Criticality and parallelism in combinatorial optimization

Andrea Roli

DEIS - Campus of Cesena Università degli Studi di Bologna Bologna (Italia)

andrea.roli@unibo.it

Andrea Roli Criticality and parallelism in combinatorial optimization

< 口 > < 同 >

→ Ξ → < Ξ →</p>

Jac.

Motivation

- Efficient techniques for tackling combinatorial optimization problems exploit the *structure* of the instance to attack
- Strong correlation between search effectiveness and some critical parameters of the instance (e.g., see studies on phase transitions)

Image: A matrix and a matrix

4 3 1 4

Motivation

- Efficient techniques for tackling combinatorial optimization problems exploit the *structure* of the instance to attack
- Strong correlation between search effectiveness and some critical parameters of the instance (e.g., see studies on phase transitions)

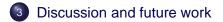
Andrea Roli Criticality and parallelism in combinatorial optimization

→ ∃ → → ∃

Motivation

- Efficient techniques for tackling combinatorial optimization problems exploit the *structure* of the instance to attack
- Strong correlation between search effectiveness and some critical parameters of the instance (e.g., see studies on phase transitions)

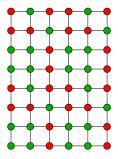
< < > < <</>


~ 글 > ~ 글

Outline

Criticality & Parallelism

- Criticality & Parallelism in Combinatorial Optimization
- Criticality & Parallelism in SAT
- 2 Results
 - Random instances
 - 'Structured' instances


< □ ▶ < 同 ▶

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

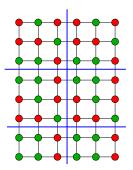
Example: Optimizing on subsystems

Kauffman and Macready, Complexity 1995

- Minimizing the energy of a spin glass system
- Total Energy = \sum_i energy_i

Jac.

< < > < <</>


- < ∃ →

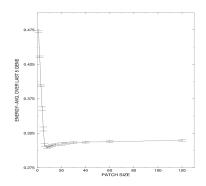
Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

Example: Optimizing on subsystems

Kauffman and Macready, Complexity 1995

- System partitioned into sub-systems
- Each sub-system 'selfishly' optimizes independently of the other sub-systems

Sac


< □ ▶ < 同 ▶

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

Example: Optimizing on subsystems

Kauffman and Macready, Complexity 1995

- Enhanced performance for optimal sub-system size
- The higher the connectivity among decision variables, the smaller the optimal sub-system size

< □ ▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

Criticality & Parallelism in Combinatorial Optimization Macready et al., Science 1996

Increasing parallelism leads to better solutions faster, but up to a degree at which the quality of solutions degrades.

- τ simultaneous local moves (bit flips, *k*-opt exchanges, etc.)
- Optimization on patches, subsystems
- Relaxation of connectivity constraints

< □ > < □ > < □ > < □ > < □</p>

Remarks

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

- *Parallel* = local modifications performed synchronously (i.e., independently). The actual implementation can be sequential.
- No explicit mention to the structure of the system (topology, links between elements, etc.)
- Optimization techniques used are very simple. E.g., gradient descent, simulated annealing.
- A phase transition occurs at the optimal value of *parallelism*.

< ロ > < 同 > < 三 > < 三

Remarks

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

- *Parallel* = local modifications performed synchronously (i.e., independently). The actual implementation can be sequential.
- No explicit mention to the structure of the system (topology, links between elements, etc.)
- Optimization techniques used are very simple. E.g., gradient descent, simulated annealing.
- A phase transition occurs at the optimal value of *parallelism*.

< ロ > < 同 > < 三 > < 三

Remarks

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

- *Parallel* = local modifications performed synchronously (i.e., independently). The actual implementation can be sequential.
- No explicit mention to the structure of the system (topology, links between elements, etc.)
- Optimization techniques used are very simple. E.g., gradient descent, simulated annealing.
- A phase transition occurs at the optimal value of *parallelism*.

イロト イ押ト イヨト イヨト

Remarks

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

- *Parallel* = local modifications performed synchronously (i.e., independently). The actual implementation can be sequential.
- No explicit mention to the structure of the system (topology, links between elements, etc.)
- Optimization techniques used are very simple. E.g., gradient descent, simulated annealing.
- A phase transition occurs at the optimal value of parallelism.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Remarks

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

- *Parallel* = local modifications performed synchronously (i.e., independently). The actual implementation can be sequential.
- No explicit mention to the structure of the system (topology, links between elements, etc.)
- Optimization techniques used are very simple. E.g., gradient descent, simulated annealing.
- A phase transition occurs at the optimal value of *parallelism*.

イロト イ押ト イヨト イヨト

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

Criticality & Parallelism in SAT

Questions

- Is this phenomenon involved also in the case of local search applied to the satisfiability problem?
- Under which circumstances does this phenomenon appear?
- Does it appear also when more sophisticated search algorithms are used?
- Is it possible to generalize it?

< n <

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

Criticality & Parallelism in SAT

Questions

- Is this phenomenon involved also in the case of local search applied to the satisfiability problem?
- Under which circumstances does this phenomenon appear?
- Does it appear also when more sophisticated search algorithms are used?
- Is it possible to generalize it?

< □ ▶ < 同 ▶

• = • •

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

Criticality & Parallelism in SAT

Questions

- Is this phenomenon involved also in the case of local search applied to the satisfiability problem?
- Under which circumstances does this phenomenon appear?
- Does it appear also when more sophisticated search algorithms are used?
- Is it possible to generalize it?

< < > < <</>

→ Ξ →

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

Criticality & Parallelism in SAT

Questions

- Is this phenomenon involved also in the case of local search applied to the satisfiability problem?
- Under which circumstances does this phenomenon appear?
- Does it appear also when more sophisticated search algorithms are used?
- Is it possible to generalize it?

< ロ > < 同 > < 三 > < 三

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

Criticality & Parallelism in SAT

Questions

- Is this phenomenon involved also in the case of local search applied to the satisfiability problem?
- Under which circumstances does this phenomenon appear?
- Does it appear also when more sophisticated search algorithms are used?
- Is it possible to generalize it?

< □ > < □ > < □ > < □ > < □ > < □</p>

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

The Satisfiability problem (SAT)

The problem (model finding): find an assignment to the variables such that the given logical formula is satisfied.

E.g.:

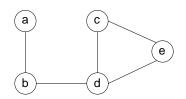
$$\Phi = (a \lor \neg b) \land (\neg a \lor c \lor b) \land \neg a$$

a solution: $[a, b, c] = [0, 0, 1]$

MAXSAT: minimize the number of unsatisfied clauses.

イロト イ押ト イヨト イヨト

Jac.


Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

Interaction graph

Rish & Dechter, 1991

$$(a \lor \neg b) \land (b \lor d) \land (c \lor \neg d \lor \neg e) \land (a \lor b)$$

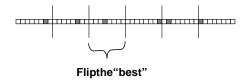
(日)

500

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

- Greedy-like algorithm for tackling SAT
- Idea: Flip a variable such that the score (i.e., # of clauses unsat → sat) is maximal

Andrea Roli Criticality and parallelism in combinatorial optimization


イロト イ押ト イヨト イヨ

JOG CP

Criticality & Parallelism in Combinatorial Optimization Criticality & Parallelism in SAT

'Parallel' GSAT

- Divide the set of variables in τ subsets
- Apply a GSAT step in parallel to each subset

< < > < <</>

→ Ξ ► < Ξ ►</p>

Jac.

Random instances 'Structured' instances

Results summary

• Experiments on:

- Random 3-SAT/MAXSAT instances
- 'Structured' instances from SATLIB
- Optimal sub-set size affected by node degree of interaction graph

SQ (P

Random instances 'Structured' instances

Results summary

• Experiments on:

- Random 3-SAT/MAXSAT instances
- 'Structured' instances from SATLIB

 Optimal sub-set size affected by node degree of interaction graph

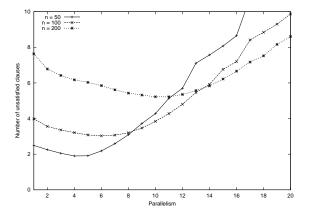
イロト イ押ト イヨト イヨト

Jac.

Random instances 'Structured' instances

Results summary

- Experiments on:
 - Random 3-SAT/MAXSAT instances
 - 'Structured' instances from SATLIB
- Optimal sub-set size affected by node degree of interaction graph


< 口 > < 同 >

~ 프 > ~ 프 >

Jac.

Random instances 'Structured' instances

Results on random instances

Andrea Roli Criticality and parallelism in combinatorial optimization

< □ > < 同

< ∃ >

ъ

∍

500

Random instances 'Structured' instances

Results on random instances

• τ_{opt} negatively correlated with the *average* node degree of the interaction graph

 The same (normalized) average node degree corresponds to the same value of τ_{opt}, independently of other instance parameters

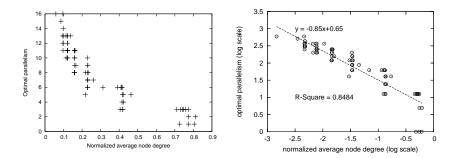
< ロ > < 同 > < 三 > < 三

SQ (P

Random instances 'Structured' instances

Results on random instances

- *τ_{opt}* negatively correlated with the *average* node degree of the interaction graph
- The same (normalized) average node degree corresponds to the same value of τ_{opt}, independently of other instance parameters


< < > < <</>

~ 글 > ~ 글

Random instances 'Structured' instances

Results on random instances

A plot from a population of instances

< ロ ト < 同

Sac

Remarks

• Results are in accordance with previous work by Macready and Kauffman

Random instances

'Structured' instances

- The phenomenon is modeled in more general terms by introducing the interaction graph
- The model generalizes previous results on multi-flip local search for SAT

< ロ > < 同 > < 三 > < 三

SOR

Remarks

Random instances 'Structured' instances

- Results are in accordance with previous work by Macready and Kauffman
- The phenomenon is modeled in more general terms by introducing the interaction graph
- The model generalizes previous results on multi-flip local search for SAT

< ロ > < 同 > < 三 > < 三

Remarks

Random instances 'Structured' instances

- Results are in accordance with previous work by Macready and Kauffman
- The phenomenon is modeled in more general terms by introducing the interaction graph
- The model generalizes previous results on multi-flip local search for SAT

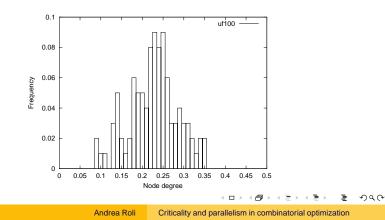
A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Remarks

 Results are in accordance with previous work by Macready and Kauffman

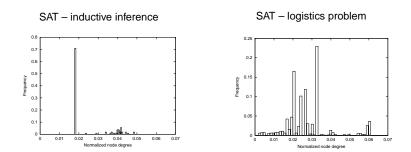
Random instances

'Structured' instances


- The phenomenon is modeled in more general terms by introducing the interaction graph
- The model generalizes previous results on multi-flip local search for SAT

《口》 《圖》 《三》 《三》

Random instances 'Structured' instances


Node degree distribution

- Node degree distribution of 3-SAT/MAXSAT instance interaction graphs are Poissonian (~Normal)
- Hence average has a strong impact

Random instances 'Structured' instances

'Structured' instances: Node degree frequency

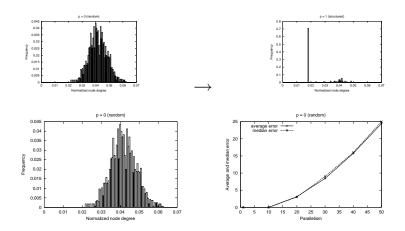
< 口 > < 同 >

• = • •

Jac.

Random instances 'Structured' instances

Results on structured instances

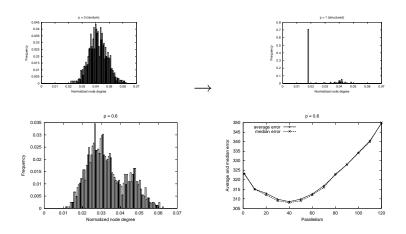

- Same behavior as for random: there exists an optimal value of τ
- But: τ_{opt} is affected by the highest peaks (modes of the distribution)

< D > < P > < E > < E >

Jac.

Random instances 'Structured' instances

Morphing

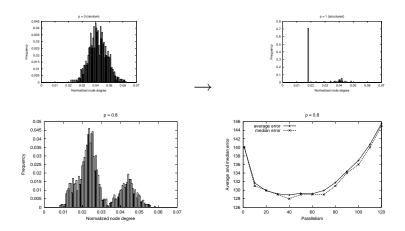

Andrea Roli Criticality and parallelism in combinatorial optimization

イロト イロト イヨト イヨト

500

Random instances 'Structured' instances

Morphing

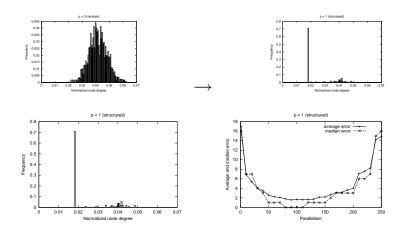

Andrea Roli Criticality and parallelism in combinatorial optimization

イロト イポト イモト イモ

500

Random instances 'Structured' instances

Morphing


Andrea Roli Criticality and parallelism in combinatorial optimization

イロト イポト イモト イモ

500

Random instances 'Structured' instances

Morphing

Andrea Roli Criticality and parallelism in combinatorial optimization

イロト イロト イヨト イヨト

5900

Discussion and future work

- The phenomenon seems quite general and it can be generalized by modeling system structure as a graph
- Interaction graph is a first approximation: a richer model is required to capture more accurately the interdependence among variables
- A phase transition does not necessarily occur (it depends on the search algorithm)

Image: A matrix and a matrix

Discussion and future work

• The phenomenon seems quite general and it can be generalized by modeling system structure as a graph

- Interaction graph is a first approximation: a richer model is required to capture more accurately the interdependence among variables
- A phase transition does not necessarily occur (it depends on the search algorithm)

Image: A matrix and a matrix

→ Ξ →

Discussion and future work

- The phenomenon seems quite general and it can be generalized by modeling system structure as a graph
- Interaction graph is a first approximation: a richer model is required to capture more accurately the interdependence among variables
- A phase transition does not necessarily occur (it depends on the search algorithm)

< < > < <</>

Discussion and future work

- The phenomenon seems quite general and it can be generalized by modeling system structure as a graph
- Interaction graph is a first approximation: a richer model is required to capture more accurately the interdependence among variables
- A phase transition does not necessarily occur (it depends on the search algorithm)

< < > < <</>

~ 글 > ~ 글

Discussion and future work

- A successful application: Iterated Local Search for MAXSAT (*Metaheuristic network* european project)
- Different criteria to divide the variables (e.g., based on minimal cuts, adaptive, etc.)
- Extending investigation to different problems and algorithms
- A general model is still missing

Image: A matrix and a matrix

Discussion and future work

- A successful application: Iterated Local Search for MAXSAT (*Metaheuristic network* european project)
- Different criteria to divide the variables (e.g., based on minimal cuts, adaptive, etc.)
- Extending investigation to different problems and algorithms
- A general model is still missing

< < > < <</>

Discussion and future work

- A successful application: Iterated Local Search for MAXSAT (*Metaheuristic network* european project)
- Different criteria to divide the variables (e.g., based on minimal cuts, adaptive, etc.)
- Extending investigation to different problems and algorithms
- A general model is still missing

< < > < <</>

Discussion and future work

- A successful application: Iterated Local Search for MAXSAT (*Metaheuristic network* european project)
- Different criteria to divide the variables (e.g., based on minimal cuts, adaptive, etc.)
- Extending investigation to different problems and algorithms
- A general model is still missing

< □ ▶ < 同 ▶

Sac

Discussion and future work

- A successful application: Iterated Local Search for MAXSAT (*Metaheuristic network* european project)
- Different criteria to divide the variables (e.g., based on minimal cuts, adaptive, etc.)
- Extending investigation to different problems and algorithms
- A general model is still missing

< □ ▶ < 同 ▶

Sac