
Divide to Coordinate: Coevolutionary ProblemSolvingStuart Kau�manWilliam G. MacreadyEmily DickinsonThe Santa Fe InstituteOctober 15, 1994AbstractOptimization of systems with many conicting constraints arises innumerous settings. Common optimization procedures seek to improveperformance of the system as a whole. We show that coevolutionaryproblem solving, in which a system is partitioned into sub-systems eachof which sel�shly optimizes, can lead to enhanced performance as a col-lective emergent property. Optimally partitioned systems often lie near atransition from order to chaos.1 IntroductionIt is often assumed that coordination among subtasks or agents to optimizesome overall performance criterion is best achieved by control procedures whichensure that any change is always for the bene�t of overall performance. Thisbelief underlies hierarchical command and control organizational structures inmany venues, ranging from business, military, and political organizations toautomated problem solving procedures [1]. Our purpose is to explore an alter-native possibility: Coordination among subtasks to optimize very hard problemsladen with conicting constraints may often be better achieved by partitioningthe overall problem into subtasks, subgroups of agents, or \patches". There-after, each patch sel�shly seeks to optimize its own performance independently,regardless of the fact that its optimization may change the problems facing theremaining subtasks or patches. Despite the fact that the patches are now coe-volving with one another while \no one is minding the whole store", enhancedoverall performance arises as an emergent collective behavior of such systems -a case of an invisible hand at work. This enhanced performance of a partitionedproblem is the meaning of our title, \Divide to Coordinate: CoevolutionaryProblem Solving". 1



We explore these issues with respect to the optimization of a speci�c class ofhard problems in which many variables, or degrees of freedom, are coupled sub-ject to strongly conicting constraints. Our problem setting is the NK model[2]. The NK model is a kind of spin-glass [3, 4], with a rugged, multivalleyedenergy or cost surface. The aim of the optimization procedure is to �nd a lowenergy con�guration of the system's variables.Our fundamental questions are these: Are there hard NK landscape prob-lems for which better solutions can be found by partitioning the overall probleminto sel�shly optimizing patches? If so, is there an optimal way to partition theproblem? How is such an optimal partitioning related to the complexity of theproblem to be optimized? What characterizes such a partitioning? We showbelow in the setting of the NK model, that such partitionings exist, lead tolow energy con�gurations, depend upon the complexity of the overall problem,and are often characterized by creating a system poised near an order-disordertransition.The second section introduces the NK model in a lattice setting and de-scribes the patch partitionings we used. The third section describes the resultsof our numerical studies. The fourth section discusses the results and somepotential directions for further work.2 The modelThe NK model of rugged �tness landscapes, or energy or cost surfaces, consistsof a system with N \spins". The spins can be interpreted as Ising spins in aspin glass, as amino acids in a protein, as genes in a genotype, as traits in anorganism, as components in an artifact, or even as actors in a game [2, 5, 6, 7].In the case we consider here, each spin has two states, 1 and 0. Each spinmakes an energy contribution to the the entire system which depends upon itsown state, and the states of K other spins. The K other spins may be chosenin any way. In a spin glass setting, K reects spin couplings. In a geneticcontext, the K spin couplings reect epistatic e�ects from other genes on the�tness e�ects of a given allele of a given gene. In the setting of an artifact, theK spin couplings reect the e�ects other components have on the functionalcontribution of each component. The number of other spins, K, that a�ecteach spin ranges a minimum value of 0 to a maximum value of K = N � 1.In the problem setting we consider, the spins are located on a square lattice of120 � 120 spins, with periodic boundary conditions. K took on the values of4, 8, 12, and 24. Figure 1 shows the neighborhood on the square lattice thata�ects each spin for these values of K.The NK model creates a complex energy, cost, or �tness surface. To doso, the \energy" or \�tness" contribution of each spin must be speci�ed foreach of the 2K+1 possible combinations of states of that spin and the K otherspins which a�ect it. This \energy" or "�tness" is assigned, once and for all, at2



Figure 1: Neighborhoods for K = 4 (circles), K = 8 (circles and squares), K =12 (circles, squares, and diamonds), and K = 24 (circles, squares, diamonds,and triangles).random from the uniform interval between 0.0 and 1.0, independently for eachof the 2K+1 possible input con�gurations for each of the spins. The \energy" or\�tness" of the entire lattice for any given con�guration of spin states is de�nedas the average of the energy or �tness contributions of the spins.Efsg = 1N NXi=1 E(K)i (si; si1 ; : : : ; siK ) (1)The NK model creates an energy or �tness landscape on a discrete space.When each spin takes on only two states, 1 and 0, the con�gurations of thesystem can be arranged on the Boolean hypercube. Figures 2(a)-(c) show asmall example with N = 3 spins, each with K = 2 inputs from the otherspins. The 8 possible con�gurations are located at the corners of the Booleancube, Figure 2(c). Each has an \energy", \cost", or \�tness". In the biologicalcontext one thinks of adaptation due to mutation and selection as climbingtowards �tness peaks on the resulting �tness landscape, 2(c). In a physicalsetting, one thinks of a system as minimizing an energy towards minima on theenergy surface. In an economic context one might think of minimizing cost ona cost surface.The NK model is a general model creating a family of rugged �tness or en-ergy surfaces. The ruggedness increases with K because the number of conict-ing constraints in the system increases with K [2, 5]. In the limit of K = N �1,the NK model is identical to Derrida's random energy spin glass model [2, 8, 9].3
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Figure 2: (a) Assignment of the K = 2 epistatic interactions for each of theN = 3 spins, (b) Random assignment of �tness values, (c) Fitness landscape onthe Boolean cube indicating uphill directions.4



2.1 Patches: partitioning the system into domainsConsider our 120�120 lattice. We seek low energy con�gurations over its energyor cost surface. One procedure, \Glauber dynamics" [10] is to pick an initialcon�guration of all the spins, then calculate the energy of the entire lattice.Thereafter, pick a spin at random, ip it, calculate the resulting energy of theentire lattice, and accept the ip move if the move lowers the energy of the entirelattice. If this procedure is carried out at zero temperature, so that only moveswhich decrease energy are accepted, the system will follow an \adaptive walk"through 1-ip neighboring spin con�gurations of successively lower energy to anearby local minimum then freeze. Even were the local minimum a poor, highenergy, minimum, the system would remain trapped forever.Consider instead partitioning the 120 � 120 spin lattice into four patches,each 60 � 60 spins. The partitioning does not alter the couplings between thespins. However, the partitioning into patches is used to alter the criterion toaccept a spin ip move: A randomly chosen spin is ipped. If the ip lowers theenergy of the patch in which that spin resides, the move is accepted, even if itraises the energy of other patches due to the couplings across patch boundaries.Were the entire lattice frozen at a poor energy minimum, then for it to remaintrapped after the lattice is broken into four patches, the poor minimum of theentire lattice would have to be a local minimum of each of the four patchesindependently. If not, one or more of the patches will no longer be frozen, andcan move to new con�gurations. The division into patches allows the systemto escape a poor local minimum and search its con�guration space further.This observation leads to our central questions: As a function of landscaperuggedness, what is the optimal partitioning of an NK lattice to minimizeenergy? And what characterizes that optimal partitioning?In order to explore these questions we partitioned the 120 � 120 squarelattice, with N = n2 = 14 400 sites, into p � q uniform rectangular or squarepatches where both p and q divide n = 120 evenly. If the number of patches isNP = N=pq, then Equation (1) can also be written as a sum over patches orsubproblems: Efsg = 1N NPXP=1Xi2P E(K)i (si; si1 ; : : : ; siK ) (2)We investigate the behavior of Equation (2) for di�ering numbers of patches,NP , and di�erent patch geometries p and q.Minimizing over the landscape de�ned by Equation (2) is accomplished by amodi�ed Glauber dynamics. Starting from a random initial spin con�gurationa spin is ipped only if it lowers the energy of the patch it is in. A generation isde�ned as N trial ips. Three di�erent updating techniques have been lookedat: � Random: At each moment a spin is chosen at random from the lattice and5



ipped if it satis�es the criterion. Because the spin is chosen at randomsome patches may receive more updating than others.� Fitter: For each patch we examine all possible single spin ips within thepatch and randomly choose one which leads to lower energy. The patchesare updated sequentially and not in parallel.� Greedy: Like �tter we examine all possible single spin ips within thepatch but we choose the ip which lowers the energy of the patch themost. Again the updating is sequential.The simulations are run until we see convergence in the energy, typically 50generations at most.All results are the averages of 50 di�erent, randomly generated landscapesat the given N and K. The error bars are � one standard deviation over the50 landscapes.3 Results3.1 Squares vs. other partitioningsA lattice might be broken into patches in many ways. Our purpose is notto �nd the optimal partitioning among all possible partitionings, but to in-vestigate a small family of partitionings to assess the conditions under whichdivision into subproblems enhances overall performance. For small patch areassquares outperformed rectangles. The energies of rectangles decreased as theirperimeter to area ratio decreased towards that of squares. Therefore we havecon�ned our analysis to squares in evaluating Equation (2). This gives a sim-ple 1 parameter family of partitionings of the lattice into p � p squares, wherep 2 f1; 2; 3; 4; 5; 6;8;10;12;15;20;24;30;40;60;120g.3.2 Optimal patch sizeOptimal patch size, that which minimizes total lattice energy, depends uponthe value of K, hence the ruggedness of the �tness or energy landscape. Ourresults show that when K is small and landscapes are relatively smooth, the op-timal patch size is the entire 120� 120 lattice. However, as K increases, henceconicting constraints increase so that the landscape becomes more rugged andmultivalleyed, we �nd that the system as a whole achieves lower energy if thelattice is broken into many patches of intermediate size. Figures 3-5 show theresults for the random, �tter, and greedy dynamics on NK landscapes withK = 4. All three spin updating procedures give the lowest energy if the latticeis a single large patch, 120� 120. However, in the case of the greedy updating6
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Figure 3: Energy of K = 4 landscape under random dynamics.procedure, energy does not decrease monotonically as patch size increases, hint-ing at an interior minimum. While suggestive, this feature is within the errorbars.Figures 6-8 show the results for the three updating dynamics for K = 8landscapes. Figures 9-11 show similar results for K = 12 landscapes. Figures12-14 show similar results for K = 24 landscapes. A t-test of the signi�cancesof di�erences in energies for a number of cases is found in Table 1. These�gures demonstrate that as K increases, an intermediate patch size, very muchsmaller than 120�120, minimizes total lattice energy. This result is statisticallysigni�cant. Thus, breaking the total problem into patches each one of whichis optimized \sel�shly", despite the fact that that optimization may raise theenergy of neighboring patches, helps achieve a signi�cantly lower energy for theentire lattice.For the K = 8 landscapes, Figures 6 and 7 show that the random and �tterdynamics lead to an optimum patch sizes when p = 6 and 5, rather than 120,hence patches with 36 and 25 spins rather than 14 400. On K = 8 landscapes,the greedy dynamics still �nds the lowest energy for p = 120, but the hint of aninterior optimum with p near 8 is clear.ForK = 12 landscapes, Figures 9-11 clearly show that the optimal patch sizefor all three spin updating procedures is very much smaller than p = 120. Theoptimal patch size is found at p = 8, hence 64 spins, for the random dynamics,p = 6 for the �tter dynamics, and p = 5 for the greedy dynamics.7
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Figure 4: Energy of K = 4 landscape under �tter dynamics.
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Figure 5: Energy of K = 4 landscape under greedy dynamics.8



(a)p 5 6 8 10 1205 0.93 (0.35) 0.45 (0.65) 0.01 (0.99) -5.00 (0.00)6 -0.93 (0.35) -0.50 (0.62) -1.01 (0.32) -6.71 (0.00)8 -0.45 (0.65) 0.50 (0.62) -0.49 (0.63) -5.85 (0.00)10 -0.01 (0.99) 1.01 (0.32) 0.49 (0.63) -5.26 (0.00)120 5.00 (0.00) 6.71 (0.00) 5.85 (0.00) 5.26 (0.00)(b)p 5 6 8 10 1205 59.09 (0.00) 56.84 (0.00) 56.25 (0.00) 42.78 (0.00)6 -59.09 (0.00) -4.26 (0.00) -9.31 (0.00) -31.28 (0.00)8 -56.84 (0.00) 4.26 (0.00) -4.84 (0.00) -27.48 (0.00)10 -56.25 (0.00) 9.31 (0.00) 4.84 (0.00) -25.53 (0.00)120 -42.78 (0.00) 31.28 (0.00) 27.48 (0.00) 25.53 (0.00)(c)p 15 20 30 12015 18.32 (0.00) 7.46 (0.00) -11.39 (0.00)20 -18.32 (0.00) -13.89 (0.00) -40.78 (0.00)30 -7.46 (0.00) 13.89 (0.00) -25.11 (0.00)120 -11.39 (0.00) 40.78 (0.00) 25.11 (0.00)Table 1: Student's t-test showing showing energy di�erences (row � column)over the pooled standard deviation on (a) K = 8 landscape, (b) K = 12 land-scape, and (c) K = 24 landscape under the �tter updating technique. Thetrailing number in brackets is the probability that the energy di�erence couldbe this large in magnitude by chance.
9
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Figure 6: Energy of K = 8 landscape under random dynamics.
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Figure 7: Energy of K = 8 landscape under �tter dynamics.10
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Figure 8: Energy of K = 8 landscape under greedy dynamics.
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Figure 9: Energy of K = 12 landscape under random dynamics.11
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Figure 10: Energy of K = 12 landscape under �tter dynamics.
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Figure 11: Energy of K = 12 landscape under greedy dynamics.12
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Figure 12: Energy of K = 24 landscape under random dynamics.
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Figure 13: Energy of K = 24 landscape under �tter dynamics.13
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Figure 14: Energy of K = 24 landscape under greedy dynamics.For K = 24 landscapes, Figures 12-14 show that the optimal patch sizefor random and �tter updating dynamics occurs at p = 20, corresponding topatches with 400 spins, while for greedy updating the optimum patch size isp = 10.The size of the patch, p � p, which minimizes energy is not simply relatedto the range of interaction de�ned by K. For example, on the K = 24 land-scapes, the farthest range of interaction between spins is over a distance of 3lattice constants, while the optimal patch size extends over 20 lattice constants.Conversely, on K = 4 landscapes, the maximum extent of spin interactions is1 lattice constant, while the optimal patch size extends over the entire lattice,120 lattice constants.In order to test the e�ect of lattice size on optimal patch size, we have studiedlattices for K = 12 landscapes with N = n2 for n = 24, 40, 120, and 160. Theresults, shown in Figure 15, show little shifting in the position of the optimalpatch size. Thus, for lattices as large and larger than 120�120, we believe thatthe optimal patch size will not change appreciably.3.3 A phase transition in patched latticesAs a function of patch size and number, NK lattice systems can exhibit whatmight be called ordered dynamics, and what might be called chaotic dynamics.If the entire lattice is a single patch, 120 � 120, then any of our three spin14
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Figure 15: Scaling of optimal patch size with lattice dimension n for K = 12landscapes under �tter updating.updating procedures will lead the lattice from an initial spin con�guration tosome nearby local minimum on its energy surface. Once that local minimumis attained, no further spin ips will be accepted, for any such ip raises theenergy of the total lattice. Thus, all spins are \frozen". This freezing de�neswhat we will call an ordered regime.If the lattice is broken into as many patches as possible, p = 1, such that eachsite is a separate patch, then the lattice corresponds to a Boolean network inwhich each spin is governed by a randomly chosen, then �xed, Boolean functionof its K inputs [2]. Previous work [2, 11, 12], shows that on a square lattice,such Boolean networks are in a chaotic regime. Most spins continue to ipinde�nitely in complex temporal patterns. Nearby initial con�gurations divergeover time [2, 13, 14, 15].Since NK lattices, when broken into patches, can exhibit an ordered regimein the p = 120 limit, and a chaotic regime in the p = 1 limit, we might expect aqualitative change in behavior at some intermediate patch size. To investigatethis issue, we allowedK = 12 lattices for di�erent values of p to converge to theirasymptotic low energy, then plotted the cumulative fraction of the 14 400 sitesof the entire lattice which eventually ipped at least once thereafter. For patchsizes p = 1, 2, 3, 4, and 5, all sites eventually ip. Then suddenly, for patchessizes 6� 6, or larger, the vast majority of spins freeze and never ip thereafter.The same sharp transition is found with random and greedy dynamics.15



Order Parameter (p=5, k=12, fitter)
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Figure 16: Order parameter for 5� 5 patches on a K = 12 landscape.A particularly dramatic view of this phase transition is shown in Figures 16and 17. We examine the spatial structure of ipping behavior with an orderparameter de�ned for each spin site: �i = 1� 2 hprobability of site i ippingieq,where the time average h ieq is taken at equilibrium, or the asymptotic longtime behavior. This order parameter is 1 if the spin is frozen and 0 if thespin is randomly ipping. Figure 16 shows this order parameter for a K = 12landscape under �tter dynamics. Darker sites are ipping more often (lowervalues of the order parameter). The 5�5 patch sizes are clearly visible, for siteson the boundaries ip more often than central sites. This is due to perturbationsacross the boundaries.In marked contrast, Figure 17 shows the same NK lattice, now broken into6� 6 patches. Suddenly, almost all spins are frozen. Only two pairs across twopatch boundaries, continue to ip frequently.3.4 The correlation of the energy minima with the phasetransitionNK lattices, as a function of patch size, p, appear to undergo a phase transitionfrom chaos to order as p is increased from 1 to 120. Patched lattices also canexhibit an optimal patch size which minimizes asymptotic energy. How are thesetwo properties related?Figure 18 shows, for each of the 50 landscapes chosen at a given K value,16



Order Parameter (p=6, k=12, fitter)
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Figure 17: Order parameter for 6� 6 patches on the same K = 12 landscape asin Figure 16.
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Figure 18: Correlation between patch size at the energy minima and the patchsize at the freezing point for �tter dynamics.17



K = 4 K = 8 K = 12 K = 24greedy 0 2 0 48�tter 0 26 84 96random 0 6 58 92Table 2: Percentage of landscapes for which the patch size at the minimumenergy equals the patch size at �rst freezing.the patch size, p, at which freezing occurs, and also the patch size for thatsame landscape at which the energy minimum occurs. The correlation betweenfreezing and energy minima is absent for K = 4, where the patches freeze atp = 2 and typically have an energy minimum at p = 120. The correlation isstrongest at K = 24. Table 2 shows the percentage of the 50 landscapes forwhich the patch size at freezing equals the patch size which minimizes energy.The correlation depends upon the updating dynamics andK. It is highest at anyK for the �tter dynamics and lowest for the greedy dynamics, and increases asKincreases. When K = 24, the correlation is strong for all updating procedures.Thus, as K increases and landscapes become more rugged, the minimumenergyat the optimal patch size, p, becomes more distinctly advantageous comparedto other patch sizes, Figures 3-14, and at the same time, the optimal patch sizemore commonly is found very near the phase transition from order to chaos.4 DiscussionOur results show that for a class of hard combinatorial optimization problems,enhanced solutions can often be found by partitioning the total problem intopatches each of which then optimizes sel�shly, ignoring the e�ects of its actionson neighboring patches. Such \patched" problems constitute coevolutionaryproblem solving. Enhanced solutions are found, not in spite of, but because ofthe patch boundaries. Such boundaries allow constraints from spins in otherpatches to be ignored by the spins in each patch. Ignoring constraints helpsavoid trapping on poor local minima.Coevolutionary problem solving is not useful on simple problems, but be-comes progressively more so as landscapes become more rugged. Our resultsshow that for su�ciently smooth landscapes, K = 4, the minimum energy is, infact, achieved when any prospective spin ip must lower the total energy of theentire lattice. That is, the lowest energy is found when the entire lattice is asingle large, 120�120, patch. Thus, our results show that the common assump-tion, that good optimization requires that any candidate change be good foroverall system performance, extends to problems with some level of genuinelyconicting constraints.When the level of conicting constraints, captured by K, increases to 8 andbeyond, our results show clearly that the 120�120 lattice system achieves lower18



energy if the entire lattice is partitioned into \patches". The optimumpatch sizeis very much smaller than the total size of the lattice, 14 400 spins, and rangesfrom about 36 spins for K = 8 landscapes to 400 spins for K = 24 landscapes.Importantly, as the overall problem becomes harder, that is, as K increaseshence conicting constraints increase, the advantage of the optimally \patched"lattice over the behavior of the lattice treated as a single large \patch", becomesmore dramatic. Presumably, this increasing advantage reects the increasingdanger, as K increases, of trapping on very poor local minima when the entirelattice is treated as a single unit.Our lattice system shows two broad regimes of behavior: A chaotic regimeexists when the system is broken into many very small patches, and an orderedregime exists when the system is broken into a few large patches. In the chaoticregime every spin will ultimately ip. In the ordered regime almost all spinsfreeze into one or the other of the two states, 1 or 0 and never ip thereafter.A small number of isolated pairs of spins continue to ip. On each speci�c NKlattice, as patches are made larger and fewer, that lattice shifted abruptly fromchaotic behavior to frozen behavior at a speci�c size and number of patches.Thus, these systems appear to undergo a phase transition from chaos to orderas the sizes of patches increase.A particularly interesting feature of our NK lattices is that the optimalenergy tends to be found when the lattice is broken into patches such that thesystem is near the phase transition from order to chaos. This property is notpresent on K = 4 landscapes, but emerges increasingly clearly as K increasesand landscapes become increasingly rugged.Our results suggest a number of directions for future research. First, we donot know that our patch results extend to non-lattice NK systems, but expectthat they do. Second, it would be deeply interesting to discover simple algo-rithms by which patches might sel�shly evolve their membership and boundariessuch that the system as a whole \spontaneously" achieved a very low energy.Third, our results have been obtained only for the NK family of landscapes.It will be important to extend them to other classes of complex problems withrichly conicting constraints.While the above extensions await exploration, it may be worth consideringpossible implications of our main result. Contrary to intuition, optimization ofsystems with many conicting constraints is often better achieved by partition-ing the overall system into sel�shly optimizing subsytems. Partitioning allowseach subsystem to ignore constraints and avoids trapping on poor minima. Over-all good performance arises as a collective emergent behavior of the interacting,coevolving subsystems. Here, in fact, is an invisible hand made visible. It ispresumably no accident that organizations which have developed to solve hardproblems with many conicting constraints are typically divided into depart-ments, pro�t centers, and other semi-independent sub-organizations. Indeed,abundant, if anecdotal, evidence suggests that monolithic hierarchical organiza-tions in business, government, and elsewhere perform and adapt poorly. Calls19
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