
Contemporary SOA and
Web Services

Ing. Nicola Zaghini
nicola.zaghini@unibo.it

may 2006

Outline
SOA

Service orientation principle

Architecture

Web Services
Proposal & framework

Service role

Service description (WSDL)

SOAP messaging framework

WS-Addressing

WSDL: which style?

Message exchange patterns
Overview on SOA Platform (J2EE)

SOA introduction
SOA is Service Oriented Architecture

Web Services and SOA are related but
independent ...

SOA calls for new paradigms for
design and programming software
systems

why we need new paradigm?

--> follow the example

SOA introduction
Which domain? which model?

Gestione ODT

LSU:
• Gestione siti, localizzazione.
• Inserimento/importazione ODT.

Calcolo MDT

LSM:
• Tipi di materiale (STD), compatibilità.
• Tipi di mezzo (STD).
• Gestione dinamica dei cluster.
• Raggruppamento (manuale e automatico) di ODT

in pacchetti -> generazione MDT.

Lista ODT !

" MDT assegnate al tipo di mezzo

Gestione flotta

TSP:
• Inserimento/importazione MDT.
• Mezzi, tipi di mezzo, accessori.
• Storia dei mezzi.
• Calendario degli impegni dei mezzi.
• Listino.
• Calcolo automatico dei costi delle MDT.
• Pianificazione (manuale e automatica) dei mezzi

a disposizione e assegnamento della MDT al
mezzo.

• Gestione delle distanze note.

Broker dei trasporti

LSM:

• Listini concordati con i TSP.

Calcolo Giri

AUTOMATICO:

• Calcolo del percorso minimo in termini di
chilometri, tempo, altri parametri.

• Gestione delle distanze note.

MDT assegnate al tipo di mezzo

$ Lista TSP più convenienti

MDT assegnate
al tipo di mezzo

Singolo ODT

Richiesta
preventivo

Richiesta
stato MDT

$ Avanzamento MDT
$ Invio listino

Richiesta valorizzazione

MDT !

" Percorso ottimale

MDT !

" Percorso ottimale

Richiesta distanze tra siti !

" Distanze tra siti

Richiesta
distanze tra

siti # Distanze
tra siti $

WS Geografico

$ Preventivo

SOA analogy
think about average cosmopolitan city full of
business company

each company represent a service-oriented
business -> service provided to multiple
consumer

collectively they are a business community

it make sense not have a single business
outlet providing all services

we achieve an environment with distributed
outlets

SOA analogy
Service-oriented architecture

a model in which automation logic is
decomposed into smaller, distinct units of
logic

collectively this units comprise a large
piece of business automation logic
(individually can be distributed)

BUT We wont to

self-governing individual services ->
independence between services (relatively)

MUST ensure that they adhere to certain
baseline conventions

Service orientation
Principle/1:

interoperability - of course

service contract - communication
agreement

loose coupling - minimize dependencies,
awareness of each other

abstraction - hiding logic form outside

autonomy - over the logic they
encapsulate

Service orientation
Principle/2:

composability - collection coordinated to
form composite service

reusability - logic divided into services
to promote reuse

statelessness - minimize retaining info

discoverability - assessed by discovery
mechanism

which technology platform??

Web-Service! but carefully (how)

SOA vs Internet Arch.
Client-server architecture vs. SOA

single-tier

two-tier

Distributed internet architecture vs. SOA

RPC connection between components

Hybrid Web Services architecture vs. SOA

wrapper encapsulating components

object orientation

SOA Architecture

SOA Service
Service as a unit of logic within a
context

service has a description

loosely coupled relation

we need messaging framework

message as “independent units of
communication”

SOA KEYs: Services, Descriptions and
Messages

The proposal of WS

“Web Services provide a standard
means of interoperating between
different software application on a
variety of platforms and frameworks”

... Web Services Architecture W3C
working group

they focus on Interoperability!

What is a Web Service?
“WS is a software system designed to
support interoperable machine-to-
machine interaction over a network
[..] using SOAP messages”

“WS is an abstract notion that must
be implemented by a concrete agent
[..] the agent is the concrete piece
of software that send and receive
messages”

the agent may or not be the service

Web services framework
Web services framework is flexible
and adaptable -> large in scope

Characterized by/1:

an abstract (vendor-neutral) existence
defined by standard implemented by
(proprietary) technology platform

core building block that include Web
services, service descriptions and
messages

service description based on WSDL

Web services framework

Characterized by/1:

messaging framework comprised of SOAP
technology and concept

service description registration and
discovery (UDDI)

architecture that support message pattern

WS-* specifications

Service

Services as application logic
provider = implement a real world
business functionality

Service role (runtime classification)

depending on its processing
responsibility in a given scenario
(initiator - relayer - recipient of a
message)

Service role
Service provider role

is invoked via an external source

publish a service description (WSDL)

Service role
Service requester role

invoke a service provider by sending msg

search the most suitable service provider
studying available service descriptions

Service role
Service intermediator role

also service and provider role for
forwarding to destination

passive: without altering content

active: process and alter message
content, typically will lock for a
particular SOAP header

e.g.: policy rule, load balancing, ...

Service composition (member)

Orchestration & choreography

Service Models
Service classification based on the
nature of the application logic
provided

Business service model: encapsulate a
distinct set of business logic, is full
autonomous but not limited to executing in
isolation

Utility service model: a generic web
service designed for potential reuse -
generic and non-application specific nature

Controller service model: assembly and
coordination of services

Service Description
Service Description as “contract” that
can be used to build and validate
messages

what kind of operation can I invoke
on service X? - requester role

what kind of operation/request can I
accept? - provider role

WSDL Web Service Description Language

Service Description

Service Description

WSDL - Web Server Description Language

Abstract description

interface characteristic without
technology reference

Concrete description

connection to some real, implemented
technology

Service Description

WSDL
Abstract Description - high level view
of the service

definition - root element declaring
namespace

types - where XML Schema is placed, to
simple data to complex business document

example -> echo and ping operations

WSDL
Abstract Description

messages designed to receive or transmit

<wsdl:message name="echoRequestMessage">
<wsdl:part name="part1" element="ns1:echoRequest"/>

</wsdl:message>

<wsdl:message name="echoResponseMessage">
<wsdl:part name="part1" element="ns1:echoResponse"/>

</wsdl:message>

<wsdl:message name="pingRequestMessage">

<wsdl:part name="part1" element="ns1:pingRequest"/>
</wsdl:message>

<wsdl:types>

 <xs:schema targetNamespace="http://org.apache.axis2/xsd"
 elementFormDefault ="unqualified" attributeFormDefault="unqualified">

 <xs:element name="pingRequest">

 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:anyType" name="element"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="echoRequest">

 <xs:complexType>

 <xs:sequence>
 <xs:element type="xs:anyType" name="element"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="echoResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:anyType" name="return"/>
 </xs:sequence>

WSDL

WSDL
Abstract Description - high level view
of the service

portType (collection of) -> operation

<wsdl:portType name="MyServicePort">
<wsdl:operation name="echo">

<wsdl:input message="tns:echoRequestMessage"/>
<wsdl:output message="tns:echoResponseMessage"/>

</wsdl:operation>

 <wsdl:operation name="ping">

<wsdl:input message="tns:pingRequestMessage"/>
</wsdl:operation>

</wsdl:portType>

operation is not a method mapping

WSDL
Concrete Description

binding -> concrete binding to SOAP

<wsdl:binding name="MyServiceBinding" type="tns:MyServicePort">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
<wsdl:operation name="echo">

<soap:operation soapAction="echo" />
<wsdl:input>

<soap:body use="literal" namespace="http://www.org.apache.axis2"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal" namespace="http://www.org.apache.axis2"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding> explained

later

WSDL
Concrete Description

service -> physical address at which access
service

port -> location information

<wsdl:service name="MyService">

<wsdl:port name="MyServicePortType0"
 binding="tns:MyServiceBinding">

<soap:address location="http://localhost:8080/MyService"/>

</wsdl:port>
</wsdl:service>

WSDL Semantic (pills)

...and what about semantic

how a service behaves under certain conditions

how service will respond to specific conditions

what specific tasks the service is most suited
for

OWL - OWLS (think about)

no standardized solution yet

UDDI (pills)

Service description advertisement and
discovery

UDDI V2.0 specifications approved as an OASIS Standard

Not yet commonly implemented

SOAP
Messaging Framework Specification

Simple Object Access Protocol

originally designed to replace
proprietary RPC protocols ->
serialization of object

now the purpose is to define a standard
message format !!!

extremely flexible and extensible

The RPC-Style messages are deprecated

not SOA oriented

SOAP
Each message packaged in ENVELOPE

Header - area dedicated to hosting meta
information --> WS-*

Body - XML formatted data, is the message
payload

Message have high level of
independence --> robustness and
extensibility

Fundamental in a loosely coupled env.

SOAP
The SOAP Nodes

sender

receiver

intermediary

initial

ultimate

Remember the model!!

SOAP & WSDL
Processing of SOAP message using concrete
definition

WS-* extensions
WS-Addressing

standardize the representation of service endpoint
locations and unique correlation values that tie together
request and response exchanges

Relation to other WS-* extensions

WS Addressing
Endpoint reference element

assist in providing service interface
information

Message Information Header element

WS Addressing
Case Study

WS Addressing

Which style of WSDL
should I use?

In relation to WSDL binding to SOAP

RPC/encoded

RPC/literal

Document/encoded

Document/literal

Following the example

myMethod operation with parameters
 (integer x, float y)

Which style of WSDL
should I use?

RPC/encoded - void myMethod(int x, float y)
WDSL

<message name="myMethodRequest">
 <part name="x" type="xsd:int"/>
 <part name="y" type="xsd:float"/>
</message>

<portType name="PT">
 <operation name="myMethod">
 <input message="myMethodRequest"/>
 </operation>
</portType>

<binding .../>

SOAP

<soap:envelope>
 <soap:body>
 <myMethod>
 <x xsi:type="xsd:int">5</x>
 <y xsi:type="xsd:float">5.0</y>
 </myMethod>
 </soap:body>
</soap:envelope>

overhead

op. name

not WS-I compliant

Which style of WSDL
should I use?

RPC/literal - void myMethod(int x, float y)
WDSL

<message name="myMethodRequest">
 <part name="x" type="xsd:int"/>
 <part name="y" type="xsd:float"/>
</message>

<portType name="PT">
 <operation name="myMethod">
 <input message="myMethodRequest"/>
 </operation>
</portType>

<binding .../>

SOAP

<soap:envelope>
 <soap:body>
 <myMethod>
 <x >5</x>
 <y >5.0</y>
 </myMethod>
 </soap:body>
</soap:envelope> op. name

WS-I compliant

Which style of WSDL
should I use?

Document/literal

WDSL

<types>
 <schema>
 <element name="xElement" type="xsd:int"/>
 <element name="yElement" type="xsd:float"/>
 </schema>
</types>

<message name="myMethodRequest">
 <part name="x" element="xElement"/>
 <part name="y" element="yElement"/>
</message>

SOAP

<soap:envelope>
 <soap:body>

 <xElement>5</xElement>
 <yElement>5.0</yElement>
 </soap:body>
</soap:envelope>

not WS-I compliant

WDSL

<types>
 <schema>
 <element name="xElement" type="xsd:int"/>
 <element name="yElement" type="xsd:float"/>
 </schema>
</types>

<message name="myMethodRequest">
 <part name="x" element="xElement"/>
 <part name="y" element="yElement"/>
</message>

XML-Schema
op name?

Which style of WSDL
should I use?

Document/literal wrapped
WDSL

<types>
 <schema>
 <element name="myMethod">
 <complexType>
 <sequence>
 <element name="x" type="xsd:int"/>
 <element name="y" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 </schema>
</types>

<message name="myMethodRequest">
 <part name="parameters" element="myMethod"/>
</message>

SOAP

<soap:envelope>
 <soap:body>

 <myMethod>
 <x>5</x>
 <y>5.0</y>
 </myMethod>

 </soap:body>
</soap:envelope>

XML-Schema

WS-I compliant

SOAP action

WSDL binding SOAP
Concrete Description

binding -> concrete binding to SOAP

<wsdl:binding name="MyServiceBinding" type="tns:MyServicePort">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
<wsdl:operation name="echo">

<soap:operation soapAction="echo" />
<wsdl:input>

<soap:body use="literal" namespace="http://www.org.apache.axis2"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal" namespace="http://www.org.apache.axis2"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding> explained

now

MEPs
message exchange patterns

Interaction between services

as result of engineering interaction

A group of already mapped out
sequence for the exchange of messages

Simple MEPs as building block for
Complex MEPs

MEPs
message exchange patterns

Primitive MEPs

request-response

correlation concept

define synchronous communication (also
asynchronous)

fire and forget

single destination - multicast -
broadcast

MEPs
message exchange patterns

Primitive MEPs

MEPs
message exchange patterns

Complex MEPs --> e.g.: publish-and-subscribe

MEPs
message exchange patterns

Blocking or not blocking ?

only for request-response pattern

in a dual transport like Http is a
client matter -> but Long Time
Transaction?

two separate transport connection for
request and response is a client and
service matter --> WS-*

WS-Addressing (later)

MEPs And WSDL
In WSDL 1.1 terms

Request-Response -> WS-I ok

Solicit-Response -> WS-I ok

One-way operation -> WS-I ko

Notification Operation -> WS-I ko

WS-I delivers practical guidance, best practices
and resources for developing interoperable Web
services solutions. http://www.ws-i.org/

MEPs And WSDL
In WSDL 2.0 terms

In-out pattern = Request-Response

out-in pattern = Solicit-Response

In-only pattern = One-way operation

Out-only pattern = Notification Operation

Robust in-only -> fault message from receiver
are allowed

In-optional-out pattern -> the response is
optional

SOA Platform
Basic platform building block

SOA Platform
Common SOA platform layer

SOA Platform

Service Processing
task

Service provider are expected to

supply a public interface (WSDL)

receive a SOAP message from requester

processing the header block within SOAP m.

validate and parse payload of SOAP m.

transform payload in a different format

encapsulate business processing logic

Service Processing
task

Service provider are expected to

assemble SOAP message containing the
response to the original request SOAP

WS-Addressing and correlation

transform the contents of the message back
into the form expected by the requestor

transmit the response SOAP

Service Processing
task

Service requester are expected to

contain business processing logic that
calls a service provider

interpret a service provider’s WSDL
definition

assemble a SOAP request in compliance with
service provider WSDL definition

trasmitt SOAP request message to service
provider

Service Processing
task

Service requester are expected to

receive a SOAP response message

validate and parse the SOAP response

transform payload in a different format

process SOAP header block

Service Processing
task

Service provider

Service Processing
task

Service requester

SOA support in J2EE

SOA support in J2EE
!•! Java API for XML Processing (JAXP) This API is used to process XML document content

using a number of available parsers. Both Document Object Model (DOM) and Simple API for XML
(SAX) compliant models are supported, as well as the ability to transform and validate XML
documents using XSLT stylesheets and XSD schemas.!

!•! Java API for XML-based RPC (JAX-RPC) The most established and popular SOAP
processing API, supporting both RPC-literal and document-literal request-response exchanges
and one-way transmissions. Example packages that support this API include:

!•! Java API for XML Registries (JAXR) An API that offers a standard interface for accessing
business and service registries. Originally developed for ebXML directories, JAXR now includes
support for UDDI.

!•! Java API for XML Messaging (JAXM) An asynchronous, document-style SOAP messaging
API that can be used for one-way and broadcast message transmissions (but can still facilitate
synchronous exchanges as well).

!•! SOAP with Attachments API for Java (SAAJ) Provides an API specifically for managing
SOAP messages requiring attachments. The SAAJ API is an implementation of the SOAP with
Attachments (SwA) specification.

!•! Java Architecture for XML Binding API (JAXB) This API provides a means of
generating Java classes from XSD schemas and further abstracting XML-level development.

!•! Java Message Service API (JMS) A Java-centric messaging protocol used for traditional
messaging middleware solutions and providing reliable delivery features not found in typical
HTTP communication.

SOA Platform

SOA Platform

Bibliography
Web Service Architecture W3C working
group

http://www.w3.org/TR/ws-arch

Service-Oriented Architecture
Concept, Technology, and Design

Thomas Erl - Prentice Hall PTR

Some article from
http://www-128.ibm.com/developerworks/webservices

