
JavaScript:
fundamentals, concepts,

object model
Prof. Ing. Andrea Omicini

II Facoltà di Ingegneria, Cesena
Alma Mater Studiorum, Università di Bologna

andrea.omicini@unibo.it

Every object has always a prototype specifying
its basic properties

The prototype itself is an object

If P is prototype of X, every property of P is
also available as a property of X and thus
redefinable by X

The prototype is stored in a typically invisible
system property called __proto__

Prototypes (1/2)

Prototypes (2/2)

Every constructor has a building prototype
defined in its prototype property

It serves to define the properties of the
objects it builds

By default, the building prototype coincides
with the prototype, but while the latter is
unchangeable, the former can be modified

The modifiability of the building prototype
leads to prototype-based inheritance techniques

Prototypes: architecture

specific
properties for
the object

prototype

Object

properties

prototype

Constructor

prototype building prototype
(by default it is the
same as the prototype)

__proto__

__proto__

Predefined prototypes
JavaScript makes available a series of
predefined constructors whose prototype is the
prototype for all the objects of that kind

The prototype of the Function constructor is
the prototype for every function
The prototype of the Array constructor is the
prototype of all the arrays
The prototype of the Object constructor is
the prototype of all user defined objects
built using the new operator

Other predefined constructors are Number,
Boolean, Date, RegExp

Taxonomy of prototypes (1/2)
Since constructors themselves are objects, they
have a prototype too
A taxonomy of prototypes is created, rooted in the
prototype for the Object constructor
The prototype of Object defines the properties:
constructor - the function which built the object
toString() - a method to print the object
valueOf() - returns the underlying primitive type

These properties are available for every object
(functions and constructors included)

Taxonomy of prototypes (2/2)

All functions and in particular all constructors are
attached to the prototype of Function
That prototype defines common properties (e.g.
arguments) for every function (including constructors)
and inherits properties from the prototype of Object
(e.g. constructor)

Object

Function Array Number Boolean

Constructors Special case:
constructor of Point

chain of predefined prototypes...

Experiments

The predefined method isPrototypeOf() tests if
an object is included in another object’s chain
of prototypes

Object.prototype.isPrototypeOf(Function) // true

Object.prototype.isPrototypeOf(Array) // true

The Point constructor is both a function and an
object

Function.prototype.isPrototypeOf(Point) // true

Object.prototype.isPrototypeOf(Point) // true

The prototype property
The building prototype exists only for constructors
and defines properties for all the objects built by
that constructor
To define a specific building prototype you need to:

define an object with desired properties playing
the prototype role
assign that object to the prototype property of
the constructor

The prototype property can be dynamically
changed but it affects only newly created objects

Example (1/2)

Given the constructor
Point = function(i, j) {

this.x = i
this.y = j

}

we want to associate a prototype to it so that
getX and getY functions will be defined

Note that the form function Point() does not
make the Point identifier global, leading to
problems if the prototype is added from an
environment where Point is invisible

Example (2/2)
Define the constructor for the object which will
play the prototype role
GetXY = function() {

this.getX = function() { return this.x }
this.getY = function() { return this.y }

}

Create it and assign it to the prototype property
of the Point constructor
myProto = new GetXY(); Point.prototype = myProto

You can invoke getX and getY on newly created
Point objects only
p4 = new Point(7, 8); alert(p4.getX())

Architecture

properties

prototype =
building prototype

Constructor

prototype

BE
FO

RE

properties

prototype

Constructor

prototype building prototype myProto
getX
getY

AF
TE

R __proto__

__proto__

Searching properties

properties

prototype

Constructor

prototype building prototype myProto
getX
getY

AF
TE

R

specific
properties for
the object

Object

Searching order for properties

__proto__

__proto__

using the __proto__ property

New experiments (1/2)

ObjectFunction

GetXY

p4

myProto
constructor

constructor __proto__

__proto__

prototype

constructor

Point

constructorconstructor

prototype
constructor

__proto__

null
prototype

constructor

New experiments (1/2)
Searching for p4 identity
myProto.isPrototypeOf(p4) // true

GetXY.prototype.isPrototypeOf(p4) // true

Point.prototype.isPrototypeOf(p4) // true

Object.prototype.isPrototypeOf(p4) // true

Function.prototype.isPrototypeOf(p4) // false

Searching for myProto and GetXY identities
Point.prototype.isPrototypeOf(myProto) // true

Object.prototype.isPrototypeOf(myProto) // true

Function.prototype.isPrototypeOf(myProto) // false

Point.prototype.isPrototypeOf(GetXY) // false

Object.prototype.isPrototypeOf(GetXY) // true

Function.prototype.isPrototypeOf(GetXY) // true

Instead of associating a new prototype to an
existing constructor, it is possible to add new
properties to the existing constructor
Point.prototype.getX = function() { ... }
Point.prototype.getY = function() { ... }

The two approaches are not equivalent
A change in the existing prototype affects
also existing objects
A new prototype affects only objects newly
created from then on

Building prototypes: an
alternative approach

Example (1/2)

Given the constructor
Point = function(i, j) {

this.x = i
this.y = j

}

we want to modify the existing prototype so
that getX and getY functions will be included

Note that those functions will work for existing
objects and for objects created from then on

Example (2/2)

Create a first object
p1 = new Point(1, 2)

The function getX is not supported
p1.getX // returns undefined

Modify the existing prototype
Point.prototype.getX = function() { return this.x }

Point.prototype.getY = function() { return this.y }

Now getX works even on existing objects
p1.getX() // returns 1

Prototype-based
inheritance

Chains of prototypes are the mechanism offered
by JavaScript to support a sort of inheritance

It is an inheritance between objects, not
between classes as in object-oriented languages

When a new object is created using new, the
system links that object with the building
prototype for the constructor used

This is also true for constructors, which have
Function.prototype as their prototype

Expressing inheritance

To express the idea of a subclass Student
inheriting from an existing class Person you
need to

explicitly link Student.prototype with a new
Person object

explicitly change the constructor property of
Student.prototype (which now would link the
Person constructor) to make it reference the
Student constructor

Example (1/2)
Base constructor

Person = function(n, y) {
this.name = n; this.year = y
this.toString = function() {

return this.name + ‘ was born in ‘ + this.year
}

}
Derived constructor

Student = function(n, y, m) {
this.name = n; this.year = y; this.matr = m;
this.toString = function() {

return this.name + ‘ was born in ’ + this.year
+ ‘ and has matriculation ’ + this.matr

}
}

Example (2/2)
Setting the chain of prototypes

Student.prototype = new Person()
Student.prototype.constructor = Student

Test
function test() {

var p = new Person(“Andrew”, 1965)

var s = new Student(“Luke”, 1980, “001923”)

// displays: Andrew was born in 1965

alert(p)

// displays: Luke was born in 1980 and has
matriculation 001923

alert(s)

}

Inheritance: an
alternative (1/2)

An alternative approach can be employed
without touching prototypes: reusing by call
the base constructor function, simulating other
languages, e.g. the use of super in Java

Rectangle = function(a, b) {
this.x = a; this.y = b
this.getX = function() { return this.x }
this.getY = function() { return this.y }

}
Square = function(a) {

Rectangle.call(this, a, a)
}

Inheritance: “super” in
constructors

Base constructor
Person = function(n, y) {

this.name = n; this.year = y
this.toString = function() {

return this.name + ‘ was born in ‘ + this.year
}

}

Derived constructor
Student = function(n, y, m) {

Person.call(this, n, y); this.matr = m;
this.toString = function() {

return this.name + ‘ was born in ’ + this.year
+ ‘ and has matriculation ’ + this.matr

}
}

Inheritance: “super” in
methods

When prototypes are explicitly manipulated, the
prototype property can be used to call methods
defined in the base constuctor

Student = function(n, y, m) {
Person.call(this, n, y); this.matr = m
this.toString = function() {

return Student.prototype.toString.call(this)
+ ‘ and has matriculation ’ + this.matr

}
}

The Student.prototype is a Person object, so call
calls the toString function of that object

An alternative: “super” in
methods

Avoiding the use of prototypes, it is necessary
to explicitly exploit an object of the kind of
the prototype to invoke the desired method

Student = function(n, y, m) {
Person.call(this, n, y); this.matr = m
this.toString = function() {

return p.toString.call(this) + ‘ and has
matriculation ’ + this.matr

}
}

The p object must be a Person object which
must exist when the function is called, so that
call calls the toString function of that object

Inheritance: experiments

Using the Student and Person constructor setting explicitly
the chain of prototypes, the following results are
obtained with p a Person object and s a Student object

p.isPrototypeOf(s) // false

Person.isPrototypeOf(s) // false

Object.isPrototypeOf(s) // false

Object.prototype.isPrototypeOf(s) // true

Person.isPrototypeOf(Student) // false

Student.prototype.isPrototypeOf(Student) // false

Student.prototype.isPrototypeOf(Student.prototype) // false

Student.prototype.isPrototypeOf(s) // true

Inheritance: more
experiments

Using the same environment as before, but without
explicitly setting the chain of prototypes, the following
results are obtained:

p.isPrototypeOf(s) // false

Person.isPrototypeOf(s) // false

Object.isPrototypeOf(s) // false

Object.prototype.isPrototypeOf(s) // true

Person.isPrototypeOf(Student) // false

(new Person()).isPrototypeOf(Student) // false

(new Person()).isPrototypeOf(Student.prototype) // false

(new Person()).isPrototypeOf(s) // false

Arrays (1/2)
An array is built using the Array constructor,
whose arguments are the initial content of the
array
colors = new Array(‘red’, ‘green’, ‘blue’)

Elements are enumerated starting with 0 and
can be accessed using square brackets, e.g.
colors[2]

The length attribute contains the dynamic
length of the array
Cells in an array are not constrained to contain
elements of the same kind

Arrays (2/2)

It is also possible to define an empty array and
add elements later using assignments

colors = new Array(); colors[0] = ‘red’

Starting with JavaScript 1.2, an array can be
built listing the initial elements, separated by
commas, between square brackets

numbers = [1, 2, ‘three’]

Dynamic and
fragmented arrays

It is possible to dynamically add elements to
arrays whenever it is necessary
letters = [‘a’, ‘b’, ‘c’]; letters[3] = ‘d’

Arrays can be fragmented: indexes have not to
be in a set of adjacent numbers
letters[9] = ‘j’

letters.length returns 10

letters.toString() returns a,b,c,d,,,,,,j

Objects as arrays (1/2)
Every JavaScript object is defined by the set
of its properties: this is why they are
internally represented as arrays

This mapping between objects and arrays let
object access be possible through an array-like
notation using the property name as a selector

Let p be an object, s a string containing the
name of the property x of p; then the notation
p[s] gives access to the property named x like
the dot notation p.x does

Objects as arrays (2/2)

What is the advantage of the array notation
over the dot notation?

Using the dot notation p.x implies that the
name of the property is known when writing
the program

The array notation p[s] let the programmer
access a property whose name can be known
during execution and saved in the string
variable s for future use

Introspection
Since the set of an object’s properties can
dynamically change, it may be necessary to
discover which properties an object has at runtime

A special construct is available to iterate on the
visible properties of the object
for (variable in object) { … }

For example, to list the name of all properties:
function showProperties(obj) {

for (var p in obj) { document.write(p +
‘
’) }

}

From introspection to
intercession

Using the for/in construct it is possible to
discover the visible properties of an object
To access those properties you need to obtain
a reference to them starting from a string
containing the name of each property

function showProperties(obj) {
for (var p in obj) {

var property = obj[p]
document.write(‘The property ’ + p + ‘ has
type ’ + typeof(property) + ‘
’)

}
}

The global object

JavaScript does not distinguish object methods
from global functions: global functions are
methods of a system-defined global object

The global object features

as methods, functions not owned by specific
objects and predefined functions

as data, global variables

as functions, predefined functions

Global predefined
functions

eval – evaluate the JavaScript program passed
as a string (reflection, intecession)

escape – convert a string in a portable format,
substituting “illegal” characters with escaped
sequences (e.g. ‘%20’ for ‘ ’)

unescape – convert a string from the portable
format to the original format

isFinite, isNan, parseFloat, parseInt, …
…

(Constructors of)
Predefined objects

Most common are Array, Boolean, Function, Number,
Object, String
The Math object contains a mathematical library:
constants (E, PI, LN10, LN2, LOG10E, LOG2E, SQRT1_2,
SQRT2) and functions of all sorts

Don’t instantiate it: use it as a static component
The Date object contains features to represent
date and time concepts and work with them
The RegExp object supports working with regular
expressions

Date: construction (1/2)

Constructors

Date(), Date(milliseconds), ...

The Date() constructor creates an object
representing current day and hour on the
system in use

In Date(milliseconds), milliseconds are calculated
starting from 00:00:00 of January 1st, 1970,
using the UTC standard day of 86.4M sec

Date: construction (2/2)
Constructors
Date(string), Date(year, month, day [, hh, mm,
ss, ms])

UTC and GMT are supported
Days go from –100M to +100M around 1/1/1970
In Date(string), string must be in the format
recognized by Date.parse
In Date(y, m, d), year, month and day must be
provided; other parameters are optional;
parameters not provided are set to 0

Date: methods
Methods
getDay returns the day of the week from 0
(Sunday) to 6 (Saturday)
getDate returns the day from 1 to 31
getMonth returns the month from 0 (January) to
11 (December)
getFullYear returns the year on four digits
getHours returns the hour from 0 to 23
getMinutes returns the minute from 0 to 59
getSeconds returns the seconds from 0 to 59
…

Date: example

Example
d = new Date(); millennium = new Date(3000, 00, 01)

s = new String((millennium – d) / 86400000)

days = s.substring(0, s.indexOf(‘.’)) // integer part

alert(days + ‘days to the year 3000’)

Output (on March 5th, 2006)
362987 days to the year 3000

Who is the global
object?

The global object is unique and it is always
created by the interpreter before executing
anything
There is no global identifier: in every situation
there is a given object used as global object

in a browser, that object is typically window
but on the server side, it would probably be
another object to play the role of global object

Could it be a problem not to know which object
plays the role of global object?

The global object:
warnings

Function and variables not assigned to a specific
object are assigned to the global object…
…but if they appear in a function’s scope they
are assigned as local to that scope
There are no problems, if global properties are
used without making the global object emerge
There can be problems if eval or another
reflexive function is used, since eval(“var f”) is
different from var f because the first definition
is not executed in the global environment

Global object and
functions as data (1/4)

JavaScript lets variables reference functions and
functions be passed as arguments to other functions
var square = function(z) { return z*z }

function exe(f, x) { return f(x) }

But the f variable

must reference a function object

cannot be a string containing the name of an
already defined function
exe(“Math.sin”, .8) // error

Global object and
functions as data (2/4)
Beside the approach based on the Function
constructor, the global object can be exploited to
obtain a reference to a function object
corresponding to a given function name
Let p be a reference to an object, and s a string
containing the name of the x property of p, then
the array-like notation p[s] returns a reference
to the property x
In this case, p is the global object, s a function
name, x the function object corresponding to the
name in s

Global object and
functions as data (3/4)

The following notation
var name = Math[“sin”]

puts in the name variable a reference to the
function object Math.sin
So, after defining the function
function exe(f, x) { return f(x) }

we can invoke
exe(name, .8) // returns 0.7173560908995228

because the “sin” string has been translated
into a reference to the Math.sin object,
suitable for invocation

Global object and
functions as data (4/4)

Generalizing
var fun = prompt(“Enter a function name”)
var f = Math[fun]

Now the user can specify a function name and
let it be searched and invoked by a reflexive
mechanism
The result can be showed in another window
confirm(“Result: ” + exe(f, x))

Note that in this example the Math object plays
the role of the global object since functions
are searched in it only

Forms and their
management (1/3)

JavaScript is often used in the context of
HTML forms
A form usually contains text fields and buttons
<form name=“aForm”>

<input type=“text” name=“textField”
size=“30” maxlength=“30”>

<input type=“button” name=“button”
value=“Click here”>

</form>

When the button is pressed, it is possible to
invoke a JavaScript function

Forms and their
management (2/3)

When a button is pressed, the button pressed
event can be intercepted by the onclick
attribute
<form name=“aForm”>

<input type=“button” name=“button”
value=“Click here” onclick=“alert(‘You
clicked me!’)”>

</form>

Remember to alternate double and single quotes
when writing JavaScript code in HTML attributes

Forms and their
management (3/3)

As an alternative example, when the button is
pressed we can make the browser write the
result of one of our functions
<form name=“aForm”>

<input type=“button” name=“button”
value=“Click here” onclick=“document.write
(square(6))”>

</form>

Note that square must be already defined

Forms: which events?
Events which can be intercepted on an element
(managed on the correspondent tag)
onclick, onmouseover, onmouseout, …

Events which can be intercepted on a window
(managed in the body tag)
onload, onunload, onblur, …

Example
<body onload=“alert(‘Loaded!’)”>

<form name=“aForm”>

<input type=“button” name=“button” value=“Click
here” onclick=“alert(square(6))”>

</form>

</body>

Forms: events
management

To reuse the value returned by confirm, prompt,
or other functions, a whole JavaScript program
has to be inserted as the value of the onclick
attribute (as a sequence or a function call)

Examples
onclick=“x = prompt(‘Name and surname’);
document.write(x)”

onclick=“ok = confirm(‘Is this OK?’); if (!ok)
alert(‘Warning!’)”

Forms and text fields
Text fields can be objects with a name within a
form object with a name
As such, they can be referenced using the dot
notation, e.g. document.aForm.aTextField
Text fields are characterized by the value property
Example
<form name=“aForm">

<input type="text" name=“surname" size=“20”>

<input type="button" name="button" value="Show“
onclick="alert(document.aForm.surname.value)">

</form>

Functions as links

A JavaScript function can be used as a valid link
usable as the href attribute of the a element

The effect of a click on that link is the execution
of the function and the display of the result in a
new HTML page within the same window

Example

This should be
100

