
An Agent-Oriented Programming Model for SOA & Web Services
Alessandro Ricci, Member, IEEE,

Claudio Buda, Nicola Zaghini

Abstract— More and more Service-Oriented Architecture
(SOA) is recognized by the industries as the reference blueprint
for building interoperable and flexible distributed Enterprise
applications, based on open standards such as Web Services (WS).
In the state-of-the-art, the programming models for engineering
SOA systems proposed by leading industries are essentially
component-based, typically based upon Object-Oriented abstrac-
tions and technologies. In this paper we claim that such a
choice does not provide the suitable level of abstraction to
capture as first-class concepts some aspects that are considered
essential in modern SOA, such as autonomy, uncoupling, data-
oriented interaction and coordination. Such features instead
can be modelled quite naturally by adopting an agent-oriented
perspective. In this paper, we first discuss the adoption of an
agent-oriented SOA programming model, based in particular on
a conceptual model called A&A (Agents and Artifacts), and then
we introduce simpA-WS, a first technology that supports the
development of Web-Service applications designed upon such a
programming model.

I. INTRODUCTION

Nowadays Web Services (WS) represent the reference
standard technologies for setting up distributed systems that
need to support interoperable machine-to-machine interaction
between heterogeneous applications distributed over a network
[16]. In that context, Service-Oriented Architecture (SOA) ap-
pears to be more and more the reference software architecture
promoted by leading industries—IBM, Microsoft, Sun, IONA,
Bea, to cite few ones—as a blueprint for organizing, designing
and building distributed enterprise applications based WS open
set standards [4], [6].

Generally speaking, SOA can be defined as an open, agile,
extensible, federated, composable architecture comprised of
autonomous, QoS-capable, vendor diverse, interoperable, dis-
coverable, and potentially reusable services [6]. From a soft-
ware architecture perspective, SOA defines the use of loosely
coupled software services to support the requirements of the
business and software users, making it available resources on a
network as independent services that can be accessed without
the knowledge of their underlaying platform implementation.
From a information systems perspective, SOA enables the
creation of applications that are built by combining loosely
coupled and interoperable services. Despite of the specific
perspective, it is quite apparent that SOA and in particular
SOA based on Web Services are going to be adopted by the
industries as the reference choice for building interoperable
distributed systems.

A. Ricci is with the DEIS Department, Universitá di Bologna, Sede di
Cesena.

C. Buda and N. Zaghini are with the apiCE lab, Seconda Facoltá di
Ingegneria, Cesena

From an engineering point of view, a key point here is the
programming model adopted for building SOA applications.
SOA per-se is not committed to any specific programming
model: the ones promoted by leading software vendors are
essentially component-based. Such a choice, besides all the
well-known benefits that are brought by component-oriented
software engineering, apparently does not provide the suitable
level of abstraction to deal with some essential properties
that are a requirement of SOA systems, namely autonomy,
loose coupling, strong encapsulation, and message-based in-
teractions. For this purpose, in this paper we consider the
opportunity to define a SOA programming model based on
agent-oriented abstractions, which make it possible to deal
with such requirements in a quite effective and natural way.

Actually, in the research context Agents and Multi-Agent
Systems (MAS) have already been widely recognised as a
suitable approach in general for engineering complex, flexible
and intelligent Service-Oriented applications, suitably integrat-
ing and exploiting research outcomes resulting from contexts
such as Semantic Web and Artificial Intelligence [8]. In this
paper instead we explicitly focus more on designing and
programming-oriented issues, discussing agents and MAS as a
suitable level of abstraction providing effective building blocks
to design and develop SOA applications.

The rest of the paper is organized as follows. In Section II
we focus more in detail the requirements for programming
models that aim at being adopted for programming SOA
applications, and briefly review the main programming models
currently promoted at the industrial level. In Section III we
introduce and discuss an abstract agent-oriented programming
model, taking as a reference a meta-model called Agents &
Artifacts (A&A). Then, in Section IV we briefly describe a
concrete framework called simpA-WS, for building SOA-
oriented Web Service applications by exploiting the A&A-
based programming model. Fnally, in Section V related works
and conclusion are provided.

II. BACKGROUND: SOA PROGRAMMING MODELS

In order to evaluate how effective a programming model
could be for SOA, it is useful here to review some of the
main properties that a SOA system must exhibit, according to
reference literature (see for instance [4], [6] for a comprehen-
sive discussion of these properties).

A first basic property is encapsulation: to retain their
independency, services encapsulate logic within a distinct
context, that can be specific to a business task, a business
entity, or some other logical grouping. The size and scope
of the logic represented by the service can vary, and can
possibly encompass the logic provided by other services: in



other words, one or more services can be composed into a
collective.

Related to encapsulation there is the autonomy property:
services must have control over the logic they encapsulate.
As a consequence of such autonomy, loose coupling is an-
other key characteristic of services: services maintain a re-
lationship that minimises dependencies—in particular control
dependencies—and only requires that they retain an awareness
of each other. Such awareness is achieved through the use of
service descriptions, that is essential for service users in order
to understand how to use and interact with other services.

Communication is another fundamental dimension in SOA,
since for services to interact and accomplish something mean-
ingful, they must exchange information. Autonomy, encap-
sulation and loose coupling properties clearly condition the
interaction model that can be adopted to enable communica-
tion between service user and service providers and between
services. Any interaction model capable of preserving their
loosely coupled relationship can be adopted: messaging is the
reference communication framework typically considered for
this purpose. Conversely, interaction model based for instance
on Remote Procedure Call (RPC) or method invocation are
not adequate, since they involve a control coupling between
the interacting parts.

This assertion is quite crucial and critic, since most of the
frameworks that are proposed today as killer technologies for
rapid prototyping Web Service Applications—recasting them
as sorts of Object-Oriented applications, mapping user-service
communication directly onto method invocation—cannot be
used to build SOA applications, since autonomy, encapsulation
and loose coupling are not preserved. A main example is
given by the programming model adopted by the Java API
for XML Web Services (JAX-WS) [9], whose programming
model makes it possible to define a Web Service by simply
defining a class annotated with the @WebService annotation,
and @WebMethod annotated methods to implement Web
Service operations. An analogous support can be found in the
Web Service Extension (WSE) provided by Microsoft .NET
platform. These programming models are effective indeed for
the rapid prototyping of Web Services modelled as kinds of
remote objects, but are not effective for real SOA implemen-
tations.

The problem here is quite deep, not related to any weakness
in the technology, but actually in a fundamental mismatch
between the paradigms, in particular between SOA and object-
orientation, and more generally in adopting the object-oriented
paradigm to engineer distributed (and concurrent) systems. In
spite of the fact it’s possible to build such kinds of systems by
means of OO platforms exploiting suitable middlewares such
CORBA, RMI or alike, the point here is the level of abstraction
that programming models provide to face application design
and implementation: OO lacks of suitably abstractions to deal
with loose-coupled communication, concurrency, distribution,
and so on.

Consequently new programming models are needed for
implementing SOA systems, preserving the basic properties
identified for services. For this purpose, some proposals have
been pushed by leading industries in the state-of-the-art. The

Fig. 1. An abstract representation of the Service Component Architecture,
reported in [7].

main one is the Service Component Architecture (SCA) [7],
promoted by independent software vendors such as IBM, SAP,
IONA, Oracle, BEA, TIBCO to cite some. Analogous initia-
tives are the Windows Communication Foundation (previously
called Indigo), promoted by Microsoft, and the Java Business
Integration (JBI), promoted by the Java Community process.

The programming model proposed by these approaches is
essentially component-based. Without going to much into the
details, such approaches basically promote a SOA organiza-
tion of business application code based on components that
implement the business logic, which offer their capabilities
and consume functions offered by other components through
kinds of service-oriented interfaces (Figure 1 shows abstract
representation of the Service Component Architecture, taken
from [7]). Components are meant to operate at a business level
and use a minimum of the middleware APIs; components are
linked together according to some wiring model, that is meant
to support different kind of interaction models and features,
including synchronous and asynchronous invocation, transac-
tional behaviour of components invocation, and so on. Service
implementation and service composition are decoupled from
the details of infrastructure capabilities and from the details
of the access methods used to invoke services (that typically
include Web services, Messaging systems and CORBA IIOP).

Indeed, such an approach inherits all the well-known strong
points of the component-oriented paradigm, concerning dy-
namic configurability, reusability, and so on. At the same
times it inherits the limits that such a paradigm has in dealing
with aspects concerning processes and activities, concurrency,
autonomy, decentralisation and encapsulation of control, dis-
tribution to cite some. Analogously to the OO case, also
component-based programming models do not provide first-
class abstractions to explicitly model and manage with such
issues: in particular, components are typically passive enti-
ties, encapsulating—as in the case of objects—a state and a
behaviour, but not the control of such a behaviour, which
is instead typically hidden in some part of the component
container. If components are meant to be the place where to en-
capsulate the logic of business level, its clear that some aspects
of such business level cannot be, in that way, encapsulated:
for instance the execution and control of (possibly concurrent)
business activities and processes, possibly interacting together.



Such aspects are considered first-class issues when adopting
instead an agent-oriented perspective, which makes it possible
to significantly raising the level of abstraction used to define
basic components of the system and their interaction. Accord-
ingly, we think that agent-orientation could be an effective
paradigm also for defining a programming model for SOA,
making it possible to fully encapsulate all the various aspects
of the business level, including resources and activities.

Fig. 2. Service Model of Web Services, according to W3C

III. AN AGENT-ORIENTED PROGRAMMING MODEL FOR
SOA

Actually, a notion of agent already appears both in the
abstract description of the Web Service reference architecture
provided by W3C [16] (sketched in Figure 2), and—more
generally—in the high level characterisations of SOA [6].
There, an agent is used to represent:

• the service requestor (service requestor agent), encapsu-
lating the business logic concerning the use of services,
which results—from an interaction point of view—in
sending and receiving messages in compliance with what
is specified in service interface;

• the service provider (service provider agent), encapsu-
lating the business logic of the service, which starts
with processing requestor messages, executing related
activities and interacting with the requestor with the
message exchange protocol as specified in the service
description.

So, even in the standards, the notion of agent already appears
as a main part of the picture, explicitly representing the entities
who act for doing some kinds of activity or achieving some
kinds of goal, shaping the business logic on the user or service
side. Then, such a level of abstraction disappears—as we
have seen in previous section—as we go from an abstract
characterisation down to a more design and development level.

Here we want to “keep such abstraction level alive” in all
the engineering process, so as to introduce agents and MAS
as a paradigm also for defining the programming model of
the infrastructures and platforms for SOA. The fundamental
outcome of keeping such a level of abstraction alive is re-
ducing the gap that divides the description of the business
level and the description of the models and architectures
that will be used to implement the systems. Despite of the
specific methodologies, models and architectures adopted,
agent-oriented approaches provides such high level concepts—
such as the notion of activity, goal, task, informatio-driven
interaction—that can be easily recognised at the business level.
By keeping such a level of abstraction also for the program-
ming model, we minimize the gap between analysis, design
and then development. The agent-oriented programming model
that we are going to introduce is based on a conceptual model
called A&A, briefly described in next subsection.

A. The A&A Conceptual Model

A wide range of agent programming models, architectures
and platforms can be found in literature (see [5] for a brief
survey of the programming languages and platforms). For
historical reasons, most of them are AI-oriented, with a
characterisation of the agent and MAS abstractions more fo-
cussed on AI-concept, realising systems exhibiting a somewhat
intelligent behaviour. Here instead we consider a conceptual
model called A&A (Agents and Artifacts) [15], [14] that
introduces agent-oriented abstractions starting from a different
perspective, more oriented to software engineering, focussing
on the features that makes the approach effective for designing
and developing large and complex software systems.

The A&A conceptual model has grown from inter-
disciplinary studies involving Activity Theory and Distributed
Cognition as main conceptual background frameworks [10],
and adopts agents and artifacts as high-level abstractions to
design and build distributed / concurrent software systems.
A&A metaphors are taken from human cooperative working
environments, where “systems” are composed by individual
autonomous entities (humans) which pro-actively carry on
some kind of work (activities or tasks), both individual and
cooperative, typically requiring forms of interaction and co-
ordination with other individuals. A fundamental aspect of
such cooperative systems is the context—the environment—
that makes it possibile for such activities to take place. Humans
cooperative environments are full of suitable artifacts or tools,
that humans use to support their work, functioning both as
enablers and media of their activities. Artifacts can be then
resources and objects constructed during the activities, but
also whatever tools is used to support humans communication,
coordination, and—more generally—cooperative working ac-
tivities.

A&A brings these metaphors down to software engineering,
modelling complex software systems in terms of one or mul-
tiple workspaces where ensembles of autonomous entities—
the agents—work together, constructing, sharing and coopera-
tively using some kinds of artifacts, analogously to the human
case.



Fig. 3. An abstract representation of a workspace, with four agents working
together, sharing and using three artifacts. In the artifact in the top part of
the figure the usage interface is remarked—as the set of operations that can
be triggered by agents. The figure puts in evidence also the actions which
executed by agents to use the artifacts, and the perceptions observed.

B. The Agent and Artifact Abstractions

In A&A agents and artifacts are the two basic coarse-
grained concrete building blocks to organize and build a
system (see Figure 3). On the one side, agents represent
entities with a (pro-)active behaviour, designed by engineers
so as to do some kind of useful work composed by one or
more activities, typically oriented to the achievement of some
objective, concurrently to the work of the other agents. The
agent abstraction is then ideal for encapsulating the execution
and control of the business activities and processes that are
part of the business logic. On the other side, artifacts represent
the passive entities populating the agent working environment,
designed by engineers to function as resources and tools that
are suitably used by agents to support their either individual
or collective work.

On the agent side, A&Apromotes an activity-oriented model
for defining and structuring agent pro-active behaviour, which
is modelled in terms of a set of activities whose execution and
control is fully incapsulated inside the agent. The basic unit
of an activity is the action, as an atomic step which results in
some kind of change either in the agent state (internal actions)
or in the environment (external actions or simply actions),
which is modelled in A&A in terms of artifacts. sensing—
representing here the action of perceiving —is the basic ways
to model in A&A the basic mechanisms that make it possible
for an agent to get information from its environment.

On the artifact side, analogously to human cooperative
working environment, such abstraction can be used to rep-
resent either resources constructed, used, updated by agents
as source or target of their work, or suitable “instruments”
that agents can or must exploit to do their job, for instance

tools for improving agent communication and coordination.
As an example, blackboards, message boxes, calendars, are
typical coordination artifacts [11]. Shared knowledge bases
or artifacts representing or wrapping I/O devices are instead
typical resource artifacts.

So, an artifact is typically meant to be explicitly designed
by MAS engineers so as to encapsulate some kind of function,
here synonym of “intended purpose”. The artifact abstraction
leads to a notion of use that is the basic kind of relationship
among agents and artifacts, besides creation and disposal. For
this purpose, the notion of usage interface is defined, as the
basic set of operations and observable states and events that
an artifact expose so as to be usable by agents. Informally, we
can think about an agent interacting with an artifact through its
usage interface as follows: an agent executes actions that result
in the triggering of some artifact operations, which then leads
to the observation of events or the evolution of the artifact
state. Such an abstraction strictly mimics the way in which
humans use their artifacts: a simple example is the coffee
machine, whose usage interface includes suitable controls—
such as the buttons—and means to make (part of) the machine
behaviour observable—such as displays—and to collect the
results produced by the machine—such as the coffee can.

Artifacts can be composed together by means of link
interfaces, making it possible to create complex artifacts as
dynamic compositions of existing simpler artifacts. Differently
from usage interfaces, such interfaces result in a control-
coupling between artifacts.

A detailed description of the A&A conceptual model is
outside the scope of this paper: the interested reader can found
more information here [14]. Besides such details, here it is
possible to clearly identify some essential properties the make
the conceptual model interesting for SOA programming mod-
els: (i) encapsulation and autonomy—the agent abstraction
explicitly captures the distribution and the encapsulation of
control, and then a notion of autonomy as depicted by SOA
requirements; (ii) uncoupling and data-driven interaction—
related to previous point, the interaction model adopted for
agents / artifacts interaction is strongly uncoupled and data-
oriented (vs. control oriented): conceptually there is never
a flow of control from an agent to an artifact or other
agents, as happens instead in the case of Remote Procedure
Calls (RPC) or method invocation in OO programming; (iii)
concurrency support—concurrency can be naturally modelled
both in the forms of concurrent activities that are carried on
by an individual agent, and as separated works that are carried
on independently by distinct agents.

C. A SOA Programming Model based on A&A

The central idea of the paper is the adoption of agents
and MAS—with an explicit reference to the A&A conceptual
model—as a paradigm for defining an agent-oriented SOA
programming model, compared to the component-based ap-
proaches that are proposed by leading software vendors in the
state-of-the-art.

The transition from component systems to multi-agent
systems in general accounts for introducing a new (higher)



level of abstraction—and related methodologies, models and
architectures—to design and implement SOA applications,
while preserving the support for the open standards.

By adopting the A&A conceptual model in particular, a
SOA application—both at the service requestor side and the
service provider side—can be conceived as a workspace1

with an ensemble of agents working together, interacting by
direct communication and by sharing and using cooperatively
a certain dynamic set of artifacts. In such a programming
model, agents are used to encapsulate the responsibility of
the execution and control of the business activities character-
ising the SOA specific scenario, while artifacts are used to
encapsulate business resources and tools that are exploited by
agents to coordinate their work. In particular, suitable artifacts
can be designed to function as interface or medium enabling
the communication between agents inside the user or service
application and outside world (which includes respectively
services used by the applications in the former case and the
user applications using the service in the latter case).

Then, by comparing this programming model with
component-based ones—such as SCA... some important dif-
ferences arise. The first one is the level of abstraction and
encapsulation: the agent-oriented programming model intro-
duces a new level of abstraction, which improves the degree
of encapsulation by making it possible to define kinds of
components (the agents) for which not only the state and
the behaviour, but also the control of such a behaviour is
encapsulated. A&A in particular makes it possible to identify
and keep clearly separated the active parts of the system
(encapsulating activities) from the passive ones (encapsulating
functionalities). In that way also concurrency inside SOA ap-
plications is modelled quite naturally, by means of concurrent
activities carried on by an individual agent or distinct agents,
and by exploiting suitable artifacts to coordinate them.

As a consequence of the encapsulation, in the A&A pro-
gramming model a stronger degree of uncoupling among the
parts is enforced, since no control flow is allowed, as could
happen instead for components; this makes the interaction
model—based on actions and perceptions on the agent side,
and on operation execution and event generation on the artifact
side—somewhat more uniform and simpler, since there is not
the need of mixing together synchronous RPC-based styles /
mechanisms with asynchronous message-oriented ones.

Finally, connectors and channels are typically used in
component-based approaches to coordinate components (in a
control-oriented fashion): in a A&A programming model such
a role is played by (coordination) artifacts that can suitably
designed and programmed by engineers to enact the coordi-
nation policies identified at the business level. As an example,
a workflow engine can be implemented as a coordination
artifact, shared and cooperatively used by workflow participant
agents.

IV. A FIRST CONCRETE FRAMEWORK: simpA-WS
simpA-WS is a Java-based technology that makes it possi-

ble to build WS-I SOA/WS compliant applications adopting a

1actually multiple workspaces can be considered, here we consider just a
single workspace for simplicity

Fig. 4. Abstract architecture of simpA-WS user applications

A&A based programming model. simpA-WS is based on of
simpA model and technology [1], an agent-oriented extension
of Java to support A&A, and then providing agents and
artifacts as high-level abstractions for designing and devel-
oping software systems on top of Java as basic programming
environment.

On the one side, simpA-WS provides a framework API to
build user applications in terms of sets of agents that flexibly
interact and use Web Services compliant with the WS-I Basic
Profile [12]. On the other side, simpA-WS provides an API
framework and a middleware for building WS-I compliant
Web Services in terms of set of agents as providers of the
services.

Using simpA-WS both service users and providers are mod-
elled as simpA agents, as pro-active entities that respectively
(i) need to access and use services in their working activities,
encapsulating the business logic of user applications, and (ii)
process the requests and messages for services, encapsulating
the service business logic. In both cases, artifacts are used as
high-level mediating entities functioning as interfaces, encap-
sulating the technology needed to enable the interaction using
WS-* standards. In particular (refer to Figure 4 and Figure 5):

• on the user side, a specific kind of artifacts – called
WS-Artifact—is provided to make it possible for simpA
agents to access and use what ever existing Web Service,
by simply creating and using instances of such an artifact;

• on the service side, artifacts called Service-Artifacts are
provided to make it possible for simpA agents to get and
process the messages delivered to a specific Web Service,
again by simply creating and using instances of such an
artifact.

The adoption of the agent level of abstraction, and in particular
of agents and artifacts basic building blocks, makes it possible
to exploit a fully uncoupled approach for modelling and
realising interaction with Web Services, as required by true
service-oriented architecture.

simpA and simpA-WS technologies are open-source
projects, and can be freely downloaded from related web sites
[1], [2].



Fig. 5. Abstract architecture of simpA-WS service applications

A. First Applications

simpA-WS is one of the technologies experimented for
implementing SOA-based applications in the context of STIL
(“Strumenti Telematici per l’Interoperabilità delle reti di imp-
rese: Logistica digitale integrata per l’Emilia-Romagna”) [13].
STIL is a 2-years project funded by Emilia-Romagna—an
Italian region—to push and improve the research activities itar-
geted to exploit innovative ICT technologies for the creation
of a global digital logistic district. Among the objectives, STIL
is dedicated to the creation of virtual organizations grouping
together different kind of actors directly or indirectly involved
in the logistic supply-chain, providing them effective ICT
supports for integrating and innovating their business.

For the purpose, a SOA-based infrastructure has been con-
ceived, designed and implemented to enable interoperability
among the different participants. The STIL infrastructure is
meant to provide an effective support for enabling commu-
nication, coordination and cooperation among the open and
heterogeneous kind of WS-based applications and services.
simpA-WS is currently experimented as one of the state-
of-the-art technologies for implementing the applications and
services, and first results are available on STIL web sites [13],
[3].

V. CONCLUSIONS

As widely reported in literature [8], Service-Oriented Com-
puting and Web Services are considered among the most
promising and important application contexts for agents and
MAS. In this paper we focussed the role of agents and
MAS for defining a possible programming model for Service-
Oriented Architectures based on Web Services, and the ben-
efits that such an approach can have in comparison to the
component-based programming models that are currently pro-
moted in the state-of-the-art by leading software vendors. Such
a claim has been supported with the introduction of a concrete
agent-oriented programming model based on the A&A con-
ceptual framework, and briefly describing a first technology—
called simpA-WS—implementing such an approach.

REFERENCES

[1] The aliCE Research Group. simpA official web site.
http://www.alice.unibo.it/projects/simpa.

[2] The aliCE Research Group. simpA-WS official web site.
http://www.alice.unibo.it/projects/simpaws.

[3] aliCE-Unibo research unit. The STIL-UNIBO project web site.
http://www.alice.unibo.it/projects/stil.

[4] S. Anand, S. Padmanabhuni, and J. Ganesh. Perspectives on service
oriented architectures. In Proceedings of the 2005 IEEE International
Conference on Service Computing, volume 2. IEEE, 2005.

[5] Rafael Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah
Seghrouchni, Jorge Gomez-Sanz, Joao Leite, Gregory O’Hare, Alexan-
der Pokahr, and Alessandro Ricci. A survey of programming languages
and platforms for multi-agent systems. In Informatica 30, pages 33–44,
2006.

[6] Thomas Erl. Service-Oriented Architecture: A Field Guide to Integrating
XML and Web Services. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2004.

[7] IBM et al. Service component architecture. http://www-
128.ibm.com/developerworks/library/specification/ws-sca/, 2006.

[8] Michael et al. Huhns. Research directions for service-oriented multiagent
systems. IEEE Internet Computing, 9(6):69–70, November 2005.

[9] Sun Microsystems. The java API for XML web services (JAX-WS 2.0).
http://java.sun.com/webservices/jaxws/.

[10] B. A. Nardi. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

[11] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castel-
franchi, and Luca Tummolini. Coordination artifacts: Environment-
based coordination for intelligent agents. In Nicholas R. Jennings, Carles
Sierra, Liz Sonenberg, and Milind Tambe, editors, 3rd international Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2004), volume 1, pages 286–293, New York, USA, 19–23 July 2004.
ACM.

[12] The WS-I Organization. WS-Basic Profile 1.0 document.
http://www.ws-i.org.

[13] The STIL project. The STIL official web site. http://stil.pc.unicatt.it/.
[14] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Construenda est

CArtAgO: Toward an infrastructure for artifacts in MAS. In Robert
Trappl, editor, Cybernetics and Systems 2006, volume 2, pages 569–
574, Vienna, Austria, 18–21 April 2006. Austrian Society for Cybernetic
Studies. 18th European Meeting on Cybernetics and Systems Research
(EMCSR 2006), 5th International Symposium “From Agent Theory to
Theory Implementation” (AT2AI-5). Proceedings.

[15] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Programming
MAS with artifacts. In Rafael P. Bordini, Mehdi Dastani, Jürgen Dix,
and Amal El Fallah Seghrouchni, editors, Programming Multi-Agent
Systems, volume 3862 of LNAI, pages 206–221. Springer, March 2006.
3rd International Workshop (PROMAS 2005), AAMAS 2005, Utrecht,
The Netherlands, 26 July 2005. Revised and Invited Papers.

[16] W3C WS Working Group. Web Services Architecture.
http://www.w3.org/TR/ws-arch/.


