events for topological concerns

Resources as sources of events and targets of actions

like a database, or a temperature sensor

Our (limited) example: Timed Tuple Centres [Omicini et al., 2005b]

coordination abstractions reactive to the passage of time
Timed ReSpecT for time-aware coordination policies

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 36 / 49



Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Communication Languages (ACL)

Speech acts

Inspired by the work on human communication
Communication based on direct exchange of messages between agents

specifying agent communicative actions

Speaking agent acts to change the world around

in particular, to change the belief of another agent

Every message has three fundamental parts

performative the pragmatics of the communicative action
content the syntax of the communicative action

ontology the semantics of the communicative action

Our examples, working as standard protocols for information exchange between agents

KQML Knowledge Query Manipulation Language
http://www.cs.umbc.edu/kqml/ [Labrou and Finin, 1997]

FIPA ACL FIPA Agent Communication Language
http://www.fipa.org/repository/aclspecs.html [FIPA ACL, 2002]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 37 / 49

http://www.cs.umbc.edu/kqml/
http://www.fipa.org/repository/aclspecs.html


Cases of PL in MAS

Agent Oriented Programming Languages (AOP)

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .
Architecture to implement practical reasoning
Our examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/
[Dastani et al., 2004, Dastani et al., 2005]

Jason Java-based interpreter for an extended version of AgentSpeak(L)
for programming BDI agents
http://jason.sourceforge.net/
[Rao, 1996, Bordini and Hübner, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 38 / 49

http://www.cs.uu.nl/3apl/
http://jason.sourceforge.net/


Cases of PL in MAS

Agent Oriented Programming Languages (AOP)

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .
Architecture to implement practical reasoning
Our examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/
[Dastani et al., 2004, Dastani et al., 2005]

Jason Java-based interpreter for an extended version of AgentSpeak(L)
for programming BDI agents
http://jason.sourceforge.net/
[Rao, 1996, Bordini and Hübner, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 38 / 49

http://www.cs.uu.nl/3apl/
http://jason.sourceforge.net/


Cases of PL in MAS

Agent Oriented Programming Languages (AOP)

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .
Architecture to implement practical reasoning
Our examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/
[Dastani et al., 2004, Dastani et al., 2005]

Jason Java-based interpreter for an extended version of AgentSpeak(L)
for programming BDI agents
http://jason.sourceforge.net/
[Rao, 1996, Bordini and Hübner, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 38 / 49

http://www.cs.uu.nl/3apl/
http://jason.sourceforge.net/


Cases of PL in MAS

Agent Oriented Programming Languages (AOP)

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .
Architecture to implement practical reasoning
Our examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/
[Dastani et al., 2004, Dastani et al., 2005]

Jason Java-based interpreter for an extended version of AgentSpeak(L)
for programming BDI agents
http://jason.sourceforge.net/
[Rao, 1996, Bordini and Hübner, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 38 / 49

http://www.cs.uu.nl/3apl/
http://jason.sourceforge.net/


Cases of PL in MAS

Agent Oriented Programming Languages (AOP)

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .
Architecture to implement practical reasoning
Our examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/
[Dastani et al., 2004, Dastani et al., 2005]

Jason Java-based interpreter for an extended version of AgentSpeak(L)
for programming BDI agents
http://jason.sourceforge.net/
[Rao, 1996, Bordini and Hübner, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 38 / 49

http://www.cs.uu.nl/3apl/
http://jason.sourceforge.net/


Cases of PL in MAS

Agent Oriented Programming Languages (AOP)

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .
Architecture to implement practical reasoning
Our examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/
[Dastani et al., 2004, Dastani et al., 2005]

Jason Java-based interpreter for an extended version of AgentSpeak(L)
for programming BDI agents
http://jason.sourceforge.net/
[Rao, 1996, Bordini and Hübner, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 38 / 49

http://www.cs.uu.nl/3apl/
http://jason.sourceforge.net/


Cases of PL in MAS

Agent Oriented Programming Languages (AOP)

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .
Architecture to implement practical reasoning
Our examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/
[Dastani et al., 2004, Dastani et al., 2005]

Jason Java-based interpreter for an extended version of AgentSpeak(L)
for programming BDI agents
http://jason.sourceforge.net/
[Rao, 1996, Bordini and Hübner, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 38 / 49

http://www.cs.uu.nl/3apl/
http://jason.sourceforge.net/


Cases of PL in MAS

Agent Oriented Programming Languages (AOP)

Programming languages for cognitive agents

Mentalistic agents

either BDI or other cognitive architectures

Facilities and structures to represent internal knowledge, goals, . . .
Architecture to implement practical reasoning
Our examples

3APL Programming language for cognitive agents
http://www.cs.uu.nl/3apl/
[Dastani et al., 2004, Dastani et al., 2005]

Jason Java-based interpreter for an extended version of AgentSpeak(L)
for programming BDI agents
http://jason.sourceforge.net/
[Rao, 1996, Bordini and Hübner, 2006]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 38 / 49

http://www.cs.uu.nl/3apl/
http://jason.sourceforge.net/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Coordination

Languages to program social / environment artifacts

Our example: ReSpecT

Programming language for cognitive agents
http://respect.alice.unibo.it/
[Omicini, 2006, Omicini and Denti, 2001]

Tuple centres as coordinative artifacts

programmable tuple spaces
encapsulating coordination policies

Logic tuple centres as awareness artifacts

ReSpecT tuple centres as social artifacts

ReSpecT as the event-driven, logic-based language to program tuple
centres behaviour
Timed ReSpecT as an event-driven language to react to environment
change

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 39 / 49

http://respect.alice.unibo.it/


Cases of PL in MAS

Artifact Programming Languages: Organisation / Security

Languages to program individual artifacts

Our example: Agent Coordination Context (ACC)

individual artifact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [Omicini et al., 2006]

Languages for policy specification & enaction

logic-based [Ricci et al., 2006a]
process algebra [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 40 / 49



Cases of PL in MAS

Artifact Programming Languages: Organisation / Security

Languages to program individual artifacts

Our example: Agent Coordination Context (ACC)

individual artifact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [Omicini et al., 2006]

Languages for policy specification & enaction

logic-based [Ricci et al., 2006a]
process algebra [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 40 / 49



Cases of PL in MAS

Artifact Programming Languages: Organisation / Security

Languages to program individual artifacts

Our example: Agent Coordination Context (ACC)

individual artifact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [Omicini et al., 2006]

Languages for policy specification & enaction

logic-based [Ricci et al., 2006a]
process algebra [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 40 / 49



Cases of PL in MAS

Artifact Programming Languages: Organisation / Security

Languages to program individual artifacts

Our example: Agent Coordination Context (ACC)

individual artifact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [Omicini et al., 2006]

Languages for policy specification & enaction

logic-based [Ricci et al., 2006a]
process algebra [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 40 / 49



Cases of PL in MAS

Artifact Programming Languages: Organisation / Security

Languages to program individual artifacts

Our example: Agent Coordination Context (ACC)

individual artifact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [Omicini et al., 2006]

Languages for policy specification & enaction

logic-based [Ricci et al., 2006a]
process algebra [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 40 / 49



Cases of PL in MAS

Artifact Programming Languages: Organisation / Security

Languages to program individual artifacts

Our example: Agent Coordination Context (ACC)

individual artifact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [Omicini et al., 2006]

Languages for policy specification & enaction

logic-based [Ricci et al., 2006a]
process algebra [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 40 / 49



Cases of PL in MAS

Artifact Programming Languages: Organisation / Security

Languages to program individual artifacts

Our example: Agent Coordination Context (ACC)

individual artifact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [Omicini et al., 2006]

Languages for policy specification & enaction

logic-based [Ricci et al., 2006a]
process algebra [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 40 / 49



Cases of PL in MAS

Artifact Programming Languages: Organisation / Security

Languages to program individual artifacts

Our example: Agent Coordination Context (ACC)

individual artifact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [Omicini et al., 2006]

Languages for policy specification & enaction

logic-based [Ricci et al., 2006a]
process algebra [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 40 / 49



Cases of PL in MAS

Artifact Programming Languages: Organisation / Security

Languages to program individual artifacts

Our example: Agent Coordination Context (ACC)

individual artifact
associated to each individual agent in a MAS
filtering every interaction of its associated agent

RBAC-MAS as the organisational model [Omicini et al., 2006]

Languages for policy specification & enaction

logic-based [Ricci et al., 2006a]
process algebra [Omicini et al., 2005a]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 40 / 49



Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Cases of PL in MAS

Non-Agent Programming Languages

Building the agent abstraction layer

Our examples

Prolog programming logic agents in Prolog
Java programming simple agents in Java: examples in TuCSoN

Agents using artifacts

Our examples

tuProlog logic agents using ReSpecT tuple centres: examples in tuProlog
http://tuprolog.alice.unibo.it/ [Denti et al., 2005]

simpA extending Java towards A&A agents & artifacts: examples in simpA
http://www.alice.unibo.it:16080/projects/simpa/

Java/TuCSoN simple Java agents using TuCSoN tuple centres and ACC
Jason/CArtAgO Jason agents using CArtAgO artifacts

http://www.alice.unibo.it:16080/projects/cartago/
[Ricci et al., 2006b, Ricci et al., 2006c]

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 41 / 49

http://tuprolog.alice.unibo.it/
http://www.alice.unibo.it:16080/projects/simpa/
http://www.alice.unibo.it:16080/projects/cartago/


Conclusions

1 Spaces for Programming Languages in Software Engineering
Paradigm Shifts
Examples

2 Spaces for Programming Languages in Multiagent Systems
Programming Agents
Programming MAS

3 Spaces for Programming Languages in the A&A Meta-model
Generality
Environment, Coordination, Organisation & Security

4 Remarkable Cases of (Programming) Languages for Multiagent Systems

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 42 / 49



Conclusions

Bibliography I

Bordini, R. H. and Hübner, J. F. (2006).
BDI agent programming in AgentSpeak using Jason (tutorial paper).
In Toni, F. and Torroni, P., editors, Computational Logic in Multi-Agent Systems, volume
3900 of Lecture Notes in Computer Science, pages 143–164. Springer.
6th International Workshop, CLIMA VI, London, UK, June 27-29, 2005, Revised Selected
and Invited Papers.

Dastani, M., van Riemsdijk, B., Dignum, F., and Meyer, J.-J. C. (2004).
A programming language for cognitive agents: Goal directed 3APL.
In Dastani, M., Dix, J., and El Fallah-Seghrouchni, A., editors, Programming Multi-Agent
Systems, volume 3067 of Lecture Notes in Computer Science, pages 111–130. Springer.
1st International Workshop, PROMAS 2003, Melbourne, Australia, July 15, 2003, Selected
Revised and Invited Papers.

Dastani, M., van Riemsdijk, B., and Meyer, J.-J. C. (2005).
Programming multi-agent systems in 3APL.
In Bordini, R. P., Dastani, M., Dix, J., and El Fallah-Seghrouchni, A., editors, Multi-Agent
Programming, volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 39–67. Springer.

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 43 / 49



Conclusions

Bibliography II

Denti, E., Omicini, A., and Ricci, A. (2005).
Multi-paradigm Java-Prolog integration in tuProlog.
Science of Computer Programming, 57(2):217–250.

FIPA ACL (2002).
Agent Communication Language Specifications.
Foundation for Intelligent Physical Agents (FIPA).

Labrou, Y. and Finin, T. (1997).
Semantics and conversations for an agent communication language.
In Huhns, M. N. and Singh, M. P., editors, Readings in Agents, pages 235–242. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Omicini, A. (2006).
Formal ReSpecT in the A&A perspective.
In Canal, C. and Viroli, M., editors, 5th International Workshop on Foundations of
Coordination Languages and Software Architectures (FOCLASA’06), pages 93–115,
CONCUR 2006, Bonn, Germany. University of Málaga, Spain.
Proceedings.

Omicini, A. and Denti, E. (2001).
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294.

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 44 / 49



Conclusions

Bibliography III

Omicini, A. and Ossowski, S. (2003).
Objective versus subjective coordination in the engineering of agent systems.
In Klusch, M., Bergamaschi, S., Edwards, P., and Petta, P., editors, Intelligent Information
Agents: An AgentLink Perspective, volume 2586 of LNAI: State-of-the-Art Survey, pages
179–202. Springer.

Omicini, A., Ricci, A., and Viroli, M. (2005a).
An algebraic approach for modelling organisation, roles and contexts in MAS.
Applicable Algebra in Engineering, Communication and Computing, 16(2-3):151–178.
Special Issue: Process Algebras and Multi-Agent Systems.

Omicini, A., Ricci, A., and Viroli, M. (2005b).
Time-aware coordination in ReSpecT.
In Jacquet, J.-M. and Picco, G. P., editors, Coordination Models and Languages, volume
3454 of LNCS, pages 268–282. Springer-Verlag.
7th International Conference (COORDINATION 2005), Namur, Belgium,
20–23 April 2005. Proceedings.

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 45 / 49



Conclusions

Bibliography IV

Omicini, A., Ricci, A., and Viroli, M. (2006).
Agent Coordination Contexts for the formal specification and enactment of coordination
and security policies.
Science of Computer Programming, 63(1):88–107.
Special Issue on Security Issues in Coordination Models, Languages, and Systems.

Rao, A. S. (1996).
AgentSpeak(L): BDI agents speak out in a logical computable language.
In Van de Velde, W. and Perram, J. W., editors, Agents Breaking Away, volume 1038 of
Lecture Notes in Computer Science, pages 42–55. Springer.
7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW’96), Eindhoven, The Netherlands, January 22-25, 1996, Proceedings.

Rao, A. S. and Georgeff, M. P. (1991).
Modeling rational agents within a BDI architecture.
In Allen, J. F., Fikes, R., and Sandewall, E., editors, 2nd International Conference on
Principles of Knowledge Representation and Reasoning (KR’91), pages 473–484, San
Mateo, CA. Morgan Kaufmann Publishers.

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 46 / 49



Conclusions

Bibliography V

Ricci, A., Viroli, M., and Omicini, A. (2006a).
Agent coordination contexts in a MAS coordination infrastructure.
Applied Artificial Intelligence, 20(2–4):179–202.
Special Issue: Best of “From Agent Theory to Agent Implementation (AT2AI) – 4”.

Ricci, A., Viroli, M., and Omicini, A. (2006b).
Construenda est CArtAgO: Toward an infrastructure for artifacts in MAS.
In Trappl, R., editor, Cybernetics and Systems 2006, volume 2, pages 569–574, Vienna,
Austria. Austrian Society for Cybernetic Studies.
18th European Meeting on Cybernetics and Systems Research (EMCSR 2006), 5th
International Symposium “From Agent Theory to Theory Implementation” (AT2AI-5).
Proceedings.

Ricci, A., Viroli, M., and Omicini, A. (2006c).
CArtAgO: An infrastructure for engineering computational environments in MAS.
In Weyns, D., Parunak, H. V. D., and Michel, F., editors, 3rd International Workshop
“Environments for Multi-Agent Systems” (E4MAS 2006), pages 102–119, AAMAS 2006,
Hakodate, Japan.

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 47 / 49



Conclusions

Bibliography VI

Schumacher, M. (2001).
Objective Coordination in Multi-Agent System Engineering – Design and Implementation,
volume 2039 of LNAI.
Springer-Verlag.

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 48 / 49



Conclusions

Programming Languages for Multiagent Systems
Multiagent Systems LS

Sistemi Multiagente LS

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2007/2008

Andrea Omicini (Università di Bologna) Programming Languages for MAS A.Y. 2007/2008 49 / 49


	Outline
	Spaces for Programming Languages in Software Engineering
	Paradigm Shifts
	Examples

	Spaces for Programming Languages in Multiagent Systems
	Programming Agents
	Programming MAS

	Spaces for Programming Languages in the A&A Meta-model
	Generality
	Environment, Coordination, Organisation & Security

	Remarkable Cases of (Programming) Languages for Multiagent Systems
	Conclusions

