XML Concepts

Prof. Andrea Omicini

DEIS, Ingegneria Due
Alma Mater Studiorum, Universita di Bologna a Cesena

Qutline

Introducing XML

XML Fundamentals

Document Types Definitions (DTDs)
Namespaces

Internationalisation

XML & (55
DOM & SAX

Introducing XML

What is XML?

~ AW3C Standard

— http://www.w3.0orqg/XML/

~ A mark-up language for text documents

— derived from SGML (Standard General Markup Language)
— 1508879, http://www.iso.ch/cate/d16387.html

~—— eXtensible Markup Language
A meta-markup |un?uuge

— to define markup languages
— such as XHTML, XSLT, XML Schema...

—— Aformally-defined text-based language

— verifiable for well-formedness and validity
— usable across platform and technologies

4

What XML is not?

——— XMLis not

— a programming language

— a network-transport protocol

— a document presentation language
— o database (manager)

1 It can be used (and it is actually) in all of those contexts, but it remains
a markup language

Why Markup Languages?

— Markup

— encoding embodied in the document, specifying document properties, as well
as properties of information contained
— for instance, formatting instructions

~— more generully, structural / semantic information
~— knowledge vs. data

1 Marks / Markups

— iug used to qualify / label text chunks
g., HTML tags

— XML exumple

<student>
<studentname>
<name>Carlo</name>
<surname>Nervo</surname>
</studentname>
<studentnumber>0000145678</studentnumber>
<course>2036</course>

b

XML: X for eXtensibility

~——— Basic idea of XML

— a simple meta-language for humans and automata
— 1o build electronic documents
— allowing users to define ad hoc markup languages

——— Then,

— XMLis quite free, in general
— it can be “extended"
— actually, specialised
— to define more specific ad hoc markup languages
1 No predefined XML markups, as it happens instead in HTML
— they need to be defined

— who does define them?
— can we do this? how?

Hey,

—— Application domains are more and more
— numerous
— complex
~— specific
—— Special / specialised languages as the engineer's tools
~— torepresent, denote & express behaviours and computations
—— Engineers working with computational / ICT systems will be called to
use a number of different artificial languages, but also
— to know and understand computational modgs and paradigms
— to select languages and paradigms
— to define and build new Funguuges

—— "Laurea Specialistica in Informatica”

8

XML: Applications

|II

~ XML per se is “small” & simple
— languages defined via XML are instead so many and complex

~ XML Applications
— XML-defined markup languages

— defined through a precise syntax
— DTD or XML Schema

— they may be either standard or custom

~—— Most standard XML applications are W3(
— such as
— XSLT
— XML Schema
— XHTML

XML for Portable Data

— Cross-platform, long-term data format
— passing XML data through space and time
~—along with Unicode and text-base standard format

——— Text, text text

~—— both data and markup
— all in the XML file

~——— XML document structure simple & clear

— eusrto parse
— well-documented

— That is why XML is already everwhere

10

How XML Looks like

<?xml version="1.0" encoding="utf-8"?>
<docroot>

<head>
<title>This is my document.</title>
</head>

<body>
<p>A list of things I like.</p>

<list>
<item>weekends</item>
<item>good beer</item>
<item>midnight snacks</item>
<item>ice cream
<list>
<item>chocolate</item>
<item>cookie dough</item>
<item>white russian</item>
</list>
</item>
<item>shade trees</item>
</list>

</body>
</docroot>

1

ow XML Looks like from a

806 Mozilla o

- X =
" Oo Q Q O |\r file:// /User I[Co][QSnrch] do

. 4 Home [JBookmarks “ The Mozilla Or... Latest Builds

This XML file does not appear to have any style information associated with it. The
document tree is shown below.

- <docroot>
- <head>
<title>This is my document.</title>
</head>
- <body>
<p>A list of things I like.</p>
- <list>
<item>weekends</item>
<item>good beer</item>
<item>midnight snacks</item>
- <item>
ice cream
- <list>
<item>chocolate</item>
<item>cookie dough</item>
<item>white russian</item>
</list>
</item>
<item>shade trees</item>
</list>
</body>
</docroot>

[&2 €) &2 | bone - g
12

How to Work with XML

- XML s text

— so any text-editor is perfecily fine

~ A number of XML editors around
~—— but typically, general text editors with some programming / Web-oriented
capabilities are good enough, and often even better

— Visvalisation is a different matter
~—— browsers do something
— but XML is not a presentation language, so...

— we need to understand
— what an XML document is

— how XML works

13

What is an XML Document?

— It can be

— Atextfile

— Arecord in a database

— A runime construction in
memory

In any case, it can be
hundred and frasmitted by
any system capable of
dealing with text documents

<student>
<studentname>
<name>Carlo</name>
<surname>Nervo</surname>
</studentname>
<studentnumber>
0000145678
</studentnumber>
<course>2036</course>
</student>

How does XML Work?

—— Who handles XML documents?

— after it has been produced
— how / why?

~—— XML parsers

— devising out the structure of the XML document
— verifying well-formedness and basic respect of XML syntax

XML validafing Eursers

— when applicable
— there is either a DTD or a Schema
— checking validity

—— Examples

— web browsers, word processors, database servers, drawing programs,

15

Where is XML actually used?

——1 Everywhere already.

16

Some History of XML & Related

Lot to be written, still...

- SGML is where it comes from
— HTML was the first successful application of SGML
— but had obvious limitations
— too complex
— more than 150 pages
— never implemented fully

— too complex for the Internet

- SGML “Lite” (1996, Bosak, Bray et al.)
— XML 1.0 (February 1998)

~ Then, a flow
— namespaces, XSL (then XSLT + XSL-FO), XHTML, CSS integration, XLink +
XPointer, XML Schema, DOM, etc.

17

XML Fundamentals

A Simple XML Document

<player>
Carlo Nervo
</player>

XML Document & Files

<player>
Carlo Nervo
</player>

~ This is a complete XML document
It can be stored / recorded / built in the form of a number of different

 files or even in other forms

~— Carlonervo.xml, player.ixt

— arecord in o database

— a memory area built by a CGI, and then transmitted

— sent by a Web server, with MIME type application/xml or text/xml

20

XML Elements & Tags

<player>
Carlo Nervo
</player>

—— The document contains a single element
~— of type player
~—1 Such an element is delimited by the tag player
— hetween start tag <player> and end l'ﬂg </player>

——— In between the tags lays the element’s content cario Nervo
— tags are markup
— the most common form of markup, but there are other kinds
— contentis character data
~— including the white space between Carlo & Nervo

2]

Tag Syntax

~— Very similar to HTML tags

— at least superficially
— <tag> for start tags, </tag> for end tags
— <tag /> for emply tags
— tags with no content, like
 or <hr />

——— XMLis case sensitive

— 50, <pLayer> can not be closed by end tag </PLayer>

— NOTE: thus, pay aftention to non-case sensitive technologies when combined

with XML
— HTML, JavaScript & XHTML, ...

12

XML Trees: A Simple Example

<player>
<name>Carlo</name>
<surname>Nervo</surname>

<team current="yes">Bologna</team>
<team current="no">Mantova</team>

</player>

player
name surname team team
¥ ¥ ¥ ¥
Carlo Nervo Bologna || Mantova

23

An XML Document is an XML Tree

<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

~ An XML Document has a free-like strucfure
— one and only one root
— root element or document element
— each node element can have one or more child elements
— each element has at least one parent

— child elements from the same parent are siblings
— leaves are either content or empty elements

——1 Well-formedness stems from here
— Wrong XML is not permitted
— nesting needs to be perfect, overlapping not allowed

L

Narrative-Organised XML

<biography>
<name><first_name>Carlo</first_name> <last_name>Nervo</last_name></name> was born
somewhere and did nothing really meaningful before becoming a football player.

After playing many years in minor teams, such as <football_team>Mantova</
football_team>, he finally moved to <football_team>Bologna</football_team>, where
he exploded to become one of the most respected leaders of the team, and also a
member of the <football_team>Italian National Team</football_team>.

</b1iography>

XML Documents for written narrative, such as articles, reports, blogs,
hooks, novels

— elements with mixed content

— not easy for automated processing and exchange

25

XML Attributes

<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

—tlements ton be tubetled by attributes
— aftributes are specified in the start tag

— and in the only tag of empty elements

— any number of attributes can be in principle associated to an element
— An attribute is a name-value pair of the form name="vatue"
— alternative forms use single quotes instead of double quotes and spaces
before / after the "equu?s" (=) sign
—only one aftribute with a given name allowed per element
— Mitributes do not change the tree structures of an XML document

— but they are qualifiers for the nodes and leaves of the tree

26

Using Elements or Attributes?

<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes" value="Bologna" />
<team current="no" value="Mantova" />
</player>

~ Atiributes are for meta-data about the element, and content is

information of the element
~—— maybe, but then it is not easy to clearly distinguish between the two
— FElement-based structure is more flexible than attribute-hased
— attributes provide for a flat data structure / elements can be nested as needed
— attributes are unique within an element / any number of elements of the
7 same type can be used within an element
—— Attributes are quite useful in narrative-based XML documents
~— where the distinction between elements and attributes is even more blurred
~— The answer depends on how data will be accessed and manipulated

27

XML Names

—— XML Names are used and are the same for the names of

elements, attributes and some other constructs
— toincrease efficiency and abate complexity

—— An XML name can include

— any letter

—lafin or even non-latin, like ideographs
— any digit
— underscore, hyphen and period (_, -, .)
— acolon (:) is reserved to namespaces

~—— An XML name may not include other punctuation signs, nor any sort of

white spaces
—and can begin only with letters, ideographs or underscore

28

Parsed Character Data

— An XML Parser interprets the character sequences it is fed with, trying

fo devise out its free-like structure
— o, for instance, '<' always taken as the beginning of a tag
— what if we need a '<' character in the document, as in a JavaScript code?

—— Ml characters are inferpreted as character data fo be parsed
— unless an escape character '&' is encountered
— character data to parse start again after char ;'

E.g., the content of the element
<superheroes>Batman & Robin</superheroes>
becomes the parsed character data
Batman & Robin

29

Entity References

—— &entityreference;

— an entity is something defined outside the normal "flow" of the XML

document
—out of the XML tree

— used for constants, common values, external values, etc.
through an entity reference

——— Users of any sort may define their own entities
— we'll see how soon, for instance through DTDs

30

Pre-defined XML Entities

Markup Entity Description
<: < less-then
> > grater-than

& & ampersand

": " double quote

' ' single quote

3l

CDATA Sections

— Including code chunks from any |unguuﬁe with <or " can be tedious
— we need fo say the parser "do not parse this"
— good for instance to include segments of XML code to show

——— (DATA Section
— between <! [CDATA[and 17>
— can contain anything but its own delimiters

— Mfter parsing, no way to tell where a text came from, a CDATA section
or not

32

Comments

~ Easy!
ﬁ <!-- Comment -->
It cannot contain --, nor it can end with - -->

~ Comments do not affect the document tree-structure
— they can appear anywhere, even before the root element
— but not inside a tag or a comment

~ Parsers may either drop or keep them at their will

~ Comments are meant to improve human legibility of XML docs
— 1o give info to a computational agents, processing instructions

3

XML Processing Instructions

— Need to pass information for a given uPpIicuIion through the parser
—— comments may disappear af any stage of the process

—— Processing instructions have this very end
— <?target .. 7>

The target may be the application that has to handle, or just an

identifier for the particular processing instruction
— <?php .. 7>
— <?xml-stylesheet .. 7>
— A processing instruction is markup, not an element
— it can appear everywhere out of a tag, even before or after the root

34

The XML Declaration

~ Looks like an XML processing instruction
~— hut it s not: just the XML declaration
~ Itis optional
— but if there, should be the first thing in the document, absolutely

— not even comments allowed before
<?xml version="1.0" encoding="utf-8" standalone="no"?7>

~ Version is the XML version (1.0, 1.1, ...)

~ Encoding is the form of the text (Unicode in the example)
— optional default Unicode

~ Standalone means that it has no external DTD
— optional, default "no"

35

Checking Well-Formedness

——— Main rules

— perfect match between start and end tags

— no overlapping elements

— one and only one root elements

— attribute values are always quoted

— at most one attribute with a given name per element

— neither comments nor processing instructions within tags

— no unescaped > or & signs in the character data of elements or attributes

1 Tools on the Web

— Just look around

36

DID

Flexibility or Rigidity?

—— XMLis flexible

~—— whatever this means
—— but sometimes flexibility is not a feature within a given application scenario

—— Sometimes, some strict rule is required

— some control over syntax should be enforced
— like, a football player should have at least one team

—— Document Type Definition (D1D)

— to define which XML documents are valid

—— Validity is not mandatory as well-formedness
~— how to handle errors is optional

38

Validation

~ Avalid XML Document includes a DTD the document satisfies
—— Main principle
— everything not permitted is forbidden
— that is, DTDs specifies positive examples

—— Everything in the XML document must maich a DTD declaration
— then, the document is valid
— otherwise, the document is invalid

~—— Many things a DTD does not su?l
y

— we stick with what we can speci

39

DID is...

——— SGMLbased

— syntax a bit awkward
— but after all easy to understand
— and quite suited for short and expressive descriptions

~— It allows XML designers to define a grammar for their documents

— typical syntax-based approach
— maybe limited, but easy to implement

~—— Maybe, DTD is not the future of XML document validation
~— XML Schema should be that

— but understundin? DTDs, how to modify them, how to write your own ones, is
likely to be useful or maybe necessary for a while, still

40

A Simple DTD Example

<?xml version="1.0" standalone="yes">
<!DOCTYPE football_player [
<!ELEMENT player (name, surname, team+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT team (#PCDATA)>
] <!ATTLIST team current (yes | no) #REQUIRED>
>
<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

~— We do not go too deep into DTD syntax

— we just look at the example above, and comment

4]

DTD Declaration

<?xml version="1.0" standalone="yes">
<!DOCTYPE football_player [
<!ELEMENT player (name, surname, team+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT team (#PCDATA)>
] <!ATTLIST team current (yes | no) #REQUIRED>
>
<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

——— DTDis declared here as internal

~—but could be declared sepuruiel¥
<!DOCTYPE football_player SYSTEM "football_player.dtd">

— even referring to an external / shared resource
<!DOCTYPE football_player SYSTEM "http://..">

42

DTD Declarations: Define or Use?

—— So, you may

— define your own DTD, and
— either include it in your XML document
— or save it as an independent document, and refer from one or more XML docs
— or use an external DTD defined by someone else
— like, a working group you belong to, or a standardisation body of any sort
— hy referring to that externally-defined syntax for your XML docs

43

Element Declarations

<?xml version="1.0" standalone="yes">
<!DOCTYPE football_player [
<!ELEMENT player (name, surname, team+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT team (#PCDATA)>
] <!ATTLIST team current (yes | no) #REQUIRED>
>
<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

% Aplayer element contain one name, 0N€ surname and one or more

teams
— in that precise order
— and they are just parsed character data (#PCDATA)

44

Some Syntax

—— " "is for sequence
— to define ordered lists

" "is for choice
— 1o provide for alternafives

— suffixes
— """ {or zero or more occurrences
— "+"{or one or more occurrences
— " for zero or one occurrence

—— parenthesis for ?rouping

— at any level of indentation
— operators and suffixes applicable to any level

—— ANY for free-form content

45

Attribute Declarations

<?xml version="1.0" standalone="yes">
<!DOCTYPE football_player [
<!ELEMENT player (name, surname, team+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT team (#PCDATA)>
] <!ATTLIST team current (yes | no) #REQUIRED>
>
<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

— A team element has @ current atiribute

— which is mandatory
~— #IMPLIED would say optional, instead

— and can be either yes or no
— enumeration as an attribute type

46

Attribute Defaults

~ #IMPLIED

~ —— the aftribute is optional
- #REQUIRED

~ —— the aftribute is mandatory
- #FIXED

~ — either it is explicitly specified or not, it has a given value
- "literal™

— the default value is the "literal" quoted string

4

Attribute Types

CDATA

— any string of text acceptable in a wellformed XML attribute value
NMTOKEN, NMTOKENS

— more than an XML name: anything accepted as the first character

— the plural form accepts more than one separated by whitespaces
ENTITY, ENTITIES

— nume(s) of unparsed entities declared elsewhere in the document
ID

—an XML name unique in the document, working as an identifier
IDREF, IDREFS

— reference(s) to IDs in the documents

- NOTATION

—— name of a notation used & defined in the document (rare!!)

% enumeration

— (valuel | .. | valueN)

48

Other DTD Declarations, efc.

—— ENTITY declarations

<!ENTITY footer SYSTEM "http://lia.deis.unibo.it/~ao/footer">

——— NOTATION declarations

— who cares actually

—— We stop here

— more only for those who need it

49

Namespaces

What are Namespaces for?

— Dis’rin?fuish
— ditferent XML applications may use the same names
— ot any scale, from personal to world-wide

— a namespace allows them to be clearly distinguished

—— Group

— names of elements and atiributes of the same XML application can be grouped
together
— 1o he more easily recognised and handled
—— Example: set is an element in both SVG and MathML applications
— what if | have fo use them together?
—— namespaces can be used to disambiguate names

51

Syntax for Namespace Use

-~ Qualified names
~— prefix : local_part
—— Examples of qualified names

— or QNames, or raw names
— rdf:description, xlink:type, xsl:template

——— Used for both element and attribute names

52

Associating Prefixes to URI

— Exumi)le

— alarge firm could have a number of namespaces for different purposes
<company
xmlns:local="http://www.company.it/xml/"
xmlns:euro ="http://www.company.eu/xmlL/"
xmlns:world="http://www.company.com/xml/"
>

— then, you can use local, euro and world everywhere as prefixes
— typically declared in the topmost element, but could be declared anywhere
T exumple: <rdf:RDF xmlns:rdf="http://www.w3c.org/TR/REC-rdf-syntax#">

—— URI are standardised, not prefixes

— but usually svg, rdf and other prefixes are not re-defined
— also, they are conventional names

53

Setting Default Namespaces

—1 xmlns attribute

— alone, no suffix
<svg xmlns="http:/www.w3c.org/2000/svg" width=".." height="..">

:/svg>
~— all the elements inside (including svg) are implicitly associated to the nttp:/

www.w3c.org/2000/svg nNamespace
— no need for the svg prefix made explicity

54

Internationalisation

What does Text Mean?

—— "Text" can be encoded according so many different alphabets
— mapping between characters and infegers elcode points)
— character set
— ASCIl being the most (un)famous, now Unicode
— Acharacter encoding determines how code points are mapped

onto bytes

— 50, a character set can have multiple encodings
— UTF-8 and UTF-16 are both Unicode encodings

1 Any XML document is a fext document

— 50, encoding should be declared

56

The XML Encoding Declaration

~ Part of the XML Declaration

- <?xml version="1.0" encoding="utf-8" standalone="no"7>

— Most common values
— utf-8, utf-16 (Unicode)
~— 1S0-8859-1 (Latin-1)
—— See also: XML-Defined Character Sets

— Unicode and ISO are the most used families

—— Used also for external parsed entities
— like DTD fragments, or XML chunks
— which may have different encodings
— there, version may be dropped
— itisa text declaration, but no longer a XML declaration

57

Multi-Lingual Documents

~ Example: a spell-checker, or a voice-reader parsing an XML doc

—— How to determine the language of a subpart?
— tor multilingual docs

—1 xml:lang attribute

— can be associated to any element
— defermines the language of the element

~——— Values are to be found in IS0 639

— standard: two letters for each language known
— if not there, ANA

— prefix i-
— suchasi-navajo, i-klingon, ...

— i not there, too, such as for user-defined tags
— prefix x-

58

Encoding for Portability

~ Working around encoding is not simply an “internationa
~— itis also about portability
——1 When fransmitting / communicating through texi-based

errors typica I}l occur
— which are often not easy to catch

——— XML abilities to

— handle encoding precisely and accurately
— embody encoding information within each document

isation” issue

iles, many

—— make it a powerful tool for easy and hassle-free portability

— across platforms, across applications, across time

59

XML & (55

XML on Browsers

 Different experiences with different browsers
~—— when trying to visualise an XML document

—— XML however can be transformed
~— to become easier to handle by standard browsers
——1 Two main upJ)rouches

— Web-based one: XML + (SS

~— XML:based one: XSL

— Inthe following we explore the XML + (SS issue

61

Cascading Style Sheets

1 Cascading Style Sheets (CSS)

—1 a simple mechanism for adding style (e.g. fonts, colors, spacing) fo Web
documents

~ Standard W3(
—— http://w3c.org/Style/(SS

~ Goals
—— describing how to present elements of a document
~—— spanning over a range of different media

—— separafing style description from content and structure

— Inthis course we assume that you already know the basics
~—if not, look at http://www.w3.org/Style/SS/learning

62

(SS: An Example

e 06 poem.css

(-

PIF e B I |5

L4 hd i v v

@ &

S Hork around a Mozilla bug */
POEM 4 display: block *

/* Make the title look like an H1 header */

Last Saved: 10-05-2005 15...
File Path: ~/Deskt.. poem.css
—

TITLE 4 display: block; font-size: 16pt; font-weight: bold ¥
POET < display: block; margin-bottom: 18px ¥

/* Put a blank line in-between stan
only a line break between verses

STANZA 1 display: block; margin-bo
YERSE 4 displau: block H

63

XML + (85

—— Any XML documents can be prepared for browser visualisation via SS

~ Two things needed
— 0 (5SS style sheet referrint}]I to the proper elements types of the XML document
— the association between the XML document and the CSS style sheet

1 Processing directive
— to associate (5SS to XML

<?xml-stylesheet type="text/css" href="nomefile.css" ?>

1 (SS style sheet defining presentation style for the XML document tags

nometa
attributol : valorel;

-
~——— No need for DTD or Schema

64

XML + CSS Example: The XML Doc

e o6 #' Darest Thou Now O Soul.xml o
fgﬁf ”}7":;W';;f'wﬁfﬂﬁifﬁ’ggi Y Last Saved: 10-05-20...
I 5] 5[LTl ® File Path: ~/Des...ul.xml
. e r=a
’xml ver 8"
?xml-sty type="text/css" href="poem.css"?

<POEM>

<TITLE>Darest Thou Now O Soul</TITLE>
<POET>Walt Whitman</POET>

<STANZA>
<{YERSE>Darest thou now 0 soul,(/vERSEk
<VERSE>MWalk out with me toward the undvown region, </VERSE>
{YERSE>Where neither ground is for the feet nor
any path to follow?</VERSE>
</STANZA>
<{STANZA>
<VERSE>No map there, nor guide, </VERSE>
{VERSE>Nor woice sounding, nor touch of
human hand, </VERSE>
{YERSE>Nor face with blooming flesh, nor lips,
are in that land.</VERSE>
</STANZAY
<STANZA>
<YERSE>| know it not 0 soul,</VERSE>
{YERSE>Nor dost thou, all is blank before us, <{/VERSE>
<VERSE>ALl waits undream'd of in that region,
that inaccessible land.</VERSE>
<SSTANZA>
<{STANZA>
<VERSE>Till when the ties loosen, </VERSE>
<{VERSE>ALL but the ties eternal, Time and Space, </VERSE>
{VERSE>Nor darkness, gravitation, sense,
nor any bounds bounding us.</VERSE>
</STANZA>
{STANZA>
<VERSE>Then we burst forth, we float,</VERSE>
<YERSE>In Time and Space 0 soul,
prepared for them, </VERSE>
{VERSE>Equal, equipt af last, (0 joy! O fruit of all!)
them to fulfil O soul.</VERSE>
</STANZAY>

</POEM>

65

Example: How Mozilla Visualises it

ann Mozilla (=)

< J Q o \) [v fle / /localhost/Users /andrea/Oeshtop/Dares i 0Thouk2 ONows2 00%2 0Soul xm I @ [Qmu] ‘\50

This XML file docs not appear 1o have any styke information associated with it. The document tree is shown below

<POEM>
<TITLE>Darest Thou Now O Soul</TITLE>
<POET>Walt Whitman</POET>
<STANZA>
<VERSE>Darest thou now O soul </VERSE>
<VERSE>Walk out with me toward the unknown region </VERSE>
<VERSE>
Where neit
<VERSE>
<STANZA>
<STANZA>
<VERSE
<VERSE>
Nor voice sounding, nor touch of human hand
</VERSE>
<VERSE>
Nor face with blooming flesh, nor lips, are in that land
<VERSE>
<STANZA>
<STANZA>
<VERSE>! know it not O soul <VERSE>
<VERSE>Nor dost thou, all is blank before us </'VERSE>
<VERSE>
Al waits u
</VERSE>
<STANZA>
STANZA>
<VERSE>Till when the ties loosen < VERSE>
<VERSE>AIl but the ties etemal, Time and Space </VERSE>
VERSE>
Nor darkness, gravitaion, sense, nor any bounds bounding us
</VERSE>
<STANZA>
<STANZA>
<VERSE>Then we burst forth, we float <VERSE>
<VERSE>
In Time and Space O soul, prepared for them,
<VERSE>
<VERSE>
Equal, equipt at last, (O joy! O fruit of all') them to fulfil O soul
</VERSE>
<STANZA>
JPOEM>

DT D@ o =&

66

r ground is for the feet nor any path o follow?

No map there, nor je <VERSE>

m'd of in that region, that inaccessible land

Example: How Mozilla Visualises it

1S Mozilla ()

G Q@O @ FHEma=m <[

Darest Thou Now O Soul

Walt Whitman

Darest thou now O soul,
Walk out with me toward the unknown region,
Where neither ground is for the feet nor any path to follow?

No map there, nor guide,
Nor voice sounding, nor touch of human hand,
Nor face with blooming flesh, nor lips, are in that land.

I know it not O soul.
Nor dost thou, all 1s blank before us,
All waits undream'd of in that region, that inaccessible land.

Till when the ties loosen,
All but the ties eternal, Time and Space,
Nor darkness, gravitation, sense, nor any bounds bounding us.

Then we burst forth, we float,
In Time and Space O soul, prepared for them,
Equal, equipt at last, (O joy! O fruit of all!) them to fulfil O soul.

b &f] &2 pone == P
6/

DOM & SAX

Manipulating XML Documents

—1 Representing information in an XML Document
—and presenting it somehow

~— is not enough for most non-rivial application scenarios
— Maostly, we often need to manipulate
~— access, delete, modify
—— parts of an XML document
~— which either may or may not be and XML file
— Thisis ’rypicullK dome through programming language of many sorts
~— through ad hoc API
—1 The most used / hated / deprecated / widespread are

— DOM
— SN

69

Document Object Model (DOM)

1 hitp://www.w3.0rg/DOM/

— standard W3C, as usual
"The Document Object Model is o platform- and language-neutral
interface that will allow programs and scripts to dynamically access and
update the content, structure and style of documents"
— It applies to HTML as well as XML

— ltis essentially an API

— standardised for Java & ECMAScript
——hut can be extended to other languages

~——— There is no fime here to go deep into DOM

— we just try to understand its nature, goals and scope

70

DOM & Levels

—— DOM views an XML tree as a data structure
— similar to the DOM from Javascript

—— DOM loads the whole XML document in memory fo manipulate it
~—— mayhe huge memory consumption

—1 ltis quite large and complex...
% Level 1 Core: W3(Recommenduhon October 1998

~ primitive navigation and munlpulu’non of XML trees
~ other Level 1 parts: HTML
% Level 2 Core: W3C Recommendation, November 2000
~adds Namespace support and minor new features
other Level 2 parts: Events, Views, Style, Traversal and Range

% Level 3 Core: W3C Working Draft, April 2002

~adds minor new features

7

DOM Nodes

~ An XML document is a tree

——— The tree contains nodes
— one of them is a root node

— nodes possibly have siblings, children, one parent, content, tag, efc.

———| The DOM specification states that a node can contain

— document, doc. fragment, doc. type, element, atiribute, processing instruction,
comment, text, CDATA section, entity noiuhon

——! Italso defines which kind of child nodes they should / could have

12

Properties & Methods of DOM

~ Every DOM node has properties and methods to explore and

update the XM

_tree

~ Every DOM node has « name, o value, o type

—— There are general properties and methods for all kinds of nodes
— attributes returns all the attributes of the node
— appendChild(newChild) appends newChild after the other child nodes

——— Then, any specific kind of node has its own specific properties and

methods

These properties and methods are made available by the suitable API

for the Iunquuge of choice
— many solutions for Java
— see for instance http://java.sun.com/xml/jaxp/

13

A Simpe Java DOM Fragment

public static void main(String[] args) {

}

try {

DOMParser p = new DOMParser();
p.parse(args[0]);
Document doc = p.getDocument();
Node n = doc.getDocumentElement().getFirstChild();
while (n!=null && !n.getNodeName().equals("recipe"))
n = n.getNextSibling(Q);
PrintStream out = System.out;
out.println("<?xml version=\"1.0\"7>");
out.println("<collection>");
if (n'!'=null)
print(n, out);
out.println("</collection>");

} catch (Exception e) {e.printStackTrace();}

4

Main Problem of DOM

—— The XML document is loaded as a whole and handled alfogether in
memory
— it might be time-consuming and difficult o manage
— wouldn't it be better if we could load only the part we are actually
manipulating
—— This is the motivation behind SAX
— which is not started as a standard
— has problems of acceptance
— but ﬁus indeed a long tail of followers
— and also its good reasons to exist

75

Simple API for XML (SAX)

— Differently from DOM, SAX is event-hased

— It sees the document not as a free, but as a fext doc
— flowing through the SAX parser
— and generating events as soon as document started / ended, elements
started / ended, character content, efc.

—— Avery simple model

— good for simple applications
— and also to avoid memory abuse

~——— Not so well-supported as DOM is

— in terms of standardisation
— as well as of tools

16

