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1 Introduction

The impact of problem structure on search is a relevant issue in AI research
and related areas. This topic has been recently received more attention,
due to the following reasons: (i) real-world problems are often more dif-
ficult to solve than random generated problems of the same size and (ii)
results obtained by applying statistical mechanics techniques (such as phase
transition analysis [3]) have shown a strong correlation between search ef-
fectiveness and some critical parameters of the instances at hand.

In this work we investigate the relation between some SAT/MAXSAT
instance features and the behavior of local search. We will define struc-
tural features on the basis of a constraint graph associated to the instances
and in particular we will deeply investigate the impact of the node degree
frequency on the behavior of multi-move local search —also known as par-
allel local search, as more than one local move is applied synchronously at
each iteration. This work is inspired by a phenomenon called criticality and
parallelism, first discovered in combinatorial optimization problems such as
the TSP and NK-models [6]. The main result is that increasing parallelism
leads to better solutions, but up to a degree at which the solution quality
degrades. Moreover, the optimal parallelism is negatively correlated with
the system connectivity.

∗This paper is a summary of the paper titled Problem structure and multi-move local

search: Results achieved and lines for further research, available as IRIDIA technical re-
port TR/IRIDIA/2004/24.01 (www.lia.deis.unibo.it/∼aro/pubs/critpar sat.ps) an
improved version of which is going to be submitted to a journal.
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In this work, we present an empirical analysis to investigate whether
and under which hypotheses a similar phenomenon can be observed also
in satisfiability problems (both the satisfiability problem —SAT— and the
maximal satisfiability problem —MAXSAT). We first address the issue of re-
lating SAT instances with graphs with the aim of defining general structural
parameters of the instances. Then we present results of the ‘parallelization’
of local search on random 3-SAT instances. We show that there exists an
optimal value of parallelism which drives local search to achieve an opti-
mal performance in terms of average solution quality. We also observe that
the optimal parallelism is negatively correlated with a structural parame-
ter of the graph, namely the average node degree. These results hold both
for SAT and MAXSAT instances. Furthermore, we extend our analysis to-
ward structured SAT instances, characterized by an irregular node degree
frequency.

2 Criticality and parallelism in combinatorial op-

timization

The criticality and parallelism phenomenon has been observed in the context
of local search algorithms applied to combinatorial optimization problems [6,
5, 4]. Local search strategies start from a candidate solution and iteratively
perform small changes to it with the goal to eventually find a (near-)optimal
solution. In [6, 5, 4], local search is modified by applying some local moves
in parallel.1

It has been shown that the effectiveness of these algorithms depends on
the parallelism degree τ (number of simultaneous moves): if τ increases, the
solution quality also increases up to a maximal point (corresponding to τopt)
at which it starts to decrease. It has also been shown that τopt is negatively
correlated with the average node degree: the higher the degree, the lower
τopt. This result can be explained by observing that the node degree gives
a rough estimation of the level of constraint tightness in an instance: The
higher the average node degree is, the more tightly the variables are con-
nected. In [6, 5, 4] it is also shown that the optimal parallelism value is
associated to a phase transition, hence the term criticality.

3 Structure of Satisfiability Problems

SAT belongs to the class of NP-complete problems [2] and can be stated
as follows: given a set of clauses, each of which is the logical disjunction of

1The considered algorithms have been implemented sequentially. “Parallel moves” are
used with the meaning of “synchronous moves”. Anyhow, these results could be beneficial
also for implementations on parallel architectures.
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Figure 1: Interaction graph associated to the SAT instance (a ∨ ¬b) ∧ (b ∨
d) ∧ (c ∨ ¬d ∨ ¬e). Note that one interaction graph corresponds to a set of
formulas, therefore it just represents essential interactions among variables.

k > 2 literals2, we ask whether an assignment to the variables exists that
satisfies all the clauses. MAXSAT is a NP-hard problem and can be stated
as follows: given a set of clauses, the objective is to find an assignment to
the variables such that it maximizes the number of satisfied clauses3.

For SAT instances the interaction graph [8] can be defined, in which
nodes correspond to variables and an edge connects two nodes if the cor-
responding variables appear in a same clause (see Fig. 1). Note that other
representations are possible, that capture different aspects of problem struc-
ture; for instance, a bipartite graph can be defined that represents both lit-
erals and clauses as nodes and edges connect literals to the clauses involving
them.

The shift from a problem model to its representation via graphs enables
us to relate graph properties and characteristics with structural properties
of problem instances.

4 Criticality and parallelism in SAT

A phenomenon with analogous characteristics with the one introduced in
Sec. 2 has been discovered in parallel local search for SAT [9, 13, 11, 10, 12],
in which a parallel version of local search has been applied to both random
and structured instances of SAT and its optimization version MAXSAT.

The algorithm used in those studies is a variant of GSAT [14], a greedy
local search designed for attacking SAT.4 GSAT starts from a random as-
signment and looks for a better one by moving from one state to another

2given a boolean variable, the literal is the variable or its negation
3If weights are associated to clauses, the objective is to maximize the weighted sum of

satisfied clauses. In this case, the problem is called Weighted MAXSAT.
4GSAT has been chosen since the previous results on criticality and parallelism were

obtained by applying a (quite simple) local search characterized by a strong hill climbing
tendency.
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one in its neighborhood (defined as the set of states at Hamming distance
equal to 1). Given a current state, the next state is chosen by flipping the
variable that, if flipped, leads to the greatest gradient in the number of sat-
isfied clauses. This algorithm can be easily extended to a multi-move local
search by dividing the variables in τ subsets and flipping one variable of
each subset according to the GSAT flip criterion. The effect of a variable
flip on the objective function value is evaluated as if it were the only one to
change, so flips are taken as if they were performed in parallel. In our exper-
iments, the subsets of variables are randomly constructed at the beginning
of each local search step. If n is the number of variables, the number of
subsets corresponds to the parallelism degree τ and the cardinality of each
subset is n/τ5. This choice is aimed at having a uniform sample of the av-
erage behavior, rather than providing the best subdivision for the instance
at hand.

For random instances, it has been experimentally shown that the best
performance is achieved with an optimal parallelism degree τopt that is mono-
tonically non increasing with the average node degree of the graph associ-
ated to the instance attacked. A typical example is depicted in Fig.2. The
plot shows the average best solution (evaluated as the number of unsatisfied
clauses) returned by Parallel GSAT (PGSAT) run with varying number of
parallel flips (from 1 to 20 variable flips per move). We can observe that
the average best solution curve has a minimum corresponding to a partic-
ular value of τ , that is instance dependent. The instance property that
affects τopt is the average node degree of the graph associated to the boolean
formula. Fig.3 reports the plot capturing the empirical relation between
average node degree and optimal parallelism in the case of random 3-SAT
instances. As we can note, τopt is monotonically non-increasing with the
average “connectivity” among nodes.

A very interesting interpretation of the data can be obtained by plotting
the optimal parallelism against the average node degree on a log-log plot, as
shown in Fig.4. We can note a linear relation6 that can be interpreted as a
sign of a power law. Power law is typical of systems in critical state [1] and
it is extremely interesting to note that in [5] it has been conjectured that
the optimal parallelism is achieved when the system is in the critical state.
Therefore, our results on random 3-SAT can give support to this conjecture.

The analysis of the node degree frequency of the graphs associated with
SAT/MAXSAT instances is also particularly informative. The node degree
frequency of the random SAT instances is regular (it approximately fits the
Gaussian distribution) and the highest peaks are distributed around the
mean (see Fig.5). Therefore, the average node degree can be used as a key

5More precisely, all subsets have equal cardinality, except for one which contains τ +
n mod τ variables.

6The correlation coefficient r
2 is 0.8484 and the line slope is −0.85
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Figure 2: Average error (number of unsatisfied clauses) vs. τ . Random
MAXSAT instances with 50,100,200 variables and 218,430,860 clauses re-
spectively. Results are averaged over 10000 runs.
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Figure 3: τopt vs. normalized av-
erage node degree.
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Figure 4: τopt vs. normalized av-
erage node degree in logarithmic
scale. Data are fitted by means
of a linear regression: r2 = 0.8484
and slope = −0.85.
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Figure 5: Frequency vs. nor-
malized node degree in a random
3SAT instance with 1650 vari-
ables. The normalized average
node degree is 0.0239.
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Figure 6: Frequency vs. normal-
ized node degree in the instance
ii16a1 that encodes an inductive
inference problem. The instance
has 1650 variables and. The nor-
malized average node degree is
0.0239.

parameter for relating instance and τopt.
Conversely, structured instances, deriving from real-world problems such

as circuit testing or planning, have in general a more spread and non-uniform
degree frequency. For instance, Fig.6 shows the node degree frequency of a
SAT instance encoding an inductive inference problem.7 This asymmetric
and non-Gaussian distribution strongly affects the algorithm performance
as a function of τ . In particular, the location of the highest peaks in the
frequency turns out to be the most relevant characteristic influencing the
optimal parallelism τopt, i.e., the degree corresponding to the highest peaks
is the parameter that mainly affects the actual value of τopt. For example, we
report the case of the behavior of PGSAT on the aforementioned instances,
which have the same average normalized node degree q = 0.0239, but dif-
ferent node degree frequency. Fig.7 and Fig.8 show the average and median
error (number of unsatisfied clauses) respectively on the random instance
(3sat1650 q-const) and the structured one (ii16a1 ) for PGSAT with differ-
ent values of τ . Results are averaged over 500 trials. We observe that also
for the structured instance there exists an optimal value of τ . Nevertheless,
despite the fact that the two instances have the same average connectiv-
ity, the optimal parallelism is higher for ii16a1 than for 3sat1650 q-const .
ii16a1 has, indeed, a high peak close to 0.018 < q.

7Instance retrieved from www.satlib.org
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Figure 7: Average and median er-
ror against τ for PGSAT on the
instance 3sat1650 .
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Figure 8: Average and median er-
ror against τ for PGSAT on the
instance ii16a1 .

5 Conclusion

In this work, we first showed that for different classes of problems (ran-
dom and structured SAT, MAXSAT, lattice SAT) there is a value of τ that
optimizes the algorithm performance in terms of average solution quality.
Furthermore, it has been discovered that, given an interaction graph, its
node degree strongly affects the optimal value of τopt. In case of random
instances, the higher the normalized average node degree q, the lower τopt.
These results are in accordance with the previous results found in the liter-
ature. Besides these experiments, the impact of the interaction graph has
been investigated by applying PGSAT to structured SAT instances. In our
experiments, we have observed that for structured instances there exists an
optimal value of τ , as in the case of random and constant degree SAT in-
stances. Moreover, we have observed that τopt depends on the node degree
frequency, and in particular on the frequency peaks.

The relation between node degree and multi-move local search is still to
be fully understood. In fact, there are some limitations in the use of the
interaction graph and more accurate analyses are required. For example, we
believe it is important to consider also the use of different kinds of graphs,
such as weighted graphs, to capture the structure of the instances and also
a thorough empirical analysis has to be performed on k-SAT instances, with
k 6= 3. Furthermore, we can not definitely conclude that the phenomenon is
exactly the same found in [7] mainly because in our case it is not possible
to define the same parameter defined therein to check for the occurrence of
a phase transition.

7



References

[1] P. Bak. How Nature Works: The Science of Self-Organized Criticality.
Copernicus, 1996.

[2] M. R. Garey and D. S. Johnson. Computers and intractability; a guide
to the theory of NP-completeness. W.H. Freeman, 1979.

[3] T. Hogg, B. A. Huberman, and C. P. Williams. Phase transitions and
the search problems. Artificial Intelligence, 81(1–2), 1996. Special issue
on Phase Transitions and Search Problems.

[4] S. A. Kauffman. At home in the universe. Oxford University Press,
New York, 1995.

[5] S. A. Kauffman and W. Macready. Technological evolution and adaptive
organizations. Complexity, 26(2):26–43, March 1995.

[6] W. G. Macready and S. A. Kauffman A. G. Siapas. Criticality and
parallelism in combinatorial optimization. Science, 271:56–59, January
1996.

[7] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in
local search. In Proceedings of AAAI97/IAAI97, pages 321–326, Menlo
Park, 1997. AAAI Press.

[8] I. Rish and R. Dechter. Resolution versus search: Two strategies for
SAT. J. Automated Reasoning, 24:225–275, 2000.

[9] A. Roli. Criticality and parallelism in GSAT. Electronic Notes in Dis-
crete Mathematics, 9, 2001.

[10] A. Roli. Criticality and parallelism in structured SAT instances. In
P. Van Henteryck, editor, Proceedings of CP02 - Eighth International
Conference on Principles and Practice of Constraint Programming,
volume 2470 of Lecture Notes in Computer Science, pages 714–719.
Springer, 2002.

[11] A. Roli. Impact of structure in parallel local search for SAT. In SAT
2002 – Fifth International Symposium on the Theory and Applications
of Satisfiability Testing, Cincinnati, Ohio, USA, 2002.

[12] A. Roli. Problem structure and search: Empirical results and open ques-
tions. In Proc. of CP-AI-OR’03 – Fifth Int. Workshop on Integration
of AI and OR techniques in Constraint Programming for Combinatorial
Optimization Problems, Montreal (Canada), 2003.

8



[13] A. Roli and C. Blum. Critical Parallelization of Local Search for MAX–
SAT. In F. Esposito, editor, AI*IA2001: Advances in Artificial Intel-
ligence, volume 2175 of Lecture Notes in Artificial Intelligence, pages
147–158. Springer, 2001.

[14] B. Selman, H. J. Levesque, and D. Mitchell. A new method for solving
hard satisfiability problems. In Paul Rosenbloom and Peter Szolovits,
editors, Proceedings of AAAI92, pages 440–446, Menlo Park, California,
1992. American Association for Artificial Intelligence, AAAI Press.

9


