
Introduction to Ajax
Ing. Giulio Piancastelli

What is Ajax?

• A cleaning powder

• A Dutch football team

• A Greek hero

• A different approach to web interaction

• None of the previous

• All of the previous

History of web
interaction (1/2)

• JavaScript gets released and for the first time developers
are able to affect the interaction between the user and
the web page (Netscape Navigator 2)

• Frames are introduced and the web page can be split up
into several documents (Netscape Navigator 2)

• The ability to use JavaScript to control a frame and its
contents lets the hidden frame technique for client-
server interaction emerge.

• A frame represents a completely separated request to
the server

• The technique represents the first asynchronous
request/response model for web applications

History of web
interaction (2/2)

• DHTML enables developers to alter any part of a loaded
page by using JavaScript. Combining it with hidden
frames let any part of a page to be refreshed with server
information at any time (Internet Explorer 4)

• Implementation of the DOM standard and the iframe
HTML element let the hidden iframe technique emerge:
dynamic creation of an iframe to make a request and get
a response on the fly (Internet Explorer 5, Netscape 6)

• The XMLHttp object gets introduced as an ActiveX
control: an ad-hoc HTTP request that can be controlled
from JavaScript independently from the page load/reload
cycle (Internet Explorer 5)

• An XMLHttpRequest native JavaScript object gets
implemented by virtually every modern web browser

History of Ajax (I)

• Developers have tried to give users a more interactive
and satisfying experience of the web since the days of
JavaScript and frames, long before those techniques
were called Ajax

• A technology can be called mature not when some
developers play with it, but when big enterprises adopt
it for their core business

• The Ajax turning point is generally considered to be
Google Maps, appeared even before the term Ajax was
coined

Google Maps (1/2)

Google Maps (2/2)

• A scrollable and draggable map broken in a grid of tiles
asynchronously downloaded from the server during the
normal user workflow

• Zooming and zoom level control widget

• Push pins and active dialogs (with shadows!) used to
highlight search results on a map

History of Ajax (II)
• In February 2005, Jesse James Garrett (Adaptive Path)

coins the term Ajax, meaning Asynchronous JavaScript
and XML, and quotes Google Maps and Google Suggest
as examples of Ajax applications

• The Ajax tidal wave raises

• because all the Ajax component technologies
(HTML, CSS, DOM, XML, JavaScript) are already
known and deployed

• and because of the Google effect and experience

• More companies (e.g. Amazon) adopt Ajax on the web

• Web frameworks (e.g. Ruby on Rails) add Ajax support
and toolkits (e.g. Google Web Toolkit) start to appear

Why is Ajax
different?

• Ajax can be viewed as

• a set of technologies

• a web application architecture

• More precisely, Ajax can be viewed as a set of relatively
old technologies combined to create a new architecture
for web applications, meant to increase the page’s
interactivity, speed, and usability

Classic web
application architecture

Ajax web application
architecture

• A new abstraction is
introduced, making
the interaction engine
emerge as a
programmable
separate entity

• Requests can be made
asynchronously from
the user interface

Model View Control
• Web applications are usually built following the Model

View Control design pattern

• The Model is represented by the business logic on
the server side

• The Controller is represented by the application
logic, again hosted on the server side

• The View is the content of web pages displayed on
the client side

• The introduction of the Ajax engine moves some of the
Controller responsibilities on the client side, bringing
along some Model representation responsibilities

• With the introduction of Ajax, the MVC web application
pattern gets replicated at a smaller scale

Architecture and
interaction model (I)

• The architecture of an application also dictates the
interaction model that the user experiences

• The web started as a world of document and data
sharing, not interactivity in its most meaningful sense

• In the conventional web application architecture, a page
is defined for every event in the system, and each action
synchronously returns another full page as its result

Classic web application
interaction model

Ajax web application
interaction model

Architecture and
interaction model (II)

• The Ajax web application architecture introduces a new
interaction model based around three main
characteristics

• It encompasses small server side responses: small
requests are made to get only the data needed to
update limited portions of a page

• It is asynchronous, so that frequent small requests do
not interrupt the user workflow

• It defines a fine grained event model able to trap
almost every action a user can do on a page, which
may trigger an asyncronous request to the server

Ajax principles

• From the architecture and the interaction model, some
defining principles for the design of Ajax applications
can be extracted

• The browser hosts (parts of) an application, not
content

• The server delivers data, not content

• User interaction with the application can be fluid
and continuous

Ajax applications
• Starting from the defining principles, at least two kind of

Ajax usage can be envisioned

• The development of self-contained Ajax widgets to be
embedded as islands of application-like functionalities
into document-like web pages

• e.g. Google Suggest, Google Maps

• The development of a host application, like a desktop
application or environment, where application-like
and document-like fragments can reside

• e.g. Google Mail, ajaxLaunch applications

Ajax technologies
• (X)HTML and CSS as standard based content

presentation languages

• The DOM as a way to perform dynamic display of
information and interaction with the user

• XML as a format for data interchange

• The XMLHttpRequest object for asynchronous data
retrival from the server side of the application

• JavaScript as the scripting language gluing these
components together

Which technologies
do you really need?
• Developers employed asynchronous techniques way

before the XMLHttpRequest object appeared

• Is XML the only viable format for data interchange?

• Does it pay off bringing along companion XML
technologies like XPath and XSLT?

• Are your data unstructured enough to benefit from
the use of a more lightweight interchange format?

Ajax with frames
• The page is composed by a frameset with a hidden frame

which is used for communication between the client and
server side of the application

• The hidden frame technique follows a four-step pattern

• A JavaScript call is made to the hidden frame, as a
consequence of an user’s action which requires
additional data from the server

• A request is made to the server
• The response is received from the server, under the form

of a web page, since the application deals with frames
• The received web page in the hidden frame calls a

JavaScript function in the visible frame to transfer the
data there, and let the application decide what to do
with the data

Intermission: HTTP
requests

• Unlike RPC, requests in HTTP are directed to resources
using a generic interface with standard semantics that can
be interpreted by intermediaries almost as well as by the
machines that originate services.

• The most important methods in the generic HTTP interface
and their semantics are:
• GET, to retrieve a representation of the resource in an

idempotent way
• POST, to create a new subordinate entity of the

specified resource using the content sent in the request
• PUT, to create or modify the specified resource using

the content sent in the request
• DELETE, specifying that the resource must be deleted

GET requests with
hidden frame (1/4)

• Start with a frameset

<frameset rows="100%,0" frameborder="0">
 <frame name="displayFrame"
src="get_display_frame.html" noresize="noresize"/>
 <frame name="hiddenFrame" src="about:blank"
noresize="noresize"/>
</frameset>

• The rows, frameborder, noresize attributes help hiding
the frame and the framing nature of the page

• The hidden frame starts blank

GET requests with
hidden frame (2/4)

• In the visible frame, given a stock name, its current value
will be displayed

<p>Stock Name: <input type="text" id="stockName"
value=""/></p>
<p><input type="button" value="Get Stock Value"
id="stockValueButton"/></p>
<div id="stockValueInformation"></div>

• From the stockName element the stock name is taken

• To the stockValueButton element a JavaScript function
calling the hidden frame will be associated, separating view
from control

• In the stockValueInformation element the stock value will
be displayed

GET requests with
hidden frame (3/4)

• Here are the JavaScript functions for the visible frame:

function requestStockValue() {
 var stockName = document.getElementById('stockName').value
 top.frames['hiddenFrame'].location = 'getStockValue.php?stock=' +
stockName
}
function displayStockValue(value) {
 var divStockValue = document.getElementById
('stockValueInformation')
 divStockValue.innerHTML = value
}
window.onload = function() {
 document.getElementById('stockValueButton').onclick =
requestStockValue
}

GET requests with
hidden frame (4/4)

• On the server side, the PHP script will return to the
hidden frame an entire web page containing the stock
value in a HTML element
<div id="stockValue"><?php echo $value ?></div>

• A JavaScript function is automatically triggered when the
page gets loaded in the hidden frame, to return sensible
data to the visible frame
window.onload = function() {
 var stockValue = document.getElementById
('stockValue').innerHTML
 top.frames['displayFrame'].displayStockValue
(stockValue)
}

POST requests with
hidden frame (1/3)

• The frameset does not change, but the visible frame now
contains a form to submit data

<form method="POST" action="saveStock.php"
target="hiddenFrame">
 <p>Stock Name: <input type="text"
name="stockName" value=""/></p>
 <p><input type="submit" value="Save Stock"/></p>
</form>
<div id="stockStatusInformation"></div>

• The stockStatusInformation element will contain
information on the server status after the request has been
accepted and the action has been performed

POST requests with
hidden frame (2/3)

• In the visible frame, only one JavaScript function need to
be defined

function saveResult(message) {
 var status = document.getElementById
('stockStatusInformation')
 status.innerHTML = 'Request completed: ' +
message
}

• The saveResult function will be invoked by the page
returned in the hidden frame, receiving data from the
response and following the usual four-step pattern of the
hidden frame technique

POST requests with
hidden frame (3/3)

• Provided that the PHP script on the server side saves the
status of the executed request in the $status variable,
only one JavaScript function needs to be defined

window.onload = function() {
 top.frames['displayFrame'].saveResult('<?php
echo $status ?>')
}

• It will be automatically executed after page loading

• The saveResult function needs a string as an argument,
so the PHP inline invocation needs to be put between
quotes

• The page body can be left empty

Ajax with iframe
elements

• An iframe element is the same as a frame that can be
placed inside a non frameset HTML page

• The iframe technique can be applied to pages not
originally created as a frameset, making it better suited
to incremental addiction of functionality

• An iframe element can even be created on the fly by
some JavaScript code, allowing better separation
between HTML and dynamic Ajax enhancements

• Note that iframe elements can be used and accessed in
the same way as regular frames

GET requests with
iframe elements

• No more frameset

• The displayed page contains an hidden iframe

<iframe src="about:blank" name="hiddenFrame"
width="0" height="0" frameborder="0"></iframe>

• In the document loaded by the hidden iframe, the
JavaScript function that calls back the visible page need
not to access another frame, but only its parent element

parent.displayStockValue(stockValue)

Dynamic creation of
iframe elements (1/2)
• An iframe element can be easily created on the fly

using the DOM JavaScript API
function createIframe() {
 var iframeElement = document.createElement('iframe')
 iframeElement.name = 'hiddenFrame'
 iframeElement.id = 'hiddenFrame'
 iframeElement.width = 0
 iframeElement.height = 0
 iframeElement.frameBorder = 0
 document.body.appendChild(iframeElement)
 return frames['hiddenFrame']
}

• The function retrutns a reference to the iframe element
just created

Dynamic creation of
iframe elements (2/2)
• Some browsers may happen not to immediately

recognize the inserted iframe and allow requests to be
sent, so a little timeout trick could be needed
var iframe = null
function requestStockValue() {
 if (!iframe) {
 iframe = createIframe()
 setTimeout(requestStockValue, 10)
 return
 }
 // use the iframe just created
}

• The timeout let the requestStockValue function be
called again after a time interval of 10 milliseconds if
the iframe is not recognized

POST requests with
iframe elements (1/4)
• Not every browser let the target of a form be set to a

dinamically created iframe

• To accomplish a POST request with a hidden iframe, a
different approach has to be employed:

• load a page that contains an empty form into the
hidden iframe

• populate that form with data from the visible form

• submit the hidden form instead of the visible form

• The visible form’s submission has to be cancelled and
the information it contains need to be forwarded to the
form in the hidden iframe

POST requests with
iframe elements (2/4)
• Create the hidden iframe and load in it a page that

contains a form
var iframe = null
function checkIframe() {
 if (!iframe)
 iframe = createIframe()
 setTimeout(function() { iframe.location =
'proxy_form.html' }, 10)
}

• Intercept the visible form’s submission and cancel it
window.onload = function() {
 document.getElementById('stockForm').onsubmit = function()
{ checkIframe(); return false }
}

POST requests with
iframe elements (3/4)
• The new hidden form is initially empty

<form method="POST"></form>

• When loaded into the hidden iframe, the page
containing the proxy form asks the visible page to
transfer data from the original form to itself

window.onload = function() { parent.setForm() }

• The hidden form gets populated and submitted

• In the document loaded by the hidden iframe, the
JavaScript function that calls back the visible page need
not to access another frame, but only its parent element

parent.saveResult('<?php echo $status ?>')

POST requests with
iframe elements (4/4)
function setForm() {
 var hiddenForm = iframe.document.forms[0]
 var form = document.forms[0]
 for (var i = 0; i < form.elements.length; i++) {
 var hiddenInput = iframe.document.createElement('input')
 hiddenInput.type = 'hidden'
 hiddenInput.name = form.elements[i].name
 hiddenInput.value = form.elements[i].value
 hiddenForm.appendChild(hiddenInput)
 }
 hiddenForm.action = form.action
 hiddenForm.submit()
}

Advantages of
hidden frames

• Hidden frames maintain browser history and thus enable
users to use the Back and Forward button effectively

• The browser keeps track of the requests made through
frames, and the Back and Forward buttons move through
history of frames whereas the main page of the
application does not change

• Be careful with iframe elements: depending on how
they are created and the browser used, iframe history
may or may not be kept

Disadvantages of
hidden frames

• The application relies on the proper page being
correctly returned to the hidden frames

• There is very little information about what happens in
the hidden frames

• No notification of problems loading the page

• Timeout techniques can be employed, but they are
just a workaround

• A developer can not control the HTTP request nor
the HTTP response being returned

Ajax with
XMLHttpRequest

• The XMLHttp or XMLHttpRequest object enables
developers to initiate a HTTP transaction from anywhere
in an application

• This technique follows the callback pattern

• An XMLHttpRequest object is created and the request
is initialized

• JavaScript asks the browser to perform the actual
HTTP request towards the server

• The browser receives the HTTP response from the
server and calls back a previously set
XMLHttpRequest handler to manage data and
information from the response

Creating a
XMLHttpRequest (1/3)
• The two different implementation as a JavaScript native

object or as an ActiveX control must be taken into
account

• For non Microsoft browsers, creation is quite simple

var request = new XMLHttpRequest()

• For Microsoft browsers, it could be as simple…

var request = new ActiveXObject
('Microsoft.XMLHTTP')

• …but that line creates only the first version of the object:
what to do if a more recent version has to be used?

Creating a
XMLHttpRequest (2/3)
• The only way to determine the best Microsoft object

version to use is to try and create each one
var VERSIONS = ["MSXML2.XMLHttp.5.0", "MSXML2.XMLHttp.4.0",
 "MSXML2.XMLHttp.3.0", "MSXML2.XMLHttp",
"Microsoft.XMLHttp"]

for (var i = 0; i < VERSIONS.length; i++) {
 try {
 var request = new ActiveXObject(VERSIONS[i])
 return request
 } catch (error) {
 // do nothing
 }
}

Creating a
XMLHttpRequest (3/3)
• You also need to distinguish between the two

implementations to know which is the correct one to
create in the context of the browser in use
function createXmlHttpRequest() {
 if (typeof XMLHttpRequest != 'undefined')
 return new XMLHttpRequest()
 else if (window.ActiveXObject) {
 // create and return the appropriate Microsoft object
 }
 throw new Error('XMLHttpRequest object could not be
created.')
}

Methods of
XMLHttpRequest (1/2)
• getAllResponseHeaders() returns all the HTTP

response headers as key-value string pairs

• getResponseHeader(header) takes the name of the
specified response header as a string and returns its
value as a string

• open(method, url, async, user, password) initializes
the method HTTP request directed to url

• async is an optional boolean parameter, defaulted to
true, to specify if the request should be performed in
an asynchronous way

Methods of
XMLHttpRequest (2/2)

• send(content) asks the browser to perform the HTTP
request and immediately returns if the request is to be
asynchronously made

• the mandatory content argument can be a DOM
document instance, a string or a stream, and its
content is sent as the request body

• abort() stops the current request

Properties of
XMLHttpRequest

• onreadystatechange is the event handler that fires its
assigned callback function at every state change of the
request

• readyState is an integer representing the state of the request

• responseText is the body of the server response represented
as a string

• responseXML is the body of the server response represented
as an XML DOM document object

• status is the HTTP response numeric status received from
the server

• statusText is the HTTP response textual status received
from the server

XMLHttpRequest
ready states (1/2)

• The readyState property changes its value as the HTTP
transaction is performed, the request is sent and the
response is received

• When the XMLHttpRequest object is created, its
readyState property is set to 0 (uninitialized)

• When the open method is called, the request gets
initialized and readyState is set to 1 (loading)

• Immediately after the request has been sent using the
send method, readyState changes to 2 (loaded)

XMLHttpRequest
ready states (2/2)

• When the browser starts to receive data from the HTTP
response, readyState passes to the value 3
(interactive)

• When all response data has been received and the
connection with the server has been closed, readyState
gets finally changed to 4 (complete)

• Because of differences in browser implementations, the
only reliable ready states for cross browser development
are 0, 1 and 4

Intermission: HTTP
response status codes

• The HTTP response status code is analogous to a summary of the
response, and lets the client know the basic outcome of the
server’s attempt to fulfill the request

• Status codes are grouped into ranges, and the most important are

• Successful (200-299)

• 200 OK indicates that the request has succeeded

• Client error (400-499)

• 404 Not Found indicates that the resource cannot be found

• Server error (500-599)

• 501 Not Implemented indicates that the server does not
support the method used in the HTTP request

GET requests with
XMLHttpRequest (1/3)

• A request must be created and opened towards the
appropriate server side resource
var stockName = document.getElementById('stockName').value
var request = createXmlHttpRequest()
request.open('get', 'getStockValue.php?stock=' + stockName)

• An onreadystatechange handler must be defined, which
will be called back by the browser on each ready state
transition

• The handler needs to check the readyState to be sure to
perform its action only when the response has been
actually received…

• …and it needs to check the response status code in
order to provide some support if something goes wrong

GET requests with
XMLHttpRequest (2/3)
• The handler can be created inline as an anonymous

function
request.onreadystatechange = function() {
 if (request.readyState == 4)
 if (request.status == 200)
 displayStockValue(request.responseText)
 else
 displayStockValue('An error occurred: ' +
request.statusText)
}

• Finally, the request must be sent, without any content
since it is of the GET sort
request.send(null)

GET requests with
XMLHttpRequest (3/3)
• The server side PHP script returns just the stock value as

a simple plain text document

<?php
header("Content-Type: text/plain");
// calculate the stock value
// and store it in $value…
echo $value
?>

• No JavaScript code is required outside the main page

Pssst… a word about
browser caching

• Some browsers tend to cache certain resources to
improve the speed of displaying and downloading sites

• When those browsers deal with repeated GET requests
to the same page, they may happen to present the user
the same old cached response instead of asking anew
information to the server

• To avoid inconveniences, use the appropriate HTTP
header on any data being sent from the server
Cache-Control: no-cache

• …and another header to maintain backward
compatibility with clients implementing HTTP/1.0 only
Pragma: no-cache

POST requests with
XMLHttpRequest (1/3)

• The form submission must be prevented and its data must
be assembled into the body of the JavaScript request
represented by a XMLHttpRequest object

document.getElementById('stockForm').onsubmit = function()
{ sendRequest(); return false }

• The data for a POST request must be sent in the following
format, similar to a query string…

name1=value1&name2=value2…

• …but both the name and value of each parameter must be
encoded in order to avoid data loss during transmission

POST requests with
XMLHttpRequest (2/3)
function getRequestBody(form) {
 var params = new Array()
 for (var i = 0; i < form.elements.length; i++) {
 var param = encodeURIComponent(form.elements[i].name) + '='
+ encodeURIComponent(form.elements[i].value)
 params.push(param)
 }
 return params.join('&')
}

• The JavaScript built-in function encodeURIComponent is
used to perform parameter encoding

• Parameters are stored in an array and later joined in a
string with a predefined separator

POST requests with
XMLHttpRequest (3/3)
• A request must be created with the appropriate target

var form = document.forms[0]
var body = getRequestBody(form)
var request = createXmlHttpRequest()
request.open('post', form.action)

• Since it is a POST request, the content type must be
appropriately set up
request.setRequestHeader('Content-Type', 'application/x-www-
form-urlencoded')

• The structure of the onreadystatechange handler is
identical to the GET request example

• The request must be sent with its body
request.send(body)

• The server side PHP script changes in the same way as
the GET request example

Advantages of
XMLHttpRequest

• Cleaner code intent

• Better separation of JavaScript code playing the role of
the application controller

• Complete access to HTTP request and response
properties enabling a better error handling

• Freedom to use a XMLHttp or XMLHttpRequest object
anywhere in the code

Disadvantages of
XMLHttpRequest

• For security reasons only URLs on the same server and
port as the page that includes the call to XMLHttpRequest
can be loaded

• There is no browser history record of the calls that are
made using XMLHttpRequest

• There is a supplemental unwanted dependency on
ActiveX controls in Microsoft browsers which could
have been disabled by the user for security reasons

Which is the better
technique to use?

• Given known advantages and disadvantages of both,
developers should use the technique that better suites
their application

• Do not forget application design principles

• Be consistent in user interface choices

• Follow established conventions in interaction

• Avoid unnecessary and distracting elements

• Consider accessibility issues

• Design with the user in mind before anything else

• Bottom line: the greatest applications like Google Mail or
Google Maps use a mix of both techniques to make a
truly usable interface and provide a better user experience

What about PUT and
DELETE requests?

• The PUT and DELETE HTTP request are the stepchildren
of the web

• Forms do not support PUT and DELETE methods

• Some platforms, notably J2ME, do not even implement
PUT and DELETE requests in their HTTP implementation

• Incomplete implementations of XMLHttpRequest are
scattered around browsers without support for PUT and
DELETE requests

Payload format
• The data returned by a HTTP response, commonly

known as the payload, can be of many sorts

• HTML or XML fragments

• Scripts to be executed by the client

• Arbitrary data in a variety of formats, starting from
simple plain text

• The web has lately seen the birth of some lightweight
formats to represent arbitrary data avoiding the use of
XML, and the creation of software libraries for
manipulating data in those formats

Why use XML?
• Despite the acronym buzzword, the use of XML as a data

format is not needed to implement Ajax techniques

• As with any other technology, XML should be adopted
whenever developers think it is necessary for the
application

• Do they want to define custom data vocabularies?

• Do they need human readable payloads?

• Do they want to introduce data validation?

• Do they want to take advantage of companion
technologies like XSLT and XPath, or have to work with
XML based technologies like feeds or web services?

• Do not forget the Keep It Simple, Stupid (KISS) principle

Using XML
• If the HTTP response returns XML as its payload, the

responseXML property of the XMLHttpRequest object will
contain the data as a DOM document object

• The object stored in the responseXML property can be
accessed and manipulated using the standard DOM API,
also used with HTML documents

• From version 1.6 of the JavaScript language the E4X
framework has been introduced, allowing manipulation
of XML documents as native data objects
• Create an XML object using a string representation of

the document, then easily manipulate and access its
elements

• Unfortunately, only on SeaMonkey 1.0 and Firefox 1.5

JSON
• As opposed to the heavyweight XML format, Douglas

Crockford proposed a new data format called JavaScript
Object Notation

• The format is based on the JavaScript notation for array
and object literals

var stockNames = ['Bnl', 'Fiat', 'Juventus FC']
var stock = {'name':'Fastweb', 'value':38.28}

• JSON syntax is really nothing more than the mixture of
object and array literals to store data

JSON syntax

Manipulating JSON
data (1/2)

• To manipulate JSON data on the client side, it is
necessary to transform its string representation into an
object

• Given the JSON string…

var s = "{'colors':['red', 'blue', 'white'],
'doors':[2, 4]}"

• …transforming it to an object is as simple as…

var carInfo = eval("(" + s + ")")

• …then the object can be used as usual

carInfo.colors[1] // returns blue
carInfo.doors[0] // returns 2

Manipulating JSON
data (2/2)

• Extra parentheses around any JSON string must be
included before passing it to eval, because they help
indicating that the code between curly braces is an
expression to be evaluated, not a statement to be run

• But the use of eval can be a huge security risk: libraries
are available to parse and convert only JSON code into
objects instead of evaluating arbitrary JavaScript code

• On the server side, there is plenty of libraries for the
most popular languages, starting with PHP

XML vs JSON (1/2)

<?xml version="1.0"?>
<stocks>
 <stock>
 <name>Bnl</name>
 <value>3.21</value>
 </stock>
 <stock>
 <name>Unipol</name>
 <value>2.40</value>
 </stock>
</stocks>

XML vs JSON (2/2)

• The following carries the same information as the XML
payload but it is expressed using the JSON syntax

{ 'stocks' : [
 { 'name':'Bnl', 'value':3.21 },
 { 'name':'Unipol', 'value':2.40 }
]
}

Towards Ajax design
patterns

• Design patterns describe programming techniques
known to be successful at solving common problems

• As Ajax emerges, developers learn more about what sorts
of design work, and need ways of documenting this
information and talking about it

• Design patterns are an excellent means of knowledge
representation: a concise way to represent the
knowledge embodied in the Ajax applications living
currently on the web

• The aim is to discover best practices by investigating how
developers have successfully traded off conflicting design
principles, delivering usability in the face of constraints

Ajax design patterns
• The techniques described under the term Ajax have

already been extensively used in the past, giving rise to
several Ajax patterns that solve specific problems

• The hidden frame technique and the asynchronous
XMLHttpRequest call are two of these patterns

• Various pattern classifications exist

• The community has to generate collective wisdom
around specific patterns, and individuals need to decide
whether and how to implement a given pattern

Pattern example:
periodic refresh (1/2)

• It belongs to the Functionality Pattern category

• Problem: how can the application keep users informed
of changes occurring on the server?

• Forces

• The state of many web apps is inherently volatile
because changes can come from numerous sources

• HTTP requests can only emerge from the client

• Solution: the browser periodically issues a
XMLHttpRequest call to gain new information

Pattern example:
periodic refresh (2/2)

• Set an interval for the periodic request
var interval = 10000 // milliseconds

• In the onreadystatechange handler, retrigger the main
function containing it after the periodic interval
function requestStockValue() {
 request.onreadystatechange = function() {
 if (request.readyState == 4) {
 // do something when status is 200...
 setTimeout(requestStockValue, interval)
 }
 }
}

• Start the main function with periodic requests in the
window.onload listener

Pattern example:
fade anything (1/2)

• It belongs to the Visual Effect Patterns category

• Problem: how can you direct the user’s attention to spots on
the page?

• Forces

• To ensure the user is working with current data, the
browser display must be frequently updated

• The screen can get cluttered with a lot of information,
much of which might be changing at any time

• While human vision is good at spotting changes, it is easy
to miss a sudden change, especially if it is a subtle one

• Solution: when a display element undergoes a significant
change dynamically increase its brightness for a second

Pattern example:
fade anything (2/2)

• To fade an element the following algorithm may be used

• Remember the element’s current setting

• Set element.style.color to a bright setting

• Then, every 100 milliseconds…

• Fade the element a bit. More precisely, drop color by
10% of the bright setting. This applies individually to
each color component (R, G, B).

• Check if 1000 milliseconds has already passed. If so,
set the element back to its original setting (it should
already be about that anyway).

Towards Ajax
frameworks

• Frequently used Ajax techniques and design patterns get
usually provided by libraries, toolkits and frameworks
which make them more easily accessible in production
ready code

• Ajax support in tools is quite layered as more and more
details are shielded from the developer

• Three main categories can be envisioned

• Remoting toolkits

• UI toolkits

• Web frameworks with Ajax support

Ajax frameworks
(1/2)

Ajax frameworks
(2/2)

• Remoting toolkits provide wrappers around
XMLHttpRequest to make it more usable, adding
support for error handling and automatic fallback for
older browsers

• UI toolkits provide easy access to visual effects and to
smart and richer widget components

• Web frameworks can be Ajax aware in different ways:
incorporating libraries and toolkits, with automatic code
generation, or exploiting component technology

References (1/2)
• Jesse James Garrett, Ajax: a New Approach to Web

Applications, Adaptive Path, available at http://
www.adaptivepath.com/publications/essays/archives/000385.php

• Nicholas Zakas, Jeremy McPeak, Joe Fawcett,
Professional Ajax, Wiley Publishing, 2006

• Justin Gehtland, Ben Galbraith, Dion Almaer, Pragmatic
Ajax, Pragmatic Bookshelf, 2006

• Dave Crane, Eric Pascarello, Darren James, Ajax in
Action, Manning Publications, 2005

• Brett McLaughlin, Head Rush Ajax, O’Reilly, 2006

References (2/2)
• Ryan Asleson, Nathaniel Schutta, Foundations of Ajax,

Apress, 2005

• Ajax Patterns, http://ajaxpatterns.org/

• JavaScript Object Notation, http://json.org/

• RFC2616, HTTP/1.1 Specification, available at http://
www.w3.org/Protocols/rfc2616/rfc2616.html

• Roy Fielding, Architectural Styles and the Design of
Network-based Software Architectures, Ph.D. Thesis,
available at http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm

