Swarm intelligence

Andrea Roli

andrea.roli@unibo.it

DEIS Università degli Studi di Bologna Campus of Cesena

Outline

- Swarm intelligence
- Ant foraging behavior
- From biology to optimization
- Ant System and Ant Colony Optimization
- Swarm-bots and other applications in engineering

Swarm Intelligence

Collective intelligence emerging in groups of (simple) agents.

Swarm Intelligence

Roots in models of social insects behavior:

- Foraging behavior
- Division of labor and task allocation
- Cemetery organization
- Nest building

Swarm Intelligence

Properties of collective intelligence systems:

- Distributed computation
- Direct and indirect interactions
- Agents equipped with simple computational capabilities
- Robustness
- Adaptiveness

Self-organization

Ingredients:

- Multiple interactions among agents
- Positive feedback
- Negative feedback

Self-organization

Dynamical mechanisms whereby structures appear at the global level from interactions among lower-level components.

- Creation of spatio-temporal structures
- Possible coexistence of several stable states (multistability)
- Existence of bifurcations when some parameters are varied

Self-organization

Ingredients:

- Multiple interactions among agents
 - Simple agents (e.g., rule based)
 - Sistems composed of many agents
- Positive feedback
- Negative feedback

Self-organization

Ingredients:

- Multiple interactions among agents
- Positive feedback
 - Reinforcement of most common behavior patterns
 - Amplification of random fluctuations and structure formation
- Negative feedback

Stigmergy

One agent modifies the environment and the other agent reacts to the changed environment.

Self-organization

Ingredients:

- Multiple interactions among agents
- Positive feedback
- Negative feedback
 - Saturation
 - Competition
 - Resource exhaustion

Ant Colony Optimization

- Population-based metaheuristic inspired by the foraging behavior of ants
- Ants can find the shortest path between the nest and a food source
- Heuristic strategy for optimization problems

The model

- While walking ants deposit a substance called *pheromone* on the ground
- They choose with higher probability paths that are marked by stronger pheromone concentrations
- Cooperative interaction which leads to the emergence of short(est) paths

The double bridge

Ant foraging behavior

ACO - p. 13

Ant Colony Optimization

Parametrized probabilistic model – the *pheromone model* – that is used to model the chemical pheromone trails.

Ant Colony Optimization

Parametrized probabilistic model – the *pheromone model* – that is used to model the chemical pheromone trails.

Ants incrementally construct solutions by adding components to a partial solution under consideration

ACO construction graph

 $\mathcal{G} = (\mathcal{C}, \mathcal{L})$

- \blacksquare vertices are the solution components ${\cal C}$
- \mathcal{L} are the connections
- states are paths in \mathcal{G}

Solutions are *states*, i.e., encoded as paths on \mathcal{G}

Constraints are also provided in order to construct feasible solutions

ACO – p. 16

Ant Colony Optimization

Parametrized probabilistic model – the *pheromone model* – that is used to model the chemical pheromone trails.

Ants incrementally construct solutions by adding components to a partial solution under consideration

Ants perform stochastic walks on the construction graph: a completely connected graph $\mathcal{G} = (\mathcal{C}, \mathcal{L})$.

Example: TSP

ACO = 0.17

Example

One possible TSP model for ACO:

- nodes of G (the components) are the cities to be visited;
- states are partial or complete paths in the graph;
- a solution is an Hamiltonian tour in the graph;
- constraints are used to avoid cycles (an ant can not visit a city more than once).

Sources of information

- Connections, components (or both) can have associated pheromone trail and heuristic value.
- Pheromone trail takes the place of natural pheromone and encodes a long-term memory about the whole ants' search process
- Heuristic represents a priori information about the problem or dynamic heuristic information

Ant system

- First ACO example
- Ants construct a solution by building a path along the construction graph
- The transition rule is used to choose the next node to add
- Both heuristic and pheromone are used
- The pheromone values are updated on the basis of the quality of solutions built by the ants

ACO - p. 19

The basic principle

Ant system

InitializePheromoneValues() while termination conditions not met do for all ants $a \in \mathcal{A}$ do $s_a \leftarrow \text{ConstructSolution}(\tau, \eta)$ end for ApplyOnlineDelayedPheromoneUpdate() end while

Ant System

Pheromone update rule:

 $\tau_{ij} \leftarrow (1-\rho) \cdot \tau_{ij} + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$

 $(\rho: \text{evaporation coefficient})$

$$\Delta \tau_{ij}^{k} = \begin{cases} \frac{1}{L_{k}} & \text{if ant } k \text{ used arc } (i,j) \\ 0 & \text{otherwise} \end{cases}$$

 L_k : length of the tour built by ant k

ACO – p. 25

Ant system

The probability of moving from city i to city j for ant k is:

$$p_{ij}^{k} = \begin{cases} \frac{[\tau_{ij}]^{\alpha}[\eta_{ij}]^{\beta}}{\sum_{k \in \text{feasible}_{k}}[\tau_{ik}]^{\alpha}[\eta_{ik}]^{\beta}} & \text{if } j \in \text{feasible}_{k} \\ 0 & \text{otherwise} \end{cases}$$

 α e β weight the relative influence of pheromone and heuristic

A pictorial view

ACO – p. 24

High-level algorithm

while termination conditions not met do ScheduleActivities

AntBasedSolutionConstruction() PheromoneUpdate() DaemonActions() {Optional} end ScheduleActivities end while

Pheromone Update

- Ants can update the pheromone trail during solution construction (online step-by-step pheromone update).
- Ants can retrace the same path backward and update the pheromone trails of the used components according to the quality of the solution (*online delayed pheromone update*).
- Pheromone evaporation always applied → the pheromone trail intensity on the components decreases over time.

ACO – p. 27

Solution construction

- Ants move by applying a stochastic local decision policy that makes use of the pheromone values and the heuristic values on components of the construction graph.
- While moving, the ant keeps in memory the partial solution it has built in terms of the path it was walking on the construction graph.

Daemon Actions

- Can be used to implement centralized actions which cannot be performed by single ants. E.g.,
 - local search procedure applied to the solutions built by the ants
 - collection of global information used to decide whether to deposit additional pheromone to bias the search process from an non-local perspective

ACO = 0.30

 $ACO = n^{29}$

ACO: State of the art

- \mathcal{MAX} - \mathcal{MIN} Ant System
- Hyper-cube Framework
- Multi-level ACO
- Beam ACO

Other applications

- Clustering
- Division of labor and task allocation
- Coordinated motion
- Cooperative transport
- Self-assembling

ACO – p. 31

ACO – p. 32

ACO applications

- Combinatorial optimization
- Mixed integer-continuous optimization
- Networks: AntNet

The swarm-bots project

GOAL: Study a novel approach to the design and implementation of self-organising and self-assembling artefacts

Institutes involved:

- IRIDIA Université Libre de Bruxelles (Belgium)
- EPFL Lausanne (Switzerland)
- IDSIA Lugano (Switzerland)
- CNR-IP Rome (Italy)

ACO = 0.33

Swarm-bots: results

Hole/obstacle avoidance

Swarm-bots: results

Finding object/goal

Swarm-bots: results

Adaptive division of labour

Swarm-bots: results

Cooperative transport

ACO – p. 35

References

- M.Dorigo, T.Stützle. Ant Colony Optimization. The MIT Press, 2004.
- E.Bonabeau, M.Dorigo, G.Theraulaz. Swarm Intelligence. From natural to artificial systems. Oxford University Press, 1999.
- C. Blum. Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2(4):353-373, 2005.
- S.Camazine, J.-L.Deneubourg, N.R.Franks, J.Sneyd,
 G.Theraulaz, E.Bonabeau. Self-Organization in Biological Systems. Princeton University Press, 1999.

Internet resources

http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html

www.swarm-bots.org