Outline

——1 Introducing XML
——1 XML Fundamentals

XML con‘e 's ~——{ Document Types Definitions (DTDs)
p ~——| Namespaces

Prof. Andrea Omicini —1 Infernationalisation
DEIS, Ingegneria Due ——1 XML&CSS
Alma Mater Studiorum, Universita di Bologna a Cesena ——1{ DOM & SAX

What is XML?

——1 AW3C Standard

— http://www.w3.0org/XML/
. —— A mark-up language for text documents
— derived from SGML (Standard General Markup Language)
n ro U CI n g — 1508879, http://www.iso.ch/cate/d16387.html
— eXtensible Markup Language
——1 Ameta-markup |unFuuge

— to define markup languages

— such as XHTML, XSLT, XML Schema...
——1 Aformally-defined text-based language

— verifiable for well-formedness and validity

— usable across platform and technologies

4

What XML is not? Why Markup Languages?

—— Markup
— encoding embodied in the document, specifying document properties, as well
. as properties of information contained
| XMLis not . — forinstance, formatting instructions
— a programming language — more generally, structural / semantic information
— @ network-transport protocol — knowledge vs. data
— a document presentation language ——1 Marks / Markups
— o database (manager) — tag used to qualify / label text chunks
1 It can be used (and it is actually) in all of those contexts, but it remains — e, HTML fags

a markup language ——1 XML example
<student>

<studentname>
<name>Carlo</name>
<surname>Nervo</surname>

</studentname>

<studentnumber>0000145678</studentnumber>

<course>2036</course>

5)

XML: X for eXtensibility

——] Basic idea of XML

— a simple meta-language for humans and automata
— 1o build electronic documents
— allowing users fo define ad hoc markup languages

——1 Then,

— XMLis quite free, in general
— it can be “extended"
— actually, specialised
— to define more specific ad hoc markup languages
—— No predefined XML markups, as it happens instead in HTML
— they need fo be defined

— who does define them?
— can we do this? how?

Hey,

——1 Application domains are more and more
~— numerous
— complex
— specific
——1{ Special / specialised languages as the engineer's tools
— to represent, denote & express behaviours and computations
——1 Engineers working with computational / ICT systems will be called to
use a number of different artificial Iunguu%es, but also
— to know and understand computational models and paradigms
— to select languages and paradigms
— to define unﬂ build new runguuges
——1 “Laurea Specialistica in Informatica”

8

XML: Applications

—— XML per se is “small” & simple

— languages defined via XML are instead so many and complex

———{ XML Applications
— XML-defined markup languages
— defined through a precise syntax
— DTD or XML Schema
— they may be either standard or custom

—— Most standard XML applications are W3C
— suchas
— XSUT
— XML Schema
— XHTML

XML for Portable Data

—— Cross-platform, long-term data format

— passing XML data through space and time

— along with Unicode and text-base standard format
———{ Text, text, text

— both data and markup

— allin the XML file
~——{ XML document structure simple & clear

— easy fo parse

— weIKdocumented

——1 That is why XML is already everwhere

How XML Looks like

<?xml version="1.0" encoding="utf-8"?>
<docroot>

<head>
<title>This is my document.</title>
</head>

<body>
<p>A list of things I like.</p>

<list>
<item>weekends</item>
<item>good beer</item>
<item>midnight snacks</item>
<item>ice cream
<list>

<item>chocolate</item>

<item>cookie dough</item>
<item>white russian</item>

<item>shade trees</item>
</list>

</body>
</docroot>

How XML Looks like from a

.
Q0,0 0 9 o EmE=s <M

~ Dt -

How to Work with XML What is an XML Document?

— Itcanbe

— XMLis fext
— so any text-editor is perfectly fine — Aextfile
—— A number of XML editors around — Arecord in 0 database e ename>
— but Ilpi(ully, general text editors with some programming / Web-oriented — A run-time construction in <name>Carlo</name>
capabilities are good enough, and often even better memory L /Ssurnane>Nervo</surname>
— Visutbllismiondis a difIEerem matter — <studentnunber
— browsers do somethin :
— but XMLis not a prgsemqtion language, so... In unr case, if can l.]e iﬁiﬁ??ifﬁ%@?i?gwse>
— we need fo understand handled and trasmitted by </student>
— what an XML document is any system capable of
— howXMLworks dealing with text documents

How does XML Work? Where is XML actually used?

—— Who handles XML documents?
— afterit has been produced
— how / why?

——1 XML parsers

— devising out the structure of the XML document
— verifying well-formedness and basic respect of XML syntax [Everywhere already

—— XML validating Eursers

— when applicable
— there is either a DTD or a Schema

— checking validity

Examples
— web browsers, word processors, database servers, drawing programs,

15

Some History of XML & Related

——1 Lot to be written, still...
—— SGML is where it comes from

— HTMwauhs 1dhebﬂrst sllucessful application of SGML
— but had obvious limitations
XML Fundumen’ruls

— too complex
— more than 150 pages
— never implemented fully
— too complex For the Internet

——1| SGML “Lite” (1996, Bosak, Bray et al.)
~— XML 1.0 (February 1998)
—— Then, a flow
— namespaces, XSL (then XSLT + XSL-FO), XHTML, CSS integration, XLink +
XPointer. XML Schema. DOM. etc.

”

A Simple XML Document

<player>
Carlo Nervo
</player>

XML Document & Files

<player>
Carlo Nervo
</player>

—— This is a complete XML document
1 ltcan be stored / recorded / built in the form of a number of different

files or even in other forms

— Carlonervo.xml, player.txt

— arecord in a database

— o memory area built by a CGI, and then transmitted

— sent by a Web server, with MIME type application/xml or text/xml

20

XML Elements & Tags

<player>
Carlo Nervo
</player>

——1 The document contains a single element

— of type player

——1 Such an element is delimited by the tag p1ayer

~ between start tag <layer> and end tag </player>
~———1{ In between the tags lays the element’s content carlo Nervo

— tags are markup

— the most common form of markup, but there are other kinds
— content is character data

— induding the white space between car1o & Nervo

n

XML Trees: A Simple Example

<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>

</player>

| name ||surname|| team || team |

| Carlo || Nervo || Bologna || Mantova|

2

Tag Syntax

——1 Very similar to HTML tags
— ot least superficially
— <tag> for start tags, </tag> for end tags
— <tag /> for empty tags
— tags with no content, like
 or <hr />

——1 XMLis case sensitive
— 50, <player> can not be closed by end tag </Players
— NOTE: thus, pay attention to non-case sensitive technologies when combined

with XML
— HTML, JavaScript & XHTML, ...

An XML Document is an XML Tree

<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>

</player> .
—An XML Document has a free-fike sfrucfure
— one and only one root
— root element or document element
— each node element can have one or more child elements
— each element has at least one parent
— child elements from the same parent are siblings
— leaves are either content or empty elements
——1 Well-formedness stems from here
— Wrong XML is not permitted
— nesting needs to be perfeci, overlapping not allowed

u

Narrative-Organised XML

<biography>
<name><first_name>Carlo</first_name> <last_name>Nervo</last_name></name> was born
somewhere and did nothing really meaningful before becoming a football player

After playing many years in minor teams, such as <football_team>Mantova</
football_team>, he finally moved to <football_team>Bologna</football_team>, where
he exploded to become one of the most respected leaders of the team, and also a
member of the <football_team>Italian National Team</football_team>.

</biography>

~——{ XML Documents for written narrative, such as articles, reports, blogs,
books, novels
— elements with mixed content
— not easy for automated processing and exchange

25

XML Attributes

<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

— aftributes are specified in the start tag
— and in the only tag of empty elements
— any number of attributes can be in principle associated to an element
——{ An attribute is a name-value pair of the form name="value"
— alternative forms use sin?le quotes instead of double quotes and spaces

before / after the "equals” (=) sign
— only one attribute with a given name allowed per element
——1 Attributes do not change the tree structures of an XML document
— but they are qualifiers for the nodes and leaves of the tree

2%

Using Elements or Attributes?

<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes" value="Bologna" />
<team current="no" value="Mantova" />
</player>

—— Aitributes are for meta-data about the element, and content is
information of the element
— maybe, but then it is not easy to clearly distinguish between the two
—— Element-hased structure is more flexible than attribute-based
— attributes provide for a flat data strucure / elements can be nested as needed
— attributes are unique within an element / any number of elements of the
same fype can be used within an element

——1 Attributes are quite useful in narrative-based XML documents
— where the distinction between elements and attributes is even more blurred

—— The answer depends on how data will be accessed and manipulated

u

XML Names

——1 XML Names ore used and are the same for the names of
elements, attributes and some other constructs
— toincrease efficiency and abate complexity
— An XML name can include
— any letter
— latin or even non-latin, like ideographs
— any digit
— underscore, hyphen and period (_, -, .)
— a colon (:) is reserved to namespaces
——1 An XML name may not include other punctuation signs, nor any sort of
white spaces
— and can begin only with letters, ideographs or underscore

il

Parsed Character Data

~——{ An XML Parser inferprets the character sequences it is fed with, trying
to devise out its tree-like structure
— o, for instance, '<" always taken as the beginning of a tag
— what if we need a '<' character in the document, as in a JavaScript code?
——{ All characters are interpreted as character data to be parsed
— unless an escape character '&' is encountered
— character data to parse start again after char ;'

E.g., the content of the element
<superheroes>Batman & Robin</superheroes>
becomes the parsed character data
Batman & Robin

Kl

Entity References

— &entityreference;
— an entity is something defined outside the normal "flow" of the XML
document
— out of the XML tree
— used for constants, common values, external values, etc.
— through an entity reference
——1 Users of any sort may define their own entities
— we'll see how soon, for instance through DTDs

Pre-defined XML Entities

CDATA Sections

~—1{ Including code chunks from any Iungque with < or " can be tedious
— we need to say the parser "do not parse this"
— good for instance to include segments of XML code to show

——1 CDATA Section
— between <! [CDATAL and 11>
— can contain anything but its own delimiters

——1 After parsing, no way to tell where a text came from, a CDATA section
or not

Markup Entity Description
<: < less-then
> > grater-than
& & ampersand
" " double quote
' ' single quote
Comments
— Easy!
<!-- Comment -->

It cannot contain --, nor it can end with --->

——1 Comments do not affect the document tree-structure

— they can appear anywhere, even before the root element

— but not inside a tag or a comment

——1 Parsers may either drop or keep them at their will

~——| Comments are meant o improve human legibility of XML docs
— to give info to a computational agents, processing instructions

XML Processing Instructions

~———1{ Need to pass information for a given anIicuIion through the parser
— comments may disappear at any stage of the process

—— Processing instructions have this very end
— <?target .. 7>

———1| The target may be the application that has o handle, or just an

identifier for the particular processing instruction
— <?php .. 7>
— <?xml-stylesheet .. 7>
~——1{ A processing instruction is markup, not an element
— it can appear everywhere out of a tag, even before or after the root

The XML Declaration

——1 Looks like an XML processing instruction
— but it is not: just the XML declaration

—1 ltis optional
— butif there, should be the first thing in the document, absolutely

— not even comments allowed hefore
<?xml version="1.0" encoding="utf-8" standalone="no"?7>

~——1 Version is the XML version (1.0, 1.1, ...)
1| Encoding is the form of the text (Unicode in the example)
— optional, default Unicode

——1 Standalone means that it has no external DTD
— optional, default "no"

Checking Well-Formedness

——1 Main rules

— perfect match between start and end tags

— no overlapping elements

— one and only one root elements

— attribute values are always quoted

— ot most one attribute with a given name per element

— neither comments nor processing instructions within tags

— no unescaped > or & signs in the character duta of elements or attributes

! Tools on the Web

— Just look around

DTD

Flexibility or Rigidity?

——{ XMLis flexible
— whatever this means
— but sometimes flexibility is not a feature within a given application scenario
——1{ Sometimes, some strict rule is required
— some control over syntax should be enforced
— like, a foothall player should have at least one feam

——| Document Type Definition (DTD)
— to define which XML documents are valid

——1 Validity is not mandatory as well-formedness
—how to handle errors is optional

Validation

——1 Avalid XML Document includes a DTD the document satisfies
—— Main principle
— everything not permitted is forbidden
— thatis, DTDs specifies positive examples
——1 Everything in the XML document must match a DTD declaration
— then, the document is valid
— otherwise, the document is invalid
~—1{ Many things a DTD does not sa

— we stick with what we can speci

DTD is...

——1 SGMLbased

— syntax a bit awkward
— but after all easy to understand
— and quite suited for short and expressive descriptions
1 It allows XML designers to define « grammar for their documents
— typical syntax-based approach
— maybe limited, but easy fo implement
~———{ Maybe, DTD is not the future of XML document validation
— XML Schema should be that
— but understanding DTDs, how to modify them, how to write your own ones, is
likely to be usefu?or maybe necessary for a while, still

A Simple DTD Example

<?xml version="1.0" standalone="yes">
<!DOCTYPE football_player [
<!ELEMENT player (name, surname, team+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT team (#PCDATA)>
] <!ATTLIST team current (yes | no) #REQUIRED>
>
<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

—— We do not go too deep into DTD syntax

— we just look at the example above, and comment

4a

DTD Declaration

<?xml version="1.0" standalone="yes">
<!DOCTYPE football_player [
<!ELEMENT player (name, surname, team+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT team (#PCDATA)>
] <!ATTLIST team current (yes | no) #REQUIRED>
>
<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

——1 DTD is declared here as internal

— but could be declared separatel
<!DOCTYPE football_player SYSTEM "football_player.dtd">

— even referring to an external / shared resource
<!DOCTYPE football_player SYSTEM "http://..">

2

DTD Declarations: Define or Use?

~—1{ So, you may

— define your own DTD, and
— either include it in your XML document
— orsave it as an independent document, and refer from one or more XML docs
— oruse an external DD defined by someone else
— like, a working group you belong to, or a standardisation body of any sort
— by referring to that externally-defined syntax for your XML docs

Element Declarations

<?xml version="1.0" standalone="yes">
<!DOCTYPE football_player [
<!ELEMENT player (name, surname, team+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT team (#PCDATA)>
] <!ATTLIST team current (yes | no) #REQUIRED>
>
<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</player>

4{ Aplayer element contain one name, 0N surname and one or more

teams
— i that precise order
— and they are just parsed character data (#PCDATA)

“

Some Syntax

——{ " "is for sequence

— 1o define ordered lists

— ™| "is for choice

— 1o provide for alternatives
suffixes

— ™" for zero or more occurrences
— ™+"for one or more occurrences
— ™" for zero or one occurrence

—— parenthesis for ?rouping

— at any level of indentation
— operators and suffixes applicable to any level

——1 ANY for free-form content

Attribute Declarations

<?xml version="1.0" standalone="yes">
<!DOCTYPE football_player [
<!ELEMENT player (name, surname, team+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT team (#PCDATA)>
] <!ATTLIST team current (yes | no) #REQUIRED>
>
<player>
<name>Carlo</name>
<surname>Nervo</surname>
<team current="yes">Bologna</team>
<team current="no">Mantova</team>
</playpr>

— | Ateam element has @ current afiribute
— which is mandatory
— #IMPLIED would say optional, instead

— and can be either yes or no
— enumeration as an attribute type

46

Attribute Defaulis

——{ #IMPLIED

— 1he umlbute is opfional

—{ #REQU

— 1he annhute is mandatory

——{ #FIXED

444{

— either itis explicitly specified or not, it has a given value
"litera
— the defuuh value is the "literal" quoted string

Attribute Types

NOTATION
— name of a notation used & defined in the document (rare!!)

enumeration
— (valuel | .. | valueN)

— CDATA

— any string of Iext uccepiuble in a well-formed XML attribute value
——| NMTOKEN, NMTOKENS

— more than an XML name: anything accepted as the first character

— the plural form accepts more than one separated by whitespaces
— ENTITY, ENTITIES

— name(s) of unparsed entities declared elsewhere in the document
444{ D

— an XML name unique in the document, working as an identifier
— IDREF, IDREFS

— reference(s) to IDs in the documents
—

Other DTD Declarations, etc.

——1 ENTITY dedlarations
——1 NOTATION declarations

— who cares actually

~——{ We stop here

— more only for those who need it

<!ENTITY footer SYSTEM "http://lia.deis.unibo.it/~ao/footer">

What are Namespaces for?

—] Disiinﬂuish
— different XML applications may use the same names
— atany scale, from personal to world-wide

— anamespace allows them to be clearly distinguished

1 Group

together

~— 1o be more easily recognised and handled

—— Example: set is an element in both SVG and MathML applications
— what if I have to use them together?

— namespaces can be used fo disambiguate names

— names of elements and attributes of the same XML application can be grouped

Namespaces

Syntax for Namespace Use

— Qualified names
— prefix : local_part
~——{ Examples of qualified names

— or QNames, or raw names
— rdf:description, xlink:type, xsl:template

—— Used for both element and attribute names

Associating Prefixes to URI

—] Exumi)le

— alarge firm could have a number of namespaces for different purposes
<company

xmlns:local="http://www.company.it/xml/"
xmlns:euro ="http://www.company.eu/xml/"
xmlns:world="http://www.company.com/xml/"

>
— then, you can use 1ocal, euro and world everywhere as prefixes
— typically declared in the topmost element, but could be declared anywhere
— eXGﬂ]pleZ<rdF:RDF xmlns:rdf="http://www.w3c.org/TR/REC-rdf-syntax#">
—— URI are standardised, not prefixes
~— but usually svg, rdf and other prefixes are not re-defined
— also, they are conventional names

53

Seiting Default Namespaces

—{ xmlns attribute
— alone, no suffix
<svg xmlns="http:/www.w3c.org/2000/svg" width=".." height="..">
:/svg>
— all the elements inside (including svg) are implicitly associated to the nttp:/
www.w3c.org/2000/svg hamespace
— no need for the svg prefix made explicity

Internationalisation

What does Text Mean?

~——| “Text” can be encoded according so many different alphabets
— mapping between characters and infegers {code points)
— character set
— ASCl being the most (un)famous, now Unicode
A character encoding determines how code points are mapped
onto bytes
— 0, a character set can have multiple encodings
— UTF-8 and UTF-16 are both Unicode encodings
~——{ Any XML document is a text document

— so, encoding should be declared

The XML Encoding Declaration

——1 Part of the XML Declaration

<?xml version="1.0" encoding="utf-8" standalone="no"?>
—— Most common values

— utf-8, utf-16 (Unicode)

— 150-8859-1 (Latin-1)
——1 See also: XML-Defined Character Sets

— Unicode and IS0 are the most used families
——1 Used also for external parsed entities

— like DTD fragments, or XML chunks

— which may have different encodings

— there, version may be dropped

— itisa text declaration, but no longer a XML declaration

51

Multi-Lingual Documents

——1 Example: a spell-checker, or a voice-reader parsing an XML doc
~——1 How to determine the language of a subpart?
— for multi-lingual docs
—1 xml:1ang attribute
— can be associated fo any element
— determines the language of the element
——1 Values are to be found in 150 639
— standard: two letters for each language known
— if not there, IANA
— prefix i-
— suchos i-navajo, i-klingon, ..
— if not there, too, such as for user-defined tags
— prefix x-

58

Encoding for Portability

——1{ Working around encoding is not simply an “internationalisation” issue
— itis also about portability

—— When transmitting / communicating through text-based files, many
errors Iypicull}/ oceur
— which are often not easy fo catch

——1 XML abilities to

— handle encoding precisely and accurately

— embody encoding information within each document

make it a powerful tool for easy and hassle-free portability

— across platforms, across applications, across time

XML & (55

XML on Browsers

——1 Different experiences with different browsers
— when trying to visualise an XML document
—— XML however can be transformed
— to become easier to handle by standard browsers
———{ Two main approaches
— Web-based one: XML + (5SS
— XML-based one: XSL
~———1{ Inthe following we explore the XML + (SS issue

Cascading Style Sheets

——! Cascading Style Sheets (CSS)

——1 a simple mechanism for adding style (e.g. fonts, colors, spacing) to Web
documents

—1 Standard W3C
——1 http://w3c.org/Style/CSS
—1 Goals

—— describing how to present elements of a document
spanning over a range of different media
——1 separating style description from content and structure
~—1{ Inthis course we assume that you already know the basics
——1 if not, look at http://www.w3.org/Style/CSS/learning

62

(SS: An Example

ene6 #) poem.css o

sllelinli®lixlialla Last Saved: 10-05-2005 15
7 o> = 2 2 = O B File Path: ~/Deskt . poem.css

POEN { display: block }

»t; font-weight: bold }

TITLE { display: block; fo o
m: 19px)}

POET { display: block; mar

STANZA { display: block; margin-bottom: 19px }
VERSE { disploy: block }

XML + CSS

—— Any XML documents can be prepared for browser visualisation via (SS
1 Two things needed
— 0 (SS style sheet referring to the proper elements types of the XML document
— the association between the XML document and the CSS style sheet
——1 Processing directive
— fo associate CSS to XML

<?xml-stylesheet type="text/css" href="nomefile.css" ?>

——1 (SS style sheet defining presentation style for the XML document tags

nometag {
attributol : valorel;

, -
——1 No need for DTD or Schema

XML + CSS Example: The XML Doc

Example: How Mozilla Visualises it

VWO @a= <,

Example: How Mozilla Visualises it

anNnA ‘\‘O:H\l
0000 E=mEm %[

ou Now O Soul

DOM & SAX

Manipulating XML Documents

—] Representing informafion in an XML Document
— and presenting it somehow
— isnot enoughgfor most non-trivial application scenarios
~———1{ Mostly, we often need to manipulate
— access, delete, modify
——1 parts of an XML document
— which either may or may not be and XML file
1 Thisis IypicuIIK dome through programming language of many sorts
— through ad hoc API
——1 The most used / hated / deprecated / widespread are
— DOM

— SKX

Document Object Model (DOM)

1| http://www.w3.0rg/DOM/

— standard W3(, as usual
"The Document Object Model is a platform- and language-neutral
interface that will allow programs and scripts to dynamically access and
update the content, structure and style of documents”
— It applies to HTML as well as XML
— ltis essentially an API

— standardised for Java & ECMAScript
~— but can be extended to other languages

——] There is no time here to go deep into DOM

— we just fry to understand its nature, goals and scope

n

DOM & Levels

——1 DOM views an XML tree as a data structure
— similar to the DOM from Javascript
~———{ DOM loads the whole XML document in memory to manipulate it
— maybe huge memory consumption
——1 ltis quite large and complex...
—1 Level 1 Core: W3C Recommendation, October 1998
primitive navigation and manipulation of XML trees
other Level 1 parts: HTML
——1 Level 2 Core: W3C Recommendation, November 2000
adds Namespace support and minor new features
other Level 2 parts: Events, Views, Style, Traversal and Range
— Level 3 Core: W3C Working Draft, April 2002
adds minor new features
n

DOM Nodes

—— An XML document is a tree
——1 The tree contains nodes
— one of them is a root node
— nodes possibly have siblings, children, one parent, content, tag, etc.
——1 The DOM specification states that a node can contain
— document, doc. fragment, doc. type, element, attribute, processing instruction,
comment, text, CDATA section, entity, notation

~—1 Italso defines which kind of child nodes they should / could have

Properties & Methods of DOM

———{ Every DOM node has properties and methods fo explore and
update the XML tree
—— Every DOM node has a name, a value, o type

~——1 There are general properties and methods for all kinds of nodes
— attributes returns all the attributes of the node

— appendChild(newChild) appends newChild affer the other child nodes

— Ther|11, (:lny specific kind of node has its own specific properties and
methods

——1 These properties and methods are made available by the suitable API
for the Iunquuge of choice
— many solufions for Java

— see for instance http://java.sun.com/xml/jaxp/

14

A Simpe Java DOM Fragment

public static void main(String[] args) {
try {
DOMParser p = new DOMParser();
p.parse(args[0]);
Document doc = p.getDocument();
Node n = doc.getDocumentElement().getFirstChild();
while (n!=null &% !n.getNodeName().equals("recipe"))
n = n.getNextSibling(Q);
PrintStream out = System.out;
out.println("<?xml version=\"1.0\"?>");
out.println("<collection>");
if (nl=null)
print(n, out);
out.println("</collection>");
} catch (Exception e) {e.printStackTrace();}

Main Problem of DOM

———{ The XML document is loaded as a whole and handled altogether in
memory
— it might be time-consuming and difficult to manage
— woulﬁn'i it be better if we could load only the part we are actually
manipulating
——1 This i the mofivation behind SAX
— which is not started as a standard
— has problems of acceptance
— but has indeed a long tail of followers
— and also its good reasons fo exist

Simple APl for XML (SAX)

~———1 Differently from DOM, SAX is event-hased
—— It sees the document not as a free, but as a text doc
— flowing through the SAX parser
— and generafing events as soon as document started / ended, elements
started / ended, character content, etc.
~——1{ Avery simple model
— good for simple applications
— and also to avoid memory abuse
~—1{ Not so well-supported as DOM is
— interms of standardisation
— as well as of tools

