
3-1

LECTURE 3:

DEDUCTIVE

REASONING AGENTS

An Introduction to MultiAgent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas

3-2

Agent Architectures

An agent is a computer system capable of

flexible autonomous action…

Issues one needs to address in order to

build agent-based systems…

Three types of agent architecture:

symbolic/logical

reactive

hybrid

3-3

Agent Architectures

We want to build agents, that enjoy the properties of

autonomy, reactiveness, pro-activeness, and social

ability that we talked about earlier

This is the area of agent architectures

Maes defines an agent architecture as:
‘[A] particular methodology for building [agents]. It specifies how… the

agent can be decomposed into the construction of a set of component

modules and how these modules should be made to interact. The

total set of modules and their interactions has to provide an answer to

the question of how the sensor data and the current internal state of

the agent determine the actions… and future internal state of the

agent. An architecture encompasses techniques and algorithms that

support this methodology.’

3-4

Agent Architectures

Kaelbling considers an agent

architecture to be:
‘[A] specific collection of software (or hardware)

modules, typically designated by boxes with

arrows indicating the data and control flow

among the modules. A more abstract view of an

architecture is as a general methodology for

designing particular modular decompositions for

particular tasks.’

3-5

Agent Architectures

Originally (1956-1985), pretty much all agents

designed within AI were symbolic reasoning agents

Its purest expression proposes that agents use

explicit logical reasoning in order to decide what to do

Problems with symbolic reasoning led to a reaction

against this — the so-called reactive agents

movement, 1985–present

From 1990-present, a number of alternatives

proposed: hybrid architectures, which attempt to

combine the best of reasoning and reactive

architectures

3-6

Symbolic Reasoning Agents

The classical approach to building agents is
to view them as a particular type of
knowledge-based system, and bring all the
associated (discredited?!) methodologies of
such systems to bear

This paradigm is known as symbolic AI

We define a deliberative agent or agent
architecture to be one that:

contains an explicitly represented, symbolic
model of the world

makes decisions (for example about what actions
to perform) via symbolic reasoning

3-7

Symbolic Reasoning Agents

If we aim to build an agent in this way, there are
two key problems to be solved:

The transduction problem:
that of translating the real world into an accurate,
adequate symbolic description, in time for that
description to be useful…vision, speech
understanding, learning

The representation/reasoning problem:
that of how to symbolically represent information
about complex real-world entities and processes,
and how to get agents to reason with this
information in time for the results to be
useful…knowledge representation, automated
reasoning, automatic planning

3-8

Symbolic Reasoning Agents

Most researchers accept that neither
problem is anywhere near solved

Underlying problem lies with the complexity
of symbol manipulation algorithms in
general: many (most) search-based symbol
manipulation algorithms of interest are highly
intractable

Because of these problems, some
researchers have looked to alternative
techniques for building agents; we look at
these later

3-9

Deductive Reasoning Agents

How can an agent decide what to do using
theorem proving?

Basic idea is to use logic to encode a theory
stating the best action to perform in any
given situation

Let:
 be this theory (typically a set of rules)

 be a logical database that describes the current
state of the world

Ac be the set of actions the agent can perform

 | mean that can be proved from using

3-10

Deductive Reasoning Agents

/* try to find an action explicitly prescribed */
for each a Ac do

if | Do(a) then

return a
end-if

end-for
/* try to find an action not excluded */
for each a Ac do

 if | ¬Do(a) then

return a
end-if

end-for
return null /* no action found */

3-11

Deductive Reasoning Agents

An example: The Vacuum World

Goal is for the robot to clear up all dirt

3-12

Deductive Reasoning Agents

Use 3 domain predicates to solve problem:

In(x, y) agent is at (x, y)

Dirt(x, y) there is dirt at (x, y)

Facing(d) the agent is facing direction d

Possible actions:

Ac = {turn, forward, suck}

P.S. turn means “turn right”

3-13

Deductive Reasoning Agents

Rules for determining what to do:

…and so on!

Using these rules (+ other obvious ones),

starting at (0, 0) the robot will clear up dirt

3-14

Deductive Reasoning Agents
Problems:

How to convert video camera input to Dirt(0, 1)?

decision making assumes a static environment: calculative
rationality

decision making using first-order logic is undecidable!

Even where we use propositional logic, decision
making in the worst case means solving co-NP-
complete problems
(PS: co-NP-complete = bad news!)

Typical solutions:
weaken the logic

use symbolic, non-logical representations

shift the emphasis of reasoning from run time to design time

We will look at some examples of these approaches

3-15

More Problems…

The “logical approach” that was presented

implies adding and removing things from a

database

That’s not pure logic

Early attempts at creating a “planning agent”

tried to use true logical deduction to the

solve the problem

3-16

Planning Systems (in general)

Planning systems find a sequence of actions

that transforms an initial state into a goal state

I G

a1

a17

a142

3-17

Planning

Planning involves issues of both Search and

Knowledge R epresentation

Sample planning systems:

Robot Planning (STRIPS)

Planning of biological experiments (MOLGEN)

Planning of speech acts

For purposes of exposition, we use a simple

domain – The Blocks World

3-18

The Blocks World

The Blocks World (today) consists of equal

sized blocks on a table

A robot arm can manipulate the blocks using

the actions:

UNSTACK(a, b)

STACK(a, b)

PICKUP(a)

PUTDOWN(a)

3-19

The Blocks World

We also use predicates to describe the world:

ON(A,B)

ONTABLE(B)

ONTABLE(C)

CLEAR(A)

CLEAR(C)

ARMEMPTY

A

B C

In general:

ON(a,b)

HOLDING(a)

ONTABLE(a)

ARMEMPTY

CLEAR(a)

3-20

Logical Formulas to Describe Facts

Always True of the World

And of course we can write general logical

truths relating the predicates:

[x HOLDING(x)] ¬ ARMEMPTY

 x [ONTABLE(x) ¬ y [ON(x,y)]]

 x [¬ y [ON(y, x)] CLEAR(x)]

So…how do we use theorem-proving

techniques to construct plans?

3-21

Green’s Method

Add state variables to the predicates, and

use a function DO that maps actions and

states into new states
DO: A x S S

Example:

DO(UNSTACK(x, y), S) is a new state

3-22

UNSTACK

So to characterize the action UNSTACK we
could write:
[CLEAR(x, s) ON(x, y, s)]
[HOLDING(x, DO(UNSTACK(x,y),s))

CLEAR(y, DO(UNSTACK(x,y),s))]

We can prove that if S0 is
ON(A,B,S0) ONTABLE(B,S0) CLEAR(A,
S0) then

HOLDING(A,DO(UNSTACK(A,B),S0))
CLEAR(B,DO(UNSTACK(A,B),S0))

S1

S1

A

B

3-23

More Proving

The proof could proceed further; if we characterize

PUTDOWN:
HOLDING(x,s)

ONTABLE(x,DO(PUTDOWN(x),s))

Then we could prove:

ONTABLE(A,

DO(PUTDOWN(A),

DO(UNSTACK(A,B), S0)))

The nested actions in this constructive proof give

you the plan:

1. UNSTACK(A,B); 2. PUTDOWN(A)

S1
S2

3-24

More Proving

So if we have in our database:
ON(A,B,S0) ONTABLE(B,S0) CLEAR(A,S0)

and our goal is
 s(ONTABLE(A, s))

we could use theorem proving to find the plan

But could I prove:

ONTABLE(B,

DO(PUTDOWN(A),

DO(UNSTACK(A,B), S0)))

A

B

S1

S2 ?

3-25

The Frame Problem

How do you determine what changes and

what doesn’t change when an action is

performed?

One solution: “Frame axioms” that specify

how predicates can remain unchanged after

an action

Example:

ONTABLE(z, s)

ONTABLE(z,DO(UNSTACK(x,y),s))

[ON(m, n, s) DIFF(m, x)]

ON(m,n,DO(UNSTACK(x,y),s))

3-26

Frame Axioms

Problem: Unless we go to a higher-order

logic, Green’s method forces us to write

many frame axioms

Example:
COLOR(x, c, s)

COLOR(x,c,DO(UNSTACK(y,z),s))

We want to avoid this…other approaches

are needed…

3-27

AGENT0 and PLACA

Much of the interest in agents from the AI community
has arisen from Shoham’s notion of agent oriented
programming (AOP)

AOP a ‘new programming paradigm, based on a
societal view of computation’

The key idea that informs AOP is that of directly
programming agents in terms of intentional notions like
belief, commitment, and intention

The motivation behind such a proposal is that, as we
humans use the intentional stance as an abstraction
mechanism for representing the properties of complex
systems.
In the same way that we use the intentional stance to
describe humans, it might be useful to use the
intentional stance to program machines.

3-28

AGENT0

Shoham suggested that a complete AOP system
will have 3 components:

a logic for specifying agents and describing their mental
states

an interpreted programming language for programming
agents

an ‘agentification’ process, for converting ‘neutral
applications’ (e.g., databases) into agents

Results only reported on first two components.

Relationship between logic and programming
language is semantics

We will skip over the logic(!), and consider the first
AOP language, AGENT0

3-29

AGENT0

AGENT0 is implemented as an extension to

LISP

Each agent in AGENT0 has 4 components:

a set of capabilities (things the agent can do)

a set of initial beliefs

a set of initial commitments (things the agent will

do)

a set of commitment rules

The key component, which determines how

the agent acts, is the commitment rule set

3-30

AGENT0

Each commitment rule contains

a message condition

a mental condition

an action

On each ‘agent cycle’…

The message condition is matched against the
messages the agent has received

The mental condition is matched against the
beliefs of the agent

If the rule fires, then the agent becomes
committed to the action (the action gets added to
the agent’s commitment set)

3-31

AGENT0

Actions may be

private:

an internally executed computation, or

communicative:

sending messages

Messages are constrained to be one of three

types:

“requests” to commit to action

“unrequests” to refrain from actions

“informs” which pass on information

3-32

AGENT0

3-33

AGENT0

A commitment rule:

COMMIT(

(agent, REQUEST, DO(time, action)

), ;;; msg condition

(B,

[now, Friend agent] AND

CAN(self, action) AND

NOT [time, CMT(self, anyaction)]

), ;;; mental condition

self,

DO(time, action)

)

3-34

AGENT0

This rule may be paraphrased as follows:

if I receive a message from agent which

requests me to do action at time, and I

believe that:

agent is currently a friend

I can do the action

At time, I am not committed to doing any other

action

then commit to doing action at time

3-35

AGENT0 and PLACA

AGENT0 provides support for multiple agents to
cooperate and communicate, and provides basic
provision for debugging…

…it is, however, a prototype, that was designed to
illustrate some principles, rather than be a production
language

A more refined implementation was developed by
Thomas, for her 1993 doctoral thesis

Her Planning Communicating Agents (PLACA)
language was intended to address one severe
drawback to AGENT0: the inability of agents to plan,
and communicate requests for action via high-level
goals

Agents in PLACA are programmed in much the same
way as in AGENT0, in terms of mental change rules

3-36

AGENT0 and PLACA

An example mental change rule:
 (((self ?agent REQUEST (?t (xeroxed ?x)))

(AND (CAN-ACHIEVE (?t xeroxed ?x)))

(NOT (BEL (*now* shelving)))

(NOT (BEL (*now* (vip ?agent))))

((ADOPT (INTEND (5pm (xeroxed ?x)))))

((?agent self INFORM

(*now* (INTEND (5pm (xeroxed ?x)))))))

Paraphrased:

if someone asks you to xerox something, and you

can, and you don’t believe that they’re a VIP, or

that you’re supposed to be shelving books, then

adopt the intention to xerox it by 5pm, and

inform them of your newly adopted intention

3-37

Concurrent METATEM

Concurrent METATEM is a multi-agent

language in which each agent is

programmed by giving it a temporal logic

specification of the behavior it should exhibit

These specifications are executed directly in

order to generate the behavior of the agent

Temporal logic is classical logic augmented

by modal operators for describing how the

truth of propositions changes over time

3-38

Concurrent METATEM

For example. . .
important(agents)

means “it is now, and will always be true that
agents are important”

important(ConcurrentMetateM)
means “sometime in the future, ConcurrentMetateM
will be important”

important(Prolog)
means “sometime in the past it was true that Prolog
was important”

(¬friends(us)) U apologize(you)
means “we are not friends until you apologize”

apologize(you)
means “tomorrow (in the next state), you apologize”.

3-39

Concurrent METATEM

MetateM is a framework for directly executing temporal
logic specifications

The root of the MetateM concept is Gabbay’s separation
theorem:
Any arbitrary temporal logic formula can be rewritten in a
logically equivalent past future form.

This past future form can be used as execution rules

A MetateM program is a set of such rules

Execution proceeds by a process of continually
matching rules against a “history”, and firing those rules
whose antecedents are satisfied

The instantiated future-time consequents become
commitments which must subsequently be satisfied

3-40

Concurrent METATEM

Execution is thus a process of iteratively generating a
model for the formula made up of the program rules

The future-time parts of instantiated rules represent
constraints on this model

An example MetateM program: the resource controller…

First rule ensure that an ‘ask’ is eventually followed by a
‘give’

Second rule ensures that only one ‘give’ is ever
performed at any one time

There are algorithms for executing MetateM programs
that appear to give reasonable performance

There is also separated normal form

3-41

Concurrent METATEM

ConcurrentMetateM provides an operational

framework through which societies of MetateM

processes can operate and communicate

It is based on a new model for concurrency in

executable logics: the notion of executing a logical

specification to generate individual agent behavior

A ConcurrentMetateM system contains a number of

agents (objects), each object has 3 attributes:

a name

an interface

a MetateM program

3-42

Concurrent METATEM

An object’s interface contains two sets:
environment predicates — these correspond to messages
the object will accept

component predicates — correspond to messages the
object may send

For example, a ‘stack’ object’s interface:

stack(pop, push)[popped, stackfull]

{pop, push} = environment preds
{popped, stackfull} = component preds

If an agent receives a message headed by an
environment predicate, it accepts it

If an object satisfies a commitment corresponding
to a component predicate, it broadcasts it

3-43

Concurrent METATEM

To illustrate the language Concurrent MetateM in

more detail, here are some example programs…

Snow White has some sweets (resources), which

she will give to the Dwarves (resource consumers)

She will only give to one dwarf at a time

She will always eventually give to a dwarf that asks

Here is Snow White, written in Concurrent

MetateM:

3-44

Concurrent METATEM

The dwarf ‘eager’ asks for a sweet initially,

and then whenever he has just received one,

asks again

Some dwarves are even less polite: ‘greedy’

just asks every time

3-45

Concurrent METATEM

Fortunately, some have better manners;

‘courteous’ only asks when ‘eager’ and

‘greedy’ have eaten

And finally, ‘shy’ will only ask for a sweet

when no-one else has just asked

3-46

Concurrent METATEM

Summary:

an(other) experimental language

very nice underlying theory…

…but unfortunately, lacks many desirable

features — could not be used in current state to

implement ‘full’ system

currently prototype only, full version on the way!

3-47

Planning Agents

Since the early 1970s, the AI planning community has been

closely concerned with the design of artificial agents

Planning is essentially automatic programming: the design of

a course of action that will achieve some desired goal

Within the symbolic AI community, it has long been assumed

that some form of AI planning system will be a central

component of any artificial agent

Building largely on the early work of Fikes & Nilsson, many

planning algorithms have been proposed, and the theory of

planning has been well-developed

But in the mid 1980s, Chapman established some theoretical

results which indicate that AI planners will ultimately turn out

to be unusable in any time-constrained system

