
Contemporary SOA
and Web Services

Ing. Nicola Zaghini

nicola.zaghini@unibo.it

may 2006

1

Outline
SOA

Service orientation principle

Architecture

Web Services

Proposal & framework

Service role

Service description (WSDL)

SOAP messaging framework

WS-Addressing

WSDL: which style?

Message exchange patterns

Overview on SOA Platform (J2EE)

2

SOA introduction

SOA is Service Oriented Architecture

Web Services and SOA are related but
independent ...

SOA is a new paradigm regard object oriented...

why we need new paradigm?

--> follow the example

3

SOA introduction
Which domain? which model?

Gestione ODT

LSU:
• Gestione siti, localizzazione.
• Inserimento/importazione ODT.

Calcolo MDT

LSM:
• Tipi di materiale (STD), compatibilità.
• Tipi di mezzo (STD).
• Gestione dinamica dei cluster.
• Raggruppamento (manuale e automatico) di ODT

in pacchetti -> generazione MDT.

Lista ODT !

" MDT assegnate al tipo di mezzo

Gestione flotta

TSP:
• Inserimento/importazione MDT.
• Mezzi, tipi di mezzo, accessori.
• Storia dei mezzi.
• Calendario degli impegni dei mezzi.
• Listino.
• Calcolo automatico dei costi delle MDT.
• Pianificazione (manuale e automatica) dei mezzi

a disposizione e assegnamento della MDT al
mezzo.

• Gestione delle distanze note.

Broker dei trasporti

LSM:

• Listini concordati con i TSP.

Calcolo Giri

AUTOMATICO:

• Calcolo del percorso minimo in termini di
chilometri, tempo, altri parametri.

• Gestione delle distanze note.

MDT assegnate al tipo di mezzo

$ Lista TSP più convenienti

MDT assegnate
al tipo di mezzo

Singolo ODT

Richiesta
preventivo

Richiesta
stato MDT

$ Avanzamento MDT
$ Invio listino

Richiesta valorizzazione

MDT !

" Percorso ottimale

MDT !

" Percorso ottimale

Richiesta distanze tra siti !

" Distanze tra siti

Richiesta
distanze tra

siti # Distanze
tra siti $

WS Geografico

$ Preventivo

4

SOA analogy

think about average cosmopolitan city full of business
company

each company represent a service-oriented business ->
service provided to multiple consumer

collectively they are a business community

it make sense not have a single business outlet
providing all services

we achieve an environment with distributed outlets

5

SOA analogy
Service-oriented architecture

a model in which automation logic is decomposed into
smaller, distinct units of logic

collectively this units comprise a large piece of
business automation logic (individually can be
distributed)

BUT We wont to

self-governing individual services -> independence
between services (relatively)

MUST ensure that they adhere to certain baseline
conventions

6

Service orientation

Principle/1:

interoperability - of course

service contract - communication agreement

loose coupling - minimize dependencies, awareness
of each other

abstraction - hiding logic form outside

autonomy - over the logic they encapsulate

7

Service orientation
Principle/2:

composability - collection coordinated to form
composite service

reusability - logic divided into services to
promote reuse

statelessness - minimize retaining info

discoverability - assessed by discovery mechanism

which technology platform??

Web-Service! but carefully (how)

8

SOA vs Internet Arch.
Client-server architecture vs. SOA

single-tier

two-tier

Distributed internet architecture vs. SOA

RPC connection between components

Hybrid Web Services architecture vs. SOA

wrapper encapsulating components

9

SOA Architecture

10

SOA Service
Service as a unit of logic within a context

service has a description

loosely coupled relation

we need messaging framework

message as “independent units of
communication”

SOA KEYs: Services, Descriptions and Messages

11

The proposal of WS

“Web Services provide a standard means of
interoperating between different software
application on a variety of platforms and
frameworks”

... Web Services Architecture W3C working
group

they focus on Interoperability!

12

What is a Web Service?

“WS is a software system designed to
support interoperable machine-to-machine
interaction over a network [..] using SOAP
messages”

“WS is an abstract notion that must be
implemented by a concrete agent [..] the
agent is the concrete piece of software that
send and receive messages”

the agent may or not be the service

13

Web services framework

Web services framework is flexible and
adaptable -> large in scope

Characterized by/1:

an abstract (vendor-neutral) existence defined by
standard implemented by (proprietary)
technology platform

core building block that include Web services,
service descriptions and messages

service description based on WSDL

14

Web services framework

Characterized by/1:

messaging framework comprised of SOAP
technology and concept

service description registration and discovery
(UDDI)

architecture that support message pattern

WS-* specifications

15

Service

Services as application logic provider =
implement a real world business
functionality

Service role (runtime classification)

depending on its processing
responsibility in a given scenario
(initiator - relayer - recipient of a
message)

16

Service role

Service provider role

is invoked via an external source

publish a service description (WSDL)

17

Service role
Service requester role

invoke a service provider by sending msg

search the most suitable service provider
studying available service descriptions

18

Service role
Service intermediator role

also service and provider role for forwarding to
destination

passive: without altering content

active: process and alter message content,
typically will lock for a particular SOAP header

e.g.: policy rule, load balancing, ...

Service composition (member)

Orchestration & choreography

19

Service Models

Service classification based on the nature of
the application logic provided

Business service model: encapsulate a distinct set of
business logic, is full autonomous but not limited to
executing in isolation

Utility service model: a generic web service designed
for potential reuse -generic and non-application
specific nature

Controller service model: assembly and
coordination of services

20

Service Description

Service Description as “contract” that can be
used to build and validate messages

what kind of operation can I invoke on service
X? - requester role

what kind of operation/request can I accept? -
provider role

WSDL Web Service Description Language

21

Service Description

22

Service Description

WSDL - Web Server Description Language

Abstract description

interface characteristic without technology
reference

Concrete description

connection to some real, implemented technology

23

Service Description

24

WSDL

Abstract Description - high level view of the
service

definition - root element declaring namespace

types - where XML Schema is placed, to simple data to
complex business document

example -> echo and ping operations

25

WSDL
Abstract Description

messages designed to receive or transmit

<wsdl:message name="echoRequestMessage">
<wsdl:part name="part1" element="ns1:echoRequest"/>

</wsdl:message>

<wsdl:message name="echoResponseMessage">
<wsdl:part name="part1" element="ns1:echoResponse"/>

</wsdl:message>

<wsdl:message name="pingRequestMessage">

<wsdl:part name="part1" element="ns1:pingRequest"/>
</wsdl:message>

26

<wsdl:types>
 <xs:schema targetNamespace="http://org.apache.axis2/xsd"
 elementFormDefault ="unqualified" attributeFormDefault="unqualified">

 <xs:element name="pingRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:anyType" name="element"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="echoRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:anyType" name="element"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:anyType" name="return"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
</wsdl:types>

WSDL

27

WSDL
Abstract Description - high level view of the
service

portType (collection of) -> operation

<wsdl:portType name="MyServicePort">
<wsdl:operation name="echo">

<wsdl:input message="tns:echoRequestMessage"/>
<wsdl:output message="tns:echoResponseMessage"/>

</wsdl:operation>
 <wsdl:operation name="ping">

<wsdl:input message="tns:pingRequestMessage"/>
</wsdl:operation>

</wsdl:portType>

operation is not (only) a method mapping

28

WSDL
Concrete Description

binding -> concrete binding to SOAP

<wsdl:binding name="MyServiceBinding" type="tns:MyServicePort">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
<wsdl:operation name="echo">

<soap:operation soapAction="echo" />
<wsdl:input>

<soap:body use="literal" namespace="http://www.org.apache.axis2"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal" namespace="http://www.org.apache.axis2"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding> explained

later

29

WSDL
Concrete Description

service -> physical address at which access service

port -> location information

<wsdl:service name="MyService">

<wsdl:port name="MyServicePortType0"
 binding="tns:MyServiceBinding">

<soap:address location="http://localhost:8080/MyService"/>

</wsdl:port>
</wsdl:service>

30

WSDL Semantic (pills)

...and what about semantic

how a service behaves under certain conditions

how service will respond to specific conditions

what specific tasks the service is most suited for

OWL - OWLS (think about)

no standardized solution yet

31

UDDI (pills)

Service description advertisement and discovery

UDDI V2.0 specifications approved as an OASIS Standard

Not yet commonly implemented
32

SOAP
Messaging Framework Specification

Simple Object Access Protocol

originally designed to replace proprietary RPC
protocols -> serialization of object

now the purpose is to define a standard message
format !!!

extremely flexible and extensible

The RPC-Style messages runs contrary to the SOA
principle.

33

SOAP

Each message packaged in ENVELOPE

Header - area dedicated to hosting meta
information --> WS-*

Body - XML formatted data, is the message payload

Message have high level of independence -->
robustness and extensibility

Fundamental in a loosely coupled env.

34

SOAP
The SOAP Nodes

sender

receiver

intermediary

initial

ultimate

Remember the model!!

35

SOAP & WSDL
Processing of SOAP message using concrete
definition

36

WS-* extensions

WS-Addressing

standardize the representation of service
endpoint locations and unique correlation
values that tie together request and response
exchanges

Relation to other WS-* extensions

37

WS-* extensions
WS-Addressing

38

WS Addressing
Endpoint reference element

assist in providing service interface information

Message Information Header element

39

WS Addressing
Case Study

40

WS Addressing

41

Which style of WSDL should
I use?

In relation to WSDL binding to SOAP

RPC/encoded

RPC/literal

Document/encoded

Document/literal

Following the example

myMethod operation with parameters
 (integer x, float y)

42

Which style of WSDL should
I use?

RPC/encoded - void myMethod(int x, float y)

WDSL

<message name="myMethodRequest">
 <part name="x" type="xsd:int"/>
 <part name="y" type="xsd:float"/>
</message>

<portType name="PT">
 <operation name="myMethod">
 <input message="myMethodRequest"/>
 </operation>
</portType>

<binding .../>

SOAP

<soap:envelope>
 <soap:body>
 <myMethod>
 <x xsi:type="xsd:int">5</x>
 <y xsi:type="xsd:float">5.0</y>
 </myMethod>
 </soap:body>
</soap:envelope>

overhead

op. name

not WS-I compliant
43

Which style of WSDL should
I use?

RPC/literal - void myMethod(int x, float y)

WDSL

<message name="myMethodRequest">
 <part name="x" type="xsd:int"/>
 <part name="y" type="xsd:float"/>
</message>

<portType name="PT">
 <operation name="myMethod">
 <input message="myMethodRequest"/>
 </operation>
</portType>

<binding .../>

SOAP

<soap:envelope>
 <soap:body>
 <myMethod>
 <x >5</x>
 <y >5.0</y>
 </myMethod>
 </soap:body>
</soap:envelope> op. name

WS-I compliant
44

Which style of WSDL should
I use?

Document/literal

WDSL

<types>
 <schema>
 <element name="xElement" type="xsd:int"/>
 <element name="yElement" type="xsd:float"/>
 </schema>
</types>

<message name="myMethodRequest">
 <part name="x" element="xElement"/>
 <part name="y" element="yElement"/>
</message>

SOAP

<soap:envelope>
 <soap:body>

 <xElement>5</xElement>
 <yElement>5.0</yElement>
 </soap:body>
</soap:envelope>

not WS-I compliant

WDSL

<types>
 <schema>
 <element name="xElement" type="xsd:int"/>
 <element name="yElement" type="xsd:float"/>
 </schema>
</types>

<message name="myMethodRequest">
 <part name="x" element="xElement"/>
 <part name="y" element="yElement"/>
</message>

XML-Schema
op name?

45

Which style of WSDL should
I use?

Document/literal wrapped

WDSL

<types>
 <schema>
 <element name="myMethod">
 <complexType>
 <sequence>
 <element name="x" type="xsd:int"/>
 <element name="y" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 </schema>
</types>

<message name="myMethodRequest">
 <part name="parameters" element="myMethod"/>
</message>

SOAP

<soap:envelope>
 <soap:body>

 <myMethod>
 <x>5</x>
 <y>5.0</y>
 </myMethod>

 </soap:body>
</soap:envelope>

XML-Schema

WS-I compliant

SOAP action

46

WSDL binding SOAP
Concrete Description

binding -> concrete binding to SOAP

<wsdl:binding name="MyServiceBinding" type="tns:MyServicePort">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/
>
<wsdl:operation name="echo">

<soap:operation soapAction="echo" />
<wsdl:input>

<soap:body use="literal" namespace="http://www.org.apache.axis2"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal" namespace="http://www.org.apache.axis2"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

explained
now

47

MEPs
message exchange patterns

Interaction between services

as result of engineering interaction

A group of already mapped out sequence for
the exchange of messages

Simple MEPs as building block for Complex
MEPs

48

MEPs
message exchange patterns

Primitive MEPs

request-response

correlation concept

define synchronous communication (also
asynchronous)

fire and forget

single destination - multicast -broadcast

49

MEPs
message exchange patterns

Primitive MEPs

50

MEPs
message exchange patterns

Complex MEPs --> e.g.: publish-and-subscribe

51

MEPs
message exchange patterns

Blocking or not blocking ?

only for request-response pattern

in a dual transport like Http is a client matter
-> but Long Time Transaction?

two separate transport connection for
request and response is a client and service
matter --> WS-*

WS-Addressing

52

MEPs And WSDL

In WSDL 1.1 terms

Request-Response -> WS-I ok

Solicit-Response -> WS-I ok

One-way operation -> WS-I ko

Notification Operation -> WS-I ko

WS-I delivers practical guidance, best practices and
resources for developing interoperable Web services
solutions. http://www.ws-i.org/

53

MEPs And WSDL

In WSDL 2.0 terms

In-out pattern = Request-Response

out-in pattern = Solicit-Response

In-only pattern = One-way operation

Out-only pattern = Notification Operation

Robust in-only -> fault message from receiver are allowed

In-optional-out pattern -> the response is optional

54

SOA Platform
Basic platform building block

55

SOA Platform
Common SOA platform layer

56

SOA Platform

57

Service Processing
task

Service provider are expected to

supply a public interface (WSDL)

receive a SOAP message from requester

processing the header block within SOAP m.

validate and parse payload of SOAP m.

transform payload in a different format

encapsulate business processing logic

58

Service Processing
task

Service provider are expected to

assemble SOAP message containing the response to
the original request SOAP

WS-Addressing and correlation

transform the contents of the message back into the
form expected by the requestor

transmit the response SOAP

59

Service Processing
task

Service requester are expected to

contain business processing logic that calls a
service provider

interpret a service provider’s WSDL definition

assemble a SOAP request in compliance with service
provider WSDL definition

trasmitt SOAP request message to service provider

60

Service Processing
task

Service requester are expected to

receive a SOAP response message

validate and parse the SOAP response

transform payload in a different format

process SOAP header block

61

Service Processing
task
Service provider

62

Service Processing
task
Service requester

63

SOA support in J2EE

64

SOA support in J2EE
 • Java API for XML Processing (JAXP) This API is used to process XML document

content using a number of available parsers. Both Document Object Model (DOM) and Simple API
for XML (SAX) compliant models are supported, as well as the ability to transform and validate
XML documents using XSLT stylesheets and XSD schemas.

 • Java API for XML-based RPC (JAX-RPC) The most established and popular SOAP
processing API, supporting both RPC-literal and document-literal request-response exchanges
and one-way transmissions. Example packages that support this API include:

 • Java API for XML Registries (JAXR) An API that offers a standard interface for
accessing business and service registries. Originally developed for ebXML directories, JAXR now
includes support for UDDI.

 • Java API for XML Messaging (JAXM) An asynchronous, document-style SOAP
messaging API that can be used for one-way and broadcast message transmissions (but can still
facilitate synchronous exchanges as well).

 • SOAP with Attachments API for Java (SAAJ) Provides an API specifically for
managing SOAP messages requiring attachments. The SAAJ API is an implementation of the
SOAP with Attachments (SwA) specification.

 • Java Architecture for XML Binding API (JAXB) This API provides a means of
generating Java classes from XSD schemas and further abstracting XML-level development.

 • Java Message Service API (JMS) A Java-centric messaging protocol used for traditional
messaging middleware solutions and providing reliable delivery features not found in typical
HTTP communication.

65

66

SOA Platform

67

Bibliography

Web Service Architecture W3C working
group

http://www.w3.org/TR/ws-arch

Service-Oriented Architecture Concept,
Technology, and Design

Thomas Erl - Prentice Hall PTR

Some article from

http://www-128.ibm.com/developerworks/webservices

68

