
JavaScript: Fundamentals,
Concepts, Object Model

Prof. Ing. Andrea Omicini
Ingegneria Due, Università di Bologna a Cesena

andrea.omicini@unibo.it
2006-2007

mailto:andrea.omicini@unibo.it
mailto:andrea.omicini@unibo.it

JavaScript

A scripting language: interpreted, not compiled
History

Originally defined by Netscape (LiveScript) - Name modified in
JavaScript after an agreement with Sun in 1995
Microsoft calls it JScript (minimal differences)
Reference: standard ECMAScript 262

Object based (but not object oriented)
JavaScript programs are directly inserted in the HTML
source of web pages

2

The Web Page
<html>
 <head><title>...</title></head>
 <body>
 ...
 <script language=”JavaScript”>
 <!-- HTML comment to avoid puzzling old browsers
 ... put here your JavaScript program ...
 // JavaScript comment to avoid puzzling old browsers -->
 </script>
 </body>
</html>

An HTML page may contain multiple <script> tags

Document Object Model
JavaScript as a language references the Document Object
Model (DOM)
Following that model, every document has the following
structure
window

document
...

The window object represents the current object (i.e.
this) the current browser window

the visualising entity
The document object represents the content of the web
page in the current browser window

the visualised entity

4

The document object

The document object represents the current web page
(not the current browser window!)
You can invoke many different methods on it. The write
method prints a value on the page:
document.write(“Scrooge McDuck”)
document.write(18.45 - 34.44)
document.write(‘Donald Duck’)
document.write(‘’)

The this reference to the window object is omitted:
document.write is equivalent to this.document.write

5

The window object (1/2)

The window object is the root of the DOM hierarchy and
represents the browser window
Amongst the window object’s methods there is alert,
which makes an alert window appear, displaying the given
message

x = -1.55; y = 31.85; sum = x + y;
mess = "La somma di " + x + " e " + y + " è " + sum;
alert(mess); // returns undefined

You can use alert in an HTML anchor

6

The window object (2/2)

Other methods of the window object:
use confirm to display a dialog to confirm or dismiss a
message

returns a boolean value: false if the Cancel button has been
pushed, true if the OK button has been pushed

use prompt to display a dialog to input a value
returns a string value containing the input

7

The DOM model

The window object’s main components:
self
window
parent
top
navigator

plugins (array), navigator, mimeTypes (array)
frames (array)
location
history
document

...and here follows an entire hierarchy of objects

8

The document object

The document object’s main components (all arrays):
forms
anchors
links
images
applets

The document object’s main API methods:
getElementsByTagName(tagname)
getElementById(elementId)
getElementsByName(elementName)

9

Referencing / modifying
an element in a document

An element in a document is referred to by the value of
its id attribute

or the name attribute in older browsers – deprecated!
e.g. for an image identified as image0 you would call
document.getElementById(“image0”)

or use the document properties through an array:
document.images[“image0”]

then, to modify e.g. that image’s width, you would write
document.images[“image0”].width = 40

10

Strings

Strings can be delimited by using single or double quotes
If you need to nest different kind of quotes, you have to
alternate them

e.g. document.write(‘’)
e.g. document.write(“”)

Use + to concatenate strings
e.g. document.write(‘donald’ + ‘duck’)

Strings are JavaScript objects with properties, e.g.
length, and methods, e.g. substring(first, last)

11

Constants and comments

Numeric constants are sequences of numeric characters
not enclosed between quotes - their type is number
Boolean constants are true and false - their type is
boolean

Other constants are null, NaN, undefined

Comments can be
// on a single line
/* multi line */

12

Expressions

These are legal expressions in JavaScript
numeric expressions, with operators like + - * / % ...
conditional expressions, using the ?: ternary operator
string expressions, concatenating with the + operator
assignment expressions, using =

Some examples
window.alert(18/4)
window.alert(3>5 ? 'yes' : "no")
window.alert("donald" + 'duck')

13

Variables

Variables in JavaScript are dynamically typed: you can
assign values of different types to the same variable at
different times
a=19; b= 'bye'; a='world'; // different types!

Legal operators include increment (++), decrement (--),
extended assignment (e.g. +=)

14

Variables and scope

Variable scope in JavaScript is
global for variables defined outside functions
local for variables explicitly defined inside functions
(received parameters included)

Warning: a block does not define a scope
x = '3' + 2 // the string '32'
{

{ x = 5 } // internal block
y = x + 3 // here x is 5, not '32'

}

15

Dynamic types

The typeof operator is used to retrieve the (dynamic) type
of an expression or a variable
typeof(18/4) returns number
typeof "aaa" returns string
typeof false returns boolean
typeof document returns object
typeof document.write returns function

When used with variables, the value returned by typeof is
the current type of the variable
a = 18; typeof a // returns number
a = 'hi'; typeof a // returns string

16

Instructions

Instructions must be separated by an end-of-line
character or by a semicolon
alpha = 19 // end-of-line
bravo = ‘donald duck’; charlie = true
window.alert(bravo + alpha)

Concatenation between strings and numbers leads to an
automatic conversion of the number value into a string
value (be careful...)
window.alert(bravo + alpha + 2)
window.alert(bravo + (alpha + 2))

17

Control structures

JavaScript features the usual control structures: if,
switch, for, while, do/while
Boolean conditions in an if can be expressed using the
usual comparison operators (==, !=, >, <, >=, <=) and logic
operators (&&, ||, !)
Besides there are special structures used to work on
objects: for/in and with

18

Functions definition

Functions are introduced by the keyword function and
their body is enclosed in a block

They can be either procedures or proper functions (there’s
no keyword void)

Formal parameters are written without their type
declaration

Functions can be defined inside other functions
function sum(a,b) { return a+b }

function printSum(a,b) {
window.alert(a+b)

}

19

Function parameters

Functions are called in the usual way, giving the list of
actual parameters
The number of actual parameters can be different from
the number of formal ones
If actual parameters are more than necessary, extra
parameters are ignored
If actual parameters are less than necessary, missing
parameters are initialized to undefined
Parameters are always passed by value (working with
objects, references are copied)

20

Variable declarations

Variable declarations can be explicit or implicit for global
variables, but must necessarily be explicit for local
variables

A variable is explicitly declared using var
var goofy = 19 // explicit declaration
pluto = 18 // implicit declaration

Implicit declaration always introduces global variables,
while explicit declaration has a different effect depending
on the context where it is located

21

Explicit variable
declarations

Outside functions, the var keyword is not important: the
variable is defined as global
Inside functions, using var means to introduce a new local
variable having the function as its scope
Inside functions, declaring a variable without using var means
to introduce a global variable

x = 6 // global
function test() {
 x = 18 // global
}
test()
// the value of x is 18

var x = 6 // global
function test() {
 var x = 18 // local
}
test()
// the value of x is 6

22

Referencing environment

Using an already declared variable, its name resolution starts
from the environment local to its use

If the variable is not defined in the environment local to its
use, the global environment is checked for name resolution

f = 3
function test() {
 var f = 4
 g = f * 3
}
test(); g // 12

f = 3
function test() {
 var g = 4
 g = f * 3
}
test(); g // nd

f = 3
function test() {
 var h = 4
 g = f * 3
}
test(); g // 9

23

Functions and closures
(1/3)

Since JavaScript is an interpreted language and given the
existence of a global environment...
When a function uses a symbol not defined inside its body,
which definition holds for that?

Does the symbol use the value it holds in the
environment where the function is defined, or...
does the symbol use the value it holds in the
environment where the function is called?

24

Functions and closures
(2/3)

var x = 20
function testEnv(z) { return z + x }
alert(testEnv(18)) // definitely displays 38
function newTestEnv() {

var x = -1
return testEnv(18) // what does it return?

}

The newTestEnv function redefines x, then invokes
testEnv, which uses x... but, which x?

In the environment where testEnv is defined, the symbol x
has a different value from the environment where testEnv
is called

25

Functions and closures
(3/3)

var x = 20
function testEnv(z) { return z + x }
function newTestEnv() {

var x = -1
return testEnv(18) // what does it return?

}

If the calling environment is used to resolve symbols, a
dynamic closure is applied
If the defining environment is used to resolve symbols, a
lexical closure is applied
JavaScript uses lexical closures, so newTestEnv returns 38,
not 17

26

Functions as data

Variables can reference functions
var square = function(x) { return x*x }

Function literals have not a name: they are usually invoked
by the name of the variable referencing them
var result = square(4)

Assignments like g = f produce aliasing
This enables programmers to pass functions as parameters
to other functions
function exe(f, x) { return f(x) }

27

Functions as data -
Examples

Given function exe(f, x) { return f(x) }
exe(Math.sin, .8) returns 0.7173560908995228
exe(Math.log, .8) returns -0.2231435513142097
exe(x*x, .8) throws an error because x*x is an
expression, not a function object in the program
exe(fun, .8) works only if the fun variable
references a function object in the program
exe(“Math.sin”, .8) throws an error because a
string is passed, not a function: don’t mistake a
function for its name

28

Functions as data -
Consequences

You need to have a function object (not just its name) to
use a function
You cannot use functions as data to execute a function
knowing only its name or its code
exe(“Math.sin”, .8) // error

exe(x*x, .8) // error

How to solve this problem?
Access the function using the properties of the global
object
Build an appropriate function object

29

Objects

An object is a data collection with a name: each datum is
called property
Use the dot notation to access any property, e.g.
object.property

A special function called constructor builds an object,
creating its structure and setting up its properties
Constructors are invoked using the new operator
There are no classes in JavaScript: the name of the
constructor can be choosed by the user

30

Defining objects

The structure of an object is defined by the constructor
used to create it

Initial properties of the object are specified inside the
constructor, using the dot notation and the this keyword

The this keyword is necessary, otherwise properties
would be referenced by the environment local to the
constructor function

Point = function(i, j) {
 this.x = i
 this.y = j
}

function Point(i, j) {
 this.x = i
 this.y = j
}

31

Building objects

To build an object, apply the new operator to a constructor
function
p1 = new Point(3, 4)

p2 = new Point(0, 1)

The argument of new is just a function name, not the
name of a class

Starting with JavaScript 1.2 objects can be built just
listing couples of properties and values between braces
p3 = {x:10, y:7}

32

Accessing object
properties

All properties of an object are public
p1.x = 10 // p1 passes from (3,4) to (10,4)

There are indeed some invisible system properties you can
not enumerate using the usual appropriate constructs
The with construct let you access several properties of an
object without repeating its name every time
with (p1) x = 22, y = 2

with (p1) {x = 3; y = 4}

33

Adding and removing
properties

Constructors only specify initial properties for an object:
you can dynamically add new properties by naming them
and using them
p1.z = -3
// from {x:10, y:4} to {x:10, y:4, z:-3}

It is possible to dynamically remove properties using the
delete operator
delete p1.x
// from {x:10, y:4, z:-3} to {y:4, z:-3}

34

Methods for (single)
objects

Methods definition is a special case of property addition
where the property is a function object
p1.getX = function() { return this.x }

In this case, a method is defined for a single object, not for
every instance created using the Point constructor function

35

Methods for multiple
objects

You can define the same method for multiple objects by
assigning it to other objects
p2.getX = p1.getX

To use the new method on the p2 object, just call it using
the () invoke operator
document.write(p2.getX() + “
”)

If a nonexistent method is invoked, JavaScript throws a
runtime error and halts execution

36

Methods for objects of
a kind

Since the concept of class is missing, ensuring that objects
“of the same kind” have the same behaviour requires an
adequate methodology
A first approach is to define common methods in the
constructor function
Point = function(i, j) {

this.x = i; this.y = j
this.getX = function() { return x }
this.getY = function() { return y }

}

Another approach is based on the concept of prototype
(see later)

37

Simulating private
properties

Even if an object’s properties are public, it is possible to
simulate private properties using variables local to the
constructor function
Rectangle = function() {

var sideX, sideY
this.setX = function(a) { sideX = a }
this.setY = function(a) { sideY = a }
this.getX = function() { return sideX }
this.getY = function() { return sideY }

}

While the four methods are publicly visible, the two variables
are visible in the constructor’s local environment only, being
matter-of-factly private

38

Class variables and
methods

Class variables and methods can be modeled as properties
of the constructor function object
p1 = new Point(3, 4); Point.color = “black”
Point.commonMethod = function(...) { ... }

The complete Point.property notation is necessary even if
the property is defined inside the constructor function,
because property alone would define a local variable to
the function, not a property of the constructor

39

Function objects (1/2)

Every function is an object built on the basis of the
Function constructor

implicitly, building functions inside the program by using
the function construct

its arguments are the formal parameters of the function
the body (the code) of the function in enclosed in a block

e.g. square = function(x) { return x*x }
the construct is evaluated only once, it’s efficient but
not flexible

40

Function objects (2/2)

Every function is an object built on the basis of the
Function constructor

explicitly, building functions from strings by using the
Function constructor

its arguments are all strings
first N-1 arguments are the names of the parameters of the
function
the last argument is the body (the code)

e.g. square = new Function(‘x’, ‘return x*x’)
the construct is evaluated every time it’s read, it’s not
efficient but very flexible

41

Functions as data -
Revision (1/4)

The exe function executes a function
function exe(f, x) { return f(x) }

It works only if the f argument represents a function
object, not a body code or a string name
exe(x*x, .8) // error

exe(“Math.sin”, .8) // error

These cases become manageable by using the Function
constructor to dynamically build a function object

42

Functions as data -
Revision (2/4)

Dynamic building using the Function constructor
when only the body is known
exe(x*x, .8) // error

exe(new Function(‘x’, ‘return x*x’), .8) // returns .64

when only the name is known
exe(‘Math.sin’, .8) // error

exe(new Function(‘z’, ‘return Math.sin(z)’), .8) //
returns 0.7173560908995228

43

Functions as data -
Revision (3/4)

Generalizing the approach:
var fun = prompt(‘Write f(x): ‘)

var x = prompt(‘Calculate for x = ?’)

var f = new Function(‘x’, ‘return ‘ + fun)

The user can now type the code of the desired function
and the value where to calculate it, then invoke it using a
reflexive mechanism
Show the result using
confirm(‘Result: ‘ + f(x))

44

Functions as data -
Revision (4/4)

45

Functions as data -
A problem

Values returned by prompt are strings: so the + operation
is interpreted as a concatenation of strings rather than a
sum between numbers
If the user gives x+1 as a function, when x=4 the function
returns 41 as a result
Possible solutions:

let the user write in input an explicit type conversion,
e.g. parseInt(x) + 1
impose the type conversion from within the program,
e.g. var x = parseInt(prompt(...))

46

Function objects -
Properties

Static properties (available while not executing):
length - the number of formal expected parameters

Dynamic properties (available during execution only):
arguments - array containing actual parameters
arguments.length - number of actual parameters
arguments.callee - the executing function itself
caller - the caller (null if invoked from top level)
constructor - reference to the constructor object
prototype - reference to the prototype object

47

Function objects -
Methods

Callable methods on a function object:
toString - returns a string representation of the
function
valueOf - returns the function itself
call and apply - call the function on the object passed
as a parameter giving the function the specified
parameters

e.g. f.apply(obj, arrayOfParameters) is equivalent to
obj.f(arrayOfParameters)
e.g. f.call(obj, arg1, arg2, ...) is equivalent to
obj.f(arg1, arg2, ...)

48

call and apply - Example 1

Definition of a function object
test = function(x, y, z) { return x + y + z }

Invocation in the current context
test.apply(obj, [3, 4, 5])
test.call(obj, 8, 1, -2)

Parameters to the callee are optional
In this example the receiving object obj is irrelevant
because the invoked test function does not use this
references in its body

49

call and apply - Example 2
A function object using this references
test = function(v) { return v + this.x }

In this example the receiving object is relevant because it
determines the evaluation environment for the variable x

x = 88

test.call(this, 3)

// Result: 3 + 88 = 91

x = 88
function Obj(u) {
 this.x = u
}
obj = new Obj(-4)
test.call(obj, 3)

// Result: 3 + -4 = -1

50

Every object has always a prototype specifying its basic
properties

The prototype itself is an object

If P is prototype of X, every property of P is also
available as a property of X and thus redefinable by X

The prototype is stored in a typically invisible system
property called __proto__

Prototypes (1/2)

51

Prototypes (2/2)

Every constructor has a building prototype defined in its
prototype property

It serves to define the properties of the objects it builds

By default, the building prototype coincides with the
prototype, but while the latter is unchangeable, the
former can be modified

The modifiability of the building prototype leads to
prototype-based inheritance techniques

52

Prototypes: architecture

specific
properties for
the object

prototype

Object

properties

prototype

Constructor

prototype building prototype
(by default it is the
same as the prototype)

__proto__

__proto__

Predefined prototypes

JavaScript makes available a series of predefined
constructors whose prototype is the prototype for all the
objects of that kind

The prototype of the Function constructor is the
prototype for every function
The prototype of the Array constructor is the
prototype of all the arrays
The prototype of the Object constructor is the
prototype of all user defined objects built using the
new operator

Other predefined constructors are Number, Boolean, Date,
RegExp

54

Taxonomy of prototypes (1/2)

Since constructors themselves are objects, they have a
prototype too
A taxonomy of prototypes is created, rooted in the prototype
for the Object constructor
The prototype of Object defines the properties:
constructor - the function which built the object
toString() - a method to print the object
valueOf() - returns the underlying primitive type

These properties are available for every object (functions and
constructors included)

55

Taxonomy of prototypes (2/2)

All functions and in particular all constructors are
attached to the prototype of Function
That prototype defines common properties (e.g. arguments)
for every function (including constructors) and inherits
properties from the prototype of Object (e.g. constructor)

Object

Function Array Number Boolean

Constructors Special case:
constructor of Point

chain of predefined prototypes...

56

Experiments

The predefined method isPrototypeOf() tests if an object
is included in another object’s chain of prototypes

Object.prototype.isPrototypeOf(Function) // true

Object.prototype.isPrototypeOf(Array) // true

The Point constructor is both a function and an object
Function.prototype.isPrototypeOf(Point) // true

Object.prototype.isPrototypeOf(Point) // true

57

The prototype property

The building prototype exists only for constructors and defines
properties for all the objects built by that constructor
To define a specific building prototype you need to:

define an object with desired properties playing the
prototype role
assign that object to the prototype property of the
constructor

The prototype property can be dynamically changed but it
affects only newly created objects

58

Example (1/2)

Given the constructor
Point = function(i, j) {

this.x = i
this.y = j

}
we want to associate a prototype to it so that getX and
getY functions will be defined

Note that the form function Point() does not make the
Point identifier global, leading to problems if the
prototype is added from an environment where Point is
invisible

59

Example (2/2)

Define the constructor for the object which will play the
prototype role
GetXY = function() {

this.getX = function() { return this.x }
this.getY = function() { return this.y }

}
Create it and assign it to the prototype property of the
Point constructor
myProto = new GetXY(); Point.prototype = myProto

You can invoke getX and getY on newly created Point
objects only
p4 = new Point(7, 8); alert(p4.getX())

60

Architecture

properties

prototype =
building prototype

Constructor

prototype

BE
FO

RE

properties

prototype

Constructor

prototype building prototype myProto
getX
getY

AF
TE

R __proto__

__proto__

Searching properties

properties

prototype

Constructor

prototype building prototype myProto
getX
getY

AF
TE

R

specific
properties for
the object

Object

Searching order for properties

__proto__

__proto__

using the __proto__ property

New experiments (1/2)

ObjectFunction

GetXY

p4

myProto
constructor

constructor __proto__

__proto__

prototype

constructor

Point

constructorconstructor

prototype
constructor

__proto__

null
prototype

constructor

New experiments (1/2)
Searching for p4 identity
myProto.isPrototypeOf(p4) // true

GetXY.prototype.isPrototypeOf(p4) // true

Point.prototype.isPrototypeOf(p4) // true

Object.prototype.isPrototypeOf(p4) // true

Function.prototype.isPrototypeOf(p4) // false

Searching for myProto and GetXY identities
Point.prototype.isPrototypeOf(myProto) // true

Object.prototype.isPrototypeOf(myProto) // true

Function.prototype.isPrototypeOf(myProto) // false

Point.prototype.isPrototypeOf(GetXY) // false

Object.prototype.isPrototypeOf(GetXY) // true

Function.prototype.isPrototypeOf(GetXY) // true

64

Instead of associating a new prototype to an existing
constructor, it is possible to add new properties to the
existing constructor
Point.prototype.getX = function() { ... }
Point.prototype.getY = function() { ... }

The two approaches are not equivalent
A change in the existing prototype affects also existing
objects
A new prototype affects only objects newly created
from then on

Building prototypes: an
alternative approach

65

Example (1/2)

Given the constructor
Point = function(i, j) {

this.x = i
this.y = j

}
we want to modify the existing prototype so that getX and
getY functions will be included

Note that those functions will work for existing objects
and for objects created from then on

66

Example (2/2)

Create a first object
p1 = new Point(1, 2)

The function getX is not supported
p1.getX // returns undefined

Modify the existing prototype
Point.prototype.getX = function() { return this.x }

Point.prototype.getY = function() { return this.y }

Now getX works even on existing objects
p1.getX() // returns 1

67

Prototype-based
inheritance

Chains of prototypes are the mechanism offered by
JavaScript to support a sort of inheritance

It is an inheritance between objects, not between classes
as in object-oriented languages

When a new object is created using new, the system links
that object with the building prototype for the constructor
used

This is also true for constructors, which have
Function.prototype as their prototype

68

Expressing inheritance

To express the idea of a subclass Student inheriting from
an existing class Person you need to

explicitly link Student.prototype with a new Person
object
explicitly change the constructor property of
Student.prototype (which now would link the Person
constructor) to make it reference the Student
constructor

69

Example (1/2)

Base constructor
Person = function(n, y) {

this.name = n; this.year = y
this.toString = function() {

return this.name + ‘ was born in ‘ + this.year
}

}
Derived constructor

Student = function(n, y, m) {
this.name = n; this.year = y; this.matr = m;
this.toString = function() {

return this.name + ‘ was born in ’ + this.year + ‘
and has matriculation ’ + this.matr

}
}

70

Example (2/2)
Setting the chain of prototypes

Student.prototype = new Person()
Student.prototype.constructor = Student

Test
function test() {

var p = new Person(“Andrew”, 1965)

var s = new Student(“Luke”, 1980, “001923”)

// displays: Andrew was born in 1965

alert(p)

// displays: Luke was born in 1980 and has
matriculation 001923

alert(s)

}

71

Inheritance: an
alternative (1/2)

An alternative approach can be employed without touching
prototypes: reusing by call the base constructor function,
simulating other languages, e.g. the use of super in Java

Rectangle = function(a, b) {
this.x = a; this.y = b
this.getX = function() { return this.x }
this.getY = function() { return this.y }

}
Square = function(a) {

Rectangle.call(this, a, a)
}

72

Inheritance: “super” in
constructors

Base constructor
Person = function(n, y) {

this.name = n; this.year = y
this.toString = function() {

return this.name + ‘ was born in ‘ + this.year
}

}
Derived constructor

Student = function(n, y, m) {
Person.call(this, n, y); this.matr = m;
this.toString = function() {

return this.name + ‘ was born in ’ + this.year + ‘
and has matriculation ’ + this.matr

}
}

73

Inheritance: “super” in
methods

When prototypes are explicitly manipulated, the prototype
property can be used to call methods defined in the base
constuctor

Student = function(n, y, m) {
Person.call(this, n, y); this.matr = m
this.toString = function() {

return Student.prototype.toString.call(this) + ‘
and has matriculation ’ + this.matr

}
}

The Student.prototype is a Person object, so call calls the
toString function of that object

74

An alternative: “super” in
methods

Avoiding the use of prototypes, it is necessary to explicitly
exploit an object of the kind of the prototype to invoke
the desired method

Student = function(n, y, m) {
Person.call(this, n, y); this.matr = m
this.toString = function() {

return p.toString.call(this) + ‘ and has
matriculation ’ + this.matr

}
}

The p object must be a Person object which must exist
when the function is called, so that call calls the
toString function of that object

75

Inheritance: experiments

Using the Student and Person constructor setting explicitly the chain
of prototypes, the following results are obtained with p a Person
object and s a Student object

p.isPrototypeOf(s) // false

Person.isPrototypeOf(s) // false

Object.isPrototypeOf(s) // false

Object.prototype.isPrototypeOf(s) // true

Person.isPrototypeOf(Student) // false

Student.prototype.isPrototypeOf(Student) // false

Student.prototype.isPrototypeOf(Student.prototype) // false

Student.prototype.isPrototypeOf(s) // true

76

Inheritance: more
experiments

Using the same environment as before, but without explicitly setting
the chain of prototypes, the following results are obtained:

p.isPrototypeOf(s) // false

Person.isPrototypeOf(s) // false

Object.isPrototypeOf(s) // false

Object.prototype.isPrototypeOf(s) // true

Person.isPrototypeOf(Student) // false

(new Person()).isPrototypeOf(Student) // false

(new Person()).isPrototypeOf(Student.prototype) // false

(new Person()).isPrototypeOf(s) // false

77

Arrays (1/2)

An array is built using the Array constructor, whose
arguments are the initial content of the array
colors = new Array(‘red’, ‘green’, ‘blue’)

Elements are enumerated starting with 0 and can be
accessed using square brackets, e.g. colors[2]
The length attribute contains the dynamic length of the
array
Cells in an array are not constrained to contain elements
of the same kind

78

Arrays (2/2)

It is also possible to define an empty array and add
elements later using assignments
colors = new Array(); colors[0] = ‘red’

Starting with JavaScript 1.2, an array can be built listing
the initial elements, separated by commas, between square
brackets
numbers = [1, 2, ‘three’]

79

Dynamic and
fragmented arrays

It is possible to dynamically add elements to arrays
whenever it is necessary
letters = [‘a’, ‘b’, ‘c’]; letters[3] = ‘d’

Arrays can be fragmented: indexes have not to be in a set
of adjacent numbers
letters[9] = ‘j’

letters.length returns 10

letters.toString() returns a,b,c,d,,,,,,j

80

Objects as arrays (1/2)

Every JavaScript object is defined by the set of its
properties: this is why they are internally represented as
arrays

This mapping between objects and arrays let object access
be possible through an array-like notation using the
property name as a selector

Let p be an object, s a string containing the name of the
property x of p; then the notation p[s] gives access to
the property named x like the dot notation p.x does

81

Objects as arrays (2/2)

What is the advantage of the array notation over the dot
notation?
Using the dot notation p.x implies that the name of the
property is known when writing the program
The array notation p[s] let the programmer access a
property whose name can be known during execution and
saved in the string variable s for future use

82

Introspection

Since the set of an object’s properties can dynamically change,
it may be necessary to discover which properties an object has
at runtime

A special construct is available to iterate on the visible
properties of the object
for (variable in object) { … }

For example, to list the name of all properties:
function showProperties(obj) {

for (var p in obj) { document.write(p + ‘
’) }

}

83

From introspection to
intercession

Using the for/in construct it is possible to discover the
visible properties of an object
To access those properties you need to obtain a reference
to them starting from a string containing the name of
each property

function showProperties(obj) {
for (var p in obj) {

var property = obj[p]
document.write(‘The property ’ + p + ‘ has type
’ + typeof(property) + ‘
’)

}
}

84

The global object

JavaScript does not distinguish object methods from global
functions: global functions are methods of a system-
defined global object

The global object features

as methods, functions not owned by specific objects
and predefined functions

as data, global variables

as functions, predefined functions

85

Global predefined
functions

eval – evaluate the JavaScript program passed as a string
(reflection, intecession)

escape – convert a string in a portable format, substituting
“illegal” characters with escaped sequences (e.g. ‘%20’ for ‘
’)

unescape – convert a string from the portable format to
the original format

isFinite, isNan, parseFloat, parseInt, …
…

86

(Constructors of)
Predefined objects

Most common are Array, Boolean, Function, Number, Object,
String

The Math object contains a mathematical library: constants (E,
PI, LN10, LN2, LOG10E, LOG2E, SQRT1_2, SQRT2) and functions of
all sorts

Don’t instantiate it: use it as a static component
The Date object contains features to represent date and time
concepts and work with them
The RegExp object supports working with regular expressions

87

Date: construction (1/2)

Constructors

Date(), Date(milliseconds), ...

The Date() constructor creates an object representing
current day and hour on the system in use

In Date(milliseconds), milliseconds are calculated starting
from 00:00:00 of January 1st, 1970, using the UTC standard
day of 86.4M sec

88

Date: construction (2/2)

Constructors
Date(string), Date(year, month, day [, hh, mm, ss,
ms])

UTC and GMT are supported
Days go from –100M to +100M around 1/1/1970
In Date(string), string must be in the format recognized
by Date.parse
In Date(y, m, d), year, month and day must be provided;
other parameters are optional; parameters not provided
are set to 0

89

Date: methods
Methods
getDay returns the day of the week from 0 (Sunday) to 6
(Saturday)
getDate returns the day from 1 to 31
getMonth returns the month from 0 (January) to 11
(December)
getFullYear returns the year on four digits
getHours returns the hour from 0 to 23
getMinutes returns the minute from 0 to 59
getSeconds returns the seconds from 0 to 59
…

90

Date: example

Example
d = new Date(); millennium = new Date(3000, 00, 01)

s = new String((millennium – d) / 86400000)

days = s.substring(0, s.indexOf(‘.’)) // integer part

alert(days + ‘days to the year 3000’)

Output (on March 5th, 2006)
362987 days to the year 3000

91

Who is the global
object?

The global object is unique and it is always created by the
interpreter before executing anything
There is no global identifier: in every situation there is a given
object used as global object

in a browser, that object is typically window
but on the server side, it would probably be another object
to play the role of global object

Could it be a problem not to know which object plays the role
of global object?

92

The global object:
warnings

Function and variables not assigned to a specific object are
assigned to the global object…
…but if they appear in a function’s scope they are assigned
as local to that scope
There are no problems, if global properties are used without
making the global object emerge
There can be problems if eval or another reflexive function
is used, since eval(“var f”) is different from var f because
the first definition is not executed in the global environment

93

Global object and
functions as data (1/4)

JavaScript lets variables reference functions and functions be
passed as arguments to other functions
var square = function(z) { return z*z }

function exe(f, x) { return f(x) }

But the f variable

must reference a function object

cannot be a string containing the name of an already defined
function
exe(“Math.sin”, .8) // error

94

Global object and
functions as data (2/4)

Beside the approach based on the Function constructor, the
global object can be exploited to obtain a reference to a
function object corresponding to a given function name
Let p be a reference to an object, and s a string containing
the name of the x property of p, then the array-like
notation p[s] returns a reference to the property x
In this case, p is the global object, s a function name, x the
function object corresponding to the name in s

95

Global object and
functions as data (3/4)

The following notation
var name = Math[“sin”]

puts in the name variable a reference to the function
object Math.sin
So, after defining the function
function exe(f, x) { return f(x) }

we can invoke
exe(name, .8) // returns 0.7173560908995228

because the “sin” string has been translated into a
reference to the Math.sin object, suitable for
invocation

96

Global object and
functions as data (4/4)

Generalizing
var fun = prompt(“Enter a function name”)
var f = Math[fun]

Now the user can specify a function name and let it be
searched and invoked by a reflexive mechanism
The result can be showed in another window
confirm(“Result: ” + exe(f, x))

Note that in this example the Math object plays the role
of the global object since functions are searched in it only

97

Forms and their
management (1/3)

JavaScript is often used in the context of HTML forms
A form usually contains text fields and buttons
<form name=“aForm”>

<input type=“text” name=“textField” size=“30”
maxlength=“30”>

<input type=“button” name=“button” value=“Click
here”>

</form>

When the button is pressed, it is possible to invoke a
JavaScript function

98

Forms and their
management (2/3)

When a button is pressed, the button pressed event can be
intercepted by the onclick attribute
<form name=“aForm”>

<input type=“button” name=“button” value=“Click
here” onclick=“alert(‘You clicked me!’)”>

</form>

Remember to alternate double and single quotes when
writing JavaScript code in HTML attributes

99

Forms and their
management (3/3)

As an alternative example, when the button is pressed we
can make the browser write the result of one of our
functions
<form name=“aForm”>

<input type=“button” name=“button” value=“Click
here” onclick=“document.write(square(6))”>

</form>

Note that square must be already defined

100

Forms: which events?
Events which can be intercepted on an element (managed on the
correspondent tag)
onclick, onmouseover, onmouseout, …

Events which can be intercepted on a window (managed in the
body tag)
onload, onunload, onblur, …

Example
<body onload=“alert(‘Loaded!’)”>

<form name=“aForm”>

<input type=“button” name=“button” value=“Click
here” onclick=“alert(square(6))”>

</form>

</body>

101

Forms: events
management

To reuse the value returned by confirm, prompt, or other
functions, a whole JavaScript program has to be inserted
as the value of the onclick attribute (as a sequence or a
function call)

Examples
onclick=“x = prompt(‘Name and surname’);
document.write(x)”

onclick=“ok = confirm(‘Is this OK?’); if (!ok)
alert(‘Warning!’)”

102

Forms and text fields

Text fields can be objects with a name within a form object
with a name
As such, they can be referenced using the dot notation, e.g.
document.aForm.aTextField

Text fields are characterized by the value property
Example
<form name=“aForm">

<input type="text" name=“surname" size=“20”>

<input type="button" name="button" value="Show“
onclick="alert(document.aForm.surname.value)">

</form>

103

Functions as links

A JavaScript function can be used as a valid link usable as
the href attribute of the a element
The effect of a click on that link is the execution of the
function and the display of the result in a new HTML page
within the same window
Example
This should be 100</
a>

104

