
Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

A Self-Organising Solution to the Collective Sort
Problem in Distributed Tuple Spaces

Mirko Viroli Matteo Casadei Luca Gardelli

Alma Mater Studiorum – Università di Bologna
{mirko.viroli,m.casadei,luca.gardelli}@unibo.it

ACM SAC 2007
Track on Coordination Models and Languages

Seul - Korea
March 12, 2007

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Coordination Models and Languages

Self-Organization and Coordination

The Collective Sort Case

Simulation Framework

Developing a Self-Organizing Solution

Conclusions

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

What is Coordination?

Settings

• A distributed or concurrent system

• Composed of different entities: agents, processes, components

• Coordination is government of their interactions!

Example models and technologies

• Channels: as in Reo model

• Spaces: as in Linda and all its derivations
• TuCSoN, Lime, TSpaces, TOTA, KLAIM, . . .

Even direct communication is a particular case . . .

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

A General Meta-Model

Architecture

• Many coordinated
entities

• The coordination space
hosting coordination
media

• Coordinated enties
interacting with media
through primitives

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Complex systems, Self-Organization, Emergent Behaviours

Complex systems

• Systems whose dynamics is hardly predictable

• Small changes in initial conditions may lead to completely
different behaviours

• They are hard to design: behaviour really emerges without a
priori intention

Self-organization as source of complexity

• Designed to adapt to unpredictable changes of the
surrounding conditions

• Organization emerges at the global level as a result of local
interaction of entities

• A naturally inspired metaphor indeed!

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Self-Organization and Coordination

A Reference Scenario

• Should design a coordination space

• Agents require services related to mutual awareness and
retrieval of resources

• The system should adapt to dynamism in topology and handle
unpredictable agent behaviour and movements

Related Works

• Tota: co-fields for awareness

• SwarmLinda: dynamic movement of tuples in the network

• Many other examples related to stigmergy

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

The Tota Solution

Tota Architecture

• One tuple space in each node of the dynamic network

• Tuples are:
• put in the local space by agents
• Tota spread them in the neighborhood
• a distributed data structure resembling a field is created
• agents perceive tuples and behave accordingly

Local/global

• Interactions are all local, movements are local

• Yet, a global behaviour emerges, in the stigmergy style!

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Some patterns

Inspired by nature

• Diffusion: some data chunk locally stored, automatically
spread around

• Aggregation: homogeneous data chunks in the same place are
collected

• Evaporation: data chunks keep fading until completely
vanishing

• Collective Sorting: data chunks are moved according to
similarity properties

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Problem

Definition

Inspired by brood and larvae sorting by ants

• Take a distributed flat set of tuple spaces (S1, . . . ,Sn)

• Each holding tuples of different kinds (K1, . . . ,Kn)

• Design a self-organizing solution where:
• Locally: a tuple can be moved from one space to the other

according to local criteria
• Globally: tuples with same kind are collected in a single space,

tuples with different kind are collected in different spaces

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Why is this interesting?

Where is Emergence and Adaptiveness?

• The space where a given kind aggregates is uncertain
(bifurcation effect)

• Full sorting should be reached independently of initial
conditions and ongoing perturbations

Usefulness for Coordination

• If tuples represent information, after a while agents know
where to retrieve them

• Supporting tuple space optimization and load balancing

• E.g. having similar tuples in the same place eases consistency
checking

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

An Architecture for the Solution

Elements

• One manager agent for each space S (or possibly more)

• It has the burden of moving tuples away from S , at a certain
rate

• Decisions taken by relying on a pointwise primitive (rd)

• Avoiding global counting operations

• The whole sorting service transparent to user agents

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Uniform read

Movement criterion

• How an agent may decide to move a tuple T away from a
space S?

• The agent should recognise that the kind of T is aggregating
more elsewhere..

• We need a new pointwise primitive supporting this reasoning

Uniform read primtive

• urd(K1, . . . ,Kn)

• Reads one tuple belonging to any kind Ki , probabilistically!

• The more tuples of kind Ki occur in the space, the more likely
one such tuple is read

• This primitive could be implemented e.g. in ReSpecT

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

The manager agent agenda

Step-by-step behaviour

Consider an agent managing space S , and executing this agenda
with a fixed rate r :

• it draws a tuple kind K of interest, randomly

• it draws a candidate destination tuple space D, randomly

• it performs a urd on S , obtaining a tuple of kind KS

• it performs a urd on D, obtaining a tuple of kind KD

• it K = KD 6= KS it moves a tuple of kind K from S to D

Intuition

If K = KD 6= KS holds, it is likely that D aggegates K more than
what S is doing

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

A Design Methodology

How we proceed now?

We have an intuition of the strategy, how to design a correct
solution?

• Express the design as a formal language

• Execute stochastic simulations, evaluate the results

• If not satisfied, tune the design and proceed again

A pillar work in this direction

• D.Gillespie, “Exact Stochastic Simulation of Coupled
Chemical Reacions”, 1977

• It shows that complex chemical processes (large, discrete
systems), can be described by a stochastic approach, rather
than by standard differential equations

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Stochastic modelling

Start from a stochastic model of a system...

It is basically a transition system 〈S ,A,→〉, where:

• S is the set of states of the system of interest

• A is the set of actions (labels for system evolution)

• →⊆ S × A× R× S is the transition relation

• (write s
a:r−→ s ′ for 〈s, a, r , s ′〉 ∈→)

s
a:r−→ s ′ means the system may move from s to s ′ by action a

occurring with rate r (average ∆t is 1/r)

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Stochastic simulation

General schema

• Start from an initial state

• Choose a new state and a time increase probabilistically

• Proceed and keep track of the evolution history (e.g. to draw
a chart)

A simulation step is as follows

• Let a1 : r1, . . . an : rn be the actions(rates) available in current
state

• Draw two random numers in [0, 1], say τ1 and τ2

• Use τ1 to select an ai : ri (probability is ri/
∑

rj)

• Use τ2 to identify the time increase: ∆t = −ln(1/τ2)/
∑

rj

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

A Maude library

What is Maude

• It is basically a meta-language for transition systems

• Based on term-rewriting logic

• Can express custom syntax, and rules of transition/rewriting

A library for stochastic simulations

• The user expresses the transition system 〈S ,A,→〉
• The library implements the simulation engine and yields a

simulation trace

• The resulting output file is used to chart results

With respect to other simulation frameworks like SPiM and
Repast, Maude is a general-purpose tool.

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

A simple example, Sodium-chloride reaction 1/2

Maude code

op <_,_,_,_> : Nat Nat Nat Nat -> State .
ops ionization deionization : -> Action .
vars Na Na+ Cl Cl- : Nat .

eq < Na,Na+,Cl,Cl- > ==> =
(ionization # (float(Na * Cl) * 1.0)}

-> [< p Na,s Na+,p Cl,s Cl- >]);
(deionization # (float(Na+ * Cl-) * 2.0)}

-> [< s Na,p Na+,s Cl,p Cl- >]) .

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

A simple example, Sodium-chloride reaction 2/2

Trace Chart

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Modelling Collective Sort in Maude

An initial configuration

< 0 @ (a[100])|(b[100])|(c[10])|(d[10]) > |
< 1 @ (a[0]) |(b[100])|(c[10])|(d[10]) > |
< 2 @ (a[10]) |(b[50]) |(c[50])|(d[10]) > |
< 3 @ (a[50]) |(b[10]) |(c[10])|(d[50]) >

Semantic Rules

• Basically, one for each step of the agent agenda

• The first one creates a new agent (state) at rate r

• The other rules evolve this state as decisions are taken

• The latter possibly changes the configuration of tuples

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Results 1/3

Behaviour in tuple space S0

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Results 2/3

Winning tuple in each tuple space

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Results 3/3

Entropy in each tuple space

Computed as:
∑
−cK ∗ ln cK (cK is the concentration of K)

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

What about convergence?

Local minima for entropy exist!

An example:

< 0 @ (a[20]) |(b[0]) |(c[0]) |(d[0]) > |
< 1 @ (a[140])|(b[0]) |(c[0]) |(d[0]) > |
< 2 @ (a[0]) |(b[260])|(c[0]) |(d[0]) > |
< 3 @ (a[0]) |(b[0]) |(c[80])|(d[80]) >

• The concentration of tuple a in 0 and 1 is 100% (full
aggregation)

• Tuples c and d are never moved away!

This general situation is quite frequent when using complex
systems as optimization tools

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

The vacuum tuple solution

The problem

• Some tuple spaces might be simply empty (how urd works?)

• Not only the relative concentration but also absolute value
should be considered

• We need a form of simulated annealing!

A solution

• Each tuple space has also a (fixed) number of vacuum tuples

• If the destination tuple is vacuum, then move the source tuple
there!!

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Vacuum architecture

A picture

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

A new agenda

Step-by-step behaviour

Consider an agent managing space S , and executing this agenda
with a fixed rate r :

• it draws a tuple kind K of interest, randomly

• it draws a candidate destination tuple space D, randomly

• it performs a urd on S , obtaining a tuple of kind KS

• it performs a urd on D, obtaining a tuple of kind KD

• if K = KD 6= KS it moves a tuple of kind K from S to D

• if K 6= KS and KD = v it moves a tuple of kind K from S to
D

Intuition

If KD = v the destination has some emptyness, and hence we move
the tuple

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

New simulations

K = Number of moved tuples

• Good overall performance is
achieved when vacuum
concentration is 20% of the
final number of tuples

• How can this be designed in
advance?

• We need an adaptive
mechanism for vacuum!

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Agent for adaptive vacuum

Step-by-step behaviour

Consider an agent managing space S , and executing this agenda
with a fixed rate r :

• it draws a tuple kind K of interest, randomly

• it draws a candidate destination tuple space D, randomly

• it performs a urd on S , obtaining a tuple of kind KS

• it performs a urd on D, obtaining a tuple of kind KD

• if K = KD 6= KS it moves a tuple of kind K from S to D

• if K 6= KS and KD = v it moves a tuple of kind K from S to
D

• if K = KD 6= KS it drops one vacuum tuple from S

• if K = KD = KS it adds one vacuum tuple to S

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

New simulations

K = Number of moved tuples

• The obtained performance is
sufficiently far from the bad
zone

• No significant performance
impact on instances that
normally converge

Outline Coordination Models and Languages Self-Organization and Coordination The Collective Sort Case Simulation Framework Developing a Self-Organizing Solution Conclusions

Conclusions

Experience

• Coordination and Self-Organization

• Provide design-support to adaptive behaviour

Future Work

Putting our simulation framework to test in other contexts

• Cellular automata

• Chemical/Biological modelling

• Towards new computation paradigms

	Outline
	Coordination Models and Languages
	Self-Organization and Coordination
	The Collective Sort Case
	Simulation Framework
	Developing a Self-Organizing Solution
	Conclusions

