
BDI Agent Programming in
AgentSpeak Using Jason

Rafael H. Bordini1 and Jomi F. Hübner2

1 Department of Computer Science
University of Durham

Durham DH1 3LE, U.K.
R.Bordini@durham.ac.uk

2 Departamento de Sistemas e Computação
Universidade Regional de Blumenau

Blumenau, SC 89035-160, Brazil
jomi@inf.furb.br

Abstract. This paper is based on the tutorial given as part of the tuto-
rial programme of CLIMA-VI. The tutorial aimed at giving an overview
of the various features available in Jason , a multi-agent systems devel-
opment platform that is based on an interpreter for an extended ver-
sion of AgentSpeak. The BDI architecture is the best known and most
studied architecture for cognitive agents, and AgentSpeak is an elegant,
logic-based programming language inspired by the BDI architecture.

1 Introduction

The BDI agent architecture [27, 33, 29] has been a central theme in the multi-
agent systems literature since the early 1990’s. After a period of relative decline,
it seems BDI agents are back in vogue, with various conference papers refer-
ring again to elements of the BDI theory. Arguably, that theory provides the
grounding for some of the essential features of autonomous agents and multi-
agent systems, so it will always have an important role to play in the research
in this area. Besides, the software industry is beginning to use technologies that
clearly derived from the academic work on BDI-based systems.

AgentSpeak is an elegant agent-oriented programming language based on
logic programming, and inspired by the work on the BDI architecture [27] and
BDI logics [28] as well as on practical implementations of BDI systems such as
PRS [16] and dMARS [17]. However, in its original definition [26], AgentSpeak
was just an abstract programming language. For these reasons, our effort in
developing Jason was very much directed towards using AgentSpeak as the
basis, but also providing various extensions that are required for the practical
development of multi-agent systems.

The elegance of the AgentSpeak core of the language interpreted by Ja-
son makes it an interesting tool both for teaching multi-agent systems as well

as the practical development of multi-agent systems (in particular in associa-
tion with existing agent-oriented software engineering methodologies for BDI-
like systems). Jason is implemented in Java and is available Open Source at
http://jason.sourceforge.net. Some of the features available in Jason are:

– speech-act based inter-agent communication (and annotation of beliefs with
information sources);

– annotations on plan labels, which can be used by elaborate (e.g., decision
theoretic) selection functions;

– the possibility to run a multi-agent system distributed over a network (using
SACI, or some other agent middleware);

– fully customisable (in Java) selection functions, trust functions, and overall
agent architecture (perception, belief-revision, inter-agent communication,
and acting);

– straightforward extensibility (and use of legacy code) by means of user-
defined “internal actions”;

– clear notion of multi-agent environments, which can be implemented in Java
(this can be a simulation of a real environment, e.g., for testing purposes
before the system is actually deployed).

This paper is based on a CLIMA-VI tutorial which aimed at giving an
overview of the various features available in Jason . It is intended for a gen-
eral audience although some parts might be clearer for readers familiar with
agent-oriented programming. To keep the paper at a reasonable size, we only
describe the main features of Jason , so that readers can assess whether Ja-
son might be of interest, rather than aiming at a didactic presentation. For the
interested reader, we give here plenty of references to other papers and docu-
mentation where more detail and examples can be found; a general reference
giving a longer overview is [9], and see [8] for details. The paper is organised
as follows. Section 2 presents the language interpreted by Jason , and its infor-
mal semantics is given in Section 3. Some other features of the language related
to multi-agent communication and interaction are discussed in Section 4. We
then present the main feature of the platform which facilitate the development
of multi-agent systems in Section 5. Section 6 discusses various issues (such as
formal verification) and we then make some final remarks.

2 Jason Extension of the AgentSpeak Language

The AgentSpeak(L) programming language was introduced in [26]. It is a natural
extension of logic programming for the BDI agent architecture, and provides an
elegant abstract framework for programming BDI agents. The BDI architecture
is, in turn, the predominant approach to the implementation of intelligent or
rational agents [33].

An AgentSpeak agent is defined by a set of beliefs giving the initial state
of the agent’s belief base, which is a set of ground (first-order) atomic formulæ,
and a set of plans which form its plan library . Before explaining exactly how a

plan is written, we need to introduce the notions of goals and triggering events.
AgentSpeak distinguishes two types of goals: achievement goals and test goals.
Achievement goals are formed by an atomic formulæ prefixed with the ‘!’ op-
erator, while test goals are prefixed with the ‘?’ operator. An achievement goal
states that the agent wants to achieve a state of the world where the associated
atomic formulæ is true. A test goal states that the agent wants to test whether
the associated atomic formulæ is (or can be unified with) one of its beliefs.

An AgentSpeak agent is a reactive planning system. The events it reacts to
are related either to changes in beliefs due to perception of the environment,
or to changes in the agent’s goals that originate from the execution of plans
triggered by previous events. A triggering event defines which events can initiate
the execution of a particular plan. Plans are written by the programmer so that
they are triggered by the addition (‘+’) or deletion (‘-’) of beliefs or goals (the
“mental attitudes” of AgentSpeak agents).

An AgentSpeak plan has a head (the expression to the left of the arrow),
which is formed from a triggering event (specifying the events for which that
plan is relevant), and a conjunction of belief literals representing a context. The
conjunction of literals in the context must be a logical consequence of that agent’s
current beliefs if the plan is to be considered applicable at that moment in time
(only applicable plans can be chosen for execution). A plan also has a body,
which is a sequence of basic actions or (sub)goals that the agent has to achieve
(or test) when the plan is triggered. Plan bodies include basic actions — such
actions represent atomic operations the agent can perform so as to change the
environment. Such actions are also written as atomic formulæ, but using a set
of action symbols rather than predicate symbols.

Figure 1 give examples of three AgentSpeak plans, illustrating a scenario
in which a robot is instructed to be especially attentive to “green patches” on
rocks it observers while roving on Mars. The first plan says that whenever the
rover perceives a green patch on a certain rock (a belief addition), it should
try and examine that particular rock; however note that this plan can only be
used (i.e., it is only applicable) in case the batteries are not too low. In order to
examine the rock, it has to retrieve, from its own belief base, the coordinates it
has associated with that rock (this is the test goal in the beginning of the plan’s
body), then achieve the goal of traversing to those coordinates and, once there,
examining the rock. Recall that each of these achievement goals will trigger the
execution of some other plan.

The two other plans (note the last one is only an excerpt) provide alternative
courses of actions that the Mars exploration rover has to take according to what
it believes about the environment when the rover has to achieve a new goal of
traversing towards some given coordinates. If the rover believes that there is a
safe path in that direction, then all it has to do is to take the action of moving
towards those coordinates (this is a basic action via which the rover can effect
changes in its environment). The alternative plan is not shown here; it should
provide alternative means for the agent to reach the rock but avoiding unsafe
paths.

+green patch(Rock)

: not battery charge(low)

<- ?location(Rock,Coordinates);

!traverse(Coordinates);

!examine(Rock).

+!traverse(Coords)

: safe path(Coords)

<- move towards(Coords).

+!traverse(Coords) :

: not safe path(Coords)

<- ...

Fig. 1. Examples of AgentSpeak Plans for a Mars Rover

The main differences between the language interpreted by Jason and the
original AgentSpeak(L) language described above are as follows. Wherever an
atomic formulæ1 was allowed in the original language, here a literal is used in-
stead. This is either an atomic formulæ p(t1,. . .,tn), n ≥ 0, or ~p(t1,. . .,tn),
where ‘~’ denotes strong negation2. Default negation is used in the context of
plans, and is denoted by ‘not’ preceding a literal. The context is therefore a con-
junction of default literals. For more details on the concepts of strong and default
negation, plenty of references can be found, e.g., in the introductory chapters
of [18]. Terms now can be variables, lists (with Prolog syntax), as well as inte-
ger or floating point numbers, and strings (enclosed in double quotes as usual);
further, any atomic formulæ can be treated as a term, and (bound) variables
can be treated as literals (this became particularly important for introducing
communication, but can be useful for various things). Infix relational operators,
as in Prolog, are allowed in plan contexts.

Also, a major change is that atomic formulæ now can have “annotations”.
This is a list of terms enclosed in square brackets immediately following the for-
mula. Within the belief base, annotations are used, e.g., to register the sources of
information. A term source(s) is used in the annotations for that purpose; s can
be an agent’s name (to denote the agent that communicated that information),
or two special atoms, percept and self, that are used to denote that a belief
arose from perception of the environment, or from the agent explicitly adding
a belief to its own belief base from the execution of a plan body, respectively.
The initial beliefs that are part of the source code of an AgentSpeak agent are
assumed to be internal beliefs (i.e., as if they had a [source(self)] annota-

1 Recall that actions are special atomic formulæ with an action symbol rather than a
predicate symbol. What we say next only applies to usual predicates, not actions.

2 Note that for an agent that uses Closed-World Assumption, all the user has to do
is not to use literals with strong negation anywhere in the program, nor negated
percepts in the environment (see “Creating Environments” under Section 5).

tion), unless the belief has any explicit annotation given by the user (this could
be useful if the programmer wants the agent to have an initial belief about the
environment or as if it had been communicated by another agent). Fore more on
the annotation of sources of information for beliefs, see [21].

Plans also have labels, as first proposed in [3]. However, a plan label can
now be any atomic formula, including annotations, although we suggest that
plan labels use annotations (if necessary) but have a predicate symbol of arity 0,
as in aLabel or anotherLabel[chanceSuccess(0.7), expectedPayoff(0.9)].
Annotations in plan labels can be used for the implementation of sophisticated
applicable plan (i.e., option) selection functions. Although this is not yet pro-
vided with the current distribution of Jason , it is straightforward for the user
to define, e.g., decision-theoretic selection functions; that is, functions which use
something like expected utilities annotated in the plan labels to choose among
alternative plans. The customisation of selection functions is done in Java (by
choosing a plan from a list received as parameter by the selection functions),
and is explained in Section 5. Also, as the label is part of an instance of a plan
in the set of intentions, and the annotations can be changed dynamically, this
provides all the means necessary for the implementation of efficient intention
selection functions, as the one proposed in [3]. However, this also is not yet
available as part of Jason ’s distribution, but can be set up by users with some
customisation.

Events for handling plan failure are already available in Jason , although
they are not formalised in the semantics yet. If an action fails or there is no ap-
plicable plan for a subgoal in the plan being executed to handle an internal event
with a goal addition +!g, then the whole failed plan is removed from the top of
the intention and an internal event for -!g associated with that same intention is
generated. If the programmer provided a plan that has a triggering event match-
ing -!g and is applicable, such plan will be pushed on top of the intention, so
the programmer can specify in the body of such plan how that particular failure
is to be handled. If no such plan is available, the whole intention is discarded
and a warning is printed out to the console. Effectively, this provides a means
for programmers to “clean up” after a failed plan and before “backtracking”
(that is, to make up for actions that had already been executed but left things
in an inappropriate state for next attempts to achieve the goal). For example,
for an agent that persist on a goal !g for as long as there are applicable plans
for +!g, it suffices to include a plan -!g : true <- !g. in the plan library. It
is also simple to specify a plan which, under specific condition, chooses to drop
the intention altogether (by means of a pre-defined internal action).

Finally, as also introduced in [3], internal actions can be used both in the
context and body of plans. Any action symbol starting with ‘.’, or having a ‘.’
anywhere, denotes an internal action. These are user-defined actions which are
run internally by the agent. We call them “internal” to make a clear distinction
with actions that appear in the body of a plan and which denote the actions
an agent can perform in order to change the shared environment (in the usual
jargon of the area, by means of its “effectors”). In Jason , internal actions are

coded in Java, or in indeed other programming languages through the use of
JNI (Java Native Interface), and they can be organised in libraries of actions for
specific purposes (the string to the left of ‘.’ is the name of the library; standard
internal actions have an empty library name).

There are several standard internal actions that are distributed
with Jason , but we do not mention all them here (see [8] for a
complete list). To give an example, Jason has an internal action
that implements KQML-like inter-agent communication. The usage is:
.send(+receiver, +illocutionary force, +prop content) where each pa-
rameter is as follows. The receiver is simply referred to using the name given
to agents in the multi-agent system (see Section 5). The illocutionary forces
available so far are: tell, untell, achieve, unachieve, tellHow, untellHow,
askIf, askOne, askAll, and askHow. The effects of receiving messages with each
of these types of illocutionary acts are explained in Section 4. Finally, the mes-
sage’s propositional content prop content is a literal.

Another important class of standard internal actions are related to query-
ing about the agent’s current desires and intentions as well as forcing itself to
drop desires or intentions. The notion of desire and intention used is exactly as
formalised for AgentSpeak agents in [11]. The standard AgentSpeak language
has provision for beliefs to be queried (in plan contexts and by test goals) and
since our earlier extensions beliefs can be added or deleted from plan bodies.
However, an equally important feature, as far as the generic BDI architecture
is concerned, is for an agent to be able to check current desires/intentions and
drop them under certain circumstances. In Jason , this can be done by the use
of certain special standard internal actions.

3 Informal Semantics

As we mentioned in the introduction, one of the important characteristics of
Jason is that it implements the operational semantics of an extension of
AgentSpeak. Having formal semantics also allowed us to give precise definitions
for practical notions of beliefs, desires, and intentions in relation to running
AgentSpeak agents, which in turn underlies the work on formal verification of
AgentSpeak programs, as discussed later in this section. The formal semantics,
using structural operational semantics [24] (a widely-used notation for giving
semantics to programming languages) was given then improved and extended
in a series of papers [20, 10, 11, 21, 31]. In particular, [31] presents a revised ver-
sion of the semantics and include some of the extensions we have proposed to
AgentSpeak, including rules for the interpretation of speech-act based commu-
nication. Due to space limitation, in this paper we will only provide the main
intuitions behind the interpretation of AgentSpeak programs.

Besides the belief base and the plan library, the AgentSpeak interpreter also
manages a set of events and a set of intentions, and its functioning requires three
selection functions. The event selection function (SE) selects a single event from
the set of events; another selection function (SO) selects an “option” (i.e., an

applicable plan) from a set of applicable plans; and a third selection function (SI)
selects one particular intention from the set of intentions. The selection functions
are supposed to be agent-specific, in the sense that they should make selections
based on an agent’s characteristics (though previous work on AgentSpeak did
not elaborate on how designers specify such functions3). Therefore, we here leave
the selection functions undefined, hence the choices made by them are supposed
to be non-deterministic.

Intentions are particular courses of actions to which an agent has committed
in order to handle certain events. Each intention is a stack of partially instan-
tiated plans. Events, which may start off the execution of plans that have rele-
vant triggering events, can be external, when originating from perception of the
agent’s environment (i.e., addition and deletion of beliefs based on perception
are external events); or internal, when generated from the agent’s own execu-
tion of a plan (i.e., a subgoal in a plan generates an event of type “addition of
achievement goal”). In the latter case, the event is accompanied with the inten-
tion which generated it (as the plan chosen for that event will be pushed on top
of that intention). External events create new intentions, representing separate
focuses of attention for the agent’s acting on the environment.

We next give some more details on the functioning of an AgentSpeak in-
terpreter, which is clearly depicted in Figure 2 (reproduced from [19]). Note,
however, that this is a depiction of the essential aspects of the interpreter for
the original (abstract) definition of AgentSpeak; it does not include the exten-
sions implemented in Jason . In the figure, sets (of beliefs, events, plans, and
intentions) are represented as rectangles. Diamonds represent selection (of one
element from a set). Circles represent some of the processing involved in the
interpretation of AgentSpeak programs.

At every interpretation cycle of an agent program, the interpreter updates
a list of events, which may be generated from perception of the environment,
or from the execution of intentions (when subgoals are specified in the body of
plans). It is assumed that beliefs are updated from perception and whenever
there are changes in the agent’s beliefs, this implies the insertion of an event
in the set of events. This belief revision function is not part of the AgentSpeak
interpreter, but rather a necessary component of the agent architecture.

After SE has selected an event, the interpreter has to unify that event with
triggering events in the heads of plans. This generates the set of all relevant
plans for that event. By checking whether the context part of the plans in that
set follows from the agent’s beliefs, the set of applicable plans is determined —
these are the plans that can actually be used at that moment for handling the
chosen event. Then SO chooses a single applicable plan from that set, which
becomes the intended means for handling that event, and either pushes that

3 Our extension of AgentSpeak in [3] deals precisely with the automatic generation of
efficient intention selection functions. The extended language allows one to express
relations between plans, as well as quantitative criteria for their execution. We then
use decision-theoretic task scheduling to guide the choices made by the intention
selection function.

Belief
Base

SE

SI

Internal
Events

Relevant
Plans

Applicable
Plans

External
Events

Update
Intention

Means
Intended

Plan
Library

Events

Intentions

BRF

Unify
Context

Execute
Intention

Event
Unify

Perception

Action

Selected
Event

Beliefs

Intention

Events

Beliefs

Beliefs

Beliefs

SO

AgentSpeak(L) Agent

Intentions

Selected

Plans

...New
New

Intention
New

Subplan
Push

65

21

3

74

Fig. 2. An Interpretation Cycle of an AgentSpeak Program [19].

plan on the top of an existing intention (if the event was an internal one), or
creates a new intention in the set of intentions (if the event was external, i.e.,
generated from perception of the environment).

All that remains to be done at this stage is to select a single intention to
be executed in that cycle. The SI function selects one of the agent’s intentions
(i.e., one of the independent stacks of partially instantiated plans within the
set of intentions). On the top of that intention there is a plan, and the formula
in the beginning of its body is taken for execution. This implies that either a
basic action is performed by the agent on its environment, an internal event is
generated (in case the selected formula is an achievement goal), or a test goal is
performed (which means that the set of beliefs has to be checked).

If the intention is to perform a basic action or a test goal, the set of intentions
needs to be updated. In the case of a test goal, the belief base will be searched for
a belief atom that unifies with the atomic formula in the test goal. If that search
succeeds, further variable instantiation will occur in the partially instantiated
plan which contained that test goal (and the test goal itself is removed from
the intention from which it was taken). In the case where a basic action is
selected, the necessary updating of the set of intentions is simply to remove that
action from the intention (the interpreter informs to the architecture component
responsible for the agent effectors what action is required). When all formulæ in
the body of a plan have been removed (i.e., have been executed), the whole plan

is removed from the intention, and so is the achievement goal that generated it
(if that was the case). This ends a cycle of execution, and everything is repeated
all over again, initially checking the state of the environment after agents have
acted upon it, then generating the relevant events, and so forth.

4 Other Features of the Language

Agent Communication in Jason

The performatives that are currently available for agent communication in Ja-
son are largely inspired by KQML. We also include some new performatives,
related to plan exchange rather than communication about propositions. The
available performatives are briefly described below, where s denotes the agent
that sends the message, and r denotes the agent that receives the message. Note
that tell and untell can be used either for an agent to pro-actively send in-
formation to another agent, or as replies to previous ask messages.

tell: s intends r to believe (that s believes) the sentence in the message’s
content to be true;

untell: s intends r not to believe (that s believes) the sentence in the message’s
content to be true;

achieve: s requests that r try to achieve a state of the world where the message
content is true;

unachieve: s requests that r try to drop the intention of achieving a state of
the world where the message content is true;

tellHow: s informs r of a plan;
untellHow: s requests that r disregard a certain plan (i.e., delete that plan from

its plan library);
askIf: s wants to know if the content of the message is true for r;
askAll: s wants all of r’s answers to a question;
askHow: s wants all of r’s plans for a triggering event;

A mechanism for receiving and sending messages asynchronously is used.
Messages are stored in a mail box and one of them is processed by the agent
at the beginning of a reasoning cycle. The particular message to be handled
at the beginning of the reasoning cycle is determined by a selection function,
which can be customised by the programmer, as three selection functions that
are originally part of the AgentSpeak interpreter.

Further, in processing messages we consider a “given” function, in the same
way that the selection functions are assumed as given in an agent’s specification.
This function defines a set of socially acceptable messages. For example, the re-
ceiving agent may want to consider whether the sending agent is even allowed
to communicated with it (e.g., to avoid agents being attacked by malicious com-
municating agents). For a message with illocutionary force achieve, the agent
will have to check, for example, whether the sending agent has sufficient social

power over itself, or whether it wishes to act altruistically towards that agent
and then do whatever it is being asked.

Note that notions of trust can also be programmed into the agent by consid-
ering the annotation of the sources of information during the agent’s practical
reasoning. When applied to tell messages, the function only determines if the
message is to be processed at all. When the source is “trusted” (in this limited
sense used here), the information source for a belief acquired from communica-
tion is annotated with that belief in the belief base, enabling further considera-
tion on degrees of trust during the agent’s reasoning.

When the function for checking message acceptance is applied to an achieve
message, it should be programmed to return true if, e.g., the agent has a subordi-
nation relation towards the sending agent. However this “power/subordination”
relation should not be interpreted with particular social or psychological nuances:
the programmer defines this function so as to account for all possible reasons for
an agent to do something for another agent (from actual subordination to true
altruism). Similar interpretations for the result of this function when applied to
other types of messages (e.g., askIf) can be derived easily. For more elaborate
conceptions of trust and power, see [14].

In order to endow AgentSpeak agents with the capability of processing com-
munication messages, we annotate, for each belief, what is its source. This an-
notation mechanism provides a very elegant notation for making explicit the
sources of an agent’s belief. It has advantages in terms of expressive power and
readability, besides allowing the use of such explicit information in an agent’s
reasoning (i.e., in selecting plans for achieving goals).

Belief sources can be annotated so as to identify which was the agent in
the society that previously sent the information in a message, as well as to
denote internal beliefs or percepts (i.e., in case the belief was acquired through
perception of the environment). By using this information source annotation
mechanism, we also clarify some practical problems in the implementation of
AgentSpeak interpreters relating to internal beliefs (the ones added during the
execution of a plan). In the interpreter reported in [3], we dealt with the problem
by creating a separate belief base where the internal beliefs were included or
removed.

Due to space restriction, we do not discuss the interpretation of received
messages with each of the available illocutionary forces. This is presented both
formally and informally in [31].

Cooperation in AgentSpeak

Coo-BDI (Cooperative BDI, [1]) extends traditional BDI agent-oriented pro-
gramming languages in many respects: the introduction of cooperation among
agents for the retrieval of external plans for a given triggering event; the ex-
tension of plans with access specifiers; the extension of intentions to take into
account the external plan retrieval mechanism; and the modification of the in-
terpreter to cope with all these issues.

The cooperation strategy of an agent Ag includes the set of agents with which
it is expected to cooperate, the plan retrieval policy, and the plan acquisition pol-
icy. The cooperation strategy may evolve during time, allowing greater flexibility
and autonomy to the agents, and is modelled by three functions:

– trusted(Te,TrustedAgentSet), where Te is a (not necessarily ground) trig-
gering event and TrustedAgentSet is the set of agents that Ag will contact
in order to obtain plans relevant for Te.

– retrievalPolicy(Te,Retrieval), where Retrieval may assume the values
always and noLocal, meaning that relevant plans for the trigger Te must
be retrieved from other agents in any case, or only when no local relevant
plans are available, respectively.

– acquisitionPolicy(Te,Acquisition), where Acquisition may assume the val-
ues discard, add and replace meaning that, when a relevant plan for Te
is retrieved from a trusted agent, it must be used and discarded, or added
to the plan library, or used to update the plan library by replacing all the
plans triggered by Te.

Plans. Besides the standard components which constitute BDI plans, in this
extension plans also have a source which determines the first owner of the plan,
and an access specifier which determines the set of agents with which the plan
can be shared. The source may assume two values: self (the agent possesses
the plan) and Ag (the agent was originally from Ag). The access specifier may
assume three values: private (the plan cannot be shared), public (the plan can
be shared with any agent) and only(TrustedAgentSet) (the plan can be shared
only with the agents contained in TrustedAgentSet).

The Coo-AgentSpeak mechanism to be available in Jason soon will allow
users to define cooperation strategies in the Coo-BDI style, and takes care of
all other issues such as sending the appropriate requests for plans, suspending
intentions that are waiting for plans to be retrieved from other agents, etc. The
Coo-AgentSpeak mechanism is described in detail in [1].

One final characteristic of Jason that is relevant here is the configuration
option on what to do in case there is no applicable plan for a relevant event.
If an event is relevant, it means that there are plans in the agent’s plan li-
brary for handling that particular event (representing that handling that event
is normally a desire of that agent). If it happens that none of those plans are
applicable at a certain time, this can be a problem as the agent does not know
how to handle the situation at that time. Ancona and Mascardi [1] discussed
how this problem is handled in various agent-oriented programming languages.
In Jason , a configuration option is given to users, which can be set in the file
where the various agents and the environment composing a multi-agent system
are specified. The option allows the user to state, for events which have rele-
vant but not applicable plans, whether the interpreter should discard that event
altogether (events=discard) or insert the event back at the end of the event
queue (events=requeue). Because of Jason ’s customisation mechanisms, the
only modification that were required for Jason to cope with Coo-AgentSpeak

mas → "MAS" <ID> "{"
["infrastructure" ":" <ID>]

[environment]

agents

"}"
environment → "environment" ":" <ID> ["at" <ID>]

agents → "agents" ":" (agent ";")+

agent → <ASID>

[filename]

[options]

["agentArchClass" <ID>]

["agentClass" <ID>]

["#" <NUMBER>]

["at" <ID>]

filename → [<PATH>] <ID>

options → "[" option ("," option)* "]"

option → <ID> "=" (<ID> | <NUMBER> | <STRING>)

Fig. 3. EBNF of the Language for Configuring Multi-Agent Systems.

was a third configuration option that is available to the users — no changes to
the interpreter itself was required. When Coo-AgentSpeak is to be used, the op-
tion events=retrieve must be used in the configuration file. This makes Jason
call the user-defined selectOption function even when no applicable plans exist
for an event. This way, part of the Coo-BDI approach can be implemented by
providing a special selectOption function which takes care of retrieving plans
externally, whenever appropriate.

5 Main Features of the Jason Platform

Configuring Multi-Agent Systems

The configuration of a complete multi-agent system is given by a very simple
text file. The EBNF grammar in Figure 3 gives the syntax that can be used in
the configuration file. In this grammar, <NUMBER> is used for integer numbers,
<ASID> are AgentSpeak identifiers, which must start with a lowercase letter, <ID>
is any identifier (as usual), and <PATH> is as required for defining file pathnames
as usual in ordinary operating systems.

The <ID> used after the keyword MAS is the name of the society. The keyword
infrastructure is used to specify which of the two infrastructures available in
Jason ’s distribution will be used. The options currently available are either
“Centralised” or “Saci”; the latter option allows agents to run on different
machines over a network. It is important to note that the user’s environment
and customisation classes remain the same with both infrastructures.

Next an environment needs to be referenced. This is simply the name of Java
class that was used for programming the environment. Note that an optional host

name where the environment will run can be specified. This only works if the
SACI option is used for the underlying system infrastructure.

The keyword agents is used for defining the set of agents that will take part
in the multi-agent system. An agent is specified first by its symbolic name given
as an AgentSpeak term (i.e., an identifier starting with a lowercase letter); this
is the name that agents will use to refer to other agents in the society (e.g., for
inter-agent communication). Then, an optional filename can be given where the
AgentSpeak source code for that agent is given; by default Jason assumes that
the AgentSpeak source code is in file <name>.asl, where <name> is the agent’s
symbolic name. There is also an optional list of settings for the AgentSpeak
interpreter available in Jason (these are explained below). An optional number
of instances of agents using that same source code can be specified by a num-
ber preceded by #; if this is present, that specified number of “clones” will be
created in the multi-agent system. In case more than one instance of that agent
is requested, the actual name of the agent will be the symbolic name concate-
nated with an index indicating the instance number (starting from 1). As for
the environment keyword, an agent definition may end with the name of a host
where the agent(s) will run (preceded by “at”). As before, this only works if the
SACI-based infrastructure was chosen.

The user can change the initial settings of the AgentSpeak interpreter avail-
able in Jason , or pass on settings to the agent classes by enclosing in square
brackets certain configuration statements. These have the form of a keyword,
followed by ‘=’ and then the value (possibly predefined keywords) attributed to
them; see [8] for further details. Finally, user-defined overall agent architecture
and other user-defined functions to be used by the AgentSpeak interpreter for
each particular agent can be specified with the keywords agentArchClass and
agentClass.

Creating Environments

Jason agents can be situated in real or simulated environments. In the former
case, the user would have to customise the “overall agent architecture”, as de-
scribed in the next part of this section; in the latter case, the user must provide
an implementation of the simulated environment. This is done directly in a Java
class that extends the Jason base Environment class. A general example of an
environment class is shown in Figure 4.

All percepts (i.e., everything that is perceptible in the environment) should
be determined using the addPercept method; the argument is a literal, so strong
negation can be used in applications where there is open-world assumption. It
is possible to send individualised perception; that is, in programming the envi-
ronment the developer can determine what subset of the environment properties
will be perceptible to individual agents. Recall that within an agent’s overall ar-
chitecture you can further customise what beliefs the agent will actually aquire
from what it perceives. Intuitively, the environment properties available to an
agent from the environment definition itself are associated to what is actually
perceptible at all in the environment (for example, if something is behind my

public class myEnv extends Environment {

public myEnv() {

// environment initialisations

}

public String getPos(String ag) {

// some code that returns the agent position

}

public boolean executeAction(String ag, Term action) {

if (action.equals(...)) {

// execute the action

}

...

removePercept(ag); // remove all percepts of agent ag

addPercept(ag,Literal.parseLiteral("pos(r1," + getPos(ag) + ")"));

addPercept(p); // add p as a percept to all agents

return true;

}

}

Fig. 4. Example of an Environment Class.

office’s walls, I cannot see it). The customisation at the agent overall architecture
level should be used for simulating faulty perception (i.e., even though something
is perceptible for that agent in that environment, it may still not include some of
those properties in its belief revision process, because it failed to perceive it). De-
termination of an agent’s individual perception within the environment is done
by using the “addPercept(agentName, percept)” method, where agentName
is a string and percept is a literal.

Most of the code for building environments should be (referenced) in the
body of the method executeAction which must be declared as described above.
Whenever an agent tries to execute a basic action (those which are supposed to
change the state of the environment), the name of the agent and a Term repre-
senting the chosen action are sent as parameter to this method. So the code for
this method needs to check the Term (which has the form of a Prolog structure)
representing the action (and any parameters) being executed, and check which
is the agent attempting to execute the action, then do whatever is necessary
in that particular model of an environment — normally, this means changing
the percepts, i.e., what is true or false of the environment is changed according
to the actions being performed. Note that the execution of an action needs to
return a boolean value, stating whether the agent’s attempt at performing that
action on the environment was executed or not. A plan fails if any basic action
attempted by the agent fails.

Customising Agents

Certain aspects of the cognitive functioning of an agent can be customised by
the user overriding methods of the Agent class (see Figure 5). The three first
selection functions are discussed extensively in the AgentSpeak literature (see
Section 3 and Figure 2). The social acceptance function (socAcc, which is related
to pragmatics, e.g., trust and power social relations) and the message selection
function are discussed in [31] and Section 4. By changing the message selection
function, the user can determine that the agent will give preference to messages
from certain agents, or certain types of messages, when various messages have
been received during one reasoning cycle. While basic actions are being exe-
cuted by the environment, before the (boolean) feedback from the environment
is available the intention to which that action belongs must be suspended; the
last internal function allows customisation of priorities to be given when more
than one intention can be resumed because feedback from the environment be-
came available during the last reasoning cycle.

Fig. 5. Agent Customisation.

Similarly, the user can customise the functions defining the overall agent ar-
chitecture (see Figure 5, AgArch class). These functions handle: (i) the way the
agent will perceive the environment; (ii) the way it will update its belief base
given the current perception of the environment, i.e., the so called belief revision
function (BRF) in the AgentSpeak literature; (iii) how the agent gets messages
sent from other agents (for speech-act based inter-agent communication); and
(iv) how the agent acts on the environment (for the basic actions that appear in
the body of plans) — normally this is provided by the environment implementa-
tion, so this function only has to pass the action selected by the agent on to the
environment, but clearly for multi-agent systems situated in a real-world envi-
ronment this might be more complicated, having to interface with, e.g., available
process control hardware.

For the perception function, it may be interesting to use the function defined
in Jason ’s distribution and, after it has received the current percepts, then
process further the list of percepts, in order to simulate faulty perception, for
example. This is on top of the environment being modelled so as to send different
percepts to different agents, according to their perception abilities (so to speak)
within the given multi-agent system (as with ELMS environments, see [12]).

It is important to emphasise that the belief revision function provided with
Jason simply updates the belief base and generates the external events (i.e.,
additions and deletion of beliefs from the belief base) in accordance with current
percepts. In particular, it does not guarantee belief consistency. As percepts are
actually sent from the environment, and they should be lists of terms stating
everything that is true (and explicitly false too, if closed-world assumption is
dropped), it is up to the programmer of the environment to make sure that con-
tradictions do not appear in the percepts. Also, if AgentSpeak programmers use
addition of internal beliefs in the body of plans, it is their responsibility to ensure
consistency. In fact, the user might be interested in modelling a “paraconsistent”
agent, which can be done easily.

An important construct for allowing AgentSpeak agents to remain at the
right level of abstraction is that of internal actions, which allows for straightfor-
ward extensibility and use of legacy code. As suggested in [3], internal actions
that start with ‘.’ are part of a standard library of internal actions that are
distributed with Jason . Internal actions defined by users should be organised
in specific libraries, which provides an interesting way of organising such code,
which is normally useful for a range of different systems. In the AgentSpeak pro-
gram, the action is accessed by the name of the library, followed by ‘.’, followed
by the name of the action. Libraries are defined as Java packages and each action
in the user library should be a Java class, the name of the package and class
are the names of the library and action as it will be used in the AgentSpeak
programs.

Available Tools and Documentation

Jason is distributed with an Integrated Development Environment (IDE) which
provides a GUI for editing a MAS configuration file as well as AgentSpeak code
for the individual agents. Figure 6 shows a screenshot of the Jason IDE, when
the user is editing the multi-agent systems configuration file; the AgentSpeak
code of each agent can also be edited (with syntax highlight) from the GUI.

Through the IDE, it is also possible to control the execution of a MAS, and to
distribute agents over a network in a very simple way. There are three execution
modes:

Asynchronous: in which all agents run asynchronously. An agent goes to its
next reasoning cycle as soon as it has finished its current cycle. This is the
default execution mode.

Synchronous: in which each agent performs a single reasoning cycle in every
“global execution step”. That is, when an agent finishes a reasoning cycle, it

Fig. 6. Jason IDE.

informs Jason ’s execution controller, and waits for a “carry on” signal. The
Jason controller waits until all agents have finished their current reasoning
cycle and then sends the “carry on” signal to them.

Debugging: this execution mode is similar to the synchronous mode; however,
the Jason controller also waits until the user clicks on a “Step” button in
the GUI before sending the “carry on” signal to the agents.

There is another tool provided as part of the IDE which allows the user to
inspect agents’ internal states when the system is running in debugging mode.
This is very useful for debugging MAS, as it allows “inspection of agents’ minds”
across a distributed system. The tool is called “mind inspector”, and is shown
in Figure 7.

Jason ’s distribution comes with documentation which is also available on-
line at http://jason.sourceforge.net/Jason.pdf. The documentation has
something of the form of a tutorial on AgentSpeak, followed by a description of
the features and usage of the platform. Although it covers all of the currently
available features of Jason , we still plan to improve substantially the docu-
mentation, in particular because the language is at times still quite academic.
Another planned improvement in the available documentation, in the relatively
short term, is to include material (such as slides and practical exercises) for
teaching Agent-Oriented Programming with Jason .

6 Discussion

One of the reasons for the growing success of agent-based technology is that it
has been shown to be quite useful for the development of various types of appli-
cations, including air-traffic control, autonomous spacecraft control, health care,
and industrial systems control, to name just a few. Clearly, these are application

Fig. 7. Jason ’s Mind Inspector.

areas for which dependable systems are in demand. Consequently, formal veri-
fication techniques tailored specifically for multi-agent systems is also an area
that is attracting much research attention and is likely to have a major impact
in the uptake of agent technology. One of the advantages of the approach to
programming multi-agent systems resulting from the research reviewed in this
paper is precisely the fact that it is amenable to formal verification. In particu-
lar, model checking techniques (and state-space reduction techniques to be used
in combination with model checking) for AgentSpeak have been developed [6, 7,
5, 13].

Although very little has been considered so far in regards to using agent-
oriented software engineering methodologies for the development of designs for
systems to be implemented in Jason , existing methodologies that specifically
concern BDI agents, such as Prometheus [23], should be perfectly suitable for
that purpose. In that book, the authors show an example of the use of JACK

(see [32]) for the implementation, but they explicitly say that any platform
that provides the basic concepts of reactive planning systems (such as goals
and plans) would be most useful in the sense of providing all the required con-
structs to support the implementation of designs developed in accordance to
the Prometheus methodology. Because AgentSpeak code is considerably more
readable than other languages such as JACK and Jadex (see [25]), it is arguable
that Jason will provide at least a much more clear way of implementing such
designs. However, being an industrial platform, JACK has, currently, far bet-
ter supporting tools and documentation, but on the other hand, Jason is open
source, whereas JACK is not.

A construct that has an important impact in maintaining the right level
of abstraction in AgentSpeak code even for sophisticated systems is that of
internal actions (described earlier in Section 2). Internal actions necessarily have
a boolean value returned, so they are declaratively represented within a logic
program in AgentSpeak — in effect, we can keep the agent program as a high-
level representation of the agent’s reasoning, yet allowing it to be arbitrarily
sophisticated by the use of existing software implemented in Java, or indeed
any programming language through the use of JNI. Thus, the way in which
integration with traditional object-oriented programming and use of legacy code
is accomplished in Jason is far more elegant than with other agent programming
languages (again, such as JACK and Jadex).

As Jason is implemented in Java, there is no issue with portability, but
very little consideration has been given so far to standards compliance and in-
teroperability. However, components of the platform can be easily changed by
the user. For example, at the moment there are two infrastructures available
in Jason ’s distribution: a centralised one (which means that the whole sys-
tem runs in a single machine) and another which uses SACI for distribution. It
should be reasonably simple to produce another infrastructure which uses, e.g.,
JADE (see [2]) for FIPA-compliant distribution and management of agents in a
multi-agent system.

As yet, Jason has been used only for a couple of application described
below, and also for simple student projects in academia. However, due to its
AgentSpeak basis, it is clearly suited to a large range of applications for which
it is known that BDI systems are appropriate; various applications of PRS [16]
and dMARS [17] for example have appeared in the literature [34, Chapter 11].

Although we aim to use it for a wide range of applications in the future,
in particular Semantic Web and Grid-based applications, one particular area of
application in which we have great interest is Social Simulation [15]. In fact,
Jason is being used as part of a large project to produce a platform tailored
particularly to Social Simulation. The platform is called MAS-SOC and is de-
scribed in [12]; it includes a high-level language called ELMS [22] for defining
multi-agent environments. This approach was used to develop a simple social
simulation on social aspects of urban growth. Another area of application that
has been initially explored is the use of AgentSpeak for defining the behaviour
of animated characters for computer animation (or virtual reality) [30].

7 Final Remarks

Jason is being actively improved and extended. The long term objective is to
have a platform which makes available important technologies resulting from
research in the area of Multi-Agent Systems, but doing this in a sensible way so
as to avoid the language becoming cumbersome and, most importantly, having
formal semantics for most, if not all, of the essential features available in Jason .
There are ongoing projects to extend Jason with organisations, given that social
structure is an essential aspect of developing complex multi-agent systems, and
with ontological descriptions underlying the belief base, thus facilitating the use
of Jason for Semantic Web and Grid-based applications. We aim to contribute,
for example, to the area of e-Social Science, developing large-scale Grid-based
social simulations using Jason .

Acknowledgments

As seen from the various references throughout this document, the research
on AgentSpeak has been carried out with the help of many colleagues. We are
grateful for the many contributions received over the last few years from: Davide
Ancona, Marcelo G. de Azambuja, Deniel M. Basso, Ana L.C. Bazzan, Antônio
Carlos da Rocha Costa, Guilherme Drehmer, Michael Fisher, Rafael de O. Jan-
none, Romulo Krafta, Viviana Mascardi, Victor Lesser, Rodrigo Machado, Joyce
Martins, Álvaro F. Moreira, Fabio Y. Okuyama, Denise de Oliveira, Carmen Par-
davila, Marios Richards, Máıra R. Rodrigues, Rosa M. Vicari, Willem Visser,
Michael Wooldridge.

Rafael Bordini gratefully acknowledges the support of The Nuffield Founda-
tion (grant number NAL/01065/G).

References

1. D. Ancona, V. Mascardi, J. F. Hübner, and R. H. Bordini. Coo-AgentSpeak:
Cooperation in AgentSpeak through plan exchange. In N. R. Jennings, C. Sierra,
L. Sonenberg, and M. Tambe, editors, Proceedings of the Third International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2004), New
York, NY, 19–23 July, pages 698–705, New York, NY, 2004. ACM Press.

2. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE — a java agent devel-
opment framework. In Bordini et al. [4], chapter 5, pages 125–147.

3. R. H. Bordini, A. L. C. Bazzan, R. O. Jannone, D. M. Basso, R. M. Vicari, and
V. R. Lesser. AgentSpeak(XL): Efficient intention selection in BDI agents via
decision-theoretic task scheduling. In C. Castelfranchi and W. L. Johnson, editors,
Proceedings of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-2002), 15–19 July, Bologna, Italy, pages 1294–1302,
New York, NY, 2002. ACM Press.

4. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications. Number 15 in Multi-
agent Systems, Artificial Societies, and Simulated Organizations. Springer-Verlag,
2005.

5. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo,
editors, Proceedings of the Second International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-2003), Melbourne, Australia, 14–18
July, pages 409–416, New York, NY, 2003. ACM Press.

6. R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Model checking rational
agents. IEEE Intelligent Systems, 19(5):46–52, September/October 2004.

7. R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. State-space reduction
techniques in agent verification. In N. R. Jennings, C. Sierra, L. Sonenberg, and
M. Tambe, editors, Proceedings of the Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-2004), New York, NY,
19–23 July, pages 896–903, New York, NY, 2004. ACM Press.

8. R. H. Bordini, J. F. Hübner, et al. Jason: A Java-based agentSpeak interpreter
used with saci for multi-agent distribution over the net, manual, version 0.6 edition,
Feb 2005. http://jason.sourceforge.net/.

9. R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the golden fleece of agent-
oriented programming. In Bordini et al. [4], chapter 1, pages 3–37.

10. R. H. Bordini and Á. F. Moreira. Proving the asymmetry thesis principles for a
BDI agent-oriented programming language. In J. Dix, J. A. Leite, and K. Satoh,
editors, Proceedings of the Third International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA-02), 1st August, Copenhagen, Denmark, held as
part of FLoC-02, Electronic Notes in Theoretical Computer Science 70(5). Elsevier,
2002. URL: <http://www.elsevier.nl/locate/entcs/volume70.html>.

11. R. H. Bordini and Á. F. Moreira. Proving BDI properties of agent-oriented pro-
gramming languages: The asymmetry thesis principles in AgentSpeak(L). Annals
of Mathematics and Artificial Intelligence, 42(1–3):197–226, Sept. 2004. Special
Issue on Computational Logic in Multi-Agent Systems.

12. R. H. Bordini, F. Y. Okuyama, D. de Oliveira, G. Drehmer, and R. C. Krafta. The
MAS-SOC approach to multi-agent based simulation. In G. Lindemann, D. Moldt,
and M. Paolucci, editors, Proceedings of the First International Workshop on Reg-
ulated Agent-Based Social Systems: Theories and Applications (RASTA’02), 16
July, 2002, Bologna, Italy (held with AAMAS02) — Revised Selected and Invited
Papers, number 2934 in Lecture Notes in Artificial Intelligence, pages 70–91, Berlin,
2004. Springer-Verlag.

13. R. H. Bordini, W. Visser, M. Fisher, C. Pardavila, and M. Wooldridge. Model
checking multi-agent programs with CASP. In W. A. Hunt Jr. and F. Somenzi,
editors, Proceedgins of the Fifteenth Conference on Computer-Aided Verification
(CAV-2003), Boulder, CO, 8–12 July, number 2725 in Lecture Notes in Computer
Science, pages 110–113, Berlin, 2003. Springer-Verlag. Tool description.

14. C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy,
social importance, and quantification. In Y. Demazeau, editor, Proceedings of
the Third International Conference on Multi-Agent Systems (ICMAS’98), Agents’
World, 4–7 July, Paris, pages 72–79, Washington, 1998. IEEE Computer Society
Press.

15. J. Doran and N. Gilbert. Simulating societies: An introduction. In N. Gilbert
and J. Doran, editors, Simulating Society: The Computer Simulation of Social
Phenomena, chapter 1, pages 1–18. UCL Press, London, 1994.

16. M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings
of the Sixth National Conference on Artificial Intelligence (AAAI’87), 13–17 July,
1987, Seattle, WA, pages 677–682, Manlo Park, CA, 1987. AAAI Press / MIT
Press.

17. D. Kinny. The distributed multi-agent reasoning system architecture and lan-
guage specification. Technical report, Australian Artificial Intelligence Institute,
Melbourne, Australia, 1993.

18. J. A. Leite. Evolving Knowledge Bases: Specification and Semantics, volume 81
of Frontiers in Artificial Intelligence and Applications, Dissertations in Artificial
Intelligence. IOS Press/Ohmsha, Amsterdam, 2003.

19. R. Machado and R. H. Bordini. Running AgentSpeak(L) agents on SIM AGENT.
In J.-J. Meyer and M. Tambe, editors, Intelligent Agents VIII – Proceedings of the
Eighth International Workshop on Agent Theories, Architectures, and Languages
(ATAL-2001), August 1–3, 2001, Seattle, WA, number 2333 in Lecture Notes in
Artificial Intelligence, pages 158–174, Berlin, 2002. Springer-Verlag.

20. Á. F. Moreira and R. H. Bordini. An operational semantics for a BDI agent-oriented
programming language. In J.-J. C. Meyer and M. J. Wooldridge, editors, Pro-
ceedings of the Workshop on Logics for Agent-Based Systems (LABS-02), held in
conjunction with the Eighth International Conference on Principles of Knowledge
Representation and Reasoning (KR2002), April 22–25, Toulouse, France, pages
45–59, 2002.

21. Á. F. Moreira, R. Vieira, and R. H. Bordini. Extending the operational seman-
tics of a BDI agent-oriented programming language for introducing speech-act
based communication. In J. Leite, A. Omicini, L. Sterling, and P. Torroni, editors,
Declarative Agent Languages and Technologies, Proceedings of the First Interna-
tional Workshop (DALT-03), held with AAMAS-03, 15 July, 2003, Melbourne,
Australia (Revised Selected and Invited Papers), number 2990 in Lecture Notes in
Artificial Intelligence, pages 135–154, Berlin, 2004. Springer-Verlag.

22. F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa. ELMS: an envi-
ronment description language for multi-agent simulations. In D. Weyns, H. van
Dyke Parunak, F. Michel, T. Holvoet, and J. Ferber, editors, Environments for
Multiagent Systems, State-of-the-art and Research Challenges. Proceedings of the
First International Workshop on Environments for Multiagent Systems (E4MAS),
held with AAMAS-04, 19th of July, number 3374 in Lecture Notes in Artificial
Intelligence, pages 91–108, Berlin, 2005. Springer-Verlag.

23. L. Padgham and M. Winikoff, editors. Developing Intelligent Agent Systems: A
Practical Guide. John Wiley and Sons, 2004.

24. G. D. Plotkin. A structural approach to operational semantics. Technical report,
Computer Science Department, Aarhus University, Aarhus, 1981.

25. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In
Bordini et al. [4], chapter 6, pages 149–174.

26. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In W. Van de Velde and J. Perram, editors, Proceedings of the Seventh Workshop
on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25
January, Eindhoven, The Netherlands, number 1038 in Lecture Notes in Artificial
Intelligence, pages 42–55, London, 1996. Springer-Verlag.

27. A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In V. Lesser
and L. Gasser, editors, Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS’95), 12–14 June, San Francisco, CA, pages 312–319,
Menlo Park, CA, 1995. AAAI Press / MIT Press.

28. A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics. Journal of Logic
and Computation, 8(3):293–343, 1998.

29. M. P. Singh, A. S. Rao, and M. P. Georgeff. Formal methods in DAI: Logic-
based representation and reasoning. In G. Weiß, editor, Multiagent Systems—A
Modern Approach to Distributed Artificial Intelligence, chapter 8, pages 331–376.
MIT Press, Cambridge, MA, 1999.

30. J. A. Torres, L. P. Nedel, and R. H. Bordini. Autonomous agents with multiple
foci of attention in virtual environments. In Proceedings of 17th International
Conference on Computer Animation and Social Agents (CASA 2004), Geneva,
Switzerland, 7–9 July, pages 189–196, 2004.

31. R. Vieira, A. Moreira, M. Wooldridge, and R. H. Bordini. On the formal semantics
of speech-act based communication in an agent-oriented programming language.
Submitted article, to appear, 2005.

32. M. Winikoff. JACKTM intelligent agents: An industrial strength platform. In
Bordini et al. [4], chapter 7, pages 175–193.

33. M. Wooldridge. Reasoning about Rational Agents. The MIT Press, Cambridge,
MA, 2000.

34. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 2002.

