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Problem struture and multi-move loal searh:Results ahieved and lines for further researh�Andrea RoliDipartimento di SienzeUniversit�a degli Studi \G. D'Annunzio"Pesara { Italiaa.roli�unih.itDeember 8, 2004AbstratThe impat of problem struture on searh is a relevant issue in arti�ial intelligeneresearh and related areas. Among the possible approahes to analyze problem struture, theone referring to onstraint graph enables to relate graph parameters and harateristis withsearh algorithm behavior. In this work, we present and disuss an empirial study whihonnets this topi with a phenomenon alled ritiality and parallelism. This phenomenon hasbeen observed in the ontext of parallel-move loal searh algorithms applied to ombinatorialoptimization problems. The main result is that inreasing parallelism leads to better solutions,but up to a degree at whih the solution quality degrades. Moreover, the optimal parallelismis negatively orrelated with the system onnetivity. We show empirial evidene for thepresene of a similar phenomenon when loal searh for satis�ability problems is onerned.We study the behavior of a parallel loal searh as a funtion of the number of simultaneousloal moves (parallelism). For di�erent random instane typologies, we show that an optimalvalue of parallelism exists suh that the algorithm ahieves, on average, the best solutionquality. Experimental results also show that the higher the system onnetivity, the lower theoptimal parallelism. We also extend the study toward strutured instanes and we onjeturethat, in this ase, the optimal parallelism depends on the peaks of node degree distributionof the graph assoiated to the instanes.1 IntrodutionThe impat of problem struture on searh is a relevant issue in AI researh and related areas.This topi has been reently reeived more attention, due to the following reasons: (i) real-worldproblems are often more diÆult to solve than random generated problems of the same size and(ii) results obtained by applying statistial mehanis tehniques (suh as phase transition analy-sis [18℄) have shown a strong orrelation between searh e�etiveness and some ritial parametersof the instanes at hand.In this work we investigate the relation between some SAT/MAXSAT instane features andthe behavior of loal searh. We will de�ne strutural features on the basis of a onstraint graphassoiated to the instanes and in partiular we will deeply investigate the impat of the nodedegree distribution on the behavior of multi-move loal searh |also known as parallel loalsearh, sine more than one loal move is applied synhronously at eah iteration. This workis inspired by a phenomenon alled ritiality and parallelism, �rst disovered in ombinatorialoptimization problems suh as the TSP and NK-models [26℄. The main result is that inreasing�This work have been partially written during a visiting period at IRIDIA.1



parallelism leads to better solutions, but up to a degree at whih the solution quality degrades.Moreover, the optimal parallelism is negatively orrelated with the system onnetivity.In this work, we present an empirial analysis to investigate whether and under whih hypothe-ses a similar phenomenon an be observed also in satis�ability problems (both the satis�abilityproblem |SAT| and the maximal satis�ability problem |MAXSAT). We �rst address the issueof relating SAT instanes with graphs with the aim of de�ning general strutural parameters ofthe instanes. Then we present results of the `parallelization' of loal searh on random 3-SATinstanes. With `parallel loal searh' we mean loal searh in whih more than one variable ipis performed. (Coneptually, moves are applied synhronously.) We show that there exists anoptimal value of parallelism whih drives loal searh to ahieve an optimal performane in termsof average solution quality. We also observe that the optimal parallelism is negatively orrelatedwith a strutural parameter of the graph, namely the average node degree. These results holdboth for SAT and MAXSAT instanes. Furthermore, we extend our analysis in two opposite di-retions: (i) on arti�ial generated SAT instanes haraterized by onstant node degree and (ii)on strutured SAT instanes, haraterized by an irregular node degree distribution.This work aims at providing a omplete piture of the studies onerning ritiality and par-allelism w.r.t. loal searh for SAT and MAXSAT [36, 41, 40, 37, 38, 39℄. Furthermore, most ofthe previous experiments have been performed again in order to have homogeneous data. We willshow and disuss results and we will present researh lines for further work. Indeed, this workshould be onsidered as a �rst investigation into the subjet.The paper is strutured as follows. In Se.2, we briey summarize the literature onerningritiality and parallelism in ombinatorial optimization. In Se.3 we give the de�nition of thegraph struture assoiated to SAT and MAXSAT instanes. The de�nition of this graph enablesus to haraterize the relations among problem variables and to provide a de�nition of systemonnetivity , as de�ned in [26, 24, 23℄. Then, Se.4 desribes the parallel loal searh we used andreports experimental results on random SAT and MAXSAT instanes. For both the problems,we will show that an optimal value of parallelism exists whih enables the algorithm to ahievean optimal performane in solution quality (on average). Moreover, the empirial analysis showsthat this optimal value is negatively orrelated with the onnetivity of the instane. Se.6 reportsresults onerning SAT instanes haraterized by a onstant onnetivity graph (i.e., all nodeshave the same number of edges). The results show that the optimal parallelism is independentof the ratio between lauses and variables and it is dependent on the onnetivity of the graph.Se.7 disusses experiments performed on strutured SAT instanes. These instanes have a veryirregular node degree distribution, whih is neither onstant, nor Gaussian (as in the ase ofrandom SAT instanes). The results obtained suggest a generalization of the previous results,sine an optimal parallelism is found for strutured instanes, as in the ase of onstant degreeand random ones and we onjeture that the value of the optimal parallelism is a�eted by thepeaks of the node degree distribution. We then disuss the results in Se.8. Finally, we suintlyreport related work in Se.9 and we onlude with future work in Se.10.2 Critiality and Parallelism in Combinatorial Optimiza-tionThe phenomenon alled ritiality and parallelism has been observed in the ontext of loal searhalgorithms applied to ombinatorial optimization problems (COPs), where loal searh is modi�edby applying more than one loal move in parallel [26, 24, 23℄. It has been shown that the e�e-tiveness of these algorithms depends on the parallelism degree � (number of simultaneous moves):if � inreases, the solution quality1 also inreases up to a point (orresponding to �opt) at whih itstarts dereasing. It has also been shown that �opt is negatively orrelated with the onnetivityamong variables of the problem: the higher the onnetivity, the lower �opt.1In the following we will use the expression solution quality referring to the value of the objetive funtion; inase of a minimization problem, the lower the objetive funtion value, the higher the solution quality.2



In [26, 9, 23, 24℄ some studies on the parallelization of loal searh algorithms are desribed.In [26℄, the authors apply a parallel version of simulated annealing to optimization on NK-models [22, 23℄. In brief, this approah an be desribed as follows. Suppose to have a mini-mization problem on n boolean variables x1; : : : ; xn. The searh spae an be represented as anenergy landsape: the goal is to �nd a minimum in this landsape. Every variable xi is assoiatedto an energy value ei, whih is a funtion of xi and other K variables. The objetive funtion ofthe system (total energy) is E = 1nPni=1 ei. A move from state2 s1 to state s2 results in an energydi�erene �E = E(s2)�E(s1). The appliation of the move operator is, in this ase, simply aip of a variable (i.e., xi  :xi). The basi algorithm behaves as follows: it randomly seletsa variable and ips it; it aepts this move with probability 1 if �E � 0 and with probabilityexp(��E=T ) if �E > 0. T is a temperature parameter, whih ontrols the annealing shedule:the higher T , the higher the probability to hoose a non-improving move. In the parallel version,every variable xi (i = 1; 2; : : : ; n) has probability p of being seleted, that is, at eah iteration pnparallel variable ips are tested on average. Hene, the degree of parallelism of searh is � = pn.The authors disover that there is a popt for whih the algorithm �nds the solution with the lowestE: higher or lower values of p on average produe higher total energy values.Sine the e�et of a variable ip on the objetive funtion value is evaluated as if it was the onlyone to hange, parallel (i.e., simultaneous) ips introdue a kind of noise in the energy evaluation.As observed in [27℄, the introdution of noise inreases the e�etiveness of loal searh, sine ithelps to esape from loal optima. It is worth to note that [27℄ shows that the quality of solutionsfound inreases as noise inreases, up to a ritial value above whih the performane dereasesagain. However, di�erenes and similarities between parallel loal searh and loal searh withnoise have still to be ompletely disovered and explained.Analogous results are reahed in [23, 24℄, where yet a di�erent approah is hosen. The COPis, in this ase, the optimization of a NK-model with variables arranged in a bi-dimensional lattie;every variable orresponds to a ell in the lattie and K indiates the number of neighboring ellslinked to it. The lattie is divided in P non-overlapping pathes and a simple loal searh isapplied in parallel to eah path. A variable is ipped if it dereases the energy of the path itbelongs to. The authors �nd an optimal number of pathes whih allows the searh to reah thelowest total energy value.The underlying priniple of the last approah is that, in order to optimize systems omposedof oniting elements, it is generally useful dividing the system in subsystems and optimize eahof them independently. One of the e�ets of simultaneous hanges is to help the searh to avoidloal optima, as they introdue a kind of noise due to the fat that eah subset performs a loalmove supposing the other subsets do not hange. Moreover, the authors laim that the optimalsubdivision drives the system in a state suh that subsystems oordinate themselves for a globaloptimization goal.In [26℄ and [24℄, the authors also �nd that the objetive funtion rapidly dereases in orrespon-dene of the optimal parallelism. This abrupt behavior hange orresponds to a phase transitionthat an be observed in an order parameter that is a funtion of the entropy of the system. Hene,the introdution of the term ritiality , referring to the ritial value of the order parameter. Forfurther details, we forward the interested reader to the original papers.These works on parallelization of searh propose very useful ideas for the improvement of loalsearh for COPs and suggest new diretions to understand loal searh behavior.In summary, the literature onerning ritiality and parallelism enompasses the followingways to parallelize loal searh:- At eah iteration, apply a loal move on eah variable (or a solution omponent) withprobability p. This results in an average parallelism of pn, where n is the number of variables.- Divide the problem in � subsystems (whih are, in general, not independent) and apply loalsearh to optimize eah of them independently.2a state is a omplete variable assignment 3



- At eah iteration, temporarily exlude some onstraints between variables and apply a loalmove on the relaxed problem.The aim of this work is to investigate the behavior of parallel loal searh applied to satis�abilityproblems as a funtion of the number of parallel moves. In order to move the fous from NK-models to satis�ability problems, we need �rst to de�ne the onnetivity of a satis�ability probleminstane, so as to have an equivalent parameter to K in NK-models.3 Struture of Satis�ability ProblemsSAT belongs to the lass of NP-omplete problems [10℄ and an be stated as follows: given aset of lauses, eah of whih is the logial disjuntion of k > 2 literals (a literal is a variable orits negation), we ask whether an assignment to the variables exists that satis�es all the lauses.MAXSAT is a NP-hard problem and an be stated as follows: given a set of lauses, the objetiveis to �nd an assignment to the variables suh that it maximizes the number of satis�ed lauses3.The de�nition of struture emerging from the literature on Constraint Satisfation Problems(CSPs) and COPs is usually based on the informal notion of a property enjoyed by non-randomproblems. Thus, strutured is used to indiate that the instane is derived from a real-worldproblem or it is an instane generated with some similarity with a real-world problem. Commonly,we say strutured for a problem whih shows, under some abstration, regularities suh as wellde�ned subproblems, patterns or orrelations among problem variables.There are also some quantitative measures of struture, suh as entropy (see for example [17℄),small-world proximity [47℄ and ompression ratio [42℄.The impat of problem struture on searh performane has been studied from di�erent per-spetives. Studies on the impat of problem struture on heuristi searh an be found, forexample, in [4, 52, 49, 25℄. Important results and observations on struture and problem hardnessare reported in [15, 13, 14℄. The e�ets of problem enoding are disussed in [20, 5℄. Finally, thesearh algorithms behavior w.r.t. graph properties has been disussed in [48, 47, 33, 25, 16℄.Some problems suggest a natural strutural desription, sine they have a representation suit-able for struture analysis. A lassial example are problems de�ned on graphs, suh as the GraphColoring Problem and the k-Cardinality Tree Problem. In general, we have to hoose a level ofabstration and a suitable data struture to assoiate to the problem. Then we haraterize thestruture on the basis of relevant properties of the model we have obtained.In this setion we give the de�nition of a graph assoiated to SAT/MAXSAT instanes. Thisgraph has strong similarities with the onstraint graph de�ned for onstraint satisfation problemsand it has been elsewhere introdued as the interation graph [35℄. Given a onstrained problem |with binary onstraints| the onstraint graph is the graph in whih nodes orrespond to problemvariables and edges link variable involved in a onstraint.The graph we assoiate to a SAT instane is an undireted graph G = (V;A), where eahnode vi 2 V orresponds to a variable and edge (vi; vj) 2 A (i 6= j) if and only if variables viand vj appear in a same lause. For instane, in Fig.1 the graph orresponding to the formulaF1 = (a _ :b) ^ (b _ d) ^ ( _ :d _ :e) is depited.Observe that the same graph orresponds to more than one formula, sine nodes are onnetedby only one ar even if the orresponding variables belong to more than one lause. For example,the graph of Fig.1 orresponds also to the following instanes: F2 = (:a_:b)^ (:b_:d)^ (:_:d_:e), F3 = (a_:b)^ (:a_ b)^ (b_ d)^ (_:d_:e)^ (_ d_ e). F2 has the same number oflauses as F1, but some lauses in F2 are di�erent. Also F3 has the same assoiated graph, but ithas a di�erent number of lauses than the previous formulas. For brevity, in the following we willrefer to the simple graph de�ned at the beginning of this setion as SATgraph.Having a set of lauses assoiated to the same graph, makes this representation quite rough.Nevertheless, in the following, it will be shown that some properties of the SATgraph strongly3If weights are assoiated to lauses, the objetive is to maximize the weighted sum of satis�ed lauses. In thisase, the problem is alled Weighted MAXSAT. 4
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Figure 1: Constraint graph assoiated to a SAT instane.a�et the behavior of loal searh applied to SAT and MAXSAT instanes.The relevant parameter of the SATgraph we have to onsider for the purposes of this paper, isthe node degree.In an instane with n variables, eah node vi, i = 1; : : : ; n, has a degree qi 2 f0; 1; : : : ; n� 1g.For k-SAT problems, de�ned as onjuntion of lauses with exatly k literal eah, it holds k� 1 �qi � n � 1. We de�ne the average onnetivity of the instane as the average node degree of theorresponding graph, i.e., q = 1nPni=1 qi. Moreover, to have a uniform measure of onnetivityamong instanes with di�erent number of variables, we also introdue the normalization of q:q = qn�1 . In the following, we will use interhangeably the expressions onnetivity and nodedegree of an instane I, where the latter is de�ned on the graph assoiated with I. In order toompare the node degree distribution between instanes, we will also onsider the frequeny ofnode degree Freq(j) = `frequeny of a node onneted to exatly j nodes' and the umulativefrequeny CumFreq(j) = `frequeny of a node onneted to not more than j nodes'.The onnetivity gives a rough evaluation of how a modi�ation ourring on a node a�etsthe other nodes and spreads aross the graph. The higher the onnetivity, the stronger the\information spreading"4. The impat of onnetivity will be disussed in detail in the following.In this work, we use the SATgraph as a model of the struture of SAT/MAXSAT instanes.However, graphs of di�erent kind an be introdued to study the struture of SAT problems.For instane, a graph an be de�ned with weights on edges to aount for the number of lausesinvolving the onneted variables. Moreover, it is possible to onstrut a graph where nodesorresponds to literals instead of variables and adding one node for eah lause.4 Parallel Loal Searh for SAT and MAXSATIn this setion we present one possible way of parallelizing loal searh to takle SAT andMAXSAT.Then, we show and disuss experimental results onerning random SAT and MAXSAT instanes.4.1 Parallel GSATSine the previous results on ritiality and parallelism in ombinatorial optimization were obtainedby applying a (quite simple) loal searh haraterized by a strong hill limbing tendeny, for ourexperiments on SAT we hose GSAT [44℄.GSAT was �rst introdued in [44℄ as a greedy loal searh algorithm to solve SAT problems(see Alg. 1, as it was desribed in the original paper). In its basi version, it starts from arandom assignment and looks for a satisfying assignment by moving from one state to anotherone in its neighborhood (de�ned as the set of states at Hamming distane equal to 1). Given aurrent state, the next state is hosen by ipping the variable that, if ipped, leads to the greatestgradient in the number of satis�ed lauses. Therefore, a variable ip is performed even if the total4These onsiderations have been initially motivated by Kau�man's work [22, 23℄.5



number of unsatis�ed lauses inreases. Indeed, if the inumbent solution is a loal optimum, allthe neighboring solutions orrespond a lower number of satis�ed lauses and a ip is performedtoward the solution that keeps the number of unsatis�ed lauses the lowest.GSAT has a hill-limbing omponent beause it tries to inrease the number of satis�ed lausesby moving toward the best neighboring state. Moreover, it is able to esape from some loaloptima and plateaus by using sideways moves , i.e., moves from a state to another with the samedi�erene of satis�ed lauses. Despite the e�etiveness of sideways moves, GSAT an be stuk insmall areas of the searh spae without esaping (i.e., it stagnates5) and other more reent loalsearh algorithms [19℄ perform better on SAT instanes.There is a very easy way to parallelize GSAT: the set of variables is divided in equal subsets.The subsets are randomly onstruted at the beginning of eah iteration. If n is the number ofvariables, the number of subsets orresponds to the parallelism degree � and the ardinality ofeah subset is n=�6. The proedure we obtain (thereinafter referred to as PGSAT, see Alg. 2)behaves as follows: at eah iteration, the subset are onsidered in parallel and the \best" variablefor eah of them is ipped. Therefore, after an iteration, � variables have been ipped. This hasan e�et similar to the introdution of noise, beause the possible ips are evaluated supposingthat variables belonging to other subsets are not modi�ed.We would like to stress that the algorithms at hand are implemented sequentially. With\parallel moves" we mean \synhronous moves". Anyhow, these results ould be bene�ial alsofor implementations on parallel arhitetures.4.2 Random 3-SAT InstanesIn this setion we present experimental results obtained by the appliation of PGSAT on random3-SAT instanes. We �rst treat the ase of Uniform Random (UF) 3-SAT instanes (retrievedfrom the SATLIB [21℄ benhmarks7). Then we report results on random fored instanes8.The instanes taken from SATLIB are loated in the threshold region [1, 30, 18℄ (i.e.,m=n � 4:3,where n and m are respetively the number of variables and lauses) and are satis�able.We analyzed the behavior of parallel PGSAT on random instanes by using as a terminationondition a maximum number of moves without improvement9. Therefore, the algorithm stopsas soon as it stagnates. This termination ondition is of the same nature as the one used in theoriginal experiments on ritiality and parallelism, sine it stops when the system reahes a steadystate. We also performed experiments using a time limit as a termination ondition and we foundthat results are qualitatively the same.We run PGSAT on ten instanes for every value of n (n = 20, 50, 100, 150, 200, 250). Results,averaged over 100 trials per instane, show the number of unsatis�ed lauses returned at the endof the run (Fig.2). We an observe that for every value of n the average number of unsatis�edlauses returned by the algorithm has a minimum orresponding to a �opt(n). The suess rate(not reported in the �gures) follows the same qualitative behavior, even though the maximalsuess rate is ahieved for a � slightly less than �opt. In Table 1 we report average (with standarddeviation) and median of �opt values related to the onsidered instanes.From the table we observe that �opt tends to inrease as n inreases. Nevertheless, this fat isnot just a diret onsequene of size saling, as we an see by studying the behavior of PGSAT oninstanes of the same size, but varying ratio m=n. We generated fored random 3-SAT formulaswith various ratio between lauses and variables. Results are reported in Fig.3, Fig.4 and Fig.5.In these graphis we plotted the average error (in logarithmi sale) vs. parallelism for eah setof instanes. First of all, we notie that for every set of instanes there is a minimum in theaverage error. Note that, sine the instanes with m=n = 2 are extremely easy, they are solved by5With the terminology of dynamial systems, we ould say that this ondition orresponds to the reah of anattrator [3, 2, 8℄.6More preisely, all subsets have equal ardinality, exept for one whih ontains � + n mod � variables.7www.satlib.org8Random generated instanes with at least one satisfying assignment.9This uto� value has been set to n. 6



Algorithm 1 GSATInput: a set of lauses �, MAX-FLIPS and MAX-TRIESOutput: a satisfying truth assignment of � , if foundfor i := 1 to MAX-TRIES doT := a randomly generated truth assignmentfor j := 1 to MAX-FLIPS doif T satis�es � thenreturn Tend ifp := a propositional variable suh that a hange in its truth assignment gives the largestinrease in the total number of lauses of � that are satis�ed by T with the truth value ofp reversedend forend forreturn "no satisfying assignment found"
Algorithm 2 Parallel GSATInput: a set of lauses �, � , MAXMOV ESOutput: a truth assignment of �T  initial truth assignment fRandomly generatedgMOV ES  0besterror  Eval(�; T ) fEval(�; T ) returns the number of unsatis�ed lausesgbestsolution Twhile MOV ES < MAXMOV ES doif T satis�es � thenreturn Tend ifDivide the set of variables in � subsets (randomly)for all subset Xk of variables (k = 1; 2; : : : ; �) dopk  a propositional variable in Xk suh that a hangein its truth assignment gives the largest derease in the number of lauses of � that are notsatis�ed by Tend forT  T with the truth value of p1; p2; : : : ; p� reversedMOV ES  MOV ES + 1error  Eval(�; T )if error < besterror thenMOV ES  0bestsolution Tbesterror  errorend ifend whilereturn bestsolution
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Figure 2: Average (number of unsatis�ed lauses) vs. parallelism (�) for random 3-SAT instaneswith 20; 50; 100; 150; 200 and 250 variables (m=n � 4:3). Results are averaged over 100 trials.
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Table 1: Average, standard deviation and median values of �opt.n average std. dev. median20 2.4 0.84 350 4.5 1.27 4.5100 7.6 1.43 7.5150 9.4 1.35 9.5200 11.4 1.07 11250 12.9 1.37 13Table 2: �opt for fored instanes. In aseof di�erent values of � enabling PGSAT toahieve a suess rate of 100%, we reportedthe maximum value.n m �opt50 100 11150 6200 7250 5100 200 16300 9400 9500 7200 400 28600 18800 151000 13

Table 3: Average onnetivity and its nor-malized value for 3-SAT random generatedinstanes. The values refer to one instaneper lass, but these values are pratially thesame for all the instanes belonging to thesame lass.number of variables q q20 14.70 0.773650 20.56 0.4195100 22.70 0.2292150 24.04 0.1613200 24.00 0.1206250 24.24 0.0973
PGSAT with all the onsidered values of � ; however, for extreme values of � , the performane ofthe algorithm dereases.In Table 2 we reported the values of �opt for the onsidered fored instanes. We learly see that�opt onsiderably varies, despite the fat that n is onstant. This observation will be reinfored bythe results of the following setions.Another important point to observe is that �opt dereases as m inreases and there is notevidene for a sharp transition of �opt in the transition region. The intuition behind this is thatthe ratio m=n relates only to satis�ability and to the hardness of the instane [7, 30, 12, 45℄,therefore it does not diretly inuene the qualitative behavior of loal searh with parallel ips.To explain the behavior of �opt aross the instanes we onsidered, we onjeture that �optis negatively orrelated with q and it is not just an e�et of size saling. Indeed, at �xed ratiobetween lauses and variables, q dereases as n inreases, as shown in Table 3.In Fig.6, we plotted �opt against q: the tendeny depited indiates that there is an apparentnegative (nonlinear) orrelation between �opt and q. Therefore, we an onjeture that �opt dependson the average normalized onnetivity (at least, for random 3-SAT and under the approximationintrodued by the SATgraph).4.2.1 Summary of �rst experiments setThe experiments performed on random 3-SAT instanes suggest two observations:1. There is a value of �opt 2 f1; : : : ; ng that leads PGSAT to ahieve the best performane.The average error returned by PGSAT(�opt) is not higher than that of PGSAT(�), for � 29
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Figure 8: Average error vs. � . Instanes with50,100,200 variables and 218,430,860 lauses re-spetively. Results are averaged over 10000runs.f1; : : : ; ng.2. �opt seems negatively orrelated with the average onnetivity of the SATgraph: the higherq, the smaller �opt.The �rst observation is not surprising. Indeed, sine GSAT ould stagnate in a small regionof the searh spae, applying more than one ip in parallel an help the searh to esape fromthat region. At the other extreme, if � = n the searh does not proeed, but it just osillates.Therefore, it is likely that a value �opt suh that 1 < �opt < n enables the algorithm to performbetter. Nevertheless, what makes the results very interesting is the seond observation: the valueof �opt seems to be linked with a strutural property of the instane (the average onnetivityq), independently of other instane parameters, suh as the ratio m=n. Moreover, the supposedorrelation between �opt and q perfetly �ts in the previous results on ritiality and parallelism inombinatorial optimization. In this ase, the intuition behind the phenomenon is that when therelations between variables are loose (i.e., q is low), a variable ip a�ets a relatively small numberof other variables, thus the system an be subdivided into several nearly independent subsets. Onthe ontrary, tight relations produe a large network of dependenies among the variables andthus they are more sensitive to single ips.We should also observe that there is no sharp transition between low to high average error (orvieversa) like the one observed in the experiments performed on NK-models. This fat an beexplained observing that the greedy loal searh haraterizing GSAT is more e�etive than thesimple hill limbing and less sensitive to loal minima.4.3 Results on MAXSATWe applied PGSAT also to MAXSAT instanes, to test whether the onnetion between onne-tivity and �opt is inuened by the property of formulas to be satis�able. We disovered that thephenomenon appears with the same harateristis also in unsatis�able formulas and onsideringan optimization problem. We emphasize that we are not onerned with instane hardness , butrather with the omparison of algorithm e�etiveness aross varying � values.We tested PGSAT on random generated unsatis�able instanes with three literals per lause (3-SAT), retrieved from SATLIB. The graph in Fig.7 reports the average error (number of unsatis�edlauses) as a funtion of � for an instane with 100 variables and 430 lauses. This graph showsthe typial behavior of the algorithm. Observe that the original algorithm (� = 1) reahes anaverage error of 4 and, as � inreases, the error dereases until a minimum at � = �opt = 6; abovethat value the average error starts to inrease. 11



Table 4: Median and mean of optimal values of� for eah set of instanes.number of variables Median �opt Mean �opt50 4 4.1875 6 5.9100 6 6.3125 7 7.5150 8 9.4175 10 10.33200 11 10.7225 12 12.36250 12 12.6
Table 5: Average onnetivity and itsnormalized value for typial 3-SAT ran-dom generated instanes.number of variables q q50 19.88 0.405775 21.76 0.2941100 22.88 0.2311125 23.33 0.1881150 23.99 0.1610175 24.00 0.1379200 24.11 0.1212225 24.21 0.1881250 24.34 0.0976
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Figure 10: Average error and variane vs. � . In-stane with 100 variables. Results are averagedover 10000 runs.For all sets of instanes, a similar behavior has been notied. Moreover, as an be observed inFig.8, the higher the number of variables, the higher �opt. This result is summarized in Table 4,where for eah set median and mean of �opt are reported10.Table 5 shows the typial values of q for the instanes onsidered in this analysis. Fig.9 showsthe graphi ombination of Table 4 and Table 5. We notie that the urve representing �opt vs. qis monotonially non inreasing, in aordane with the results of the previous setion.A further analysis of the statistis presented earlier in this setion, permits to disover aninteresting phenomenon. For example, the graph of Fig.10 shows the average error and its varianeas a funtion of � for an instane with 100 variables. We observe that the minimum error isobtained for a value of � slightly smaller than the value for whih the variane has a minimum.We onjeture that near the ritial value �opt the algorithm ahieves the highest e�etiveness andthus it onverges toward a smaller region around the best value it an �nd.Conluding, we have shown that an optimal value of parallelism exists also for MAXSAT andthat it is negatively orrelated with the average onnetivity of the instane. These results arein aordane with the results disussed in the previous setion and they an be seen also as ageneralization of them, sine they are related to an optimization version of SAT.10The average error has been evaluated over 100 runs and then median and mean of �opt over the 10 instanesof eah set have been onsidered. 12



5 �opt vs. q: Experimental analysisSo far, we have presented and disussed experiments on PGSAT takling random SAT/MAXSATinstanes. Observing the results, we an onjeture that �opt is strongly (negatively) orrelatedwith the average node degree of the SATgraph. In fat, for random 3-SAT instanes |bothsatis�able and unsatis�able| we noted that the higher q, the lower �opt. From the graphs plottedin Fig.6 and Fig.9, we also note that the relation between �opt and q is nonlinear.In this setion we present and disuss results onerning random 3-SAT instanes. The parame-ter of interest for the generation of the instanes are the number of variables n and the average nor-malized onnetivity q. We generated instanes for almost all the possible ombinations of the pa-rameters in the following ranges: n 2 f50; 100; 150; 200; 250g, q 2 f0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9; 1:0g.These instanes are generated by iteratively onsidering a random generated lause (with variablesnegated with probability 0:5) and adding it to the formula if its normalized onnetivity q is lessthan the desired value q0. This proedure terminates when q 2 [q0 � �; q0 + �℄, with � = 0:001.For some values of n, it was not possible to generate the instanes orresponding to someextreme values of q. In fat, the average onnetivity of 3-SAT instanes tends to saturate aroundthe value 24, when n � 150, so it is very unlikely that a random generated instane an reah avery high value of normalized average onnetivity.In Table 6 we reported the average value of �opt (along with standard deviation) and itsmedian value. In ase of a range of values orresponding to the maximal average solution quality,we onsidered the highest extreme of the range. Statistis are omputed by running PGSAT(�)1000 times on eah instane and averaging over 10 di�erent instanes.We �rst observe that for �xed instane size, the value of �opt onsiderably vary and �opt isnon-inreasing with q. Moreover, we an observe that the values of �opt related to a partiular qvalue, are approximately the same independently of the instane size.From these results we onjeture that, for random 3-SAT instanes, the struture parameterwhih a�ets �opt is the normalized average onnetivity. The behavior of PGSAT on k-SATinstanes, with k arbitrary is subjet of ongoing work.The testbed used, uniform randomly generated formulas, have the disadvantage of imposingan average evaluation of the onnetivity, supposing negligible the variane of the individual nodedegree. Moreover, the SAT/MAXSAT instanes onsidered in pratie are not random but ratherstrutured and often haraterized by non random distributions of node degree. In order tooverome the drawbaks of experimenting on random instanes, we investigated in two opposingdiretions. In the following setions we will �rst show the results obtained on SAT instane withSATgraph haraterized by a �xed node degree (i.e., qi = q; i = 1; : : : ; n). Then, in Se.7, wewill address the question of whether and under whih onditions the phenomenon disovered forrandom instanes is still present in strutured ones.6 Constant-degree 3-SAT instanesIn the previous setions, we have haraterized the onnetivity of random 3-SAT instanes withthe average onnetivity q, whih seems to be enough informative for uniform generated instanes.In random 3-SAT instanes, nodes have in general di�erent degree, even though the values aremainly onentrated around the mean.In order to ompare the node degree distribution between instanes, we onsider the frequenyof node degree Freq(j) = `frequeny of a node onneted to exatly j nodes' and the umulativefrequeny CumFreq(j) = `frequeny of a node onneted to not more than j nodes'. Fig.11 showsa typial ase of umulative frequeny vs. the normalized node degree for random 3-SAT instanesretrieved from SATLIB. The instanes belong to the threshold region (lauses/variables� 4:3) andare satis�able. The graph orresponding to a random 3-SAT instane is a random graph Gn;p [32℄,where n is the number of nodes and p is the probability that any pair of nodes are onneted. Infat, uniform random 3-SAT instanes of SATLIB are generated by randomly seleting, for eah13



Table 6: Average �opt for instanes with �xed q. In ase of di�erent values of � enabling PGSATto ahieve the maximal average solution quality, we reported the maximum value.n q h�opti std.dev. median20 0.2 10.0 0.0000 100.3 8.9 1.3703 90.4 6.0 0.9428 60.5 4.7 0.9486 50.6 3.3 0.8232 40.7 2.9 0.5676 30.8 2.4 0.6992 30.9 2.0 1.0541 31.0 2.3 0.8233 350 0.2 11.10 0.7378 110.25 9.10 1.1005 100.3 6.80 0.9189 70.4 4.60 0.6992 50.5 4.50 0.8498 50.6 4.00 0.4714 40.7 4.20 0.4216 40.8 3.90 0.5676 40.9 4.00 0.0000 41.0 3.90 0.5676 4100 0.08 22.00 1.4142 220.1 19.40 0.6992 200.15 12.10 1.1005 130.2 8.20 1.0327 80.3 6.20 0.4216 60.4 5.50 0.5270 60.5 5.50 0.5270 6lause, three literals among the omplete set of 2n literals11. Thus, every pair of variables has thesame probability to belong to a same lause. For random graphs suh as Gn;p, the distributionprobability of onnetivity follows a Poisson distribution, i.e.,probfa node is onneted exatly to other j nodesg = e���j=j!where the parameter � is the expeted node degree, therefore, in our ase, � = (n� 1)q = q. Forinstane, in Fig.12 the frequeny of a 3-SAT instane with 100 variables is plotted.In order to perform experiments with the minimum amount of parameters whih an vary, wedevised a method to generate random k-SAT instanes (for our purposes, k = 3) where variableshave the same node degree.Instead of starting from a SAT formula, expressed as a onjuntion of lauses with �xed numberof literals, we start from a graph with the desired onnetivity properties and we use it as a skeletonfor generating a SAT formula. The proedure used to generate onstant-degree k-SAT instanesis desribed in Appendix A.6.1 Experimental resultsWe have tested PGSAT on a benhmark omposed of onstant degree 3-SAT instanes. Thebenhmark is omposed of six sets of thirty instanes. Eah set ontains instanes with the11The desription of the generation proedure is available at www.satlib.org.14
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Figure 22: Average and median error against �for PGSAT on the instane 3sat1650 .It has 1650 variables and a normalized average onnetivity qii16a1 = 0:0239. Its umulativefrequeny is shown in Fig.18, along with the umulative frequeny of a random 3-SAT instaneof the same size and normalized onnetivity (instane 3sat1650 q-onst13). Fig.19 and Fig.20plot the respetive frequeny of node degree. We an note that the node degree frequeny of thestrutured instane is highly asymmetri and has a peak lose to 0:018, orresponding to the largegap in the umulative frequeny. Therefore, ii16a1 has a very large number of nodes with loweronnetivity than the average. Conversely, the node degree frequeny of the random instane isregular (it approximately �ts the Poisson distribution with high mean) and the highest peak infrequeny is very lose to the mean.Fig.21 and Fig.22 show the average and median error (number of unsatis�ed lauses) respe-tively on ii16a1 and 3sat1650 q-onst for PGSAT with di�erent values of � . Results are averagedover 500 trials. We �rst observe that also for the strutured instane there exists an optimal valueof � . Nevertheless, despite the fat that the two instanes have the same average onnetivity, theoptimal parallelism is higher for ii16a1 than for 3sat1650 q-onst . We onjeture that the highnumber of nodes with low degree present in the instane ii16a1 is the ause of higher optimalparallelism.We performed the same kind of experiments on the logistis-a instane, by omparing it witha random 3-SAT instane with the same size (828 variables) and normalized average onnetivityq = 0:0275 (instane 3sat828 ). Fig.23 and Fig.24 show the respetive node degree frequeny. Notethat, while the distribution of the instane 3sat828 follows a Poisson distribution, the distributionof logistis-a is not regular and has a high peak at normalized node degree 0:0326. The resultsof PGSAT performane with respet to � are plotted in Fig.25 and Fig.26. We an observe thatalso for this strutured instane there is a value of � leading to a minimum average error, butin this ase the optimal parallelism for logistis-a is lower than that of the random instane.This di�erene may be explained by observing that the highest peak in logistis-a node degreefrequeny orresponds to a node degree higher than the average value, whih haraterizes therandom instane.7.1 Morphing from random to strutureIn Set.4.2 we have seen that the average onnetivity a�ets the optimal parallelism for randominstanes. The results of the previous setion show that for strutured instanes, haraterizedby asymmetri frequeny distribution, the optimal parallelism seems to be a�eted by the highestpeaks of the node degree distribution. To investigate more deeply this di�erene, we generatedinstanes with a ontrolled amount of struture, by means of a tehnique alled morphing [11℄.13This instane is generated with the proedure desribed in Se.5.21
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8 DisussionThe results presented in the previous setions learly show that PGSAT exhibits a behavior witha bad-good-bad pattern as a funtion of � . Moreover, this behavior is shown aross di�erenttypologies of instanes. It an also be asserted that �opt is a�eted by the node degree distributionand we ould observe that the higher the onnetivity, the lower �opt. A general analytial orempirial relation is still laking, though. In this setion, we disuss the limits of the range ofappliability of our results. Furthermore, we will onsider similarities and di�erenes between ourexperiments and the ritiality and parallelism phenomenon.8.1 Limits of the SATgraphAs observed in Se.3, the SATgraph represents a very simpli�ed view of the struture of a SATinstane. First of all, it does not apture the tightness of onstraints, sine it only heks if twovariables are involved in the same lause and it does not take into aount the number of theselauses, nor the number of literals per lause. Moreover, the SATgraph fouses only on the networktopology of a SAT instane and it is blind to strutural instane properties related to the solutionspae, suh as bakbones [31℄ and bakdoors [53℄. This approximation introdued by the SATgraphposes a limit on the range of appliability of our results. For instane, in preliminary experimentson random k-SAT instanes, we observed that �opt is not independent of the lause length, sinewe have found di�erent values for �opt for di�erent lause lengths.Furthermore, we found some important exeptions to the hypothesis that �opt is negativelyorrelated with q. We arti�ially generated random SAT instanes omposed of a ore instaneto whih we added a number of lauses omposed of n literals15. The ore instane is a random3-SAT instane of the SATLIB benhmark. Adding one or more lauses with n literals means tohange the average normalized onnetivity of the SATgraph from a frational value to 1, sine theSATgraph beomes ompletely onneted. We would expet that for suh instanes �opt was verylose to 1, but this is not what we observed. Indeed, �opt still maintains the same value it was foundfor the ore instane, even if we add a large number of n-literal lauses. These results learly showthat the ore instane plays a role that is not aptured by the SATgraph. A possible explanationis that the added lauses do not perturb the solution spae and the fundamental harateristisof the searh landsape. This onjeture drives us diretly to the analysis of results obtained onstrutured instanes in Se.7. The question arising is the following: sine the strutured instanesonsidered have lauses of di�erent length, why does they seem to be in agreement with the originalhypotheses? Are the lauses of suh instanes all (or almost all) a�eting the searh spae? Toanswer these questions a deeper analysis has to be onduted.8.2 Critiality in loal searh for SAT?Conerning the question of whether the ritiality and parallelism phenomenon an be observedalso in multi-move loal searh for SAT, we an not de�nitely onlude that the phenomenon isexatly the same found in [27℄.The main reason is that, in the original work, the authors found an order parameter for whih aritial value exists suh that a phase transition is observable. This order parameter is the averageentropy of the system and it is de�ned as follows. When the algorithm has reahed a steady state(i.e., it is stagnating) the probability that variable xi ips is given by pi. Then, the entropy ofvariable xi is evaluated: Si = �pilog2pi� (1� pi)log2(1� pi). The order parameter is the averageentropy S = 1nPni=1 Si. When the algorithm is run with the optimal degree of parallelism, Sshows an abrupt transition from 0 to 1 and it an be formally shown that a phase transition takesplae.In our experiments, the de�nition of an analogous parameter is not possible. In fat, in PGSAT,� variables are always ipped at eah iteration, sine a move is performed even if it redues thenumber of satis�ed lauses. Therefore, the entropy of the system would be just proportional to15where n is, as usual, the number of variables 25
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Figure 30: Single ip vs. multi-ip GSAT on an unsatis�able 3-SAT instane with 1000 variablesand 10000 lauses.� and it would not give indiations on the energy of the system. These onsiderations have beenalso experimentally on�rmed.Alternative order parameters should be de�ned, in order to hek if the optimal parallelism isalso linked to a phase transition. Nevertheless, we believe that suh a phase transition does notexist, sine we did not observe abrupt hanges in the behavior of PGSAT. Indeed, it is importantto observe that the algorithm we applied is more e�etive than simple hill limbing and simulatedannealing on SAT/MAXSAT instanes, therefore the abrupt hange in the behavior might besmoothed (as, indeed, is apparent from the plots in the previous setions).8.3 Improving loal searh performaneBesides the interest about the phenomenon itself, this kind of parallelization an be used toimprove loal searh, in whih it is possible to perform more than one loal move at a time.The intuition behind the e�etiveness of parallel loal moves is that multi-ip moves help toesape from loal minima and reah faster searh spae regions with low objetive value. Thisbehavior an be presumably explained by the fat that, at �opt, the distane between a state andits suessor, reahed after a multi-ip move, enables loal searh to ahieve the optimal trade-o�between intensi�ation and diversi�ation.16 This onjeture is supported by experimental resultsin [24, 23℄ and by experiments we performed on large (unweighted) MAXSAT instanes. Forexample, onsider Fig.30 where the initial iterations of PGSAT with single and multi-ips areompared. The algorithm is run on an unsatis�able 3-SAT instane with 1000 variables and 10000lauses, with � = 1 and � = 50. As we an note, the multi-ip version ahieves larger solutionimprovements than the single ip one in the same amount of time.Sine up to now theoretial results are still missing to ompute the optimal parallelism valuefor a given instane, we need an empirial method to tune � as lose as possible to �opt. The easiestway would be to run PGSAT for � = 1; 2; : : :, using a small uto� value and stop as soon as aminimum average error has been found. Nevertheless, this method is, in general, omputationallyexpensive, as it might require several runs before �nding �opt. Indeed, sine the algorithm isstohasti, several runs have to be performed before ahieving signi�ant statistis.We developed another method whih requires just one short run for every andidate for �opt.This method is based on the observation of solution improvements PGSAT ahieves during oneexeution. From a mathematial standpoint, our objetive is to �nd the minimum of a urve �(�)representing the average error � with respet to � . From the observation of experimental data,16We refer to the informal de�nition of intensi�ation as the greedy exploitation of searh history and diversi-�ation as the exploration of the searh spae. For a disussion on this topi, we forward the interested readerto [6℄. 26
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urve, thus further reduing the required number of iterations. Up to now, we have determinedthe near-optimal value of � by diretly observing the plotted data, but the development of anautomati proedure is subjet of urrent work.9 Related WorkThis work is inspired by work of Kau�man et al. on ritiality and parallelism [26, 24, 23℄ andMonte Carlo algorithms for NK-models [9℄. Even though not with the same objetive, otherworks deal with multiple ips in loal searh for SAT and MAXSAT problems. Yagiura andIbaraki [54℄ present a omputational study of r-ips neighborhoods (r = 2; 3). Parkes [34℄ onsidersthe parallelization of WalkSAT [27, 43℄ for 3-SAT instanes in the underonstrained region andobserves that parallel ips does not degrade the loal searh, indiretly on�rming our results.Indeed, in the underonstrained region the onnetivity is low, therefore the optimal parallelismis high. Finally, Strohmaier [46℄ disusses the implementation of GSAT on a multi-ip neuralnetwork and Milano and Roli [29, 28℄ present a general method for takling SAT with booleannetworks, expliitly onsidering the possibility of multi-ips loal searh algorithms.10 Conlusion and Future WorkIn this work, we �rst showed that for di�erent lasses of problems (random and strutured SAT,MAXSAT, lattie SAT) there is a value of � that optimizes the algorithm performane in termsof average solution quality. Furthermore, it has been disovered that, given a SATgraph, its on-netivity strongly a�ets the optimal value of �opt. In ase of onstant node degree and randominstanes, the higher the normalized onnetivity q, the lower �opt. In ase of small di�erenesamong instanes with the same onnetivity, we have onjetured that the �tness landsape or-relation provides a justi�ation for di�erenes in �opt. These results are in aordane with theprevious results found in the literature.Besides these experiments, the impat of SATgraph struture has been investigated by applyingPGSAT to strutured SAT instanes. In our experiments, we have observed that for struturesinstanes there exists an optimal value of � , as in the ase of random and onstant degree SATinstanes. Moreover, we have found lues for the dependene of �opt on the node degree frequeny,and in partiular on the frequeny peaks.The relation between graph onnetivity and multi-move loal searh is still to be deeplyunderstood. In fat, we have also outlined some limitations of the use of the SATgraph and moreaurate analyses are required. (For example, the use of di�erent kinds of graphs, suh as weightedgraphs, to apture the struture of the instanes and empirial analysis on k-SAT instanes, withk 6= 3.)There are very interesting open issues to explore, suh as the exploitation of graph propertiesto de�ne the subsets of strongly onneted variables (instead of dividing variables at random) andthe analytial study of onnetivity and optimal parallelism. Moreover, another interesting issueis the investigation of the relation between ritiality and parallelism and the introdution of noisein loal searh. Results of a preliminary study on this subjet are reported in Appendix B.Other harateristis of the graph assoiated with a SAT instane have to be studied, e.g.,variane of node degree, maximum and minimum degree, lustering fator and small-world prop-erties [51, 50, 47℄. The relation between these properties and multi-ip loal searh has still to beinvestigated. Moreover, the analysis of graph parameters is very important to understand algo-rithms strengths and weaknesses with respet to the instane they are takling and to optimizeparameters and heuristis.The appliation of the results of this paper goes beyond the simple empirial investigation of hilllimbing-like proedures. Algorithm other than GSAT might bene�t from multi-ips appliation,for example GWSAT [43℄ and WalkSAT, more e�etive on SAT than GSAT itself. We are urrentlyexploring di�erent ways of parallelizing loal searh, for example by probabilisti ips, suh that28
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Figure 32: Example of lattie graph. Eah node has 4 neighboring nodes.[49℄ J.P. Watson, L. Barbulesu, A.E. Howe, and L.D. Whitley. Algorithm Performane andProblem Struture for Flow-Shop Sheduling. In Proeedings of AAAI99, 1999.[50℄ D.J. Watts. Small Worlds: The Dynamis of Networks between Order and Randomness.Prineton University Press, 1999.[51℄ D.J. Watts and S.H. Strogatz. Colletive dynamis of 'small-world` networks. Nature, 393:440{442, 1998.[52℄ C. Williams and T. Hogg. Exploiting the deep struture of onstraint problems. Arti�ialIntelligene, 70:72{117, 1994.[53℄ R. Williams, C. Gomes, and B. Selman. Bakdoors to typial ase omplexity. In Proeedingsof IJCAI03, 2003.[54℄ M. Yagiura and T.Ibaraki. Analyses on the 2 and 3-ip neighborhoods for the MAXSAT.Journal of Combinatorial Optimization, 3:95{114, 1999.Appendix AIn this setion, we desribe the proedure used to generate onstant-degree k-SAT instanes.The starting graph is a lattie graph. Lattie graphs have a very regular topology and everynode is onneted to a �xed (usually quite small) number of neighbors. Examples of lattie graphsare ring latties (also alled yles) and hyperubes. For instane, a lattie graph in whih everynode has four neighbors is depited in Fig.32. Observe that the graph an be seen as a irularstruture with adjuntive links onneting neighbors at distane 2.One obtained the graph with the given topology, we have to assign variables to nodes andto generate the lauses of the formula. The �rst step an be ompleted very easily by assigningvariables in order: variable xi is assigned to node i, for i = 1; : : : ; n. The generation of lauses,i.e., of a formula that an be mapped into the given lattie graph, is a bit more omplex. First ofall, we remind that the graph assoiated to a SAT instane, as previously de�ned, orresponds toa set of SAT instanes. Therefore, it is important to de�ne a given struture for the formula. Ourhoie is to follow the usual experimental settings for random generated SAT instanes: 3-SATformulas with ontrolled ratio m=n, where n is the number of variables and m the number oflauses.In the following, we desribe the algorithm to generate 3-SAT instanes with given ratio m=non a lattie graph. The generalization of the algorithm to k-SAT instanes is straightforward. Thehigh level algorithm is desribed in Alg.3. The algorithm is strutured in two phases. In the �rstphase, a minimal set of lauses is generated to obtain a formula that an be represented by thegiven lattie graph. In the seond phase, the additional required number of lauses is generated byadding lauses randomly hosen from the �rst set and by randomly hanging the sign of literals.In the �rst phase, lauses of three literals are onstruted, by taking in turn eah variable as apivot and adding two subsequent variables (see Fig.33 and Fig.34). In order to avoid repetitions32



x1

x8

x7

x6

x5

x4

x3

2x

Figure 33: Constrution of the �rst lauseinvolving variable x1.
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Figure 34: Constrution of the seond lauseinvolving variable x1.
x1

x8

x7

x6

x5

x4

x3

2x

Figure 35: Constrution of the third lauseinvolving variable x1. The pivot is variablex6.
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Figure 36: Constrution of the fourth lauseinvolving variable x1. The pivot is variablex7.
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Algorithm 3 Generation of a 3-SAT instane on a lattie graphINPUT: n, m,  f is the number of neighborsgOUTPUT: 3-SAT formula � = fC1; : : : ; Cmg with n variables and m lauses assoiated to alattie graph with n nodes with  neighbors eah.Build a lattie graph G(n; ) (on a irle) with n nodes with  neighbors eah;Assign variables (lokwise) to nodes;� ;for i = 1 to n� 1 doThe neighbors of xi are N+ = fxi+1; : : : ; xi+=2g (mod n) and N� = fxi�1; : : : ; xi�=2g(mod n);for eah pair xj ; xj+1 in N+ doConstrut the lause C = xi _ xj _ xj+1Negate eah variable in C with probability 0.5;� � [ Cend forend forfNow the number of lauses is j�j = n(=2� 1) gwhile j�j < m dorepeatPik randomly a lause C 0 in �;Negate eah variable in C 0 with probability 0.5;until a new lause C 0 is generated� � [ C 0end whileof lauses, for every variable xi only subsequent variables xj ; j > i (modulo n) are onsidered.Indeed, given the symmetry of the graph, the lauses involving the symmetri part of neighborswill be generated by using those neighbors as pivot (see Fig.35 and Fig.36).A omplete example of a lattie-3-SAT instane with n = 6,m = 12 and nodes with 4 neighborsis the following:� = f(:x1 _x2_x3); (x2 _:x3_x4); (:x3 _x4_x5); (:x4 _:x5 _x6); (x5_x6 _x1); (x6 _x1 _x2); (:x5_x6_:x1); (x3_x4_:x5); (:x5_x6_x1); (x2_x3_:x4); (x6_:x1_x2); (:x2_x3_x4)g.
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Figure 37: Comparison of the average error(number of unsatis�ed lauses) of the four al-gorithms run on random instanes (one for eahsize). Results are averaged over 1000 trials. Figure 38: Suess rate of the four algorithmsrun on random instanes (one for eah size). Re-sults are averaged over 1000 trials.Appendix BConerning ritiality and parallelism and noise, we performed preliminary experiments on theombination of PGSAT with GWSAT, whih is the ombination of GSAT and `random walk'.With a prede�ned probability wp, instead of performing a GSAT move, an unsatis�ed lause israndomly hosen and a variable within it is seleted at random to be ipped. In [43℄ it is shownthat the introdution of noise enables the searh to esape from on�ned areas of the searh spaeand produes a more robust and eÆient algorithm than GSAT. Our purpose was to test whetherparallel moves and noise onit or ombine their positive e�ets18.The algorithm we implemented, PGWSAT, is the ombination of PGSAT and random walk:with probability wp, a repairing move is performed and with probability 1� wp, a usual PGSATmove is taken. The optimal value for both wp (noise) and � (parallelism) have been tuned as if thestrategies were run independently. The results reported in Fig.39 show that PGWSAT behaves inthe same way as PGSAT19. Furthermore, very interesting is the performane of PGWSAT, whihoutperforms GSAT, PGSAT and GWSAT both in terms of average solution quality and suessrate, as shown in Fig.37 and Fig.38.

18I thank Holger Hoos for suggesting me to explore in this diretion.19At least, for random instanes. 35
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Figure 39: Average error (number of unsatis�ed lauses) and fration of solved instanes (resaledwhen neessary) vs. parallelism (�) for random 3-SAT instanes with 20; 50; 100; 150; 200 and 250variables. Results are averaged over 1000 trials.
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