
5-1

LECTURE 5:

REACTIVE AND HYBRID

ARCHITECTURES

An Introduction to MultiAgent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas

5-2

Reactive Architectures

There are many unsolved (some would say

insoluble) problems associated with symbolic AI

These problems have led some researchers to

question the viability of the whole paradigm, and to

the development of reactive architectures

Although united by a belief that the assumptions

underpinning mainstream AI are in some sense

wrong, reactive agent researchers use many

different techniques

In this presentation, we start by reviewing the work

of one of the most vocal critics of mainstream AI:

Rodney Brooks

5-3

Brooks – behavior languages

Brooks has put forward three theses:

Intelligent behavior can be generated without

explicit representations of the kind that symbolic

AI proposes

Intelligent behavior can be generated without

explicit abstract reasoning of the kind that

symbolic AI proposes

Intelligence is an emergent property of certain

complex systems

5-4

Brooks – behavior languages

He identifies two key ideas that have

informed his research:

Situatedness and embodiment: ‘Real’

intelligence is situated in the world, not in

disembodied systems such as theorem provers

or expert systems

Intelligence and emergence: ‘Intelligent’

behavior arises as a result of an agent’s

interaction with its environment. Also,

intelligence is ‘in the eye of the beholder’; it is

not an innate, isolated property

5-5

Brooks – behavior languages
To illustrate his ideas, Brooks built some based on
his subsumption architecture

A subsumption architecture is a hierarchy of task-
accomplishing behaviors

Each behavior is a rather simple rule-like structure

Each behavior ‘competes’ with others to exercise
control over the agent

Lower layers represent more primitive kinds of
behavior (such as avoiding obstacles), and have
precedence over layers further up the hierarchy

The resulting systems are, in terms of the amount
of computation they do, extremely simple

Some of the robots do tasks that would be
impressive if they were accomplished by symbolic
AI systems

5-6

A Traditional Decomposition of a Mobile

Robot Control System into Functional

Modules

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985



5-7

A Decomposition of a Mobile Robot

Control System Based on Task Achieving

Behaviors

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985
5-8

Layered Control in the Subsumption

Architecture

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985

5-9

Example of a Module – Avoid

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985
5-10

Schematic of a Module

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985

5-11

Levels 0, 1, and 2 Control Systems

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985 5-12

Steels’ Mars Explorer

Steels’ Mars explorer system, using the

subsumption architecture, achieves near-

optimal cooperative performance in

simulated ‘rock gathering on Mars’ domain:

The objective is to explore a distant planet,

and in particular, to collect sample of a

precious rock. The location of the samples is

not known in advance, but it is known that

they tend to be clustered.



5-13

Steels’ Mars Explorer Rules

For individual (non-cooperative) agents, the lowest-level

behavior, (and hence the behavior with the highest

“priority”) is obstacle avoidance:

if detect an obstacle then change direction (1)

Any samples carried by agents are dropped back at the

mother-ship:

if carrying samples and at the base

then drop samples (2)

Agents carrying samples will return to the mother-ship:

if carrying samples and not at the base

then travel up gradient (3)

5-14

Steels’ Mars Explorer Rules

Agents will collect samples they find:

if detect a sample then pick sample up (4)

An agent with “nothing better to do” will explore

randomly:

if true then move randomly (5)

5-15

Situated Automata

A sophisticated approach is that of Rosenschein

and Kaelbling

In their situated automata paradigm, an agent is

specified in a rule-like (declarative) language, and

this specification is then compiled down to a

digital machine, which satisfies the declarative

specification

This digital machine can operate in a provable

time bound

Reasoning is done off line, at compile time, rather

than online at run time

5-16

Situated Automata

The logic used to specify an agent is
essentially a modal logic of knowledge

The technique depends upon the possibility
of giving the worlds in possible worlds
semantics a concrete interpretation in terms
of the states of an automaton

“[An agent]…x is said to carry the
information that P in world state s, written s
K(x,P), if for all world states in which x has
the same value as it does in s, the
proposition P is true.”

[Kaelbling and Rosenschein, 1990]

5-17

Situated Automata

An agent is specified in terms of two

components: perception and action

Two programs are then used to synthesize

agents

RULER is used to specify the perception

component of an agent

GAPPS is used to specify the action component

5-18

Circuit Model of a Finite-State Machine

From Rosenschein and Kaelbling,

“A Situated View of Representation and Control”, 1994

f = state update function

s = internal state

g = output function



5-19

RULER – Situated Automata

RULER takes as its input three components

“[A] specification of the semantics of the [agent's]

inputs (‘whenever bit 1 is on, it is raining’); a set of

static facts (‘whenever it is raining, the ground is

wet’); and a specification of the state transitions of

the world (‘if the ground is wet, it stays wet until the

sun comes out’). The programmer then specifies

the desired semantics for the output (‘if this bit is

on, the ground is wet’), and the compiler ...

[synthesizes] a circuit whose output will have the

correct semantics. ... All that declarative

‘knowledge’ has been reduced to a very simple

circuit.” [Kaelbling, 1991]
5-20

GAPPS – Situated Automata

The GAPPS program takes as its input

A set of goal reduction rules, (essentially rules that
encode information about how goals can be
achieved), and

a top level goal

Then it generates a program that can be
translated into a digital circuit in order to
realize the goal

The generated circuit does not represent or
manipulate symbolic expressions; all
symbolic manipulation is done at compile
time

5-21

Circuit Model of a Finite-State Machine

From Rosenschein and Kaelbling,

“A Situated View of Representation and Control”, 1994

“The key lies in understanding how a process can

naturally mirror in its states subtle conditions in its

environment and how these mirroring states ripple

out to overt actions that eventually achieve goals.”

RULER
GAPPS

5-22

Situated Automata

The theoretical limitations of the approach

are not well understood

Compilation (with propositional

specifications) is equivalent to an NP-

complete problem

The more expressive the agent specification

language, the harder it is to compile it

(There are some deep theoretical results

which say that after a certain

expressiveness, the compilation simply can’t

be done.)

5-23

Advantages of Reactive Agents

Simplicity

Economy

Computational tractability

Robustness against failure

Elegance

5-24

Limitations of Reactive Agents

Agents without environment models must have

sufficient information available from local environment

If decisions are based on local environment, how does

it take into account non-local information (i.e., it has a

“short-term” view)

Difficult to make reactive agents that learn

Since behavior emerges from component interactions

plus environment, it is hard to see how to engineer

specific agents (no principled methodology exists)

It is hard to engineer agents with large numbers of

behaviors (dynamics of interactions become too

complex to understand)



5-25

Hybrid Architectures

Many researchers have argued that neither a

completely deliberative nor completely reactive

approach is suitable for building agents

They have suggested using hybrid systems, which

attempt to marry classical and alternative approaches

An obvious approach is to build an agent out of two

(or more) subsystems:

a deliberative one, containing a symbolic world model, which

develops plans and makes decisions in the way proposed by

symbolic AI

a reactive one, which is capable of reacting to events without

complex reasoning

5-26

Hybrid Architectures

Often, the reactive component is given some

kind of precedence over the deliberative one

This kind of structuring leads naturally to the

idea of a layered architecture, of which

TOURINGMACHINES and INTERRAP are

examples

In such an architecture, an agent’s control

subsystems are arranged into a hierarchy,

with higher layers dealing with information at

increasing levels of abstraction

5-27

Hybrid Architectures

A key problem in such architectures is what kind of

control framework to embed the agent’s

subsystems in, to manage the interactions between

the various layers

Horizontal layering

Layers are each directly connected to the sensory

input and action output.

In effect, each layer itself acts like an agent,

producing suggestions as to what action to perform.

Vertical layering

Sensory input and action output are each dealt with

by at most one layer each

5-28

Hybrid Architectures

m possible actions suggested by each layer, n layers

mn interactions m2(n-1) interactions

Introduces bottleneck

in central control system

Not fault tolerant to

layer failure

5-29

Ferguson – TOURINGMACHINES

The TOURINGMACHINES architecture

consists of perception and action

subsystems, which interface directly with the

agent’s environment, and three control

layers, embedded in a control framework,

which mediates between the layers

5-30

Ferguson – TOURINGMACHINES



5-31

Ferguson – TOURINGMACHINES

The reactive layer is implemented as a set of

situation-action rules, a la subsumption architecture

Example:
rule-1: kerb-avoidance

if

is-in-front(Kerb, Observer) and

speed(Observer) > 0 and

separation(Kerb, Observer) < KerbThreshHold

then

change-orientation(KerbAvoidanceAngle)

The planning layer constructs plans and selects

actions to execute in order to achieve the agent’s

goals

5-32

Ferguson – TOURINGMACHINES

The modeling layer contains symbolic representations of

the ‘cognitive state’ of other entities in the agent’s

environment

The three layers communicate with each other and are

embedded in a control framework, which use control rules

Example:
censor-rule-1:

if

entity(obstacle-6) in perception-buffer

then

remove-sensory-record(layer-R, entity(obstacle-6))

5-33

Müller –InteRRaP

Vertically layered, two-pass architecture

cooperation layer

plan layer

behavior layer

social knowledge

planning knowledge

world model

world interface

perceptual input action output


