
Tuple-based Coordination:
An Introduction

Andrea Omicini, Alessandro Ricci
andrea.omicini, a.ricci@unibo.it

Alma Mater Studiorum–
Università di Bologna a Cesena

Outline
• (PART I) Elements of distributed system

engineering
<few important points>

• (PART II) Introduction to (tuple-based)
coordination
– Some tuple space / Linda examples

• (PART III) Hybrid Coordination Models
– the ReSpecT language and computational model
– the TuCSoN model and infrastructure

• (PART IV) Linda vs. TuCSoN
– Some coordination patterns in Linda and TuCSoN

PART I

Elements of distributed systems
engineering

Concurrent / Distributed
System Scenarios

• Time, Space, Interaction
• Concurrency / Parallelism

– Multiple independent activities / loci of control
– Active simultaneously

• Distribution
– Activities running on different and heterogeneous execution

contexts (machines, devices, ...)
• Interaction

– Dependencies among activities
– Collective goals involving activities coordination /

cooperation

Basic Engineering Principles

• Abstraction
– Problems should be faced / represented at the most suitable

level of abstraction
– Resulting “abstractions” should be expressive enough to

capture the most relevant problems
– Conceptual integrity

• Locality & Encapsulation
– Design abstractions should embody the solutions

corresponding to the domain entities they represent
• Run-time vs. Design-time Abstractions

– Incremental change / evolutions
– On-line engineering
– (Cognitive) Self-organising systems

OOP: Not Enough
• How to model an independent activity?

– Objects? No way
• Objects encapsulate a state and a behaviour, but not a control flow

– Objects have autonomy over their state, they can control it
– Objects have not autonomy over their behaviour, they cannot control it
– Control flows along with data, by means of method invocation (as a

reification of message passing)
• Control is outside objects, owned by human designer who acts as a

control authority, establishing the control flow
• Object interaction is limited and disciplined by interfaces, governed

by the human designer
• How to model concurrent activities? How to model

interaction and coordination among concurrent
activities? How to decouple data and control?
– Method invocation?? No way!

Information- / Knowledge-driven
Engineering

• Control is encapsulated within agents
• Information flows independently of control

– And determines the evolution of the system
– Information-oriented interpretation of interaction

• Interaction in terms of information exchanged

• How to support this view?
• Which are advantages and limits?

– Data-driven vs. control driven models
• Later on :)

Task- / Goal-Oriented
Engineering

• Task / Goal as abstractions to drive control
– Within agents

• Individual / Social tasks / goals
– Task / goal identification

• Individual to single agents
• Social to group of agents

– Task / goal unfolding / folding
• From individual to social, and viceversa

• Core of agent-oriented engineering

An Example: An Alarm System

• Scenario
– a building where access to rooms/resources has to be ruled

according to some global organisation policy
• Examples of individual taska

– Monitoring a room
– Identifying users
– Informing the police

• Examples of collective tasks
– Organisation/Security policies

• When detecting unidentified users in rooms X,Y, lock resources
R1, R2 and inform the police

• From 23.00 to 6.00 only some users are allowed to access the
building

Agents and Infrastructures

• Agents need infrastructures
– Providing basic services to support agents at runtime

• Services for agent life cycle (creation, execution, death,
migration..)

– Providing core abstractions as first-class entities of MASs
• To enable / promote / govern agent interaction

– Enabling communication, synchronisation, cooperation, …
• And social structure / dynamics

– As well as services for enaction, management, use,
evolution of the infrastructural abstractions

• Keeping the abstractions alive
– Support for dynamic system construction, observation,

evolution

PART I - SUMMING UP

• The engineering of distributed systems
– Requires basic SE principles to be satisfied
– But also calls for abstractions encapsulating the control flow
– Information-driven Design

• Task- / Goal-oriented approach
– Individual and Social Tasks / Goals
– Agents and Artifacts (Infrastructure Abstractions)

• Infrastructure for MASs
– Providing Abstractions for Agents

PART II

Introduction to (tuple-based)
coordination

The Roots of Coordination Models
& Languages

• Concurrent/parallel programming context
(~1980s)
– Programming = Computation + Coordination

• Coordination as the glue that binds separate activities
into an ensemble (Gelernter)

• Software engineering context (~1990s)
– Coordination = constraining/promoting/managing

interaction among independent components
– Architectures = Components + Connectors

Coordination Meta-model (I)
coordination
medium
what
enable & govern & promote
 interactions
 among the entities
according to some
coordination laws
- enacted by medium behaviour
- defining coordination semantics

coordinables
the glue

Coordination Meta-model (II)

• Ciancarini 1996
– Coordinables
– Coordination Media
– Coordination Laws

Coordination Meta-model (III)

• Coordinables
– Entities whose mutual interaction is ruled by the model
– Examples:processes, threads, objects, users, agents, …

• Focus
– Observable behaviour of the coordinables
– Question: are we anyhow concernd here with the internal

machinery / functioning of the coordinable, in principle?
• Wait for a comparision between Linda and TuCSoN…

Coordination Meta-model (IV)

• Coordination Media
– Abstractions enabling and ruling agent

interactions
– The core around which the components of the

system are organised
• Examples

– semaphors, monitors, channels, tuple spaces,
blackboards, pipes

Coordination Meta-model (V)

• Coordination Laws
– Define the behaviour of the coordination media in response

to interaction
• Interaction events

– Expressed in terms of
• The communication language

– Syntax used to express and exchange data structures
– Examples: Tuples, XML elements, FOL Terms, (Java) Objects,

….
• The coordination language

– Set of interaction primitives and their semantics
– Examples: in/out/rd.. (Linda), send/receive (channels), push/pull

(pipes..)

Software composition

 Objective Linda

 Linda

 Sonia

 ACLT+ReSpecT (TuCSoN)

 Laura
 Bauhaus Linda

 Jada (PageSpace)

 Bonita

 Law Governed Linda

 Tspaces

 JavaSpaces
 LIME MARS

 PoliS

 GAMMA

 HOGamma

 Structured Gamma LO

 COOLL

 CLF

 IWIM (MANIFOLD)

Paradise

 Actors (AS+DIL+DCL+Sync)

 Synopsis

 Messengers

 RAPIDE

 Compositional Programming

 CoLa

 Opus

 PCL

 Darwin/Regis

 Durra

 PICCOLA

 CSDL

 POLYLITH
 ConCoord

 Conic

 The Programmer’s Playground

 Jackal

 TOOLBUS

 UniCon

 ABLE GenVoca

 COOL

 Interaction
 Oriented
 Programming

 Infosleuth KAoS

 AgentTalk

 Ariadne/HOPLa

 PCN/Strand

 GammaLOG

 SHADE

ForumTalk

agent oriented
Higher level agents

Concurrent/Distributed Systems

Model/Language Families (1999)

The Tuple Space Model

• Coordination medium: Tuple Space
– Multiset / bag of data object/structures

called tuples
• Communication Language: Tuples

– Tuple = ordered collection of (possibly
heterogeneous) information items

• Coordination Language set of
operations to put and retrieve tuples to/
from the space

Coordinables synchronise,
cooperate, compete based on
tuples available in the tuple space,
by associatively accessing,
consuming and producing tuples

A Language for Tuple Spaces: Linda
• Communication Language

– Tuple, Templates (anti-tuples) and tuple matching
• Examples: p(1), printer(‘HP’,dpi(300)), my_array(0,0.5), matrix

(m0,3,3,0.5), tree_node(node00,value(13),left(_),right(node01)), …

• Coordination primitives
– out(T)

• Puts in the space the tuple T
• Examples: out(p(1)), out(printer(‘HP’,dpi(300)), out(array(1,13.4)), out

(course(‘Denti Enrico’,‘Poetry’,hours(150))…
– in(TT)

• Removes from the space a tuple matching the template TT
– Blocking behaviour
– non-determinism

• Examples: in(p(X)), in(printer(Name,dpi(300)), in(array(1,Value))…
– rd(TT)

• Reads (without removing) from the space a tuple matching template TT
– Blocking behaviour
– Non-determinism

• Examples: rd(p(1)), rd(printer(‘HP’,dpi(Dpi)), rd(array(Index,13.4)), rd
(course(‘Zambonelli’,Course,_), rd(course(_,’Poetry’,Hours))…

• Generative Communication
• until explicitly withdrawn, the

tuples generated by coordinables
have an independent existence in
the tuple space. A tuple is equally
accessible to all the coordinables,
but is bound to none

• Associative Access to the
tuple space
• accessing tuple through content,

not address

Tuple Spaces/Linda features

p(1)

out(p(1))

in(p
(X))

p(1)

printer(‘HP’,dpi(300))

out(printer(‘HP’,dpi(300)))
array(1,13.3)

rd(array(1,Value))

rd(array(_,13.3))

Generative Communication Properties
• Communication orthogonality

– Both senders and the receivers can interact even without having prior
knowledge about each others

 Space uncoupling (also called distributed naming)
 Time uncoupling

• Free Naming
 Support for continuation passing, Structured naming and inverse

Structured naming
- Flexibility exploiting tuple matching

- Job allocation & Reminder example (Gelernter)

 Seamless support for…
– Distributed data structures management

• Partial data structures
– All form of communication & Synchronisation

 Basic orthogonal mechanisms that can be composed flexibly to
obtain high level coordination patterns

• Need for formal semantics
– The out issue by Zavattaro

Associative Access Properties

• Content-based coordination
– Synchronisation based on tuple content

• Absence / presence of tuples with some content

• Information-driven coordination
– Patterns of coordinaiton based on information

availability
• Reification

– Making events become tuples
– Classes of events

Suspensive Semantics

• in, rd
– In Linda

• the coordination medium makes the primitives waiting in case
a matching tuple is not found

• the coordinable performing the primitive is expected to wait for
its completion

• Twofold “wait”
– In the coordination medium

• Coordination on absense / presence
– In the coordinable

• Hypothesis on the internal behaviour of the coordinable

Tuple Spaces / Linda Extensions
• Extending the communication language

– XML based tuples (ex: XMLSpaces)
– Java object tuples (ex: JavaSpaces,Tspaces, MARS)
– Logic-based tuples (ex: Shared Prolog, ReSpecT)
…

• Extending the coordination language
– adding coordination primitives:

• Non-blocking behaviour
– inp, rdp

• Bulk-primitives
– Inall, rdall, copy, copycollect,…

• Extending medium structure and topology
– multiple tuple spaces (ex: TuCSoN ...)
– nested spaces (ex: Bauhaus Linda)

• Extending medium behaviour
– Programmable tuple spaces (ex: ReSpecT/TuCSoN, MARS…)
– Event management (ex: JavaSpaces)

Benefits
• Ortogonality (Separation) of Coordination and

Computation Languages
– computational languages as sort of degenerate

coordination language in the form of global
variables and argument passing

– Ex: “Linda and friends”
• Linda+C, Linda+Prolog, Linda+Fortran,…

• Generality
– The same general purpose coordination language

can be used in different coordination contexts,
gluing different kind of computations

 Heterogeneity
- gluing computation of heterogeneous computational

models, all in the same coordination context
 Portability/Reusability

- Reusability (recycle-ability) in reusing application,
implementation, tools and heterogeneous programmer
expertise in the same coordination context

Linda

Manifol
d

ReSpec
T

C JavaProlog
Scheme

computation

co
or

di
na

tio
n

Data- vs. Control-driven
Coordination

• What if
– We need to start an activity after N agents have

asked for a resource?
– In general, we need to coordinate over the

coordination acts, rather than on their content?
• Control-driven coordination

– That does not fit our information-driven context,
however

• Toward hybrid coordination models
– Linda plus… what?

PART II - SUMMING UP

• Coordination models/languages & technologies
provide first class issues to model and develop
coordination abstractions / artifacts
– Promotes the separation between computation and

coordination/interaction issues
– Several models with different expressiveness

• Tuple Space / Linda coordinaiton
– Shared tuple spaces as coordination artifacts
– Benefits of the generative communication / associative

access
– Limits of data-driven coordination

PART III

ReSpecT & TuCSoN

ReSpecT at a glance

• Reaction Specification Tuples
• From tuple spaces to tuple centres

– programmable tuple spaces
– ReSpecT tuple centres behave as tuple spaces when

their behaviour specification is empty
– programmable (coordination) artefacts

• either at the application or at the infrastructure level

• ReSpecT tuple centres
– encapsulate any computable coordination activity

• they can observe any interaction event
• they can affect the interaction space
• ReSpecT is Turing-equivalent

ReSpecT Tuple Centres

• Programmable (logic)
tuple spaces
– Logic tuples as

communication language

• General purpose /
customisable
coordination artefacts

reaction(out(T),
 (out_r(bak(T))))

reaction(in(pp(X,Y)),(
 in_r(p(X)),in_r(p(Y)),
 out_r(pp(X,Y))))

out

out

in

rd

Tuple Centre Features:
Programmability

• Programmable
– Tuple centre behaviour can

be programmed to enact the
desired coordination policies

– ReSpecT language as
programming language

• Programs as set of logic
tuples (reactions) specifying
medium behaviour reacting
to interaction events

– [idea] Tuple centres as a
general purpose coordination
artifacts customizable by
means of the ReSpecT logic
based language

reaction(out(T),
 (out_r(bak(T))))

reaction(in(pp(X,Y)),(
 in_r(p(X)),in_r(p(Y)),
 out_r(pp(X,Y))))

specification tuples (ReSpecT language)

Tuple Centres Features:
Inspectability

• Inspectable at runtime
– Tuple centre behaviour can be

inspected dynamically, at
runtime

• (ReSpecT) Uniformity of
languages
– Same structure / same

primitives for communication
and coordination

• Theory of communication /
theory of coordination
– As FOL theories

reaction(in(q(X),(
 no_r(q(X)),
 rd_r(p(Y)),
 out_r(q(Y))))

get_spec

Tuple Centres Features:
Malleability

• Adaptable at runtime
– Tuple centre behaviour can

be changed/adapted
dynamically, at runtime, by
reprogramming the artifact

• Locality / Encapsulation
– Tuple centres embed

coordination laws
• A tuple centre can is a full-

fledged coordination
abstraction

– Reaction model ensure
encapsulation of low-level
coordination policies

reaction(in(q(X),(
 no_r(q(X)),
 rd_r(p(Y)),
 out_r(q(Y))))

set_spec

 Simple examples

Current behaviour of the tuple centre
(pseudocode):

When a tuple T is inserted, produce a
tuple backup(T)

When a tuple p(X) is inserted, update the
tuple total_tuple(N) (retrieve and
store the tuple with N incremented)…

p(1)

total_tuples(1)

p(2)

out(p(1))

total_tuples(2)p(2)

p(1)
backup(p(1))

agent A

Tuple
Centre T

reactions execution..

in ReSpecT:

reaction(out(T),(
 out_r(backup(T)))).

reaction(out(p(X)),(
 in_r(total_tuples(N)),
 N1 is N + 1,
 out_r(total_tuples(N1)))).

(agent operation)

 Simple examples

Tuple centre behaviour:

When an in operation is
executed with template q
(X), update the tuple
n_hits

n_hits (303)

in(q(X))

q(5)

q(5)

n_hits (303)

n_hits (303)

n_hits (304)

in ReSpecT:

reaction(in(q(X)),(
 in_r(n_hits(Y)),
 Y1 is Y + 1,
 out_r(n_hits(Y1)))).

agent
ATuple

Centre T

TuCSoN at a glance

• Tuple Centre Spread over the Network
• ReSpecT tuple centres + Agent Coordination

Contexts (ACC)
• Tuple centres are distributed over the

network, collected in nodes
– distributed social coordination artefacts
– distributed topology

• An ACC is assigned to each agent entering a
TuCSoN-based MAS
– individual boundary artefacts

TuCSoN Coordination Space

• Coordination space =
set of distributed nodes
– Each TuCSoN node is

an Internet node
• Identified by the IP

(logic) address

• TuCSoN Topology
– Here, Internet topology
– HiMAT (Cremonini 1999)

• Hierarchical, dynamic,
configurable topology

TuCSoN node

TuCSoN coordination space

TuCSoN Node/Context
• Each TuCSoN node defines a

coordination context,
providing an open/dynamic
set of tuple centres as
coordination artifacts
– Identified by means of a logic

name (term)
• Ex: ticket_dispenser, mail

(aricci), room(‘2.3’),…
– full tuple centre identifier:

<name>@<node>
• Ex: mail(aricci)

@myhome.org, room(‘2.3’)
@ingce.unibo.it,
ticket_dispenser@137.204.191.188,
… TuCSoN node (coordination context)

ticket_dispenser

room
(‘2.3’) mail

(aricci)

agent
tuple centre

TuCSoN Node / Context

• In order to access and
use the tuple centres of
a node, an agent must
enter the coordination
context
– Either logically or

physically (mobile
agents)

• ACC
– Agent Coordination Context

(Omicini 2002)

TuCSoN
coordination
contexts (nodes)

mobile
agent

generic
agent

entrance
negotiatio
n

entrance
negotiatio
n

TuCSoN Technology (1)

• TuCSoN API
– Virtually any hosting language

• Currently: Java, Prolog
– Support for Java and Prolog agents

– Heterogeneous hardware support:
• Currently: desktop PC, PDA (Compaq iPaq, Palm)
• WiP: LEGO, embedded computing

TuCSoN Technology (2)
• TuCSoN Service

– Booting the TuCSoN Service daemon
• The host becomes a TuCSoN node
• With current version (1.3.0):

java -cp tucson.jar alice.tucson.runtime.Node

• TuCSoN Tools
– Inspectors

• Fundamental tool to monitor tuple centre communication and coordination
state, and to debug tuple centre behaviour

• debugger for coordination artifacts
– Observing and debugging agent interaction

• With current version (1.3.0):
java -cp tucson.jar alice.tucson.ide.Inspector

– TuCSoNShell
• Shell interface for human agents
• With current version (1.3.0):

java -cp tucson.jar alice.tucson.ide.CLIAgent

PART III - ReSpecT

ReSpecT Model and Language

Programmable Tuple Spaces

• Tuple Centres = Programmable Tuple Spaces
– The behaviour of the medium in response to communication events

is no longer fixed once and for all by the model, but can be defined
according to the required coordination policies

• Coordination laws no longer fixed, but specified/programmed according
to the coordination need

– The medium behaviour is enriched in terms of state transitions
(reactions) performed in response to the occurrence of standard
communication events (ex: insertion of a tuple, retrieve of a tuple,
…)

– Tuple centres as general purpose reactive associate blackboards
• Same standard tuple space interface…

– entities perceive the tuple centre as a standard tuple space
• …but can behave in a very different way with respect to a tuple

space, since its behaviour can be specified so as to encapsulate
the coordination rules governing the interaction

Tuple Centre Behaviour: Reactions

• More formally, tuple centres enhance tuple spaces with with behaviour
specification, defining tuple centre behaviour in response to
communication events
– Communication events examples: the tuple T has been inserted in the

space, an in operation been beformed with template TT,…
• Behaviour specification is expressed in terms of a reaction specification

language, and associates any communication event possibly occurring
in the tuple centre to a (possibily) empty set of computational activities
called reactions

• Reactions should be able to
– Compute

• ReSpect is Turing-equivalent
– Act on the communication/coordination state

• ReSpecT can access and modify the current tuple centre state, by adding,
removing, reading tuples…

– Fully observe the triggering communication event
• The operation related generating communication events, the entity identity

performing the operations,…

Tuple Centre Dynamics
• Multiple reactions in one shot

– Each communication event may trigger a multeplicity of reactions
which are executed locally to the tuple centre

• Default tuple space behaviour
– When a communication event occurs, a tuple centre first behaves

like a standard tuple space, then executes all the triggered
reactions before serving any other entity-triggered communication
event and any other coordination primitives invocation

– A tuple centre with empty behaviour = a tuple space
• Atomicity

– The observable behaviour of a tuple centre in response to a
communication event is still perceived by coordinable as a single-
step/atomic state transition of the medium, as in the case of tuple
spaces

• Reactions are not observable by coordinables

The ReSpecT Language
• ReSpecT is a language for the specification of the behaviour of tuple

centres
– Logic tuples as communication language

• based of first-order logic, where a tuple is a fact
• Unification as tuple matching mechanism

– Examples: p(1,_) and p(1,2) match, p(X,X,1) and p(1,Y,Z) match, p(X,X) and p(1,2)
don’t match…

• Reactions defined through logic tuples too
– A specification tuple reaction(Op,R) associates the event generated

by the incoming communication operation Op to the reaction R. Example:
reaction(out(p(1)), …)

– A reaction is defined a sequence of reaction goals, which may access
properties of the occurred communication event, perform simple term
operations, manipulate tuples in the tuple centre. Examples:
reaction(out(T), (out_r(backup(T)))).

reaction(out(p(X)), (in_r(total_tuples(N)), N1 is N + 1,

 out_r(total_tuples(N1)))).

reaction(in(q(X)), (no_r(q(_)), out_r(q(5)))).

ReSpecT Primitives

The ReSpecT Language
• Reaction goals are executed sequentially

– Reaction goals can trigger new reactions
• Reacting on out_r, in_r, rd_r, no_r primitives..

• Success/failure semantics of each reaction execution
– A reaction as a whole is either a successful or failed reaction if all its

reaction goals succeed or not
– Transactional semantics

• a successfull reaction can atomically modify the tuple centre state, a failed
yelds no results at all

• The execution order of (possibly) multiple triggered reactions is not
deterministic

• All the reactions triggered by a given communication event are
executed before serving any other communication event
– Coordinables perceive only the final result of the execution of the

communication event and the set of all the triggered reactions

Multiple Coordination Flows

• Tuple centres can be use to encapsulate
(portions of) coordination flows
– each ReSpecT tuple centre conceptually

represents a single coordination flow
– is a single (conceptually localised) reactive abstraction
– coordinates a group of coordinated entities (coord.

locality)
– according to the programmed policy

• Decomposition always calls for composition
abilities
– composing multiple coordination flows

• Simple yet powerful solution
– out_tc 51

52

The out_tc primitive

p(1)

logsA

logsB

log(myAgent,tc,p(1))

tc

log(myAgent,tc,p(1))

tcout(p(1))

myAgent

reaction(out(T),(
 current_agent(Who),
 current_tc(Where),
 out_tc(logsA,log(Who,Where,T)),
 out_tc(logsB,log(Who,Where,T)))).

53

The extended model

• The execution of a reaction can now
= change the tuple space state, fire new reactions
+ produce an ouput event

• The ReSpecT tuple centres state at a given
time carries
= the tuple space state, the pending reactions, the

pending queries
+ the set of pending output events to be sent

• Semantics of out_tc(tc,tuple) primitive
– tuple space state unchanged, fires no reactions
– schedules production of output event <tc,tuple>

Facts about ReSpecT

• Turing-equivalent language
– Powerful enough to express any computation/algorithm

acting on the interaction space
General purpose enaugh to support the specification of any

compuatble coordination policies
Expressivity issues

• Formal semantics
– Fundamental to understand coordination activities
– The basis for supporting formal analysis and reasoning

about interaction dynamics
• A new, general language / model underway

– but not yet implemented :)
• Now, it can be used also at the application level

– e.g., from tuProlog
• contact A. Ricci is you really need this

PART III - Technically TuCSoN

TuCSoN live?

<TuCSoN on the fly>

• Booting a TuCSoN node
• Using a tuple centre (as a human agent)

– TuCSoN shell tool
• Inspecting and debugging tuple centres

– TuCSoN inspector

<Development in TuCSoN>

• Building simple systems
– Experiments with the “Hello world” simple Java

agent
– Creating simple coordination among Java, human

and Prolog agents

TuCSoN in Java (1)

TuCSoN in Java (2)

TuCSoN in Java: A simple agent

TuCSoN in Prolog (tuProlog)

<TuCSoN environment overview>

• A look to the API
– Java and Prolog

• A look to infrastructure & tools deployment
• A look to some agents

<TuCSoN Internals>

• A look to the design & development
– “alice” open source project

• Tuple centre framework (alice.tuplecentre)
• tuProlog (alice.tuprolog, alice.tuprologx)
• ReSpect (alice.respect, alice.logictuple)
• TuCSoN (alice.tucson)

PART IV

Linda vs. TuCSoN

Coordination Patterns:
Linda vs. TuCSoN / ReSpecT

• Basic coordination
– Communication & Interoperability

• Managing information flow
– Basic Synchronisation

• Managing temporal dependencies
– Basic Resource sharing / allocation

• Task allocation

• Articulated coordination
– Workflow Management
– Transactions
– Event-based Patterns

• Notifications
• Publish/Subscribe

Enabling Communication (I)

out(msg(agentB,content(‘test’,13)))

SENDER:

in(msg(agentB,Info))

RECEIVER (called agentB):

• Message Passing

Enabling Communication (II)

…
out(compute_sum(5,8,me))
in(compute_sum_result(me,Value)
…

SERVICE USER:

in(compute_sum(X,Y,Who))
Sum X + Y
out(compute_sum_result(Who,Sum))

SERVICE PROVIDER

• RPC style

Enabling Interoperability

…
out(compute_sum(5,8,me))
in(compute_sum_result(me,Value)
…

SERVICE USER

in(make_sum(term(X,Y)))
Sum X + Y
out(sum_result(X,Y,Sum))

SERVICE PROVIDER

• Mediating between different ontologies

SERVICE MEDIATOR

in(compute_sum(X,Y,Who))
out(service_requested(sum(X,Y),Who))
out(make_sum(term(X,Y)))
in(sum_result(X,Y,Sum))
in(service_requested(sum(X,Y),Who))
out(compute_sum_result(Who,Sum))

Good, but
-the mediation as a coordination
activity is charged upon an entity
(the service mediator), not upon
the medium
(Conceptual mismatch
engineering drawbacks)

Interoperability in TuCSoN

…
out(compute_sum(5,8,me))
in(compute_sum_result(me,Value)
…

SERVICE USER:

in(make_sum(term(X,Y)))
Sum X + Y
out(sum_result(X,Y,Sum))

SERVICE PROVIDER

• Ontology mediation charged upon the medium

reaction(out(compute_sum(X,Y,Who)),(
 in_r(compute_sum(X,Y,Who)),
 out_r(service_requested(sum(X,Y),Who)),
 out_r(make_sum(term(X,Y)))).
reaction(out(sum_result(X,Y,Sum)),(
 in_r(sum_result(X,Y,Sum)),
 in_r(service_requested(sum(X,Y),Who)),
 out_r(compute_sum_result(Who,Sum)))).

MEDIATION POLICY in ReSpecTSERVICE MEDIATOR
in(compute_sum(X,Y,Who))
out(service_requested(sum(X,Y),Who))
out(make_sum(term(X,Y)))
in(sum_result(X,Y,Sum))
in(service_requested(sum(X,Y),Who))
out(compute_sum_result(Who,Sum))

…
out(compute_sum(5,8,me))
in(compute_sum_result(me,Value)
…

SERVICE USER:

in(make_sum(term(X,Y)))
Sum X + Y
out(sum_result(X,Y,Sum))

SERVICE PROVIDER

TuCSoN StyleLinda Style

Basic Synchronisation (I)

<outside sync region>
…
in(token)
<inside sync region>
out(token)
…
<outside sync region>
…

Synchronised agent:

• Synchronisation

To have synchronised region
allowing N users inside
 N tuples token

HYPOTHESIS:
Initial space content with the tuple token

Barrier Synchronisation (II)

…
<before barrier>
…
out(ready(agentA))
rd(ready(agentB))
<agents A and B
are now synchronised>

Agent A:

• Barrier Synchronisation

…
<before barrier>
…
out(ready(agentB))
rd(ready(agentA))
<agents B and A
are now synchronised>

Agent B:

Barrier Synchronisation (III)

…
out(ready(agentA))
rd(ready(agentB))
rd(ready(agentC))
…

Agent A:

• Barrier Synchronisation with 3+ entities

…
out(ready(agentB))
rd(ready(agentA))
rd(ready(agentC))
…

Agent B:

…
out(ready(agentC))
rd(ready(agentA))
rd(ready(agentB))
…

Agent C:
Good, but
-Adding an agent changing the
behaviour of all the other agents
-Every agent must be aware of all
the other ones

Barrier Synchronisation in TuCSoN

…
out(ready)
rd(ready_all)
…

ANY agent:

• Encapsulating the barrier synchronisation policy

reaction(out(ready),(in_r(ready),
 in_r(ready_entities(N)), N1 is N+1,
 out_r(ready_entities(N1)))).
reaction(out_r(ready_entities(N)),(
 in_r(ready_entities(N)),
 out_r(ready_entities(0)),
 rd_r(barrier_size(N)), out_r(ready_all))).

BASIC BARRIER SYNCHRONISATION in ReSpecT

HYPOTHESIS:
- Initial space content with ready_entities(0)
- barrier_size(N) tuple to specify number of
coordinables to be synchronised

…
out(ready(agentA))
rd(ready(agentB))
rd(ready(agentC))
…

Agent A:

…
out(ready(agentB))
rd(ready(agentA))
rd(ready(agentC))
…

Agent B:

…
out(ready(agentC))
rd(ready(agentA))
rd(ready(agentB))
…

Agent C:

Linda Style TuCSoN Style

Resource Sharing / Allocation
• A dynamic/open set of agents accessing the

same resource (ex: a printer) according to a
coordination policy (ex: First Come First
Served)

…
in(next_ticket(T))
T1 T + 1
out(next_ticket(T1))
in(turn(T))
 <use the resource>
out(turn(T1)
…

Each user agent:

HYPOTHESIS: Initial space content includes
the tuples:
 next_ticket(0)
 turn(0)

Good, but
-Changing the coordination policy
 changing all the other entities
-Malicious/Failing agents?

Resource Sharing / Allocation
in TuCSoN (I)

• Encapsulating Sharing Policy
– Scale down complexity to a synchronisation problem

…
in(next_ticket(T))
T1 T + 1
out(next_ticket(T1))
in(turn(T))
 <use the resource>
out(turn(T1)
…

Each user agent:

…
in(resource_token(<my name>))
<use the resource>
out(resource_token(<my name>))
…

EACH USER:

reaction(in(resource_token(Who)),(pre,
 in_r(tickets(N)), N1 is N + 1,
 out_r(tickets(N1)),
 out_r(turn(Who,N)))).
reaction(out_r(turn(Who,N)),(
 rd_r(current_turn(N)),
 out_r(resource_token(Who)))).
reaction(out(resource_token(Who)),(
 in_r(resource_token(Who)),in_r(turn(Who,N)),
 in_r(current_turn(N)), N1 is N+1,
 out_r(current_turn(N1)))).
reaction(out_r(current_turn(N)),(
 rd_r(turn(Who,N)),
 out_r(resource_token(Who)))).

SHARING COORDINATION LAWS in ReSpecT:

Linda Style

TuCSoN Style

Resource Sharing / Allocation
in TuCSoN (II)

• Changing / Adapting Sharing Policy
– From FIFO strategy to LIFO strategy

…
in(resource_token(<my name>))
<use the resource>
out(resource_token(<my name>))
…

Each user agent:

reaction(in(resource_token(Who)),(pre,
 in_r(last(N)), N1 is N + 1,
 out_r(last(N1)),
 out_r(heap(Who,N1)),
 out_r(check))).

… [OK, you got the idea]

LIFO SHARING POLICY:

unchanged
behaviour for
agents

changing only
the glue code

Task Allocation

• Task allocation to an open set of workers, with
task request provided by an open set of masters,
according to some policy
– MP3 Service Case Study: building a distributed

Internet-based MP3 encoding service
• masters request WAV MP3 conversion
• workers provide the conversion
• service provision policy: FIFO

– possibly dynamically/adaptable

from the articles “Make Room for JavaSpaces”
by Susan Hupfer – Java World electronic
magazine, Jiniology Serie

Also in the book:
“Java Spaces: Principle and Patterns” AW.

M

M

W

W

M

W

Task Allocation:
The Linda Approach

while (true) {
 acquireFromGUI(FileName)
 readRawData(FileName,RawData)
 in(tail(T))
 T1 T + 1
 out(tail(T1))
 out(mp3request(T1,FileName,
 RawData,myId))
 in(mp3result(FileName,
 ResultData,myId))
}

MP3 REQUESTER (master) MP3 CONVERTER (worker)

while (true) {
 rd(tail(T))
 in(head(H))
 if (T<H){
 out(head(H))
 } else {
 H1 H + 1
 out(head(H1))
 in(mp3request(H,FileName,Data,
 FromWho))
 MP3Data from_raw_to_data(Data)
 out(mp3result(FileName,
 MP3Data,FromWho))
 }
}

good, but the coordination burden is almost
upon the coordinables
-changing policy changing coordinables
-…

Task Allocation:
The TuCSoN Approach

while (true) {
 acquireFromGUI(FileName)
 readRawData(FileName,RawData)
 out(mp3request(FileName,RawData,myId))
 in(mp3result(FileName,ResultData,myId))
}

while (true) {
 in(mp3request(FileName,Data,FromWho))
 MP3Data from_raw_to_data(Data)
 out(mp3result(FileName,MP3Data,FromWho))
}

reaction(out(request(_,_,_)),(
 rd_r(workers_available(N)),
 N>0)).
reaction(out(request(Name,Data,From)),(
 rd_r(workers_available(N)),
 N == 0,
 in_r(tail(T)), T1 is T + 1, out_r(tail(T1)),
 in_r(request(Name,Data,From)),
 out_r(req_queue(T1,Name,Data,From)))).
reaction(in(request(Name,Data,From)),(pre,
 rd_r(head(H)),rd_r(tail(T)),
 T < H)).

reaction(in(request(Name,Data,From)),(pre,
 in_r(head(H)), rd_r(tail(T)),
 T >= H,
 H1 is H + 1, out_r(head(H1)),
 in_r(req_queue(H,N1,D1,F1)),
 out_r(request(N1,D1,F1)))).
reaction(in(request(_,_,_)),(pre,
 in_r(workers_available(N)),
 N1 is N + 1,out_r(workers_available(N1)))).
reaction(in(request(_,_,_)),(post,
 in_r(workers_available(N)),
 N1 is N - 1, out_r(workers_available(N1)))).

MP3 REQUESTER (master) MP3 REQUESTER (worker)

FIFO TASK ALLOCATION POLICY in ReSpecT

APPENDIX

Selected Bibliography & References

Selected bibliography (1)
• Interaction

• Why Interaction is more powerful that algorithms (Wegner) –
Communication of ACM, Vol. 40, No. 5, May 1997

• Interactive Foundation of Computing (Wegner) – Theoretical Computer
Science, Vol. 192, No. 2, February 1998

• The Book :)
• Coordination of Internet Agents (Omicini, Zambonelli, Klusch,

Tolksdorf), Springer-Verlag 2001

• Coordination Overview & Surveys
• Coordination Languages and their Significance (Gelernter, Carriero) –

Communication of ACM, Vol. 33, No. 2, February 1992
• Coordination Models and Languages as Software Integrators

(Ciancarini) – ACM Computing Surveys, Vol. 28, No. 2, June 1996
• Programmable Coordination Media (Denti, Natali, Omicini) – 2nd

International Conference (COORDINATION ‘97), Proceedings, LNCS
1282, Springer-Verlag, 1997

• Coordination Models and Languages (Arbab, Papadopoulos) –
Advances in Computers, Vol. 46, Academic Press, August 1998

• The Interdisciplinary Study of Coordination (Malone, Crostow) – ACM
Computing Surveys, Vol. 26, No. 1, March 1994

Selected bibliography (2)
• Coordination Models/Languages/Infrastructures and TuCSoN

– Tuple Spaces & Linda
• Generative Communication in Linda (Gelernter), ACM Transactions on

Programming Languages and Systems, Vol. 7, No. 1, January 1985
– Tuple Centre & ReSpecT

• On the Expressive Power of a Language for Programming Coordination
Media (Denti, Natali, Omicini), 1998 ACM Symposium on Applied
Computing (SAC), 1998

• From Tuple Spaces to Tuple Centres (Omicini, Denti), Science of
Computer Programming, Vol. 41 No. 3, 2001

• Formal ReSpecT (Omicini, Denti), Electronic Notes in Theoretical
Computer Science, Vol. 48, 2001

– TuCSoN
• Coordination for Internet Application Development (Omicini, Zambonelli),

Autonomous Agents and Multi-Agent Systems, Vol.2 No. 3,
1999

• http://lia.deis.unibo.it/~ao/ (Publications section)
• http://tucson.sourceforge.org
• http://lia.deis.unibo.it/research/tucson/

