Emergence of Macro Spatial Structures in Dissipative Cellular Automata

Andrea Roli – DEIS, Università degli Studi di Bologna (Italia)

Franco Zambonelli – DISMI, Università di Modena e Reggio Emilia (Italia)

Explore the behavior of asynchronous and open CA.

Simple model for multiagent systems.

Outline

- Dissipative Cellular Automata
- Experimental setting
- Emerging behavior
- Future work

Dissipative Cellular Automata

Two main characteristics:

Dissipative Cellular Automata

Two main characteristics:

Asynchronous

Dissipative Cellular Automata

Two main characteristics:

Asynchronous

Asynchronous dynamics

Asynchronous time-driven dynamics:

at each time step, a cell has a probability λ_a to wake up and update its state.

Asynchronous dynamics

Asynchronous time-driven dynamics:

at each time step, a cell has a probability λ_a to wake up and update its state.

 The update is atomic and mutually exclusive among neighbors, without preventing non-neighbor cells to update their state concurrently.

The dynamic behavior of the CA can be influenced by the external environment:

The dynamic behavior of the CA can be influenced by the external environment:

 \rightarrow some cells can be forced from the external to change their state.

The dynamic behavior of the CA can be influenced by the external environment:

 \rightarrow some cells can be forced from the external to change their state.

Every cell has a probability λ_e to be perturbed.

- CA with 2 states (dead/alive, 0/1)
- 2-dimensional grid (closed on a torus)
- Perturbation: a cell is forced to be "alive"
- λ_a and λ_e are the same for every cell

Examples of rules/neighborhoods:

Examples of rules/neighborhoods:

- Neighborhood: 8 cells
- Rule: a dead cell gets alive if it has 2 neighbors alive; a living cells lives if it has 1 or 2 neighbors alive

Examples of rules/neighborhoods:

- Neighborhood: 12 cells
- Rule: a dead cell gets alive if it has 6 neighbors alive; a living cells lives if it has 3,4,5, or 6 neighbors alive

Main result:

emergence of regular patterns

Main result:

emergence of regular patterns

The behavior is strongly different from *close* CA.

Experiments

Two final attractors:

Experiments

The synchronous and asynchronous versions...

Experiments

Example with 12 neighbors

The asynchronous and **close** version

Observation

Patterns appear only for a specific range of the ratio λ_e/λ_a .

Observation

Patterns appear only for a specific range of the ratio λ_e/λ_a .

$$\lambda_e << \lambda_a \rightarrow \text{no effect}$$

Observation

Patterns appear only for a specific range of the ratio λ_e/λ_a .

$$\lambda_e << \lambda_a \rightarrow \text{no effect}$$

 $\lambda_e \approx \lambda_a \rightarrow \text{turbulence}$

– p. 15

Emergent patterns vs. λ_e/λ_a

• • • • • • • •

Emergent patterns vs. λ_e/λ_a

Emergent patterns vs. λ_e/λ_a

$\lambda_e/\lambda_a = 0.001$

$\lambda_e/\lambda_a = 0.01$

$\overline{\lambda_e/\lambda_a} = 0.02$

$\lambda_e/\lambda_a = 0.05$

$\lambda_e/\lambda_a = 0.01$

 Which hypotheses to assert the generality of the phenomenon?

- Which hypotheses to assert the generality of the phenomenon?
- Different measures for evaluating the emergence of patterns

- Which hypotheses to assert the generality of the phenomenon?
- Different measures for evaluating the emergence of patterns
- Network structures

- Which hypotheses to assert the generality of the phenomenon?
- Different measures for evaluating the emergence of patterns
- Network structures
- Relations with multiagent systems

- Which hypotheses to assert the generality of the phenomenon?
- Different measures for evaluating the emergence of patterns
- Network structures
- Relations with multiagent systems

http://polaris.ing.unimo.it/DCA/