Introduction to
JavaScript

Prof. Andrea Omicini & Ing. Giulio Piancastelli
II Facolta di Ingegneria, Cesena
Alma Mater Studiorum, Universita di Bologna
andrea.omicini@unibo.it, giulio.piancastelli@unibo.it

mailto:andrea.omicini@unibo.it?subject=Introduction%20to%20JavaScript
mailto:andrea.omicini@unibo.it?subject=Introduction%20to%20JavaScript
mailto:giulio.piancastelli@unibo.it?subject=Introduction%20to%20JavaScript
mailto:giulio.piancastelli@unibo.it?subject=Introduction%20to%20JavaScript

Documents and
computation

@ HTML

@ Language for the description of documents
@ Information-oriented
@ Document mobility
@ Distributed information
@ How fo distribute computation using the Web?

@ Associating mobile code to HTML pages
@ Applet Java
@ JavaScript

JavaScript vs.
Java Applet

@ Specialisation on the "client as browser” model
@ Dynamics
@ "Lightness”
@ Regular Expressions agile management
@ Perl-like
@ Weakly typed
@ easy prototyping
@ Inheritance and objects
@ prototype vs. class

D ..

Myths

@ JavaScript is similar to Java

@ Mainly for C-style syntax and control constructs
@ JavaScript is simple

@ It is easily usable without training
@ JavaScript runs on every browser

@ Yes, but it can have specific quirks on specific versions
of specific browsers (IE vs Mozilla vs Opera vs ...)

[| ECMA @ http://www.ecma-international.orq/

@ When designing a page, pay attention at how it
degrades when JavaScript is missing or not enabled

http://www.ecma-international.org
http://www.ecma-international.org

Standard

@ ECMA 262
@ ISO 16262

@ ECMAScript
@ JavaScript, JScript, ActionScript

http://www.ecma-international.org/publications/standards/ECMA-262.HTM
http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

@ ECMA 357

@ E4X
@ ECMAScript for XML

http://www.ecma-international.org/publications/standards/ECMA-357 .HTM
http://www.ecma-international.org/publications/files/ecma-st/ECMA-357.pdf

JavaScript

@ Object-oriented / Functional language
@ Model
@ Syntactic details

@ Client side

@ Browser integration
@ Server side
@ We are not interested

@ Embedded

@ A subset of ECMA 262 trimmed to minimize system
resources required to execute

Example - XHTML

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>..</title>
<link href ="style.css" rel="stylesheet" type="text/css" media="screen" />
<script type="text/javascript" src="command.js"></script>
</head>
<body class="papers">

<form action="" method="get">

<input type="button" value="BibTeX" class="bibBtn" onclick="showBib('volume'); ">

Example - JavaScript

absURL = "abs/"
bibURL
pdfURL = "pdf/"

I
o
|_l.
o
;T

function showAbs(key) {

abstractWin=window.open (absURL+key+".html", "abstractWindow",
"resizable=yes,dependent=yes,height=150,width=600, location=no,menubar=no
,scrollbars=yes,status=no,toolbar=no");

abstractWin.focus();
}
function showBib(key) {

bibtexWin=window.open (bibURL+key+".html", "bibtexWindow",
"resizable=yes,dependent=yes,height=300,width=600, location=no,menubar=no
,scrollbars=yes,status=no,toolbar=no");

bibtexWin.focus|();
i
function showPDF (key) {

top.location.href=pdfURL+key+" .pdf";

What does JavaScript
do?

@ Document content and presentation control
@ The document object
@ DOM
@ Browser control
@ The window object
@ Form management
@ The Form, Button, .. objects
@ User interaction

@ Events management

@ Interaction state management
@ Cookies

Structure of the
language

@ Case sensitive
@ It is a problem using HTML

@ Separators
@ Spaces, line breaks, tabs, ..

@ Semicolon
@ Optional, but please use it

@ Comments
@ Similar to C, C++ e Java
@ Use // for single line and /* .. */ for multiline

@® Keywords

10

Variables and scope

@ Variables are dynamically typed

x = "hello"; typeof x // returns "string"
x = 54; typeof x // returns "number"

x = function(n) { return n * n }; typeof x // returns "function"

@ Scopes

@ Global, in the so-called global object

@ Local, in the execution context (not in simple blocks)
S Keyword var

@ Used to make variables visible only in their local scope
@ Web

@ documents and windows are new contexts in addition to

“classic” scopes

11

Data types

@ Primitive types: number, string and boolean
@ Arrays

@ Functions

@ Objects - both general and special, e.g.

® window and document for browser intraction
® Data for dates and calendars
® RegExp, for regular expressions, excellent to manage
text as user input
@ E4X adds XML-like data types

person = <person><name>James</name><surname>Bond</surname></person>
typeof person // returns "xml"

person.name // returns James, as an "xml" element, not a string

12

Numbers

@ Integer and real numbers as IEEE 8 byte
@ Only double-precision numbers

@ The Math object
@ Library of mathematical functions

@ Special values
o Infinity
s NaN
A ..

13

Strings

@ No char type

® Quotes and double quotes
@ they are equal
@ pay attention with (X)HTML
@ Concatenation
@ and many other “classic” operators

@ Wrapper String
@ Virtual “library”, a la Java (static functions)

14

Boolean

@ false and true
@ As strings
@ Automatically converted in O and 1

@ Numbers
@ Whenever needed...

15

Non-primitive types and
references

@ References are shared when performing
assignment between non-primitive types

@ Example

var a = [1,2,3];
var b = a;
a[0] = 99;
alert (b);

@ what does that do?
@ Try it! (IE, Mozilla, Opera, Safari/Konqueror)

javascript: var a = [1,2,3]; var b = a; a[0] = 99; alert(b);

@ what is the output?

16

Arrays

@ As objects...

var arr = new Array(1l,2,3,4,5);

@ Classic access

var four = arr[3];

var arr = [[2,3],[true,false],[“boh”, ' mah’]];

@ Fragmented and dynamic
@ you can do everything you want...

@ Wrapper Array

17

Functions

@ First-class objects
@ can be passed as a parameter to other functions
@ can be expressed as anonymous literal values

@ Represented as lexically scoped closures
@ Examples

function square(x) {return x*x;}
var square = new Function(“x”, “return x*x;”};
var square = function(x) {return x*x;};

@ Function objects and properties
@ The arguments object

® caller and callee
® length and arity
@ apply and call

18

Higher-order
programming

@ Higher-order programming is the collection of
techniques available when using function values

@ E.g. passing functions as arguments

function map(list, f) {
var result = []
for (var i'=:0; i < distvlTength/ txt+t)
result[i] = £(list[i])
return result

}
map([1, 2, 3], square) // returns [1, 4, 9]

@ E.g. returning functions as resulfs

function acc(n) { return function(i) { return n += 1 } }
a = acc(10); a(7); a(6); // returns 23

@ E.g. putting functions into data structures

19

Objects

@ Collections of properties (name-value pairs)
@ The new operator is used to create objects

var paper = new Object();

@ Definition of / access to properties
paper.title = “Hello JavaScript”;

@ Enumeration
for (var property in paper) alert (property);

@ Methods are properties whose value is a function
@ Prototypes

@ Not (only) classes and inheritance
@ In the 3rd standard, class and prototype properties...

20

Prototypes

@ Prototypes are used to supply general properties
to a kind of objects, simulating classes

function Circle(x, y, r) {
this.x = x;8Ehis .y = y; this.r =gy

}
Circle.prototype.pi = 3.14159

Circle.prototype.area = function() { return this.pi * this.r *
this.r }

var ¢ = new Circle(0.0, 0.0, 1.0)

var a c.area ()

@ Prototypes are also used as a mechanism to
support inheritance between classes of objects

@ No linguistic support is offered to effectively
promote encapsulation

21

Browser integration

@ The window Object
@ Window as a global execution context

® var foo and window. foo are the same

@ Client-side object hierarchy
@ The window object contains

® document, location, frames[], forms|[], ..

@ Event model
@ Event managers associated to (X)HTML tags

22

The SCRIPT tag

<head>
<script type="text/javascript" language="JavaScript">
<!-- hide to very old browsers
javascript code
/] -->
</script>
<script type="text/javascript” src="outline.js”>
</script>
</head>
<body>
<script type="text/javascript”>
<!-- hide to very old browsers
JavaScript code
/] -->
</script>
<noscript><p>No JavaScript for you...</p></noscript>
</body>

23

Windows management

@ You can control almost everything...
@ but you need to study a little
@ so it is better to start from existing examples...

@ A window Objects hierarchy
@ screen, navigator, document, ..

@ Example:
function showBib (key) {

bibtexWin=window.open (bibURL+key+" .html", "bibtexWindow",

"resizable=yes,dependent=yes,height=300,width=600,location=no,menubar=no,
scrollbars=yes,status=no,toolbar=no");
bibtexWin. focus();

}
function showPDF (key) {

top.location.href=pdfURL+key+" .pdf";

24

DOM

@ The Document Object Model is a standard object
model for representing HTML and XML documents

@ Vendor-specific extensions exist

@ JavaScript can manipulate the DOM by accessing
its elements via a standard and well-defined API

@ For example, HTML elements may be added...

header = document.createElement('hl')
header.innerHTML = 'Document Title'

document.getElementsByTagName ('body') [0] . appendChild (header)

@ ..or CSS properties can be modified

headers = document.getElementsByTagName ('h2')
for (var i = 0; 1 < headers.length; i++)

headers[i] .style.color = 'red'

25

Events

@ Event managers

@ onChange, onClick, onMouseDown, onSubmit, ..

@ The W3C has defined a set of common events to
be shared by all browsers

@ Managers as HTML attribuftes...

<form action="" method="get">

<input id="il" type="button" value="BibTeX" class="bibBtn"
onclick="showStockValue(); ">

@ ...or set by JavaScripf, e.q.

window.onload = function () {

document.getElementById("il") .onclick = showStockValue
}

26

HTML and Forms

@ Every (X)HTML element can have an identifier
@ The id attribute (once called name)

@ The rForm object
@ Modules as elements of document. forms|]

@ Input elements as elements of document.forms
[].elements]|]

@ Associative access using the name/id name

@ The onsubmit() and reset() methods

@ If onsubmit () returns false, data are not sent
@ A crystal-clear example of “distributed computation”...

27

Security

@ Implicit
@ No access to the local file system
@ No direct network functions
@ Explicit
@ Resftricted or privilege based functionality
@ "From the same origin” rule
@ Signed script

28

JavaScript 1.7

@ Latest JavaScript version, currently implemented
only in Firefox 2

@ Enable it by writing

<script type="application/javascript;version=1.7">

@ Lots of new language features, e.g.
@ Generators

function range (begin, end) {
for (var i = begin; i < end; ++i) { yield i; }

}
@ List comprehension

var evens = [i for (i in range (0, 21)) if (1 % 2)];

@ Destructuring assignment and multiple value returns

var a = 1; var b = 3; [a, b] = [b, a];
function f£()i { xreturn 1. 20 Yola bl .= £ ()

@ For further details, see

http://developer.mozilla.org/en/docs/New_in JavaScript 1.7

29

http://developer.mozilla.org/en/docs/New_in_JavaScript_1.7
http://developer.mozilla.org/en/docs/New_in_JavaScript_1.7

JavaScript
in a few hours?

@ Tutorial on the Internet

@ Course website

@ or http://www.google.it, Search: JavaScript Tutorial
@ Example

® http://www.pageresource.com/jscript/

@ tutorial page
@ Books

@ “JavaScript: The Definitive Guide” (David Flanagan,
O’Reilly/Apogeo)
@ or anything you like...

30

