
4-1

LECTURE 4:

PRACTICAL REASONING

An Introduction to MultiAgent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas



4-2

Practical Reasoning

Practical reasoning is reasoning directed

towards actions — the process of figuring out

what to do:

“Practical reasoning is a matter of weighing conflicting

considerations for and against competing options,

where the relevant considerations are provided by

what the agent desires/values/cares about and what

the agent believes.” (Bratman)

Practical reasoning is distinguished from

theoretical reasoning – theoretical reasoning is

directed towards beliefs



4-3

Practical Reasoning

Human practical reasoning consists of two

activities:

deliberation

deciding what state of affairs we want to achieve

means-ends reasoning

deciding how to achieve these states of affairs

The outputs of deliberation are intentions



4-4

Intentions in Practical Reasoning

Intentions pose problems for agents, who need to determine

ways of achieving them.
If I have an intention to , you would expect me to devote

resources to deciding how to bring about .

Intentions provide a “filter” for adopting other intentions,

which must not conflict.
If I have an intention to , you would not expect me to adopt

an intention  such that  and  are mutually exclusive.

Agents track the success of their intentions, and are inclined

to try again if their attempts fail.
If an agent’s first attempt to achieve  fails, then all other

things being equal, it will try an alternative plan to achieve .



4-5

Intentions in Practical Reasoning

Agents believe their intentions are possible.

That is, they believe there is at least some way that the

intentions could be brought about.

Agents do not believe they will not bring about their

intentions.
It would not be rational of me to adopt an intention to 

if I believed  was not possible.

Under certain circumstances, agents believe they will

bring about their intentions.

It would not normally be rational of me to believe that I

would bring my intentions about; intentions can fail.
Moreover, it does not make sense that if I believe  is

inevitable that I would adopt it as an intention.



4-6

Intentions in Practical Reasoning

Agents need not intend all the expected side effects

of their intentions.
If I believe  and I intend that , I do not

necessarily intend  also. (Intentions are not closed

under implication.)

This last problem is known as the side effect or

package deal problem. I may believe that going to the

dentist involves pain, and I may also intend to go to

the dentist — but this does not imply that I intend to

suffer pain!



4-7

Intentions in Practical Reasoning

Notice that intentions are much stronger

than mere desires:

“My desire to play basketball this afternoon is

merely a potential influencer of my conduct this

afternoon. It must vie with my other relevant

desires [. . . ] before it is settled what I will do. In

contrast, once I intend to play basketball this

afternoon, the matter is settled: I normally need

not continue to weigh the pros and cons. When

the afternoon arrives, I will normally just proceed

to execute my intentions.” (Bratman, 1990)



4-8

Planning Agents

Since the early 1970s, the AI planning community
has been closely concerned with the design of
artificial agents

Planning is essentially automatic programming: the
design of a course of action that will achieve some
desired goal

Within the symbolic AI community, it has long been
assumed that some form of AI planning system will
be a central component of any artificial agent

Building largely on the early work of Fikes &
Nilsson, many planning algorithms have been
proposed, and the theory of planning has been well-
developed



4-9

What is Means-End Reasoning?

Basic idea is to give an agent:

representation of goal/intention to achieve

representation actions it can perform

representation of the environment

and have it generate a plan to achieve the goal

Essentially, this is

automatic programming



4-10

goal/

intention/

task

state of

environment

possible

action

planner

plan to achieve goal



4-11

Planning

Question: How do we represent. . .

goal to be achieved

state of environment

actions available to agent

plan itself



4-12

The Blocks World

We’ll illustrate the techniques with reference

to the blocks world (like last week)

Contains a robot arm, 3 blocks (A, B, and C)

of equal size, and a table-top

A

B C



4-13

The Blocks World Ontology

To represent this environment, need an

ontology

On(x, y) obj x on top of obj y

OnTable(x) obj x is on the table

Clear(x) nothing is on top of obj x

Holding(x) arm is holding x



4-14

The Blocks World

Here is a representation of the blocks world

described above:

Clear(A)

On(A, B)

OnTable(B)

OnTable(C)

Use the closed world assumption: anything

not stated is assumed to be false



4-15

The Blocks World

A goal is represented as a set of formulae

Here is a goal:
OnTable(A)  OnTable(B)  OnTable(C)

AB C



4-16

The Blocks World

Actions are represented using a technique that was

developed in the STRIPS planner

Each action has:

a name

which may have arguments

a pre-condition list

list of facts which must be true for action to be executed

a delete list

list of facts that are no longer true after action is performed

an add list

list of facts made true by executing the action

Each of these may contain variables



4-17

The Blocks World Operators

Example 1:

The stack action occurs when the robot arm places the

object x it is holding is placed on top of object y.

Stack(x, y)
pre Clear(y)  Holding(x)

del Clear(y)  Holding(x)

add ArmEmpty  On(x, y)

A

B



4-18

The Blocks World Operators
Example 2:

The unstack action occurs when the robot arm picks an

object x up from on top of another object y.

UnStack(x, y)
pre On(x, y)  Clear(x)  ArmEmpty

del On(x, y)  ArmEmpty

add Holding(x)  Clear(y)

Stack and UnStack are inverses of one-another.

A

B



4-19

The Blocks World Operators

Example 3:

The pickup action occurs when the arm picks up an

object x from the table.
Pickup(x)

pre Clear(x)  OnTable(x)  ArmEmpty

del OnTable(x)  ArmEmpty

add Holding(x)

Example 4:

The putdown action occurs when the arm places

the object x onto the table.

 Putdown(x)

pre Holding(x)

del Holding(x)

add Clear(x)  OnTable(x)  ArmEmpty



4-20

A Plan

What is a plan?

A sequence (list) of actions, with variables

replaced by constants.

I G

a1

a17

a142



4-21

The STRIPS approach

The original STRIPS system used a goal

stack to control its search

The system has a database and  a goal

stack, and it focuses attention on solving the

top goal (which may involve solving

subgoals, which are then pushed onto the

stack, etc.)



4-22

The Basic STRIPS Idea
Place goal on goal stack:

Considering top Goal1, place onto it its

subgoals:

Then try to solve subgoal GoalS1-2, and

continue…

Goal1

Goal1

GoalS1-2

GoalS1-1



4-23

Stack Manipulation Rules, STRIPS
If on top of goal stack: Then do:

Compound or single goal Remove it
matching the current state description

Compound goal not matching 1. Keep original compound goal on stack
the current state description 2. List the unsatisfied component goals on

 the stack in some new order 
 Single-literal goal not matching the Find rule

whose instantiated
current state description add-list includes the goal, and

1. Replace the goal with the
instantiated rule;

2. Place the rule’s instantiated
precondition formula on top of stack

Rule 1. Remove rule from stack;

2. Update database using rule;

3. Keep track of rule (for solution)

Nothing Stop

“Underspecified” – there are decision branches here within the search tree…



4-24

Implementing Practical Reasoning Agents

A first pass at an implementation of a practical

reasoning agent:

(We will not be concerned with stages (2) or (3))

Agent Control Loop Version 1

1. while true

2. observe the world;

3. update internal world model;

4. deliberate about what intention to achieve next;

5. use means-ends reasoning to get a plan for the intention;

6. execute the plan

7. end while



4-25

Implementing Practical Reasoning Agents

Problem: deliberation and means-ends

reasoning processes are not instantaneous.

They have a time cost.

Suppose the agent starts deliberating at t0,

begins means-ends reasoning at t1, and

begins executing the plan at time t2. Time to

deliberate is

tdeliberate = t1 – t0

and time for means-ends reasoning is

 tme = t2 – t1



4-26

Implementing Practical Reasoning Agents

Further suppose that deliberation is optimal in that if it

selects some intention to achieve, then this is the best

thing for the agent. (Maximizes expected utility.)

So at time t1, the agent has selected an intention to

achieve that would have been optimal if it had been

achieved at t0.

But unless tdeliberate is vanishingly small, then the agent

runs the risk that the intention selected is no longer

optimal by the time the agent has fixed upon it.

This is calculative rationality.

Deliberation is only half of the problem: the agent still

has to determine how to achieve the intention.



4-27

Implementing Practical Reasoning Agents
So, this agent will have overall optimal behavior in
the following circumstances:

When deliberation and means-ends reasoning take a
vanishingly small amount of time; or

When the world is guaranteed to remain static while
the agent is deliberating and performing means-ends
reasoning, so that the assumptions upon which the
choice of intention to achieve and plan to achieve the
intention remain valid until the agent has completed
deliberation and means-ends reasoning; or

When an intention that is optimal when achieved at
time t0 (the time at which the world is observed) is
guaranteed to remain optimal until time t2 (the time at
which the agent has found a course of action to
achieve the intention).



4-28

Implementing Practical Reasoning Agents

Let’s make the algorithm more formal:



4-29

Deliberation

How does an agent deliberate?

begin by trying to understand what the options

available to you are

choose between them, and commit to some

Chosen options are then intentions



4-30

Deliberation
The deliberate function can be decomposed into

two distinct functional components:

option generation

in which the agent generates a set of possible

alternatives;

Represent option generation via a function, options,

which takes the agent’s current beliefs and current

intentions, and from them determines a set of options

(= desires)

filtering

in which the agent chooses between competing

alternatives, and commits to achieving them.

In order to select between competing options, an

agent uses a filter function.



4-31

Deliberation



4-32

Commitment Strategies
“Some time in the not-so-distant future, you are having trouble with your new

household robot. You say “Willie, bring me a beer.” The robot replies “OK
boss.” Twenty minutes later, you screech “Willie, why didn’t you bring me
that beer?” It answers “Well, I intended to get you the beer, but I decided to
do something else.” Miffed, you send the wise guy back to the manufacturer,
complaining about a lack of commitment. After retrofitting, Willie is returned,
marked “Model C: The Committed Assistant.” Again, you ask Willie to bring
you a beer. Again, it accedes, replying “Sure thing.” Then you ask: “What
kind of beer did you buy?” It answers: “Genessee.” You say “Never mind.”
One minute later, Willie trundles over with a Genessee in its gripper. This
time, you angrily return Willie for overcommitment. After still more tinkering,
the manufacturer sends Willie back, promising no more problems with its
commitments. So, being a somewhat trusting customer, you accept the
rascal back into your household, but as a test, you ask it to bring you your
last beer. Willie again accedes, saying “Yes, Sir.” (Its attitude problem
seems to have been fixed.) The robot gets the beer and starts towards you.
As it approaches, it lifts its arm, wheels around, deliberately smashes the
bottle, and trundles off. Back at the plant, when interrogated by customer
service as to why it had abandoned its commitments, the robot replies that
according to its specifications, it kept its commitments as long as required —
commitments must be dropped when fulfilled or impossible to achieve. By
smashing the bottle, the commitment became unachievable.”



4-33

Commitment Strategies

The following commitment strategies are commonly

discussed in the literature of rational agents:

Blind commitment

A blindly committed agent will continue to maintain an

intention until it believes the intention has actually been

achieved. Blind commitment is also sometimes referred to

as fanatical commitment.

Single-minded commitment

A single-minded agent will continue to maintain an intention

until it believes that either the intention has been achieved,

or else that it is no longer possible to achieve the intention.

Open-minded commitment

An open-minded agent will maintain an intention as long as

it is still believed possible.



4-34

Commitment Strategies

An agent has commitment both to ends (i.e.,

the wishes to bring about), and means (i.e.,

the mechanism via which the agent wishes

to achieve the state of affairs)

Currently, our agent control loop is

overcommitted, both to means and ends

Modification: replan if ever a plan goes wrong



4-35



4-36

Commitment Strategies

Still overcommitted to intentions: Never

stops to consider whether or not its

intentions are appropriate

Modification: stop to determine whether

intentions have succeeded or whether they

are impossible:

(Single-minded commitment)



4-37



4-38

Intention Reconsideration
Our agent gets to reconsider its intentions once
every time around the outer control loop, i.e.,
when:

it has completely executed a plan to achieve its
current intentions; or

it believes it has achieved its current intentions; or

it believes its current intentions are no longer
possible.

This is limited in the way that it permits an
agent to reconsider its intentions

Modification: Reconsider intentions after
executing every action



4-39



4-40

Intention Reconsideration

But intention reconsideration is costly!

A dilemma:

an agent that does not stop to reconsider its intentions

sufficiently often will continue attempting to achieve its

intentions even after it is clear that they cannot be

achieved, or that there is no longer any reason for

achieving them

an agent that constantly reconsiders its attentions may

spend insufficient time actually working to achieve them,

and hence runs the risk of never actually achieving them

Solution: incorporate an explicit meta-level control

component, that decides whether or not to

reconsider



4-41



4-42

Possible Interactions

The possible interactions between meta-

level control and deliberation are:



4-43

Intention Reconsideration
In situation (1), the agent did not choose to deliberate, and as
consequence, did not choose to change intentions. Moreover, if it
had chosen to deliberate, it would not have changed intentions. In
this situation, the reconsider(…) function is behaving optimally.

In situation (2), the agent did not choose to deliberate, but if it had
done so, it would have changed intentions. In this situation, the
reconsider(…) function is not behaving optimally.

In situation (3), the agent chose to deliberate, but did not change
intentions. In this situation, the reconsider(…) function is not
behaving optimally.

In situation (4), the agent chose to deliberate, and did change
intentions. In this situation, the reconsider(…) function is behaving
optimally.

An important assumption: cost of reconsider(…) is much less than
the cost of the deliberation process itself.



4-44

Optimal Intention Reconsideration
Kinny and Georgeff’s experimentally

investigated effectiveness of intention

reconsideration strategies

Two different types of reconsideration

strategy were used:

bold agents

never pause to reconsider intentions, and

cautious agents

stop to reconsider after every action

Dynamism in the environment is represented
by the rate of world change, 



4-45

Optimal Intention Reconsideration

Results (not surprising):
If  is low (i.e., the environment does not change
quickly), then bold agents do well compared to
cautious ones. This is because cautious ones
waste time reconsidering their commitments
while bold agents are busy working towards —
and achieving — their intentions.

If  is high (i.e., the environment changes
frequently), then cautious agents tend to
outperform bold agents. This is because they are
able to recognize when intentions are doomed,
and also to take advantage of serendipitous
situations and new opportunities when they arise.



4-46

BDI Theory and Practice

We now consider the semantics of BDI

architectures: to what extent does a BDI agent

satisfy a theory of agency

In order to give a semantics to BDI architectures,

Rao & Georgeff have developed BDI logics: non-

classical logics with modal connectives for

representing beliefs, desires, and intentions

The ‘basic BDI logic’ of Rao and Georgeff is a

quantified extension of the expressive branching

time logic CTL*

Underlying semantic structure is a labeled

branching time framework



4-47

BDI Logic

From classical logic: , , ¬, …

The CTL* path quantifiers:

A  ‘on all paths, ’

E  ‘on some paths, ’

The BDI connectives:

(Bel i )  i believes 

(Des i )  i desires 

(Int i )  i intends 



4-48

BDI Logic

Semantics of BDI components are given via

accessibility relations over ‘worlds’, where

each world is itself a branching time structure

Properties required of accessibility relations

ensure belief logic KD45, desire logic KD,

intention logic KD

(Plus interrelationships. . . )



4-49

Axioms of KD45

(1) Bel(p  q)  (Bel p  Bel q) (K)

If you believe that p implies q then if you believe p then
you believe q

(2) Bel p  ¬Bel ¬p (D)

This is the consistency axiom, stating that if you
believe p then you do not believe that p is false

(3) Bel p  Bel Bel p (4)

If you believe p then you believe that you believe p

(4) ¬Bel p  Bel ¬Bel p (5)

If you do not believe p then you believe that you do not
believe that p is true



4-50

Axioms of KD45

It also entails the two inference rules of modus ponens

and necessitation:

(5) if p, and p  q,  then q (MP)

(6) if p is a theorem of KD45 then so is Bel p  

(Nec)

This last rule just states that you believe all theorems

implied by the logic



4-51

CTL Temporal Logic

(from David Garlan’s slides, CMU)

Branching time logic views a computation as

a (possibly infinite) tree or DAG of states

connected by atomic events

At each state the outgoing arcs represent

the actions leading to the possible next

states in some execution

Example:
P = (a  P)  (b  P)

a b

a a bb



4-52

CTL* Notation

Variant of branching time logic that we look

at is called CTL*, for Computational Tree

Logic (star)

In this logic

A = "for every path“

E = "there exists a path“

G = “globally” (similar to )

F = “future” (similar to )



4-53

Paths versus States

A and E refer to paths

A requires that all paths have some property

E requires that at least some path has the

property

G and F refer to states on a path

G requires that all states on the given path have

some property

F requires that at least one state on the path has

the property



4-54

CTL* Examples

AG p

For every computation (i.e., path from the root), in

every state, p is true

Hence, means the same as p

EG p

There exists a computation (path) for which p is

always true



4-55

CTL* Examples continued

AF p

For every path, eventually state p is true

Hence, means the same as p

Therefore, p is inevitable

EF p

There is some path for which p is eventually true

I.e., p is “reachable”

Therefore, p will hold potentially



4-56

Some Useful CTL* Equalities

From linear temporal logic:
P  ~  ~P

P  ~  ~P

In CTL* we can say:

AG p  ~ EF ~p

 EG p  ~ AF ~p

We can rewrite AG p  ~ EF ~p as

EF p  ~AG ~p



4-57

BDI Logic

Let us now look at some possible axioms of

BDI logic, and see to what extent the BDI

architecture could be said to satisfy these

axioms

In what follows, let

 be an O-formula, i.e., one which contains no

positive occurrences of A

 be an arbitrary formula



4-58

BDI Logic
Belief goal compatibility:

(Des )  (Bel )
States that if the agent has a goal to optionally
achieve something, this thing must be an option.
This axiom is operationalized in the function
options: an option should not be produced if it is
not believed possible.

Goal-intention compatibility:
(Int )  (Des )

States that having an intention to optionally
achieve something implies having it as a goal
(i.e., there are no intentions that are not goals).
Operationalized in the deliberate function.



4-59

BDI Logic

Volitional commitment:

(Int does(a))  does(a)

If you intend to perform some action a next, then

you do a next.

Operationalized in the execute function.

Awareness of goals & intentions:

(Des )  (Bel (Des ))

(Int )  (Bel (Int ))

Requires that new intentions and goals be posted

as events.



4-60

BDI Logic

No unconscious actions:

done(a)  Bel(done(a))

If an agent does some action, then it is aware

that it has done the action.

Operationalized in the execute function.

A stronger requirement would be for the success

or failure of the action to be posted.

No infinite deferral:

(Int )  A (¬(Int ))

An agent will eventually either act for an intention,

or else drop it.



4-61

Implemented BDI Agents: IRMA
IRMA – Intelligent Resource-bounded Machine

Architecture – Bratman, Israel, Pollack

IRMA has four key symbolic data structures:

a plan library

explicit representations of

beliefs: information available to the agent — may be

represented symbolically, but may be simple variables

desires: those things the agent would like to make true

— think of desires as tasks that the agent has been

allocated; in humans, not necessarily logically

consistent, but our agents will be! (goals)

intentions: desires that the agent has chosen and

committed to



4-62

IRMA

Additionally, the architecture has:

a reasoner for reasoning about the world; an
inference engine

a means-ends analyzer determines which plans
might be used to achieve intentions

an opportunity analyzer monitors the
environment, and as a result of changes,
generates new options

a filtering process determines which options are
compatible with current intentions

a deliberation process responsible for deciding
upon the ‘best’ intentions to adopt



4-63

IRMA



4-64

Implemented BDI Agents: PRS

Another BDI-based agent architecture: the PRS –

Procedural Reasoning System (Georgeff, Lansky)

In the PRS, each agent is equipped with a plan

library, representing that agent’s procedural

knowledge: knowledge about the mechanisms that

can be used by the agent in order to realize its

intentions

The options available to an agent are directly

determined by the plans an agent has: an agent with

no plans has no options

In addition, PRS agents have explicit representations

of beliefs, desires, and intentions, as above



4-65

PRS



4-66

HOMER – An agent that plans

Vere & Bickmore developed HOMER: a simulated

robot submarine, in a two-dimensional ‘Seaworld’

HOMER takes instructions from a user in a subset of

English with about an 800 word vocabulary

HOMER can plan how to achieve its instructions,

(which usually relate to collecting and moving items

around the Seaworld), and can then execute its plans,

modifying them as required during execution

HOMER has a limited episodic memory, and using

this, is able to answer questions about its past

experiences



4-67

Homer



4-68

Dialogues with HOMER



4-69

Dialogues with Homer



4-70

Comparison with SHRDLU
The dialog that was used as a SHRDLU demo:
Person: PICK UP A BIG RED BLOCK.

Computer: OK. (does it)

Person: GRASP THE PYRAMID.

Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT
INTO THE BOX.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM
HOLDING.

Computer: OK. (does it)

Person: WHAT DOES THE BOX CONTAIN?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: WHAT IS THE PYRAMID SUPPORTED BY?

Computer: THE BOX.

Person: HOW MANY BLOCKS ARE NOT IN THE BOX?

Computer: FOUR OF THEM.

Person: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE WHICH I TOLD YOU TO
PICK UP?

Computer: YES, THE RED CUBE.

Person: IS IT SUPPORTED?

Computer: YES, BY THE TABLE.

Person: CAN THE TABLE PICK UP BLOCKS?

Computer: NO.

Person: CAN A PYRAMID BE SUPPORTED BY A BLOCK?

Computer: YES.

Person: CAN A PYRAMID SUPPORT A PYRAMID?

Computer: I DON'T KNOW.



4-71

SHRDLU Dialog
Person: STACK UP TWO PYRAMIDS.

Computer: I CAN'T.

Person: WILL YOU PLEASE STACK UP BOTH OF THE RED BLOCKS AND EITHER A GREEN CUBE OR A PYRAMID?

Computer: OK. (does it)

Person: WHICH CUBE IS SITTING ON THE TABLE?

Computer: THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.

Person: IS THERE A LARGE BLOCK BEHIND A PYRAMID?

Computer: YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE, AND THE BLUE ONE.

Person: PUT A SMALL ONE ONTO THE GREEN CUBE WHICH SUPPORTS A PYRAMID.

Computer: OK. (does it)

Person: PUT THE LITTLEST PYRAMID ON TOP OF IT.

Computer: OK. (does it)

Person: DOES THE SHORTEST THING THE TALLEST PYRAMID'S SUPPORT SUPPORTS SUPPORT ANYTHING GREEN?

Computer: YES, THE GREEN PYRAMID.

Person: WHAT COLOR IS IT?

Computer: BY "IT", I ASSUME YOU MEAN THE SHORTEST THING THE TALLEST PYRAMID'S SUPPORT SUPPORTS.

Computer: RED

Person: HOW MANY THINGS ARE ON TOP OF GREEN CUBES?

Computer: I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF "IN THE PHRASE "ON TOP OF GREEN CUBES " .

 DO YOU MEAN:
1 - DIRECTLY ON THE SURFACE

2 - ANWHERE ON TOP OF ?

Person: 2

Computer: THREE OF THEM.

Person: HAD YOU TOUCHED ANY PYRAMID BEFORE YOU PUT THE GREEN ONE ON THE LITTLE CUBE?

Computer: YES, THE GREEN ONE.



4-72

SHRDLU Dialog
Person: WHEN DID YOU PICK IT UP?

Computer: WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK AND A LARGE GREEN CUBE.

Person: WHY?

Computer: TO GET RID OF IT.

Person: WHY DID YOU DO THAT?

Computer: TO CLEAN OFF THE RED CUBE.

Person: WHY DID YOU CLEAR OFF THAT CUBE?

Computer: TO PUT IT ON A LARGE GREEN CUBE.

Person: WHY DID YOU DO THAT?

Computer: TO STACK UP THE RED CUBE , A LARGE RED BLOCK AND A LARGE GREEN CUBE.

Person: WHY DID YOU DO THAT?

Computer: BECAUSE YOU ASKED ME TO.

Person: HOW DID YOU DO IT?

Computer: BY PUTTING A LARGE RED BLOCK ON THE TABLE ; THEN LETTING GO OF IT ; THEN PUTTING A LARGE GREEN
CUBE ON IT ; THEN LETTING GO OF THAT CUBE ; THEN PUTTING THE RED CUBE ON THAT CUBE; THEN LETTING GO OF
THAT CUBE.

Person: HOW MANY OBJECTS DID YOU TOUCH WHILE YOU WERE DOING IT?

Computer: FOUR OF THEM.

Person: WHAT DID THE RED CUBE SUPPORT BEFORE YOU STARTED TO CLEAN IT OFF?

Computer: THE GREEN PYRAMID.

Person: THERE WERE FIVE BLOCKS TO THE LEFT OF THE BOX THEN.

Computer: NO, ONLY FOUR OF THEM: THE RED CUBE, TWO LARGE GREEN CUBES AND A LARGE RED BLOCK.

Person: PUT THE BLUE PYRAMID ON THE BLOCK IN THE BOX.

Computer: OK. (does it)

Person: IS THERE ANYTHING WHICH IS BIGGER THAN EVERY PYRAMID BUT IS NOT AS WIDE AS THE THING THAT
SUPPORTS IT?

Computer: YES, THE BLUE BLOCK.

Person: DOES A STEEPLE

Computer interrupting: SORRY, I DON'T KNOW THE WORD "STEEPLE".



4-73

SHRDLU Dialog
Person: A "STEEPLE" IS A STACK WHICH CONTAINS TWO GREEN CUBES

AND A PYRAMID.

Computer: I UNDERSTAND.

Person: ARE THERE ANY STEEPLES NOW?

Computer: NO.

Person: BUILD ONE.

Computer: OK. (does it)

Person: CALL THE BIGGEST BLOCK "SUPERBLOCK".

Computer: OK.

Person: HAVE YOU PICKED SUPERBLOCK UP SINCE WE BEGAN?

Computer: YES.

Person: WHY DID YOU DROP IT?

Computer: BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK.

 I CAN'T EXPLAIN A NON-EXISTENT EVENT.

Person: IS THERE ANYTHING TO THE RIGHT OF THE RED PYRAMID?

Computer: YES, FOUR THINGS: THE BOX , THE RED CUBE, THE BLUE
PYRAMID AND THE BLOCK NAMED SUPERBLOCK

Person: THANK YOU.

Computer: YOU'RE WELCOME!


