Motivation

Criticality and parallelism in combinatorial optimization

Andrea Roli

DEIS - Campus of Cesena Università degli Studi di Bologna Bologna (Italia) andrea.roli@unibo.it

- Efficient techniques for tackling combinatorial optimization problems exploit the *structure* of the instance to attack
- Strong correlation between search effectiveness and some critical parameters of the instance (e.g., see studies on phase transitions)

Andrea Roli Criticality and parallelism in combinatorial optimization

Outline

Andrea Roli Criticality and parallelism in combinatorial optimization

Example: Optimizing on subsystems Kauffman and Macready, Complexity 1995

- Minimizing the energy of a spin glass system
- Total Energy = \sum_{i} energy_i

- System partitioned into sub-systems
- Each sub-system 'selfishly' optimizes independently of the other sub-systems

- Enhanced performance for optimal sub-system size
- The higher the connectivity among decision variables, the smaller the optimal sub-system size

Criticality and parallelism in combinatorial optimization

Andrea Roli Criticality and parallelism in combinatorial optimization

Criticality & Parallelism in Combinatorial Optimization Macready et al., Science 1996

Increasing parallelism leads to better solutions faster, but up to a degree at which the quality of solutions degrades.

- *τ* simultaneous local moves (bit flips, *k*-opt exchanges, etc.)
- Optimization on patches, subsystems
- Relaxation of connectivity constraints

Remarks

- *Parallel* = local modifications performed synchronously (i.e., independently). The actual implementation can be sequential.
- No explicit mention to the structure of the system (topology, links between elements, etc.)

Andrea Roli

- Optimization techniques used are very simple. E.g., gradient descent, simulated annealing.
- A phase transition occurs at the optimal value of *parallelism*.

Criticality & Parallelism in SAT

The Satisfiability problem (SAT)

Questions

- Is this phenomenon involved also in the case of local search applied to the satisfiability problem?
- Under which circumstances does this phenomenon appear?
- Does it appear also when more sophisticated search algorithms are used?
- Is it possible to generalize it?

The problem (model finding): find an assignment to the variables such that the given logical formula is satisfied.

E.g.:

 $\Phi = (a \lor \neg b) \land (\neg a \lor c \lor b) \land \neg a$

a solution: [*a*, *b*, *c*] = [0, 0, 1]

MAXSAT: minimize the number of unsatisfied clauses.

Andrea Roli Criticality and parallelism in combinatorial optimization

Andrea Roli Criticality and parallelism in combinatorial optimization

Interaction graph Rish & Dechter, 1991

 $(a \lor \neg b) \land (b \lor d) \land (c \lor \neg d \lor \neg e) \land (a \lor b)$

GSAT Selman et al., AAAI 1992

- Greedy-like algorithm for tackling SAT
- Idea: Flip a variable such that the *score* (i.e., # of clauses unsat → sat) is maximal

'Parallel' GSAT

- Divide the set of variables in τ subsets
- Apply a GSAT step in parallel to each subset

- Experiments on:
 - Random 3-SAT/MAXSAT instances
 - 'Structured' instances from SATLIB
- Optimal sub-set size affected by node degree of interaction graph

Andrea Roli Criticality and parallelism in combinatorial optimization

Andrea Roli Criticality and parallelism in combinatorial optimization

Results on random instances

Results on random instances

 The same (normalized) average node degree corresponds to the same value of τ_{opt}, independently of other instance parameters

A plot from a population of instances

Remarks

- Results are in accordance with previous work by Macready and Kauffman
- The phenomenon is modeled in more general terms by introducing the interaction graph
- The model generalizes previous results on multi-flip local search for SAT

Criticality and parallelism in combinatorial optimization

Node degree distribution

 Node degree distribution of 3-SAT/MAXSAT instance interaction graphs are Poissonian (~Normal)

Andrea Roli

• Hence average has a strong impact

'Structured' instances: Node degree frequency

Andrea Roli

SAT – inductive inference

SAT - logistics problem

Criticality and parallelism in combinatorial optimization

Results on structured instances

- Same behavior as for random: there exists an optimal value of τ
- But: τ_{opt} is affected by the highest peaks (modes of the distribution)

Morphing

Andrea Roli Criticality and parallelism in combinatorial optimization

Discussion and future work

- The phenomenon seems quite general and it can be generalized by modeling system structure as a graph
- Interaction graph is a first approximation: a richer model is required to capture more accurately the interdependence among variables
- A phase transition does not necessarily occur (it depends on the search algorithm)

- A successful application: Iterated Local Search for MAXSAT (*Metaheuristic network* european project)
- Different criteria to divide the variables (e.g., based on minimal cuts, adaptive, etc.)
- Extending investigation to different problems and algorithms
- A general model is still missing