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Abstract 
This paper focuses on sensor networks as shared 
environmental infrastructures, and presents an 
approach to enable a sensor network to analyze, in a 
distributed way and with predefined energy costs, the 
patterns of sensed information so as to self-partition 
itself into spatial regions of nodes characterized by 
similar patterns. Such regions can then be used to 
aggregate data on a per-region basis and to enable 
multiple and mobile users to extract meaningful 
information at very limited and pre-defined costs.  

1. Introduction 

Sensor network technologies are gaining increasing 
interest and increasing diffusion [Est02, ChoK03]. In 
this area, most of current researches as well as most of 
systems deployed so far consider that sensor networks 
are to be designed and deployed with the only goal of 
monitoring some specific physical phenomena and of 
reporting data back to some fixed base station acting as a 
sink [Pol04, BouG03], possibly after some limited in-
network processing of such data [MadH02, GehM04]. 

However, the trend toward ubiquitous mass 
deployment of sensor networks will make them become 
more and more as a general shared infrastructure for the 
use of multiple [MulA06, Cur05] and possibly mobile 
users [Cur05, Lu05]. The idea is that users in an 
environment can access the sensors in their 
neighborhood to gather information about the 
surrounding physical world and/or to support the 
activities of context-aware services. In such a scenario, 
approaches based on optimization of routing paths 
towards a fixed sink do now work properly, implying 
notable energy costs and slow response times. 

For sensor networks to become effectively usable as 
a shared infrastructure for interacting with the physical 
world, it is necessary to conceive novel approaches to 
gather information from them in an effective way, 
ensuring reasonable bounds both on the amount of 

energy consumed to satisfy the need of several possibly 
mobile users and on the response time and accuracy of 
data provided to them. 

The idea underlying our approach is that of having the 
network continuously run, at specific frequency rates 
and thus with predefined energy costs, a distributed 
algorithm to identify regions of the network 
characterized by similar patterns for sensed data. To this 
end, each node periodically compares with its neighbors 
the sensed data patterns. A logical link between nodes is 
re-enforced in the case of relevant similar ity and 
weakened in the case of relevant dissimilarity. 
Eventually, the execution of the algorithm results in a 
self-organized overlay of logical links partitioning the 
network in regions. 

Upon formation of such regions, aggregation of data 
can act on a per-region basis, by exploiting a gossip-
based algorithm that, by relying on piggybacking, 
requires no additional communication costs. Due to this 
in-netwo rk process of per-region aggregation, which 
also avoids the accuracy losses of global aggregation 
algorithms, multiple and mobile users in need to access 
information can be provided, with very limited costs, 
prompt access to aggregate values on the local region, 
and can also acquire a compact perception of the overall 
status of the network.     

2. Region Aggregation Noise 

The “Region Aggregation Noise” (RAN) approach 
considers the following:  (i) a distributed algorithm is 
running in the network as a sort of “background noise” 
with a predictable energy cost to partition the sensor 
network into regions characterized by similar patterns 
for sensed data; (ii) The formation of such regions is 
used to compute, at no additional costs and on a per-
region basis, aggregation of sensed data, so that users 
accessing the network for gathering information can be 
provided with such pre-computed aggregated data at 
limited costs. 



  

2.1. Region Formation 

Let us assume to sense, over a certain area covered by a 
sensor network, a particular property (see e.g. Figure 1-a 
and 1-b), and that each sensor is capable of measuring 
the local value v of such property. For instance, v could 
be a temperature, or a light level, or whatever property a 
sensor is capable to infer about its sensed portion of the 
environment.  

The goal of the region formation algorithms is to 
have sensors self-organize into disjoint set of regions 
each characterized by “similar” measures of the property 
(e.g.. see Figure 1-c and 1-d). Organization is regions 
occur via a process of building an overlay of virtual 
weighted links between neighbor nodes, such that nodes 
belonging to the same region have strong links, while 
neighbor nodes belonging to different regions have weak 
(or null) links. As examples: measuring the light level 
could be used for a sensor network in a building to self-
partition on a “per room” basis (different rooms being 
characterized by different light level, while the light 
level inside a room is always quite homogeneous); 
measuring the vibration level on a mountain slope could 
lead to self-organizing a sensor network into regions 
associated to surfaces with different geological 
properties.   

 

a)  b)  

c)  d)  
Figure 1. Region self-partitioning. a) a scalar field 
with 4 regions with different values of a property v; 
b) a sensor network immersed in the above field, 
with links representing the physical layer; c) 
overlay region organization with p=0,4 defining 2 
regions (we show only the logical links); d) overlay 
region organization with p=0,05 defining 4 regions,  

 
The problem of clustering the network into regions 

with similar properties is very well studied and several 
centralized algorithms have been proposed to this 
purpose nowadays (assuming the availability of sensor 
values), but it is more challenging to perform in a 
strictly local and distributed fashion.  

Basically, our algorithm work as follows. Let si and 
sj be two sensors. They can be considered neighbors if 
they are within the wireless radio range r. Define the 
values sensed by si and sj as v(si) and v(sj), and let us 
assume that a  generic distance function D can be define 
for couples of v values (thus defining v as a metric 
space), i.e., D(v(s i), v(sj)). Region formation is then 
based on interatively computing the value of the logical 
link l(si,sj) for each and every node of the system, as in 
the following “Update_link” procedure: 

 
Update_link: 

if D(v(si),  v(sj)) < T {  
 l(si,sj) = min(l(si,sj) + delta, 1) 
} else { 
 l(si,sj) = max(l(si,sj) - delta, 0) 
} 

 
Where: T is a threshold that determines whether the 
measured values are close enough for l(si,sj) to be re-
enforced or, otherwise, weakened, and delta is a value 
affecting the reactiveness of the algorithm in updating 
link. Details on these parameters follow. What is already 
clear, though, is that after some iterations, if the D(v(si),  
v(sj)) is lower than threshold T, l(si,sj) will converge to 1 
otherwise to 0. In the simplest case, one could consider 
two nodes si and sj to be in the same region when l(si,sj) 
is over a threshold Th, However, to improve stability, we 
introduced a hysteretic cycle with two threshold Tl and 
Th. Transitively, two nodes sh and sk are defined in the 
same region if and only if exists a chain of nodes such 
that each pair of neighbors in the chain are in the same 
region. For the actual execution of the algorithm, each 
node stores a vector describing, for each of the 
neighbors, the current value of the link towards it and a 
flag (also necessary for hysteresis) signaling the status 
of the link (connected or not). 

The distributed execution of the algorithm is based 
on a sort of gossip scheme [JelMB05]: each node 
periodically wakes up, randomly selects a specific 
number (or a specific percentage) of its neighbors, 
exchange with them the needed data (i.e., the v values, 
plus other data that will be detailed in the following), and 
then execute the “Update_link”  procedure for each of 



  

the selected neighbors: 
 
Do_forerever: 
 Wait(t); 
 neigh[] = Select_neighbor(num_neigh); 
 Foreach(neigh[]) 
  Data = Exchange_data();  
  Update_link(data); 
Done 

 
At this point, it is rather clear that our algorithm tends to 
impose a pre-defined, parameterizable, and uniform 
load, on the system. Each node in the system execute the 
same amount of operations, the interval t determining 
the frequency of such operations and the number of 
neighbor num_neigh selected at each round determining 
the communication costs of these operations. Shorter t 
or higher num_neigh tend to speed up the convergence 
of the algorithm, but increase the energy consumed by 
sensor per time unit. What matters, is that one can select 
the proper trade -off between convergence times and 
accuracy and energy cost, an issue that will also be 
analyzed in the performance evaluation section. In other 
word, one can select the “degree of noise” of our 
algorithm and, so, the energy consumed over time. 

Let us now go into more details about the other 
parameters of our algorithm. 

Concerning the parameter delta, it determines how 
fast the link weight l changes its value. The choice of 
this parameter is not crucial, provided that it is chosen 
small enough to require several cycles of the 
“Update_link” procedure to actually modify the status 
of link (in other words, it should be notably smaller than 
the Tl-Th hysteretic interval). This avoids that random or 
temporary fluctuations of the measured value at a node 
continuously causes changes in the established regions.  

Concerning T, a challenging issue in our approach is 
consists is tackling the difference between the strictly 
local nature of “Update_link” interactions and the 
inherently global meaning of the threshold T. How can 
two nodes evaluate which is the right threshold to 
establish if they are similar enough to be in same region 
or not if they don't know anything about the rest of the 
network ? For instance, a difference of 10°C in a wood 
can be considered relevant during normal days but 
irrelevant for the sake of fire detection. To deal with this 
problem avoiding the need for a priori information, we 
opted to define T by exploiting dynamically collected 
global values of the property v. In particular we define T 
as a portion of the whole range of values seen over the 
network. Using scalar values, we defined T as:  

 
T = (globalMax – globalMin) * p  

 
where p is a real number between 0 an 1. In this way, one 
can parameterize the sensibility of the algorithm by 
using a relative value p rather than some absolute value 
requiring a priori knowledge on the range of v values. If 
one wants to obtain very large regions to organize the 
network based on macroscopic difference one can 
select p close to 1 (as in Figure 1-c). If one is interested 
in more fine-grained region organizations one can select 
p close to 0 (as in Figure 1-d). 

It is worth emphasizing that for each node to locally 
acquire the globalMax and globalMin value, one can 
execute a global aggregation algorithm over the whole 
network. Simply, as described in [JelMB05], each node, 
when exchanging data with one of its neighbors, can 
exchange with it the information about the maximum and 
minimum he know so far, possibly update its local 
knowledge, and eventually have the knowledge about the 
actual globalMin and globalMax reach each node of the 
network. Specifically, each node si, after having 
exchanged data with node sj, executes the following 
“Global_aggregation” procedure: 

 
Global_aggregation: 
 if(globalMini>globalMinj) globalMini=globalMin j 
 if(globalMaxi<globalMaxj) 
globalMaxi=globalMaxj 
 
with globalMini and globalMaxi both initialized at vi. 

We emphasize this requires very minimal additional 
effort by nodes. In fact, one can exploit the existing 
region aggregation noise and its “Exchange_data” 
messages to exchange the GlobalMin and GlobalMax 
values, by piggybacking with such messages the 
additional data needed, and then computing the 
“Global_aggregate” function after the “Update_link” 
procedure inside the main algorithm body. Moreover, 
one can also decide to exploit the same schema to 
compute any additional distributed aggregation 
algorithms (e.g. computing the average), and possibly 
even to compute aggregations over properties different 
from v.   

2.2. Gossip-based Per-Region Aggregation 

Clearly, the local availability of aggregated information 
over a sensor network may be of some use 
independently of regions. However, globally aggregated 
values give very little details on the status of the 



  

network, and are definitely of little use for users wishing 
to acquire info about environmental properties around 
him/her. For this reason, our approach also exploits per-
region aggregation algorithms.  

By considering the situation in which regions are 
already formed (the handling of transitory situations will 
be discussed later on), computing aggregation function 
in a region reduces to executing a gossip-based 
aggregation algorithm only between those couples of 
neighbor nodes that are in the same region (i.e., for 
which the l is over the Th threshold). Again, computing 
per-region aggregation function does not introduce 
significant additional burden to the network. The 
exchange of data between nodes can occur by 
piggybacking over the existing messages, and the 
computation of local aggregation algorithms reduces to 
adding a simple “Local_aggregation” function in the 
main body of our basic scheme, as follows: 

 
Do_forerever: 
 Wait(t); 
 neigh[] = Select_neighbor(num_neigh);  
 Foreach(neigh[]) 
  Data = Exchange_data();  
  Update_link(data); 
  Global_aggregation(); 
  If(connected) Local_aggregation(); 
Done 
 
The “Local_aggregation” function can include the 

identification of the local minimum and the local 
maximum of some sensed value w within the region 
(computed as in the global case), or the calculus of the 
average Avg of some value w. In this case, the local 
aggregation for a node si, after having exchanged data 
with connected node sj, simply works as follows: 
 
 Avgi(w) = ( Agvi(w)+Avgj(w) )/2 
 
with Avgi(w) simply initialized at the local value  wi. 

Currently, in our scheme, we also decided to enforce 
two peculiar aggregation functions that are of great use 
for facilitating the gathering of information by users.  

The first aggregation function considers that each 
node at the frontiers of a region (i.e., each node which 
has at least one virtual link l below the threshold) 
propagates within the region an “hop counter” initialized 
at 0. By having such counter by re-propagated by each 
node on per-minimum basis, the results is that each 
nodes in the region eventually becomes aware of its 

distance form the closest border of the frontier. This is 
use for enabling each node to locally estimate the 
“radius” within which the aggregated data are definitely 
meaningful, and to identify whether or not it can 
properly answer to a query. We also plan to experience 
more sophisticated aggregation function to enable nodes 
to locally reach a higher understanding of the shape and 
topology of the local region, possibly relying on 
existing work of distributed topology recognition. 

A second aggregation function exploits a sort of per-
region minimum identification towards the election of a 
region leader. By having each sensors exchange its 
unique ID with its neighbor, the minimum ID eventually 
recognized by each node will define the leader (and the 
leader itself will recognize itself as that). This can be 
very useful for mobile users to identify that they are 
changing regions, as well as to enable a quick and 
compact identification of all the regions within an area.  

Let us now analyze the dynamic behavior of the 
system during region formation and region re-shaping 
(changes in the values of the property v upon which 
region formation relies can induce changes in the shape 
and dimensions of regions).  

In general, the initial values of the virtual links l 
between nodes are irrelevant for region formation. 
Therefore, let us assume an initial situation in which all 
nodes are disconnected from each other (i.e., each node 
is a region in itself). As the algorithm will start running, 
nodes with similar values of v will start connecting with 
each other, and sets of regions with growing dimensions 
will start forming and possibly merge each other, until a 
stable situation will be reached.  

Concurrently with the above region formation 
process, the local aggregation procedure start executing 
as soon as two nodes gets virtually connected in the 
same region, and the computing of aggregated data 
gradually involves more and more regions, eventually 
converging when a stable region situation is reached. It 
can be shown (and it is quite intuitive indeed, due to the 
cumulative nature of aggregation) that gossip-based 
aggregation processed does not experience problems if 
executed on a growing number of nodes, as in the region 
formation transitory. This also apply for the 
identification of the region leader (when two regions 
merge, one of the two leaders will eventually recognize 
it is no longer such). 

Similar considerations apply to the case in which 
new sensors are dynamically added in the system. 

Let us now consider the case in which some existing 
regions shrinks, either because a confining region has 
expanded or because some sensor nodes have died. In 



  

this case, two problems arise: (i) the values computed by 
the local aggregation functions may no longer be valid 
(e.g., the former maximum may have left the region) but 
– due the cumulative nature of gossip-based aggregation 
– will not be properly updated; (ii) the region leader may 
have exited the region.  

To overcome the former problem, we decided to 
enforce a sort of “evaporation” of the values computed 
by the local aggregation algorithms (except for the 
leader election algorithm). In other words, the local 
aggregated values at a node are slowly (compared to the 
convergence time of the aggregation algorithms) moved 
towards the initial values, e.g., the local values of the 
node. In this way, the weight of those data cumulated by 
the algorithm will gradually diminish, unless properly 
re-enforced. As an example, consider the case of the 
maximum of a region, and assume that each node in a 
region has already locally available the value of such 
maximum. Now, have each node slightly “evaporate” 
such value by making it diminish approach the local 
value. If the node holding such maximum is already in 
the region, a node will be made aware of this soon (i.e., 
since evaporation is slow, before the node itself has 
“evaporated” the value too much) and can undo the 
evaporation effects. If the node holding the maximum, 
instead, has exited the region, evaporation will enable to 
stabilize the new maximum at each node, after proper 
evaporation. Similar considerations apply, e.g., to the 
calculus of the average. 

The second problem is somewhat similar, but cannot 
be tackled by evaporation (the leader ID is not a value 
that can be tolerate approximation). Accordingly, the 
solution is inspired by the same principle, but is 
somewhat less elegant  and fluid. Each node keeps track 
of the “oldness” of the value of the leader ID 
(accounting for the number of cycles of the algorithm 
since the last time it received from some node such ID). 
Whenever such oldness becomes excessive, the current 
leader ID is considered obsolete and a new leader (i.e., 
the new node with the minimal ID) is identified and 
elected.  

Clearly, all the above solutions also help to deal with 
sensor networks immersed in environment with 
dynamically changing properties, and overall make the 
RAN approach fully self-organizing and self-adaptable.  

3. Evaluation 

We have performed numerous experiments based on 
simulations using the Repast framework [Repast06]. Our 
goal was twofold. First, we wanted to evaluate the 

effectiveness of the region detection algorithm. Second, 
we wanted to evaluate the convergence and accuracy 
level of the aggregation algorithms, and the trade-off 
between accuracy and energy consumption.  

The results of the simulations were obtained by 
simulating scalar fields in which the sensor network is 
immersed similar to that of Figure 1. Though we have 
conducted several experiments on fields with different 
shapes and values, we have always obtained comparable 
results from both qualitative and quantitative viewpoint. 
Therefore, we report here on an environment filled with 
500 wireless sensors disposed over a random graph such 
that the mean number of neighbors for each node is 15 
(i.e., qualitatively assimilable to the sensor network of 
Figure 1-b). The simulated scalar field exhibits values v 
such that four different quadrants are recognizable (as in 
Figure 1-a). Each quadrant has a fixed mean m and 
variance s. Starting from the top left quadrant and 
proceeding clockwise, they could be identified as q1, q2, 
q3, q4. Mean values m1..m4 of f in q1..q4 are respectively 
120, 80, 20, -20. Variances s1..s4 are arranged such that 
in each quadrant are allowed values v in range [m – 2, m 
+ 2].  

Network behaviour can be described from both a 
static and dynamic point of view. From the former we 
can analyze, independently from the speed of 
convergence, which are stable states reached by the 
network and evaluate the effects of related parameter p. 
From the latter we show the dynamic behavior of the 
network, the speed of convergence and the accuracy 
level depending on  num_neigh  and t. 

3.1. Region Detection 

From a static viewpoint, as described in Subsection 2.1 
and as shown in Figure 1, variations on the parameter p 
induce the network in self-partition into regions of 
different sizes. The same behavior has been verified to 
apply for networks immersed in fields with different 
shapes and with different sizes. 

Let us now switch to the dynamic viewpoint and 
show how variations of the gossip percent num_neigh 
and the sleep cycle t affect the speed of convergence 
and the accuracy of the region detection algorithm. Let’s 
consider a simulated a 500-nodes sensor network and a 
scalar field similar to that of Figure 1. Initially all nodes 
are not connected with any neighbor. We collect data 
over the first 255 cycles. Within cycles from 0 to 128 p 
is set to 0.4. During this interval the network converge 
to a status similar to that of Figure 1-c, i.e., splitting the 
network into regions. At cycle 129, we changed p from 



  

0.4 to 1.0 , making the network re-compact into a single 
region (as in Figure 1-b).  

In Figure 2-a we show the evolution in the average 
number of nodes per region as time passes, by varying 
the gossip percentage. Figure 3-b shows the same kind 
of evolution but by varying the sleep period t of sensor 
nodes. Values are collected at the completion of each 
simulation cycle. Both the graph show that the number 
of nodes of the region start from 0, grow to 250 during 
the first phase [0 – 128 cycles] and than reaches 500 
during the second phase [129 – 255 cycles]. Clearly, 
reducing the gossip percentage or increasing the sleep 
period t make the network slower in the region detection 
process.  

From Figure 2, it also emerges that the speed of the 
network is less influenced by variations of num_neigh  
than by variations of t.   

The strange “stairs-like” trend of data lines obtained 
by setting t=4 and t=8  (Figure 2-b) clearly show the 
non-linear nature of the algorithm. These are mostly due 
to the fact that, when a region is forming, lots of sub 
regions are growing within it connecting the most 
similar neighbors. Only when the new actual minimum 
ID of the new region reaches a node, such node 
recognize it is becoming part of a new region.  
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Figure 2. Evolution of region detection. a) t = 1. 

num_neigh = 1, num_neigh = 0.5, num_neigh = 0.25; 
b) num_neigh = 1. t = 1, t = 4, t = 8. 

3.2. Local Aggregation 

Let us know focus on the behavior of the RAN approach 
in evaluating aggregated values. 

From the static viewpoint, all local aggregation 
algorithms experiences corrently reach convergence 
towards the corrent (real) value. 

From the dynamic viewpoint, Figure 3 shows the 
trend of several values aggregated on a per region basis. 
Curves in each graph represent the minimum (worst 
case) estimate of the region maximum, the maximum 
(worst case) estimate of the region minimum, the 
minimum and the maximum (the two worst cases) 
estimates of the average, and the real actual value of the 
average computed over all nodes within the growing 
region. Figure 4-a show results obtained with 
num_neigh=1.0 and t = 1. Figure 3-b and 3-c show 
results obtained reducing num_neigh to 0.5 and 
increasing t to 4, respectively, Clearly, reducing the 
gossip percentage or increasing the sleep period t make 
the network slower not only in region detection but also 
in correctly evaluating locally aggregated values. 

All the graphs in Figure 3 show the same trend. 
During the first cycles while links are being reinforced, 
all the aggregated values don’t change. At the beginning 
(cycle 0) ,  when the region starts forming is clearly 
visible a fast convergence of the local maximum and 
minimum to their new values respectively of 120 and 
80. Average related values have a relatively small 
transitory and eventually reach the value of 100 as 
expected. At cycle 128, p is changed to p = 1.0 and the 
region starts growing another time. The local maximum 
does not have to change its value. The local minimum 
reaches quickly its new value (-20) in a few iterations. 
Average values instead have a longer transitory but 
eventually slowly converge to the expected value of 50. 
Observing Figure 3 is clear that different aggregate 
values behave differently varying num_neigh and t. In 
particular accuracy of average related values are really 
more sensible to variations of  num_neigh  and t than the 
local minimum and maximum have.  

To summarize this, there is a clear trade-off between 
energy consumption and accuracy: higher num_neigh 
and the lower  t clearly provides for more accuracy over 
time, but overall increase the energy consumed. Due to 
the high convergence speed of Max e Min showed under 
all conditions tested and to the fact that regions are 
expected to have relatively limited size, scalability of 



  

the RAN approach should not be a major issue. We 
tested it with sensor networks up to 10000 nodes 
obtaining similar results. 
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Figure 3. Per region aggregated values. Minimum 
estimate of the maximum, maximum estimate of the 
minimum, minimum and maximum estimates of the 
average and real value of the average. a) num_neigh 
= 1.0 , t = 1; b) num_neigh = 0.5, t = 1;  c) num_neigh 
= 1.0, t = 4. 

4. Application Areas and Current 
Limitations 

4.1. Application Areas 

The most direct and general-purpose way of exploiting 
the RAN approach – and the one that indeed motivated 
our work – is for supporting queries by multiple and 
mobile users. A user in an environment that wants to 
retrieve information about the surrounding will typically 
access the nearest sensor and query it about some local 
patterns of sensed data, e.g. “give me the average value 
of the temperature in this room” or “give me the 
maximum value of temperature within 500 meters”. At 
this point, if the sensor network has already provided for 
aggregating such data on a per region basis and the 
queries relate to the local region (which the node itself 
can recognize by estimating the distance of the closest 
border via the local hop counter), the sensor can 
immediately answer the query without further burdening 
the sensor network with computation and 
communications. The limitations in supporting more 
general and more global queries are analyzed later on in 
this section. 

The possibility of identifying regions characterized 
by specific patterns of sensed data, and the possibility of 
computing aggregated data within the network can also 
be effectively used to improve the capability of the 
sensor network to recognize unusual patterns of sensing 
and, in case, to automatically generate alarms. For 
example, we are currently cooperating with the 
geological department of the Modena Apennine to 
exploit our approach for effective landslide detection. 
Other examples in this direction include the possibility 
of detecting anomalies in buildings, streets, or parks. 

More in general, the expected dramatic increase in 
the number and density of sensor networks deployed in 
our world, will soon reach a point in which the overall 
amount of data generated by such network will make it 
impossible to transfer these data to some centralized 
location in a raw way. In-network aggregation will 
become the only solution to extract useful information 
from them. Accordingly, approaches such as RAN, 
which enables the sensor network to self-organize 
regions of aggregation and to report at limited cost 
concise information about such regions is likely to 
become increasingly important.      

Last but not least, the RAN approach can be seen as a 
way to effectively extract high-level semantic 
knowledge about the structure and characteristics of an 



  

unknown environment, for use by context-aware and 
location-based services [Bau06]. 

4.2. Limitations 

A shortcoming of the RAN approach is in its limited 
support for general queries. In fact, one has to a priori 
identify what type of sensed data (e.g., the temperature) 
or data function (e.g., some combination of temperature 
and light) to exploit as the basis for identification of 
regions and what data to exploit for the subsequent per 
region aggregation. However, if sensor networks are to 
become a shared infrastructure for the use by multiple 
mobile users, it may be also expected that different 
users will need to access different types information 
among the several that a sensor network can provide.  

To overcome this problem, it is possible to think at 
exploiting our background algorithms for the concurrent 
building of several virtual overlay region partitions, each 
corresponding to different kinds of sensed data or data 
functions. Moreover, one could think at the possibility 
of dynamically “injecting” into a network the 
specification of any particular data function and/or 
aggregation function. This would enable to have the 
network dynamically start building an additional overlay 
region partitioning based on such data, or computing the 
newly specified aggregation functions over the existing 
region partitions, or both. This would open up the 
possibility of supporting general region-based queries, 
as e.g. proposed by Region Streams [NewW04] and 
Logical Neighborhoods [MotP06]. Although enforcing 
multiple partitions and multiple aggregation functions 
would not require additional messages between sensor 
nodes, but only the piggybacking of additional 
information in existing messages, the costs of building 
and maintaining multiple virtual overlays and several 
aggregation functions have to be carefully evaluated. 

Another, less critical, limitation of RAN is that it is 
able to effectively answer queries within a region, but 
fall short in providing users information about what it 
happening outside the region. For instance, if a user asks 
“the average temperature within 500 meter” and the 
query is performed at a distance of 300 meters from the 
closest confining regions, the sensor will not be able to 
answer immediately. To overcome this problem, we are 
planning to implement efficient and low-costs inter-
region aggregation algorithms based on gossiping.   

Finally, the region partitioning algorithm we have 
experience so far requires, at each node, the availability 
of global data representing the maximum and the 
minimum of the sensed data pattern to properly identify 

regions. This represents indeed a limitation from a 
scalability point of view. On this base, we are currently 
experiencing with a modified algorithms capable of 
identifying regions on the basis of local information 
only. 

5. Related Work 

Most work on data gathering and aggregation in sensor 
networks assumes the presence of fixed sinks (base 
stations) to which sensed data flow. The basic approach 
is that of having sensors build a tree rooted at the sink 
and supporting the routing of sensed data towards it 
[Pol04]. Some form of in-network data aggregation 
(e.g., averaging) can be performed as data from sensors 
climb the tree [MadH02, GehM04], and various 
optimization can apply in tree formation [BouG03]. In 
any case, thee approaches can hardly apply for shared 
infrastructural sensor networks, because the costs of 
building a tree on demand for many possible users at 
different and varying locations would be unbearable, 
both in terms of energy and response time.   

Several research works in the area of sensor 
networks start recognizing the need to promote direct 
access to sensor data by multiple and mobile users 
[NewW04, Cur05]. These works mostly focuses of 
defining suitable general-purpose primitives and 
language constructs to enable users to flexibly query the 
network and obtain information about individual sensor 
data and aggregated data related to specific regions. 
However, apart from a few exceptions [MotP06], none 
of these systems faces the problem of how to 
implement the query functionalities, i.e., of what 
specific data gathering and aggregation algorithms 
should run in the sensor network. 

To idea of exploiting aggregation algorithm 
continuously running in the network so as to provide 
locally to each node a more global picture of the of the 
sensed environment has been originally proposed for 
P2P networks [JelMB05] and, later, also for 
[DimSW06]. However, for sensor networks, the general 
approach of gossip algorithms executing over the whole 
network is not satisfactory: users querying a network to 
be interested in aggregated values related to a local 
region (as in RAN) rather than in global values related to 
the whole network.  

Some in-network algorithms for self-organization of 
region partitioning in sensor networks have been 
proposed [CatWS02, PanS05], sharing some basic 
principle with our RAN approach. The key differences 



  

with RAN are that: (i) these algorithms require a priori 
information about the typically patterns exhibited by the 
environment, while RAN does not and it is fully self-
organizing; (ii) these algorithms are not conceived for 
other goals than recognizing regions, while RAN goes 
further, by exploiting region partitioning for computing 
aggregation and for supporting efficient queries by 
multiple and mobile users.   

6. Conclusions and Future Works 
If sensor networks are going to become a pervasive 
shared infrastructure, algorithms and tools will be 
required to support querying by multiple and mobile 
users other than by fixed sinks. The proposed approach 
enables a sensor network to analyze the patterns of 
sensed information so as to self-partition the network  
into regions characterized by similar sensing patterns, 
and then to aggregate data on a per-region basis. In this 
way, multiple and mobile users can extract meaningful 
information from the network at very limited costs and 
with notable accuracy.   

We are currently working to extend our approach to: 
support multiple overlays and general-purpose queries; 
support inter-region global queries; work even without 
the availability of global aggregated information. Last 
but not least, we are in the process of verifying the 
effectiveness of the approach on a real sensor network 
testbeds, other than in a simulated environment.  
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