’-‘ Middleware Overview

* What is Middleware?
— The word suggests something belonging to the middle.
— But middle between what?
* The traditional Middleware definition.
— The Middleware lies in the middle between the Operating
System and the applications.
* The traditional definition stresses vertical
layers.

— Applications on top of Middleware on top of the OS.
— Middleware-to-application interfaces (top interfaces).
— Middleware-to-OS interfaces (bottom interfaces).

A Why Middleware?

* Problems of today.
— Software development is hard.
— Experienced designers are rare (and costly).
— Applications become more and more complex.
* What can Middleware help with?

— Middleware is developed once for many
applications.

— Higher quality designers can be afforded.
— Middleware can provide services to applications.
— Middleware abstracts away from the specific OS.

’-‘ Middleware and Models (1)

* A key feature of Middleware is Interoperability.
— Applications using the same Middleware can interoperate.
— This is true of any common platform (e.g. OS file system).
* But, many incompatible middleware systems exist.
— Applications on middleware A can work together.
— Applications on middleware B can work together, too.
— But, A-applications and B-applications cannot!
« The Enterprise Application Integration (EAI) task.
— Emphasis on horizontal communication.
— Application-to-application and middleware-to-middleware.

A

WHITESTEIN
Technologies
From Distributed Objects to
Multi-Agent Systems:
Evolution of Middleware (1)

Giovanni Rimassa

Whitestein Technologies AG — (gri@whitestein.com)

l_\ Presentation Outline (1)

* Middleware Overview
— What is Middleware
— Why Middleware
— Middleware and Models
— Middleware Technologies and Standards

» Object Oriented Middleware

— Mission: OOP for Distributed Systems
— OOPrinciples

— Bringing Objects to the Network
— Overview of the CORBA Standard

l_‘ Presentation Outline (2)
» Agent Oriented Middleware

— Mission: Mainstreaming Agent Technology
— What is an Agent?

— Autonomy, Sociality and Other Agenthood Traits
— Overview of the FIPA Standard

* JADE: A Concrete FIPA Implementation
— Overview: The Software, the Project, the
Community
— JADE as a Runtime Support System
— JADE as a Software Framework
— JADE Internal Architecture

l_\ Middleware Technologies

» Abstract Middleware: a common Model.

» Concrete Middleware: a common
Infrastructure.

» Example: Distributed Objects.

— Abstractly, any Middleware modeling distributed systems as
a collection of network reachable objects has the same
model: OMG CORBA, Java RMI, MS DCOM, ...

« Actually, even at the abstract level there are differences...

— Concrete implementations, instead, aim at actual
interoperability, so they must handle much finer details.

« Until CORBA 2.0, two CORBA implementations from different
vendors were not interoperable.

l_\ Middleware Standards

» Dealing with infrastructure, a key issue is the
so-called Network Effect.

— The value of a technology grows with the number of its
adopters.

» Standardization efforts become critical to
build momentum around an infrastructure

technology.

— Large standard consortia are built, which gather several
industries together (OMG, W3C, FIPA).

— Big industry players try to push their technology as de facto
standards, or set up more open processes for them
(Microsoft, IBM, Sun).

" Middleware Discussion Template

* Presentation and analysis of the model
underlying the middleware.

— What do they want your software to look like?

* Presentation and analysis of the
infrastructure created by widespread use of
the middleware.

— If they conquer the world, what kind of world will it be?

+ Discussion of implementation issues at the

platform and application level.

— What kind of code must | write to use this platform?
— What kind of code must | write to build my own platform?

l_\ Middleware and Models (2)

» Software development does not happen in
vacuum.
— Almost any software project must cope with past systems.
— There is never time nor resources to start from scratch.
— Legacy systems were built with their own approaches.

+ System integration is the only way out.
— Take what is already there and add features to it.
— Try to add without modifying existing subsystem.

* First casualty: Conceptual Integrity.

— The property of being understandable and explainable
through a coherent, limited set of concepts.

’-\ Middleware and Models (3)

* Real systems are heterogeneous.

— Piecemeal growth is a very troublesome path for software
evolution.

— Still, it is very popular (being asymptotically the most cost
effective when development time goes to zero).

» Middleware technology is an integration

technology.

— Adopting a given middleware should ease both new
application development and legacy integration.

— To achieve integration while limiting conceptual drift,
Middleware tries to cast a Model on heterogeneous
applications.

’-‘ Middleware and Models (4)

» Before: you have a total mess.
— A lot of systems, using different technologies.
— Ad-hoc interactions, irregular structure.
— Each piece must be described in its own reference frame.
* Then: the Integration Middleware (IM) comes.
— A new, shiny Model is supported by the IM.
— Existing systems are re-cast under the Model.
— New Model-compliant software is developed.
+ After: you have the same total mess.
— But, no, now they are CORBA objects, or FIPA agents.

A Five OOPrinciples (2)
* Open/Closed Principle (OCP).

— The language must allow the creation of modules closed for
use but open for extension.

+ Single Choice Principle (SCP).
— Whenever there is a list of alternatives, at most one module
can access it.

» The two principles above require Object-
Orientation.
— OCP requires (implementation) inheritance.
— SCP requires (inclusion) polymorphism.

l_\ OOP Concept (1)

The fundamental concept of
object-oriented programming is:

Theoject

The Class

l_‘ OOP Concept (2)

* Def: Class

—“An Abstract Data Type, with an associated
Module that implements it.”

Type + Module = Class

l_\ Distributed Objects

+ Distributed systems need quality software,
and they are a difficult system domain.

» OOP is a current software best practice.

* Question is:
— Can we apply OOP to Distributed Systems programming?
— What changes and what stays the same?

» Distributed Objects apply the OO paradigm
to Distributed Systems.
— Examples: CORBA, DCOM, Java RMI, JINI, EJB.

l_\ Back to Objects

» To describe the Distributed Objects
model, let’s review the basic OOP
computation model.

— The principles motivating OOP.

— The central concept.

— The central computation mechanism.

— The central software evolution mechanism.

» “Teach yourself OOP in 7 slides”.
|

l_‘ Five OOPrinciples (1)

» Modular Linguistic Units.
— The language must support modules in its syntax.

 Embedded Documentation.
— A module must be self-documenting.

* Uniform Access.

— A service must not disclose whether it uses stored data or
computation.

» The three principles above are followed by
OO0 languages, but also by Structured
languages.

l_‘ Distributing the Objects

* Q: How can we extend OOP to a distributed system,
preserving all its desirable properties?

« A: Just pretend the system is not distributed, and
then do business as usual!

« As crazy as it may seem, it works!

— Well, up to a point at least.

— But generally enough for a lot of applications.
Problems arise from failure management.
— In reliable and fast networks, things run smooth...

A (Distributed) Objects

The fundamental concept of Distributed Objects is:

Theobject
The Class-
The Remote Interface

A (Distributed) Objects

Fundamental Computational Mechanism: Remote Method Call
oM
res = obj.meth(par)

/

Target Object Parameter List
Encapsulates address and protocol Sent on the network

Access Operator
Grants location transparency

Method Name

Declared in the remote interface

l_‘ Modules and Types

» Modules and types look very different.
— Modules give structure to the implementation.
— Types specifies how each part can be used.

 But they share the interface concept.
— In modules, the interface selects the public part.

— In types, the interface describes the allowed
operations and their properties.

l_‘ OOP Mechanism

Fundamental OOP Computation Mechanism: Method Call

Result

res obj.meth(p

Target Object J \
Parameter List

Access Operator Method Name

A OOP Extensibility

» Subclassing is the main OOP extension
mechanism, and it is affected by the dual
nature of classes.

— Type + Module = Class.
— Subtyping + Inheritance = Subclassing.

» Subtyping: a partial order on types.

— A valid operation on a type is also valid on a subtype.
— Liskov Substitutability Principle.
* Inheritance: a partial order on modules.

— A module grants special access to its sub-modules.
— Allows to comply with the Open/Closed Principle.

l_\ Broker Architecture

Client 1 Server 1

Client 1

Client 2 Server 2

Client 3 Server 3 Client 3

» Broker is an architectural pattern in
[BMRSS96].

— Stock market metaphor.

— Publish/subscribe scheme.

— Extensibility, portability, interoperability.

— A broker reduces logic links from N_°Ng to N + N .

l-‘ Proxy and Impl, Stub and Skeleton

e invokes Remotelnterface

ESoperation(par : ParType) : ResType

kel #
\

ResType operation(ParType pan {
eter
[csalic/melliansport acdiees esType operation(ParType pan { 1

// Execute the operation nomally

from impl transport

11 4. Retur
}

void dispatch() {
while(active) {
111, taceivs fom the RemateProxy
/12, Unmarshal re
115, Call peration on r Remate impl
/1 4. Send back result

}

}

A What's CORBA

» The word
— An acronym for Common ORB Architecture.
— ORB is an acronym again: Object Request Broker.
— CORBA is a standard, not a product.

* The proponents
— Object Management Group (OMG).
« A consortium of more than 800 companies, founded in 1989.
« Present all major companies.
http://www.omg.org

« The same institution that took up the Unified Modeling
Language specification from its original creator, Rational
Software Corp.

l_\ Distributed (Objects)

Communication . .
Mechanisms Structured Object Oriented
Explicit C Sockets java.net.*
Implicit RPC _ CORB»_A*
java.rmi.

I_\ Distributed (Objects)

» The Distributed Objects

communication model is implicit.

— Transmission is implicit, everything
happens through stubs.

— The stub turns an ordinary call into an /PC
mechanism.

— One gains homogeneous handling of both
local and remote calls (location
transparency).

I_\ Distributed (Objects)

» The Distributed Objects communication
model is object oriented.

— Only objects exist, invoking operations on each
other.

— The interaction is Client/Server with respect to the
individual call (micro C/S, not necessarily macro
C/S).

— Each call is attached to a specific target object: the
result can depend on the target object state.

— Callers refer to objects through an object
reference.

l_\ OMA - ORB Core

 Part of the OMA dealing with
communication mechanisms.

» Allows remote method invocation
regardless of:
— Location and network protocols.
— Programming language.
— Operating System.

» The transport layer is hidden from
applications using stub code.

l_‘ Remote invocation: Participants

* A Request is the closure of an invocation,
complete with target object, actual
parameters, etc.

* The Client is the object making the request.

* The Object Implementation is the logical
object serving the request.

* The Servant is the physical component that
incarnates the Object Implementation.

* The ORB connects Client and Servant.

eWeos | ORB Core Compgy; o
cre request accepting the request

[client] [Object implementation]

N\

Dynamic obj
ject
Skeleton Adapter

Static IDL
ORB Skeleton
Interface

Dynamic
Invocation

l‘ Object Management Architecture

« The OMA architecture was
OMG overall vision for
distributed computing.

— The Object Request Broker is
OMA backbone.

— The /IOP protocol is the
standard application transport
that grants interoperability.

« Now, the OMA vision has
been superceded by the
Model Driven Architecture,
almost a meta-standard in
itself.

l‘ Object Management Architecture

* The Common
Object Services
serve as CORBA
system libraries,
bundled with the
ORSB infrastructure.

S BIECTR — Naming and Trader

i [EES Service.
r '11 \ — Event Service.
W 15 r — Transaction Service.
e © - ..

-‘ Object Management Architecture

» The Common Facilities
are frameworks to
develop distributed
applications in various
domains.

— Horizontal Common
Facilities handle issues
common to most application
domains (GUI, Persistent
Storage, Compound
Documents).

— Vertical Common Facilities
deal with traits specific of a
particular domain (Financial,
Telco, Health Care).

l_\ ORB Core Interfaces

+ Static skeleton (IDL)
— Corresponds to the Client Stub on Object Implementation
side.
— Automatically generated by compilation tools.

— Builds parameters from network format (unmarshaling), calls
the operation body and sends back the result.

+ Dynamic Skeleton Interface (DSI)
— Conceptually alike to Dynamic Invocation Interface.

— Allows the ORB to forward requests to Object
Implementations it does not manage.

— Can be used to make bridges between different ORBs.

l_\ ORB Core Interfaces

* Object Adapter (OA)
— Connects the Servant (the component containing an
Object Implementation) to the ORB.
— In CORBA the Object Implementation is reactive.
» The OA has the task of activating and deactivating it.
— There can be many Object Adapters.
» The CORBA 2.0 standard specifies the Basic Object
Adapter (BOA).
» The CORBA 2.3 standard specifies the Portable
Object Adapter (POA).

l_‘ ORB Core Interfaces

+ ORB Interface N —
— Common interface for RGEHSn | |oRbe [mmu
maintenance operations. ore
— Initialization functions.

— Bi-directional translation
between Object
Reference and strings.

— Operations of this
interface are represented
as belonging to pseudo-
objects.

l_\ ORB Core Interfaces

- Client side interfaces: o ed Inplemenon
— Client Stub.
— Dynamic Invocation |
Interface (DII). OB Coro
« Server side interfaces: = S
— Static Skeleton.
— Dynamic Skeleton Interface
(DSI).
— Object Adapter (OA).
+ CORBA 2.0 - BOA.
+ CORBA 2.3 - POA.

l_\ ORB Core Interfaces
* Client (IDL) Stub.

— Specific of each remote interface and
operation, with static typing and dynamic
binding.

— Automatically generated by compilation
tools.

— Conversion of request parameter in
network format (marshaling).

— Synchronous, blocking invocation.

l_‘ ORB Core Interfaces

« Dynamic Invocation Interface (DII)

— Generic, with dynamic typing and dynamic
binding.

* Directly provided by the Object Request
Broker.

* Both synchronous and deferred
synchronous invocations are possible.
* Provides a reflective interface
— Request, parameter, ...

l-\ OMA - Common Object Services

» Design guidelines for CORBAservices
— Essential and flexible services.
— Widespread use of multiple inheritance (mix-in).
— Service discovery is orthogonal to service use.
— Both local and remote implementations are

allowed.

+ CORBAservices are ordinary Object

Implementations.

l_‘ OMA - Common Object Services

* Naming Service.
— Handles name < Object Reference associations.
— Fundamental as bootstrap mechanism.
— Allows tree-like naming structures (naming
contexts).
» Object Trader Service.
— Yellow Page service for CORBA objects.

— Enables highly dynamic collaborations among
objects.

l-‘ OMA - Common Object Services

* Life Cycle Service.

— Object creation has different needs with respect to
object use = the Factory concept is introduced.

— Factory Finders are defined, to have location
transparency even at creation time.

— This service does not standardize Factories (they
are class-specific), but copy, move and remove
operations.

4N CORBA Interoperability

» CORBA is heterogeneous for Operating
System, network transport and programming
language.

» With the 1.2 version of the standard,
interoperation was limited to ORBs from the
same vendor.

* In CORBA 1.2 two objects managed by ORBs
from different vendors could not interact.

+ CORBA 2.x grants interoperability among
ORBs from different vendors.

l_\ CORBA Interoperability

* Recipe for interoperability
1) Communication protocols shared among
ORBs.
2) Data representation common among ORBs.

3) Object Reference format common among
ORBs.

= Only ORBs need to be concerned with
interoperability.

l_‘ CORBA Interoperability

» Common communication protocols

— The standard defines the General Inter-ORB Protocol
(GIOP), requiring a reliable and connection-oriented
transport protocol.

— With TCP/IP one has Internet Inter-ORB Protocol (110P).

» Common data representation
— As part of GIOP the CDR (Common Data Representation)
format is specified.
— CDR acts at the Presentation layer in the ISO/OSI stack.
» Common Object Reference format

— Interoperable Object Reference (IOR) format.
+ Contains all information to contact a remote object (or more).

4N The OMG IDL Language

Overall OMG IDL language features.

» Syntax and lexicon similar to
C/C++/Java.

* Only expresses the declarative part of a
language.

+ Services are exported through
interfaces.

» Support for OOP concept as inheritance
or polymorphism.
|

l_‘ Programming with CORBA

« The Broker architecture allows to build distributed
applications, heterogeneous with respect to:
— Operating System.
— Network Protocol.

* The OMG IDL language allows to build distributed
applications, heterogeneous with respect to:
— Programming Language.

« But, the system will have to be implemented in some
real programming languages at the end.
— The IDL specification have to be cast into those languages

l_‘ Programming with CORBA

* CORBA programming environments
feature a tool called IDL compiler.

— It accepts OMG IDL as input, and generates code
in a concrete implementation language.

» With respect to a given IDL interface, a
component may be a client and/or a
server.

— The client requests the service, the server exports
it.
— The IDL compiler generates code for both.

l_\ OMA - Common Object Services

» Event Service.
— Most objects are reactive.

— The Event Service enables notification delivery, decoupling
the producer and the consumer with an event channel.

— Supports both the push model (observer) and the pull model
for event distribution.

Suitable administrative interfaces allow to connect event
supplier and event consumer of push or pull kind.
* Notification Service

— Improves the Event Service, with more flexibility.

l_‘ OMA - Common Object Services

» Transaction Service.

— Transactions are a cornerstone of business
application.

— A two-phase commit protocol grants ACID
properties.
— Supports flat and nested transactions.

» Concurrency Control Service.
— Manages lock objects, singly or as part of groups.
— Integration with the Transaction Service.
« Transactional lock objects.

l_‘ The OMG IDL Language

Motivation for an Interface Definition
Language.

* CORBA is neutral with respect to
programming languages.

+ Different parts of an application can be
written in different languages.

* A language to specify interactions
across language boundaries is needed
= Interface Definition Language (IDL).

l_\ Objects and Metadata

» To increase system flexibility, one has
to add a new level that:
— Describes system capabilities.
— Allows changing them at runtime.

» Data belonging to this second level are
“data about other data”, that is they are
metadata (e. g. the schema of a DB).

— Systems have a (usually small) number of meta-
levels (e.g. objects, classes and metaclasses in
Smalltalk, ot the four-layer meta-model of UML).

l_\ Objects and Metadata

» Object oriented software system were
soon given metadata:

— Smalltalk has Metaclasses.

— CLOS (Common Lisp Object System) introduced
the concept of Meta-Object Protocol.

— Java has a Reflection API since version 1.1.

* In the book “Pattern Oriented System
Architecture: A system of Patterns”,
Reflection is an architectural pattern.

A CORBA Metadata
* CORBA is an integration
technology.

» Therefore, the issue of metadata
and Reflection was given
appropriate attention.

* |In a distributed system, metadata
have to be persistent, consistent
and available.

l_\ Programming with CORBA

= .
|
1D f0 C++ . J 1D 10 19AS. :
~— N ~—— N

l_‘ Programming with CORBA

» For each supported programming
language, the CORBA standard
specifies a Language Mapping:

— How every OMG IDL construct is to be translated.
— Programming techniques that are to be used.

+ C++ Language Mapping.

+ Java Language Mapping.

+ Smalltalk Language Mapping.
* Python Language Mapping.

l_‘ Objects and Metadata

» Compile-time vs. Run-time
— In C++ and Java the state of an object can change
at runtime, but its structure is carved by the
compilation process.

— Usually, the overall set of classes and functions
belonging to the system is defined at compile time
and cannot vary.

* With dynamic linking these rules can be
overcome, but traditional systems tend
to follow them anyway.

l‘ The Dynamic Invocation Interface
y ic Inv i

» To create a request, one uses the IDL.:

module CORBA { // PIDL
pseudo interface Object {
typedef unsigned long ORBStatus;
ORBStatus create_request(in Context ctx,
in Identifier operation, // Operation name
in NVList arg_list, // Operation arguments
inout NamedValue result, // Operation result
out Request request, // Newly created request
in Flags req flags; // Request flags);
}; // End of Object pseudo interface
}; // End of CORBA module

l‘ The Dynamic Invocation Interface

« After creation, a request object can be
used:

- module CORBA {
typedef unsigned long Status;
pseudo interface Request {
Status add_arg(in Identifier name,
in TypeCode arg_type,
in any value, in long len,
in Flags arg_flags);
Status invoke(in Flags invoke flags);
Status delete(); // Destroy request object
Status send(in Flags invoke_flags);
Status get_response(in Flags response_flags);
}; // End of Request interface
}; // End of CORBA module

" The Dynamic Invocation Interface

» The DI, through request objects, allows
selecting the rendezvous policy:
— Synchronous call with invoke ().
— Deferred synchronous call with send () .

» With deferred synchronous invocations, a
group of requests can be sent all at once.

* The new Asynchronous Method Invocation
(AMI) specification of CORBA 2.4 also
introduces asynchronous calls.

l_‘ CORBA Metadata

* In the OMA architecture, metadata are
used in several parts:

— The Dynamic Invocation Interface allows to act on
the remote operation invocation mechanism itself.

— The Interface Repository allows runtime discovery
of new IDL interfaces and their structure.

— The Trader Service gathers services exported by
objects into a yellow-page structure.

l‘ The Dynamic Invocation Interface

* Goals of the DIl

— The DIl provides a complete and flexible
interface to the remote invocation
mechanism, around which CORBA is built.

— The central abstraction supporting the DII
is the Request pseudo-object, which reifies
an instance of a remote call (see the
Command design pattern in the Gang of
Four book).

" The Dynamic Invocation Interface

* |DL interfaces for the DI|

— Firstly, a request attached to a CORBA
object needs be created.

—The create request () operation,
belonging to the Object pseudo-interface
(minimum of the inheritance graph), is to
be used.

—When a request is created, it is associated
to its original Object Reference for its
whole lifetime.

l_\ The Interface Repository

» Object oriented representation of the

syntax of a language:

— The formal grammar (e.g. in BNF notation) can be
turned into a structure of classes and associations.

— To do this, one defines a class for each non-terminal
symbol of the given grammar.

» Approach followed by OO parser
generators (ANTLR, JavaCQC).

— Interpreter design pattern from Gang of Four book.

l_\ The Interface Repository

* The BNF expression of Word
a list of words (with right contents
recursion) results in the 1.5
Composite design
pattern of the Gang of

Four book: ﬁl
<list> ::= List
<word>

| <list> <word>

l_‘ The Interface Repository
* The OMG IDL language representation:

— A complete OO representation of the IDL language is stored
within the Interface Repository.

— The IDL BNF results in both has-a and is-a links in the
objects structure.

* The Repository interface is the root of the

containment hierarchy, whereas the
IRObject interface is the root of the

inheritance hierarchy.
* The two Container and Contained
interfaces form a Composite structure.

Synchronous Call with the DII

nt Object Implementation

createRequest()

create()
Request new} ||’

7

add_arg()

add_arg()

invoke()

serve request and do operation

client
blocks

wake up client

l‘ Deferred Synchronous Call

Client Object Implementation

createRequest()

create()
Request {new) |

add_arg()

add_arg()

send()

serve request and do

client
computes

get_response()

l_‘ The Interface Repository

* The Interface Repository keeps the
descriptions of all the IDL interfaces
available in a CORBA domain.

* Using the Interface Repository,
programs can discover the structure of
types they don’t have the stubs for.

* The TypeCode interface provides an
encoding of the OMG IDL type system.

l_\ Dynamic Collaboration

* CORBA objects are more adaptable
than ordinary, programming language
objects such as Java or C++ objects.

» Two CORBA objects A and B, initially
knowing nothing about each other, can

set up a collaboration.

— Object A uses get_interface () to getan
InterfaceDef describing B.

— Browsing the Interface Repository, A discovers the
syntax of B supported operations.
— Using DI, A creates a request and sends it to B.

l_\ Dynamic Collaboration

+ With CORBA, the syntax of the operations
can be discovered at runtime.

» But the semantics of the operation is missing:
OMG IDL lacks preconditions, postconditions
and invariants.

» More complex systems (like multi-agent
systems) need languages to describe the
domain of the discourse (ontologies).

" Summary on Distributed Objects

An impressive technology!
Extends OOP to Distributed Systems.
Hides DS programming complexity.
Supported by an open standard (OMG CORBA).
Integration across OSs, networks and languages.
A lot of free implementations available.

* Next in line: Multi-Agent Systems
— An emergent technology.
— Can they do better than Distributed Objects?

l_\ The Interface Repository

IRObject
JAY
Cona
0.* 1
~ 7 N
e — —
~ e
\ﬂ\ Composite S
| ConstantDef | | ExcepﬁonDefl T - InterfaceDef
[I I]
| i Def |f‘ ionDef | ModuleDef | | Repository |
TypedefDef

l_\ The Interface Repository
» Using the Interface Repository:.

— Objects stored within the Interface
Repository are an equivalent
representation of actual OMG IDL source
code.

— Browsing the Interface Repository, one can
even rebuild /DL sources back.

» With Repository IDs, more interface
repositories can be federated.

l_‘ The Interface Repository

» Every interface derived from IRObject
supports two kinds of operations.

— Read Interface to explore metadata (Introspective
Protocol).

— Write Interface to modify them and create new
ones (Intercessory Protocol).

 Every interface derived from
Container supports navigation
operations, as well as new elements
creation operations.

l_‘ What is a software agent?

» A software agent is a software system that
can operate in dynamic and complex
environments.

— It can perceive its environment through senses.
— It can affect its environment through actions.

Sensory data

Agent Environment
Actions

l_\ Agenthood properties

* Fundamental features.| autonomous Agents

— An agent is aufonomous.
— An agent is reactive.}
— An agent is social.

» Useful features: MUl Acent Svst
— An agent can be proactive u G PO

directed).
— An agent can be mobile.

— An agent
Learning Agents

Intelligent

Mobile Agents Agents

l_‘ Application areas

* Information management.
— Information Filtering.
— Information Retrieval.

Industrial applications.
— Process control.
— Intelligent manufacturing.

Electronic commerce.
Computer Supported Cooperative Work.
Electronic entertainment.

A

WHITESTEIN
Technologies
From Distributed Objects to
Multi-Agent Systems:
Evolution of Middleware (2)

Giovanni Rimassa

Whitestein Technologies AG — (gri@whitestein.com)

l‘ Summary on Distributed Objects

An impressive technology!
Extends OOP to Distributed Systems.
Hides DS programming complexity.
Supported by an open standard (OMG CORBA).
Integration across OSs, networks and languages.
A lot of free implementations available.

* Next in line: Multi-Agent Systems
— An emergent technology.
— Can they do better than Distributed Objects?

l_‘ Agent Middleware

» According to our previous discussion
schema, an Agent middleware is supposed
to:

— Promote an agent-oriented Model.
— Realize an agent-oriented Infrastructure.

* We will have to go through some steps:
— Describe what agents and multi-agent system are.
— Compare the agent/MAS model with the OO model.
— Describe what kind of software components agents are.
— Provide an infrastructure example: the FIPA standard.
— Provide an implementation example: JADE.

l_‘ Concurrent OOP

+ Classical method invocation is a tight bond
between caller and called object.
— Not that this is always a bad thing (cohesion vs. coupling).

* However, in concurrent OOP things change a
lot.

— To exploit parallelism, other rendezvous policies are used,
such as deferred synchronous or asynchronous.

— In concurrent method invocation, correctness preconditions
become synchronization guard predicates.

» The bond of classical Design by Contract is
extremely loosened!

l_ A Stalrway to Agents
[Reasoning |

[| Intelligent Agents |

Actlve Objects

Objects

l‘ Building a single agent

-l
» Various proposals for an agent architecture.
+ Deliberative

architectures Autonomy,——
Deliberative
— Explicit, symbolic model of the Architectures
environment.

— Logic reasoning.

. . Architectur .
+ Reactive architectures
— Stimulus = Response.

Reactivity

* Hybrid architectures
— BDI, Layered, ...

l_\ Autonomy and Reactivity

* First fundamental trait of an agent: autonomy.
— An agent can act on the environment, on the basis of its
internal evolution processes.
Second fundamental trait: reactivity.
— An agent can perceive changes in the environment, providing
responses to external stimuli.
How do these qualities compare with objects?
— Objects are reactive.
— Objects are not autonomous.

l_\ Master and Servant (1)

* Fundamental computational mechanism of
the OOP:
— Method invocation.
— An object exposes its capabilities (public methods).
— Then other objects exploit them how and when they like

(they decide when to invoke the methods and which
parameters to pass to them).

* An object decides its behaviour space, but
does not further control its own behaviour.

+ The object is servant, its caller is master.

l_‘ Master and Servant (2)

» Method invocation follows Design by
Contract:

— ltis a synchronous rendezvous, so the caller object has to
wait until the called object completes its task.

— The caller must ensure the correctness precondition of the
method are verified before invoking it.

» Though the caller object chooses the method
to invoke, then it surrenders itself (i.e. its
thread of control) to code that it is controlled
by the called.

* The object is master, its caller is servant.

A Say What?

» An Agent Communication Language
captures:

— The speaker (sender) and hearer (receiver) identities.
— The kind of speech act the sender is uttering.
— This should be enough to understand the message.

* “I request that you froznicate the quibplatz”.

* There is more to the world than people and
words.
— There are also things.
— A common description of the world is needed.
— Describing actions, predicates and entities: ontologies.

l_\ Interaction and Coordination

» A MAS is more than a bunch of agents.

— In order to get something useful, some constraints have to be
set on what agents can do.

— Agents can represent different stakeholders.

» The society metaphor as a modeling tool.

— Social Role Model: which parts can be played in the society
(static, structural model).

— Interaction and Coordination Model: which patterns
conversation can follow (dynamic, behavioral model).

» Specifying conversation patterns with
Interaction Protocols.

l_‘ Standards for Agents

» To achieve interoperability among
systems independently developed, a
common agreement is needed.

» Several institutions are interested in

building standards for agent technology.
— Agent Society;

— Foundation for Intelligent Physical Agents;

— Internet Engineering Task Force;

— Object Management Group;

— World Wide Web Consortium.

l-\ Sociality: From Agent To MAS

» Autonomy and Reactivity are about an agent
and its environment.

+ Sociality is about having more than one agent
and they building relationships.

« The shift towards the social level marks the
border between Agent research and Multi-
Agent Systems (MAS) research.

— This is the major trait differentiating (non-intelligent) agents
from classical actors.

l_\ Communication in MAS

* MASSs need a richer, more loosely coupled
communication model with respect to OO systems.

« Approach: trying to mimic human communication with
natural language.
— When people speak, they try to make things happen.

— Listening to someone speaking, something of her internal thoughts
is revealed.

— When institutionalized, word is law (“/ pronounce you...”).

« Alinguistic theory results in a communication model.
— Speech Act Theory.
— Agent Communication Languages (ACLs).

l-‘ Speech Act Theory and ACLs

» Theory of human communication with

language.

— Considers sentences for their effect on the world.

— A speech act is an act, carried out using the language.
+ Several categories of speech acts.

— Orders, advices, requests, queries, declarations, etc.
» Agent Communication Languages use

messages.

— Messages carry speech act from an agent to another.
— A message has transport slots (sender, receiver, ...).
— A message has a type (request, tell, query).

— A message has content slots.

l_‘ FIPA ACL Message Layers

* The previous message is a Speech-Act Level
message.

* A Speech-Act Level message has an encapsulated
content.
— Expressed in a content language, according to an ontology.

» For transport reasons, it is encapsulated again.
— An envelope is added, to form a Transport-Level message.

l_‘ FIPA Ontologies and IPs

» FIPA specifications heavily rely on ontologies.

— All significant concepts are collected in standard ontologies
(fipa-agent-management , etc.).

— An Ontology Service is specified for ontology brokering.

» A set of standard Interaction Protocols is
provided.

— Elementary protocols directly induced by the semantics of
the single communicative acts (fipa-request, fipa-
query, etc.).

— More sophisticated negotiation protocols (fipa-contract-
net, fipa-auction-dutch, etc.).

I_\ FIPA ACL

* The FIPA ACL complies with a
communication model.
— Based on the speech-act theory.

— Speech acts correspond to communicative
acts in FIPA.

— FIPA CAs are gathered in the FIPA CA
Library.

— A formal semantics for each act is provided.

A FIPA

Foundation for Intelligent Physical Agents

http://www.fipa.org

* FIPA is a world-wide, non-profit association
of companies and organizations.

* FIPA produces specifications for generic
MAS and agent technologies.

* Promotes agent-level and platform-level
interoperability among MAS developed
independently.

&N FIPA Platform Architecture

l Agent Platform
Agent -
Directory
Agent Management eC
‘ ‘ ‘ System Facilitator

I I l

‘ Message Transport System ‘

‘ Message Transport System ‘

A FIPA ACL Message

(REQUEST

:sender (agent-identifier :name da0)
ireceiver (set (agent-identifier :name df))
icontent "((action (agent-identifier :name df)

(register (df-agent-description
:name (agent-identifier :name da0)
:services (set (service-description
:name sub-sub-df :type fipa-df
:ontologies (set fipa-agent-management)
:languages (set FIPA-SL)
:protocols (set fipa-request) :ownership JADE))
:protocols (set) :ontologies (set) :languages (set)
IR R
:reply-with rwsubl234 :language FIPA-SLO
:ontology FIPA-Agent-Management :protocol fipa-request
:conversation-id convsubl234

L\ FIPA ACL

» With speech acts, we follow the
communication as attempt idea.

— The speaker tells the world something
about her mind (beliefs, intentions, ...).

— The hearer is not forced to react.

— We can have pre-conditions for the
speaker to speak, but no post-conditions.

— We can infer the intentions of the speaker.

l_\ FIPA ACL

» The formal semantics of a FIPA
communicative act comprises:

— What must be true for the sender before
sending a CA (feasibility precondition).
— Which intentions of the sender could be

satisfied as a consequence of sending the
CA (rational effect).

A FIPA ACL
act (content)
sender receiver

» Observer knows act has <FP, RE>.
— It can deduce Fp (content).
— It can deduce 1__ .., (RE (content)).
— Nothing can be deduced about the receiver.

L\ FIPA ACL

» Each CA semantics is expressed
with a modal logic system.

—Modal logics define a set of modalities,
grouping logical formulas.

— Within a modality, the usual first order logic
applies.

— There are axioms and rules to link
modalities among each other.

l_\ FIPA ACL

» The modal logic used in FIPA ACL
applies the BDI agent model.
— Beliefs (what an agent thinks he knows now).
—Qesires (what an agent wishes to become true).

—1ntentions (what an agent will try to make true).

* The BDI model adopts the
Intentional Stance.

l_\ FIPA ACL

» The Intentional Stance is a way to
model complex systems, whose
details are unknown.

— Attributing mentalistic traits to the system.
— Explaining its behaviour with them.

» Example: a computer chess player.
— Does it ‘want’ to win?

—Does it ‘fear’ to lose?

L\ FIPA ACL

» Content element: Predicate.
— A logic formula, with zero or more terms,
yielding a boolean value.
» Content element: Action.
— An operation of an agent on its environment.
— Has zero or more terms, yields no result.

— Complex action expressions can be built with
; and | operators.

Agent i believes @
to be true

FIPA ACL

erm: Object Description.
— Frary /structure, with named slots.

:name Giovanni :age 32)

Agent k intends
to make it so
that 6 be true

Agent j desires
that y be true

l_\ FIPA ACL

» Content term: Action operators.

— They link actions with their premises and
their consequences.

- Agent (i, a) —Agent i is the one
performing actions in action expression a.

- Feasible(a, p) —Action a can be done,
and predicate p will hold just after that.

- Done (a, p) — Action a was done, and
predicate p held just before that.

— Both have the predicate defaulting to true.
|

L\ FIPA ACL

* FIPA ACL is an intentional language
for component communication.
— Better suited for autonomous components.

* In Object-Oriented systems, Design
by Contract is followed.
— Better suited for passive components.

* How do they compare?

l_\ FIPA ACL

» With Design by Contract, a method

has preconditions and postconditions.

{pre (formals) }body{post (formals) }
{pre (actuals) }call{post (actuals)}

* A FIPA ACL CA has FPs and REs.

{FP (content) }CA{RE (content) }
{FP(content’) A I (RE(content’)) }send{}

l_\ FIPA ACL

* The FP and RE are predicates over
the message content.
— A content model is needed.
* Acts have different content types.
— Some acts contain predicates.
— Some other contain actions.

— Content expressions can also hold object
descriptions and several operators.

l‘\ The inform CA

* The sender informs the receiver
that a given proposition is true.
— The content is a predicate.
— The sender believes the content.
— The sender wants the receiver to believe it.
o Formalizing <s, inform(r, ¢)>:
—FP:B.¢ A —B,(B,¢ v B,—0)
—-RE: B¢

l_\ The request CA

* The sender requests the receiver to
perform some action.
— The content is an action expression.
— A CA is an action and can be requested.

* Formalizing <s, request(r, a)>:

—FP: FP(a) [1/J] A B, Agent(r, a)A
—B.,I, Done (a)
— RE: Done (a)

l“ The query-if CA

* The sender requests the receiver to
tell whether a predicate is true.

* It is a composite act:
query-if (@) means:
request (inform(¢) | inform (—@))
* Formalizing <s, query-if(r, o)>
— FP: Replace a with the two inform CAs.

—RE: Done (<r, inform(s, ¢)> | <r, inform(s, —@)>)

l_\ FIPA ACL

» Content term: Identifying reference
expression (IRE).
— Used in the reponse to open questions.

— Corresponds to logical quantifiers, but
yields a value.

Universal: all ?x, @(?x)
Existential: any ?x, @ (?x)
One and only one: iota ?x, ¢ (?x)

I_\ FIPA ACL

* IRE vs. quantifier example.

— To show the difference, let’s use an
example question.

* “What’s the day today?”
-Q1:3! 2d, B,,today-is(2d) ?
—A1: “Yes”.
-Q2:iota ?d, B,,today-is(2d)?
—A2: “Today is Thursday’.

I_\ FIPA ACL

* The FIPA Communicative Act
library specifies all FIPA CAs.

— Each CA has an informal and formal (FP +
RE) semantics.

— An Appendix details the semantic model of
CAs and their content.

— FIPA Spec SC00037J.

l_\ Responder CAs

* A protocol has two roles:
— Initiator role (triggers the protocol).
— Responder role (receives initial triggers).
* There is a set of communicative acts
dedicated to responders.
— Agree.
— Refuse.
— Failure.
— Accept-Proposal.

I_\ FIPA-Request
o * The IP generated by

D—» the request CA.

— An initial request.

— An agree/refuse branch.

= — Actual action execution (not
shown in the diagram).

— Possible failure report.

— Possible inform report.

* Informing about completion.
* Informing about action result.

FIPA-Query

* The IP generated by the
query-if OF query-ref
CA.

— An initial query is sent.
— An agree/refuse branch.
— Possible failure report.

— Possible inform report.
* Informing whether (query-if).

« Informing about query result (in
the query-ref case).

l_\ The query-ref CA

* The sender queries the receiver for
the object(s) identified by an IRE.
— The content is an IRE (any, iota or all).
— It is a composite act:

query-ref (Ref ¢ (?x)) means:
request (inform-ref (Ref ¢ (?x)))

—The inform-ref composite act means
the disjunction of all possible inform acts
over the range of the variable ?x.

l_\ Interaction Protocols

» Observing a single CA says nothing
about the receiver.
— No post-conditions outside sender’s mind.
— Messages can be lost (unreliable channel).
* To draw useful conclusions, we
must move from utterances to
conversations.

l_‘ Interaction Protocols

A rational agent tries to turn its
intentions into its beliefs.

— To do so, it must act on its environment, and
then perceive the results.

— It needs to both send and receive messages.
» FIPA specifies an IP Library,

containing conversation templates.

— IPs compose the semantics of single CAs.

A JADE Family

+ JADE has solved the basic MAS
infrastructure problem.
— Most new AgentCities nodes fire up JADE and go.
— With JADE-LEAP, FIPA runs on wireless devices.

— With BlueJADE, runs within J2EE app servers.

« Palo Alto HP Labs OS spinoff project.
(http://sourceforge.net/projects/bluejade).

» Users are moving on to higher level

tasks.
« Ontology design (Protegé plugin, WSDLTool).
« Intelligent agents design (ParADE, Corese, JESS).

l_\ JADE Features

* Distributed Agent Platform.
— Seen as a whole from the outside world.
— Spanning multiple machines.

» Transparent, multi-transport
messaging.
— Event dispatching for local delivery.
— Java RMI for intra-platform delivery.
— FIPA 2000 MTP framework.

— IOP protocol for inter-platform delivery.
— HTTP protocol and XML ACL encoding.

— Protocol-neutral, optimistic address caching.

’-‘ JADE Features

* Two levels concurrency model.

— Inter-agent (pre-emptive, Java threads).

— Intra-agent (co-operative, Behaviour classes).
* Object oriented framework for easy

access to FIPA standard assets.

— Agent Communication Language.

— Agent Management Ontology.

— Standard Interaction Protocols.

— User defined Languages and Ontologies.

FIPA-Contract-Net

* More complex IP.

— Does not follow simply
from CAs semantics.

— It embeds policies.

* One-to-many IP.
— One manager agent.
— N contractor agents.
— A cfpisissued.

— A contractor is selected
among proponents.

VA FIPA and JADE

* FIPA is a world-wide, non-profit association of
companies and organizations
(http://www.fipa.org).

» FIPA produces specifications for generic MAS and
agent technologies.

+ Promotes agent-level and platform-level
interoperability among MAS developed
independently.

-.JE A FIPA 2000-compliant agent platform.

Chidiee A Java framework for the development of MAS.

An Open Source project, © Tl Labs, LGPL license.
JADE is a joint development of Tl Labs and Parma University.
Project home page: http://jade.cselt.it.

A History of JADE

T

c_ .g|* Projectstarted July

=== el 1998

j::la“-:‘;:l‘g:whpnwm Framewnek Present at both the
first (Seoul, 1999)

and the second

(London, 2001) FIPA

test.

* Many users
worldwide.
— 13 released versions.
— Internet-based support.

— Leading Open Source
platform.

VA JADE Main Container

-l
Agent Directory
Ianagement Facilitator
System
White page Yellow page
SErVice SErvice
local cache of
Agent Communication Channel
agent addresses
Intra-Container Inter-Containers Inter-Platforms
Message Transport | | Message Transport | | Message Transport
(Java events) (Tava BI) (IOP)

l_\ JADE Message Dispatching

AGENT CONTAINER (FE)

Agent
Agent Global

Container Descriptor

Table Table

AGENT CONTAINER

Message Dispatcher

Java RMI

AGENT CONTAINER

event Agent3
Local
Message Dispatcher E

cache

l_‘ JADE Agent Architecture

behaviour 1

behaviour 2
behavicur n

active
agent behaviours
(i.e. agent intentions)

aceess mads

a0
E]
=
S
"
&
=
[
£
"
[

timecut-based
blocking-based

o
b
S

&0
ap
H

ks
2

private inbox of
ACL messages

scheduler of life-cycle application
behaviours manager dependent

D
capabl-

agent resources

l_\ JADE Features

+ User defined content languages and
ontologies.
— Each agent holds a table of its capabilities.

— Message content is represented according to a meta-model,
in a content language independent way.

— User defined classes can be used to model ontology
elements (Actions, Objects and Predicates).
» Agent mobility.

— Intra-platform, not-so-weak mobility with on-demand class
fetching.

l_\ JADE Features

» Event system embedded in the kernel.

— Allows observation of Platform, Message, MTP and
Agent events.

— Synchronous listeners, with lazy list construction.

+ Agent based management tools.

— RMA, Sniffer and Introspector agents use FIPA ACL.
— Extension of fipa-agent-management ontology for
JADE-specific actions.

— Special jade-introspection observation ontology.

’_\ JADE Platform Architecture

Agent Container Main Container Agent Container
\
Network Host Network Host

+ Software Agents are software components.
— They are hosted by a runtime support called Agent Container.
— Many agents can live in a single container (about 1000 per host).
+ Selective Network Awareness and Flexible
Deployment.
— Any mapping between agents, containers and hosts.

l_‘ JADE Behaviours Example

Fipa-Request interaction protocol (FIPA 97 spec).

request
action

refuse
reason

failure inform inform
reason Done(action) (iota x (result action) x)

not-understood agree

l_‘ JADE Behaviours Example

Object structure for FipaRequestInitiatorBehaviour.

l_‘ JADE Content Metamodel

Canbe usedasthe 1
content of an ACL
message

ey

indicated enities 1
(abstract or concrete)

Can be true
or false \

\
An ontology deals with these entAction
types of element —

l-‘ JADE Concurrency Model

* Multithreaded inter- e
agent scheduling.

* Behaviour abstraction [I pr—
— Composite for structure ¢ [

— Chain of Responsibility for 1.1,__/L 12 24 A 22
scheduling. . ™ ™

— No context saving. l | l H } l

a) b) ©) d) e) f

l_‘ Behaviours and Conversations

* The behaviours concurrency model can
handle many interleaved conversations.

— Using the Composite structure, arbitrarily fine
grained task hierarchies can be defined.

— The new FSMBehaviour supports nested FSMs.
* FIPA Interaction protocols are mapped

to suitable behaviours:

— An Initiator Behaviour to start a new conversation.

— A Responder Behaviour to answer an incoming
one.

N JADE Behaviours Model

A) JADE Internals

« JADE is a MAS infrastructure.

— Applications developed over JADE use agent-level modeling
and programming.

— Software components hosted by JADE exhibit agent-level
features (they comply with the weak agent definition).

— JADE APl is an agent-level API.

» JADE is implemented in Java.
— JADE applications integrate well with Java technology.

— JADE runtime exploits object-oriented techniques.
— JADE APl is an object-oriented API.

l_‘ JADE Layered Architecture

e, &
Agent Containler ‘ Ml Contain

Hrmi
Network Host Lini j— Netw ork Host

<=
» JADE architecture is divided into two layers:
— Platform layer (uses object-oriented concepts, distribution via RMI).
— Agent layer (uses agent-level concepts, distribution via ACL).
» JADE architecture has two kind of interfaces:
— Vertical interfaces (bidirectional connections between layers).
— Horizontal interfaces (Hgy, at platform layer, Hyc, at agent layer).

l“ Inter-layer Relationships

| JADE Agent Level

meta -of 4 eta -of

A support -of
| JADE Platform Level

— Def.: X meta-of Y: Layer X describes and possibly controls layer Y.
— Def.: X support-of Y: Layer X provides services to layer Y.

» Platform support-of Agent: It's the runtime system for agents.
» Agent meta-of Platform: Description with JADE ontologies.
» Agent meta-of Agent: It's a self describing layer.

¥ petermEziaMabile 12
G Introspericr@EnM | it
€] sniMterC-on-Main-Carle| o P I
- - L2l Q. . L.
AgentPlamarmsrs ThisPatarn Matn- Containee | ° i| - W = &
. REQUEST BFORM
1 ' ‘ t : SUEISCRIBE HFOFAM
| — . = e AGREE
2. | e
[2% o
3 = s [Renaviours
ol
| a Whanige Hale
T3] Lad (2

l“ JADE Content Processing

content of the ACL ContentManager Agent internal
Message representation
Content
Language Ontology
Codec
Parser Parser »
*Valida\iun
String/byte ContentE:
woel AbsContentElement ContentElement
< Encoder Encoder

l-‘ JADE Support Tools

» Administration tools.
— RMA Management Agent.
« White pages GUI.
« Agent life cycle handling.
— Directory Facilitator GUI.
* Yellow pages handling.

* Development tools.
— DummyAgent.
« Endpoint Debugger.
— Message Shniffer.
* Man-in-the-middle.

Jo Ce e -

cREzioMat e 1 2345

l‘ Summary on Multi-Agent Systems

An interesting technology!
Connects Artificial Intelligence and Distributed Systems.
Hides DS programming complexity.
Promotes loosely coupled, multi-authority systems.
Supported by an open standard (FIPA).
Integration across OSs, networks and languages.

A lot of free implementations available (e.g. JADE).

* Now, Agent Technology is almost
famous.
— Will it mainstream?
— Will it replace Web Services? EJBs? .NET?

l\ JADE Core Classes

[071 maimamay |
i iR R

l_‘ Agent Suspension

A Agent TheANS - AVS runime frontEnd: Main | [containerForB: B Agent
AgentVanager Container | | AgentContainer

| sctrcauestosuspenas | [V] \

N P . |
— Pt

T |

|

Horizontal, Remote ﬁ suspend | ; ‘ \
suspend

Operation (Agent level) ‘
suspend 30
/ S| sudpend
Verial Lol /
Operation (DOWN) ‘
| suspond ouat
Horzontal Remote 1
‘ From here, tis 1 _—
| Operation (Patom lve) |

‘ to suspend itself

—

l‘ JADE Agent Class

AD

e
igetName) : String] 7+

describes

IregisterOntology(name : String, o : Ontology)
[IookupOntology(name : String) : Ontology

IName : String| | 0" | oName - String

JE—
1) I uses

[Scheduler | [Messagequeue | [Agentstate |

I | I 1 |

[Bischeduie) : Behaviour

1
T 1 | T 1
Codec AgentTookit Ontology
o tang) rom onte)
— 1 — 1

