
On the Impact of Small-World on Local Search

Andrea Roli

Dipartimento di Scienze,
Università degli Studi “G. D’Annunzio”,

Chieti–Pescara (Italia)
a.roli@unich.it

Abstract. The impact of problem structure on search is a relevant issue in arti-
ficial intelligence and related areas. Among the possible approaches to analyze
problem structure, the one referring to constraint graph enables to relate graph
parameters and characteristics with search algorithm behavior. In this work, we
investigate the behavior of local search applied to SAT instances associated to
graphs with small-world topology. Small-world graphs, such as friendship net-
works, have low characteristic path length and high clustering. In this work, we
first present a procedure to generate SAT instances characterized by an interaction
graph with a small-world topology. Then we show experimental results concern-
ing the behavior of local search algorithms applied to this benchmark.

1 Introduction

The impact of problem structure on search is a relevant issue in artificial intelligence
and related areas. In order to design and tune effective and efficient algorithms for con-
straint satisfaction problems (CSPs) and constrained optimization problems (COPs), the
relations between structural problem instance features and algorithm performance have
to be investigated. These relations have been studied from different perspectives. In par-
ticular, search algorithm behavior w.r.t. graph properties of some constraint satisfaction
problems and constrained optimization problems has been discussed in [22,21,15,18].
The definition of structure emerging from the literature on CSPs and COPs is usually
based on the informal notion of a property enjoyed by non-random problems. Thus,
structured is used to indicate that the instance is derived from a real-world problem
or it is an instance generated with some similarity with a real-world problem. Com-
monly, we attribute the characteristic of structured to a problem that shows, at a given
level of abstraction, regularities such as well defined subproblems, patterns or corre-
lations among problem variables. In this work, we focus on one among the possible
ways of characterizing the structure of a problem instance: We analyze the structure
of links among its components, i.e., the network that connects the components. Some
problems suggest a natural structural description, since they have a representation that
can be directly used for structure analysis. A classical example are problems defined on
graphs, such as the Graph Coloring Problem and the k-Cardinality Tree Problem. For
CSPs, an interaction graph can be defined [11], in which nodes correspond to variables
and edges connect two variables if there exists a constraint involving them. Hence, the
structure of any CSP can be characterized by a graph. Relevant features of a graph that

S. Bandini and S. Manzoni (Eds.): AI*IA 2005, LNAI 3673, pp. 13–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

14 A. Roli

can affect search behavior are, for example, the average node degree and its frequency,
the path length and the clustering. The impact of node degree frequency on search has
been studied in [22,12,17,13]. In this work, we investigate the relations between the
small-world property and search algorithm performance. Small-world graphs [23,24]
are characterized by the simultaneous presence of two properties: the average number
of hops connecting any pair of nodes is low and the clustering is high. Social networks
defined on the basis of friendship relationships are a typical example of graphs with
a small-world topology. The impact of small-world topology on search problems (e.g.,
Graph Coloring Problem) has been discussed in [21], where it is shown that many CSPs
and COPs have a small-world topology and the search cost can be characterized by a
heavy-tail distribution [4].

In this work, we report experimental results concerning the behavior of local search
applied to instances of the Satisfiability Problem (SAT) with an interaction graph char-
acterized by a small-world topology. The aim of these experiments is to address the
question whether small-world SAT instances are harder to solve than others and if this
behavior is common across different local search algorithms.

The contribution of this work is twofold. First, we define a procedure to construct
SAT instances with a lattice structure, along with a method to generate small-world
SAT instances. Then, we test three different local search algorithms on the generated
benchmark. Results show that the behavior strongly differentiates across the algorithms.
In some cases, results show that many harder instances have a small-world structure.
This empirical analysis shows that, even if local search can be affected by instance
structure, an important role is played by the actual search space exploration strategy.

This paper is structured as follows. Sec.2 introduces the basic concepts of small-
world graphs and graphs associated to SAT instances. In Sec.3, we describe the prop-
erties of the instances composing the testbed and the procedure used to generate them.
Sec.4 presents experimental results obtained by applying three different local search
algorithms, namely WalkSAT, GSAT and Iterated local search. We conclude by briefly
discussing the results obtained and outlining future work.

2 Preliminaries

In this section, we succinctly introduce small-world graphs and the graph associated to
SAT instances.

Given a graph G = (V,E), where V is the set of nodes and E the set of edges, the
characteristic path length L(G) of G is formally defined as the median of the means
of the shortest paths connecting each node v ∈ V to all other nodes. The clustering
coefficient is defined on the basis of the notion of neighborhood. The neighborhood Γv

of a node v ∈ V is the subgraph consisting of the nodes adjacent to v (not including v
itself). The clustering of a neighborhood is defined as γv = |E(Γv)|/

(kv
2

)
, where |E(Γv)|

is the number of edges in Γv and kv is the number of neighbors of v. Therefore, γv is
the ratio between the number of edges of the neighborhood and the maximum number
of edges it can have. The clustering coefficient γ of a graph G is defined as the average
of the clustering values γv for all v ∈ V . For example, we compute L and γ for the
graph depicted in Fig.1. The characteristic path length is the median of the average

On the Impact of Small-World on Local Search 15

b

a c

d

e

Fig. 1. Constraint graph associated to the SAT instance (a∨¬b)∧ (b∨d)∧ (c∨¬d ∨¬e)

path lengths related to the nodes a, b, c, d and e, i.e., L = median{ 9
4 ,

6
4 , 7

4 , 5
4 , 7

4} =
7
4 = 1.75. The clustering γ is the average of the neighborhood clustering values, i.e.,
γ = 1

5 (0/
(1

2

)
+ 0/

(2
2

)
+ 1/

(2
2

)
+ 1/

(3
2

)
+ 1/

(2
2

)
) ≈ 0.467.

Typically, random graphs are characterized by low characteristic path length and
low clustering, whilst regular graphs (such as lattices) have high values for L and γ.
Conversely, small-world graphs are characterized by low L and high γ.

In this paper, we apply the notion of small-world to a graph associated to SAT
instances. SAT belongs to the class of NP-complete problems [9] and can be stated as
follows: given a set of clauses, each of which is the logical disjunction of k > 2 literals
(a literal is a variable or its negation), we ask whether an assignment to the variables
exists that satisfies all the clauses. The graph we associate to a SAT instance is called
the interaction graph [11] and it is defined as an undirected graph G = (V ,A), where
each node vi ∈ V corresponds to a variable and edge (vi,v j) ∈ A (i �= j) if and only if
variables vi and v j appear in a same clause (see Fig.1). Observe that the same graph
corresponds to more than one formula, since nodes are connected by one arc even if
the corresponding variables belong to more than one clause. Having a set of clauses
associated to the same graph, makes this representation quite rough. Nevertheless, in
the following, it will be shown that some properties of this graph can strongly affect the
behavior of local search.

3 Small-World SAT Instances

In order to explore the behavior of search algorithms on small-world SAT instances, we
generated a benchmark by morphing between instances constructed on lattice graphs
and random instances. The core idea of the morphing procedure is derived from [3],
wherein a method that enables to generate instances gradually morphing from a source
to a destination instance is presented. This procedure is also quite similar to the one
used in [24] to generate small-world graphs by interpolating between lattice and ran-
dom graphs (see Fig.2). Starting from a lattice graph, links are randomly removed and
rewired. Small-world graphs can be obtained by randomly rewiring just a few links
between nodes.

SAT instances with a small-world graph topology can be obtained by morphing be-
tween a SAT instance associated to a lattice graph and a random SAT instance. There-
fore, we have first to define a procedure to construct SAT instances associated to a
lattice graph. Instead of starting from a SAT formula, expressed as a conjunction of
clauses, we start from a graph with the desired topology and we use it as a skeleton for

16 A. Roli

Increasing randomness

Regular Small−world Random

Fig. 2. Morphing between a lattice graph and a random graph. Small-world graphs can be ob-
tained by randomly rewiring just a few links between nodes.

generating a SAT formula. The starting graph is a lattice graph. Lattice graphs have a
very regular topology and every node is connected to a fixed (usually quite small) num-
ber of neighbors. Examples of lattice graphs are ring lattices (also called cycles) with
adjunctive links connecting neighbors and hypercubes. Once obtained the graph with
the given topology, we have to assign variables to nodes and to generate the clauses of
the formula. The first step can be completed very easily by assigning variables in order:
variable xi is assigned to node i, for i = 1, . . . ,n. The generation of clauses, i.e., of a
formula that can be mapped into the given lattice graph, is a bit more complex. First of
all, we remind that the graph associated to a SAT instance, as previously defined, cor-
responds to a set of SAT instances. Therefore, it is important to define a given structure
for the formula. Our choice is to follow the usual experimental settings for random gen-
erated SAT instances: 3-SAT formulas with controlled ratio m/n, where n is the number
of variables and m the number of clauses.

In the following, we describe the algorithm to generate 3-SAT instances with given
ratio m/n on a lattice graph. The generalization of the algorithm to k-SAT instances
is straightforward. The high level algorithm is described in Alg.1. The algorithm is
structured in two phases. In the first phase, a minimal set of clauses is generated to
obtain a formula that can be represented by the given lattice graph. In the second phase,
the additional required number of clauses is generated by adding clauses randomly
chosen from the first set and by randomly changing the sign of literals.

In the first phase, clauses of three literals are constructed, by taking in turn each
variable as a pivot and adding two subsequent variables (see Fig.3 and Fig.4). In order
to avoid repetitions of clauses, for every variable xi only subsequent variables x j, j > i
(modulo n) are considered. Indeed, given the symmetry of the graph, the clauses involv-
ing the symmetric part of neighbors will be generated by using those neighbors as pivot
(see Fig.5 and Fig.6). The instances composing the benchmark are generated by mor-
phing between a lattice SAT instance and a random one. Each instance is obtained by
taking from the lattice SAT instance all the clauses except for a prefixed number which
are randomly chosen from a random SAT instance with the same number of variables
and clauses. This procedure is indeed very similar to the morphing procedure described
in [3], but in this case we control the exact number of clauses taken from the destination

On the Impact of Small-World on Local Search 17

Algorithm 1 Generation of a 3-SAT instance on a lattice graph
INPUT: n, m, λ {λ is the number of neighbors, supposed even}
OUTPUT: 3-SAT formula Φ = {C1, . . . ,Cm} with n variables and m clauses associated to a
lattice graph with n nodes with λ neighbors each.

Build a lattice graph G(n,λ) (on a circle) with n nodes with λ neighbors each;
Assign variables (clockwise) to nodes;
Φ ← /0
for i = 1 to n−1 do

The neighbors of xi are N + = {xi+1, . . . ,xi+λ/2} (mod n) and N − = {xi−1, . . . ,xi−λ/2}
(mod n);
for each pair x j,x j+1 in N + do

Construct the clause C = xi ∨ x j ∨ x j+1
Negate each variable in C with probability 0.5;
Φ ← Φ∪C

end for
end for
{Now the number of clauses is |Φ| = n(λ/2−1) }
while |Φ| < m do

repeat
Pick randomly a clause C′ in Φ;
Negate each variable in C′ with probability 0.5;

until a new clause C′ is generated
Φ ← Φ∪C′

end while

x1

x8

x7

x6

x5

x4

x3

2x

Fig. 3. Construction of the first clause involv-
ing variable x1

x1

x8

x7

x6

x5

x4

x3

2x

Fig. 4. Construction of the second clause in-
volving variable x1

instance. In this way it is possible to smoothly interpolate from lattice to random and
observe the arising of small-world properties in SAT instances.

In order to have a quantitative measure of the small-world characteristic, we intro-
duce the proximity ratio µ [21], defined as the ratio between clustering and characteris-
tic path length, normalized with the same ratio corresponding to a random graph, i.e.,
µ = (γ/L)/(γrand/Lrand). In Fig.7, the clustering and the characteristic path length of
SAT instances gradually interpolating from lattice to random are plotted (in semi-log
scale). We observe that L drops very rapidly with the introduction of clauses from the

18 A. Roli

x1

x8

x7

x6

x5

x4

x3

2x

Fig. 5. Construction of the third clause involv-
ing variable x1. The pivot is variable x6.

x1

x8

x7

x6

x5

x4

x3

2x

Fig. 6. Construction of the fourth clause in-
volving variable x1. The pivot is variable x7.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

C
ha

r.
 L

en
gt

h,
 C

lu
st

er
in

g
an

d
P

ro
xi

m
ity

Number of clauses from RandomSAT

Smallworld parameters (500 variables, 1500 clauses)

characteristic length (norm.)
clustering (norm.)

proximity ratio (rescaled)

Fig. 7. Characteristic path length L, clustering γ and proximity ratio µ for instances generated
by morphing from a lattice SAT instance to a random SAT instance of 500 variables and 1500
clauses

random instance. Conversely, γ maintains a relatively high value for a larger amount
of perturbation. The instances with low length and high clustering are characterized
by the small-world property. This is also indicated by the proximity ratio curve, which
approximately assumes its maximum in that region.

We generated four sets of instances (respectively with 100, 200, 500 and 800 vari-
ables), each obtained by morphing between a lattice 3-SAT and a random 3-SAT with
same number of variables and clauses. All the generated instances are satisfiable (unsat-
isfiable instances have been filtered by means of a complete solver). The ratio between
the number of clauses and the number of variables is 3, lower than the so-called critical
ratio (which is close to 4.3 for 3-SAT instances [1,8,5]). This is due to the structure of
lattice SAT instances which turned out to be almost all unsatisfiable at the critical ratio.
In Fig.8, the proximity ratio of the instances composing the benchmark is plotted. The
value µ ranges approximately from 0.5 to 10. We can observe the typical behavior of
instances interpolating between regular and random instances. In the next section we

On the Impact of Small-World on Local Search 19

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200 250 300 350

P
ro

xi
m

ity
 r

at
io

Number of clauses from RandomSAT

100 variables, 300 clauses

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700

P
ro

xi
m

ity
 r

at
io

Number of clauses from RandomSAT

200 variables, 600 clauses

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600

P
ro

xi
m

ity
 r

at
io

Number of clauses from RandomSAT

500 variables, 1500 clauses

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500

P
ro

xi
m

ity
 r

at
io

Number of clauses from RandomSAT

800 variables, 2400 clauses

Fig. 8. Proximity ratio of the instances composing the benchmark

present experimental results on the behavior of local search algorithms on the bench-
mark defined.

4 Experimental Results

Some constraint satisfaction problems and constrained optimization problems with
small-world topology have been found to require a higher computational search cost
with respect to “non small-world” ones [21,22]. Since those results only concern com-
plete algorithms, we question whether this behavior could also be observed in the case
of approximate algorithms, namely local search.

We performed a series of experiments aimed at checking whether small-world SAT
instances are harder to solve than both regular (lattice) and random ones. In the follow-
ing, we will use the notion of hardness referred to the algorithm at hand. We estimate
the hardness by means of the search cost, namely the number of iterations required for
the algorithm to find a satisfying assignment. Since the algorithms we deal with are sto-
chastic, we run each of them 1000 times on the same instance and we took the median
value. We emphasize that we use the concept of hardness referring to a given algorithm
A and we say that an instance I1 is harder than I2 if the search cost (as defined above)
for solving I1 via A is higher than that of I2. Even if this definition of hardness is
grounded to the algorithm used, in general it is possible to observe that a class of in-
stances is harder than another class for a set of algorithms. This case reveals that there
is a characteristic of the class that makes the instances difficult for all the considered
algorithms.

20 A. Roli

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

M
ed

ia
n

ite
ra

tio
ns

Number of clauses from RandomSAT

100 variables, 300 clauses

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600

M
ed

ia
n

ite
ra

tio
ns

 (
lo

g)

Number of clauses from RandomSAT

200 variables, 600 clauses

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400 1600

M
ed

ia
n

ite
ra

tio
ns

 (
lo

g)

Number of clauses from RandomSAT

500 variables, 1500 clauses

 100

 1000

 10000

 0 500 1000 1500 2000 2500

M
ed

ia
n

ite
ra

tio
ns

 (
lo

g)

Number of clauses from RandomSAT

800 variables, 2400 clauses

Fig. 9. Search cost of WalkSAT across the instances, from lattice to random structure. Points rep-
resent median iterations over 1000 runs. Log-scale on the y-axis has been used when necessary.

We applied three different local search procedures, that are based on different heuris-
tic strategies. The algorithms we considered are WalkSAT [19], GSAT [20] and Iterated
local search (ILS, [7,14]). GSAT was the first effective local search algorithm proposed
for SAT. It applies a greedy strategy, by flipping the variable that, if flipped, leads to
the greatest gradient in the number of satisfied clauses. GSAT suffers from being fre-
quently trapped in confined areas of the search space, therefore its performance is often
not satisfactory for large instances. WalkSAT is based on the principle of repair: It ran-
domly chooses one unsatisfied clause and flips one variable within it. There are some
different heuristics for the choice of the variable to flip [6]. In our implementation, we
applied a GSAT-like heuristic, i.e., the variable that produces the largest increment in
the number of satisfied clauses is flipped (no random walk is performed). WalkSAT
has usually a far better performance than GSAT. Nevertheless, both algorithms lack a
global strategy that could guide them during the exploration of the search space. Algo-
rithms equipped with such a strategy are commonly called metaheuristics [2]. In order
to extend the diversity of the techniques compared, we applied also an ILS designed
to attack SAT and MAXSAT problems [14,15]. In essence, this metaheuristic is a tabu
search-based WalkSAT guided by a strategy that tunes both the tabu tenure and the
intensification/diversification balance by using the search history.

Before describing the results concerning local search, it is important to point out
that in [15,16] a complete algorithm has been applied to this benchmark and results
strikingly show that small-world SAT instances are the hardest (i.e., the search cost,

On the Impact of Small-World on Local Search 21

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

M
ed

ia
n

ite
ra

tio
ns

 (
lo

g)

Number of clauses fom RandomSAT

100 variables, 300 clauses

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

S
uc

ce
ss

 r
at

e

Number of clauses from RandomSAT

200 variables, 600 clauses

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400 1600

S
uc

ce
ss

 r
at

e

Number of clauses from RandomSAT

500 variables, 1500 clauses

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400 1600

S
uc

ce
ss

 r
at

e

Number of clauses from RandomSAT

800 variables, 2400 clauses

Fig. 10. Search cost of GSAT across the instances, from lattice to random structure. In the upper-
most left plot, points represent median iterations over 1000 runs. The remaining plots report an
estimation of the search cost in terms of success ratio, i.e., the number of instances solved – given
a termination condition defined as the maximum number of non-improving moves.

evaluated as number of variable assignments performed by the algorithm before solving
the instance, is the highest).

Results are shown in Figs. 9, 10 and 11. In the plots, we reported for each algorithm
the median iterations (over 1000 runs) on every instance. The algorithms run until a fea-
sible solution was found1. Results are very interesting and show the complexity of em-
pirical analysis of local search behavior. First of all, we note that the behavior across the
three algorithms is very different. In the first two plots of Fig.9, we observe that some
of the hardest instances for WalkSAT are located in the small-world area. Nevertheless,
for the instances of size 500 and 800, the search cost regularly increases –linearly in
semi-log scale– while morphing from lattice to random. This peculiar behavior requires
a deeper investigation and from these preliminary results we can only conjecture that
size scaling amplifies a characteristic of the instances such that the closer the instance
to a lattice, the easier for WalkSAT.2 GSAT and ILS show a mild tendency of requiring
higher search cost in the vicinity of the small-world area, as shown in Fig.10 and Fig.11,

1 In the case of GSAT, due to the extremely high execution time, we stopped the algorithm at a
maximum number of non-improving moves and we reported the success ratio, i.e., the number
of successful runs out of 1000. Thus, in this case, the lower the value, the harder the instance.

2 For example, the regular chaining pattern of clauses in lattice instances could make the repair
process easier.

22 A. Roli

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

M
ed

ia
n

ite
ra

tio
ns

Number of clauses from RandomSAT

100 variables, 300 clauses

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

M
ed

ia
n

ite
ra

tio
ns

 (
lo

g)

Number of clauses from RandomSAT

200 variables, 600 clauses

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600

M
ed

ia
n

ite
ra

tio
ns

 (
lo

g)

Number of clauses from RandomSAT

500 variables, 1500 clauses

 1000

 10000

 100000

 1e+06

 1e+07

 0 500 1000 1500 2000 2500

M
ed

ia
n

ite
ra

tio
ns

 (
lo

g)

Number of clauses from RandomSAT

800 variables, 2400 clauses

Fig. 11. Search cost of ILS across the instances, from lattice to random structure. Points represent
median iterations over 1000 runs. Log-scale on the y-axis has been used when necessary.

respectively. The hardest instances for GSAT and ILS are the ones located in the first
part of the plots, i.e., the instances with strong lattice/small-world topologies3. In some
plots, we also observe that the instances corresponding to the maximal proximity ratio
are the hardest on average4. Nevertheless, this behavior is not regular nor clear and the
statistical correlation between search cost and proximity ratio is quite low.

The peculiar behavior observed is a clear signal that different factors other than
small-world topology affect algorithm behavior. Among the main factors, we consider
the search landscape characteristics induced by the SAT instance and the actual search
process performed by the algorithm on the landscape. In fact, the landscape characteris-
tics and the strategy used to explore it are the main elements that affect local search be-
havior. The relations between instance structure and search landscape are an extremely
important research issue, that is subject of ongoing work (see, for instance, [10]).

5 Conclusion and Future Work

In this work, we have presented a procedure to generate SAT instances associated to
an interaction graph with small-world topology. Small-world SAT instances are con-
structed by introducing clauses from random instances into lattice based ones.

3 The 800-2400 instances are indeed not solved by GSAT in the range corresponding to small-
world.

4 This observation is also confirmed by evaluating a moving window average.

On the Impact of Small-World on Local Search 23

We tackled the benchmark instances with three different local search algorithms
and observed their behavior across the whole spectrum, from regular lattice to random
topologies. Our aim was to check whether there is a positive correlation between search
cost and small-world topology of SAT instances, as observed in the case of complete
solvers. Results showed primarily that the behavior of local search algorithms is fairly
different. In some cases, we observed that most of the hardest instances are concen-
trated in the lattice/small-world area. Nevertheless, this result is not as clear as in the
case of complete solvers and further investigations are required. If the conjecture on the
positive correlation between instance hardness and proximity ratio is true, then the phe-
nomenon may be explained considering the locality of decisions taken by the heuristics,
as supposed in [21]: a locally good decision taken w.r.t. the clustering properties might
be wrong with respect to the whole graph.

The study of relations between structure and local search behavior is still a partially
unexplored area. First of all, in this work we have just considered one of the possi-
ble ways of characterizing structure. Other definitions for graphs are possible (such as
weighted graphs), to capture different problem features and to extend our results to
problems other than SAT. Moreover, concerning local search algorithms, we believe
that the core issue to explain the algorithm behavior is the investigation of the relations
between problem structure and search landscape, and, in turn, search landscape and the
actual strategy used to explore it.

References

1. D. Achlioptas and C. Moore. The asymptotic order of the random k-SAT threshold. In Proc.
of FOCS02, pages 779–788, 2002.

2. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and concep-
tual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

3. I. P. Gent, H. H. Hoos, P. Prosser, and T. Walsh. Morphing: Combining structure and ran-
domness. In Proc. of AAAI99, pages 654–660, 1999.

4. C.P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-Tayled phenomena in Satisfiability
and Constraint Satisfaction Prpblems. Journal of Automated Reasoning, 24:67–100, 2000.

5. T. Hogg, B. A. Huberman, and C. P. Williams. Phase transitions and the search problems.
Artificial Intelligence, 81(1–2), 1996.

6. H. H. Hoos and T. Stützle. Towards a characterisation of the behaviour of stochastic local
search algorithms for SAT. Artificial Intelligence, 112:213–232, 1999.

7. H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and G. Kochen-
berger, editors, Handbook of Metaheuristics, volume 57, pages 321–353. Kluwer Academic
Publishers, Norwell, MA, 2002.

8. D. G. Mitchell, B. Selman, and H. J. Levesque. Hard and easy distributions of SAT problems.
In Proc. of AAAI92, pages 459–465. AAAI Press/MIT Press, July 1992.

9. M.R.Garey and D.S.Johnson. Computers and intractability; a guide to the theory of NP-
completeness. W.H. Freeman, 1979.

10. S. Prestwich and A. Roli. Symmetry breaking and local search spaces. In Proceedings of
CPAIOR 2005, volume 3524 of Lecture Notes in Computer Science. Springer–Verlag, 2005.

11. I. Rish and R. Dechter. Resolution versus search: Two strategies for SAT. J. Automated
Reasoning, 24:225–275, 2000.

12. A. Roli. Criticality and parallelism in GSAT. Electronic Notes in Discrete Mathematics, 9,
2001.

24 A. Roli

13. A. Roli. Criticality and parallelism in structured SAT instances. In P. Van Henteryck, ed-
itor, Proc. of CP02, volume 2470 of Lecture Notes in Computer Science, pages 714–719.
Springer-Verlag, 2002.

14. A. Roli. Design of a new metaheuristic for MAXSAT problems (extended abstract). In
P. Van Henteryck, editor, Proceedings of CP02, volume 2470 of Lecture Notes in Computer
Science, page 767. Springer-Verlag, 2002.

15. A. Roli. Metaheuristics and structure in satisfiability problems. Technical Report DEIS-LIA-
03-005, University of Bologna (Italy), May 2003. PhD Thesis - LIA Series no. 66.

16. A. Roli. Problem structure and search: Empirical results and open questions. In Proceedings
of CPAIOR03, Montreal (Canada), 2003.

17. A. Roli and C. Blum. Critical Parallelization of Local Search for MAX–SAT. In F. Espos-
ito, editor, AI*IA2001: Advances in Artificial Intelligence, volume 2175 of Lecture Notes in
Artificial Intelligence, pages 147–158. Springer-Verlag, 2001.

18. A. Roli. Links between complex networks and combinatorial optimization. In Proc. of
Workshop on Experimental Analysis of Algorithms for Artificial Intelligence – AI*IA work-
ing group on Knowledge Representation and Reasoning, Università di Ferrara, Italy, June 10
2005.

19. B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for local search. In Proc. of AAAI-94,
pages 337–343, 1994.

20. B. Selman, H. J. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In Proc. of AAAI92, pages 440–446, Menlo Park, California, 1992. AAAI Press.

21. T. Walsh. Search in a small world. In Proc. of IJCAI99, pages 1172–1177, 1999.
22. T. Walsh. Search on high degree graphs. In Proc. of IJCAI01, 2001.
23. D.J. Watts. Small Worlds: The Dynamics of Networks between Order and Randomness.

Princeton University Press, 1999.
24. D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world‘ networks. Nature,

393:440–442, 1998.

	Introduction
	Preliminaries
	Small-World SAT Instances
	Experimental Results
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

