
JavaScript:
fundamentals, concepts,

object model
Prof. Ing. Andrea Omicini

II Facoltà di Ingegneria, Cesena
Alma Mater Studiorum, Università di Bologna

andrea.omicini@unibo.it

JavaScript
A scripting language: interpreted, not compiled

History:

Originally defined by Netscape (LiveScript) - Name modified
in JavaScript after an agreement with Sun in 1995

Microsoft calls it JScript (minimal differences)

Reference: standard ECMAScript 262

Object based (but not object oriented)

JavaScript programs are directly inserted in
the HTML source of web pages

The Web Page
<html>
 <head><title>...</title></head>
 <body>
 ...
 <script language=”JavaScript”>
 <!-- HTML comment to avoid puzzling old browsers
 ... put here your JavaScript program ...
 // JavaScript comment to avoid puzzling old browsers -->
 </script>
 </body>
</html>

An HTML page may contain multiple <script> tags

Document Object Model
JavaScript as a language references the
Document Object Model (DOM)

Following that model, every document has the
following structure:

window
document
...

The window object represents the current
object (i.e. this) the current browser window

The document object represents the content of
the web page in the current browser window

The document object
The document object represents the current
web page (not the current browser window!)

You can invoke many different methods on it.
The write method prints a value on the page:

document.write(“Scrooge McDuck”)
document.write(18.45 - 34.44)
document.write(‘Donald Duck’)
document.write(‘’)

The this reference to the window object is
omitted: document.write is equivalent to
this.document.write

The window object (1/2)

The window object is the root of the DOM
hierarchy and represents the browser window

Amongst the window object’s methods there is
alert, which makes an alert window displaying
the given message appear

x = -1.55; y = 31.85; sum = x + y
message = “Somma di “ + x + “ e “ + y
alert(message + “: “ + sum) // returns undefined

You can use alert in an HTML anchor

The window object (2/2)

Other methods of the window object:

use confirm to display a dialog to confirm or
dismiss a message

returns a boolean value: false if the Cancel button has
been pushed, true if the OK button has been pushed

use prompt to display a dialog to input a
value

returns a string value containing the input

The DOM model

The window object’s main components:
self

window

parent

top

navigator

plugins (array), navigator, mimeTypes (array)
frames (array)
location

history

document

...and here follows an entire hierarchy of objects

The document object

The document object’s main components (all arrays):
forms

anchors

links

images

applets

The document object’s main API methods:
getElementsByTagName(tagname)

getElementById(elementId)

getElementsByName(elementName)

Referencing an element
in a document

An element in a document is referred to by the
value of its id attribute (or the name attribute
in older browsers)

e.g. for an image identified as image0 you would call
document.getElementById(“image0”)

or use the document properties through an array:
document.images[“image0”]

then, to modify e.g. that image’s width, you would
write document.images[“image0”].width = 40

Strings
Strings can be delimited by using single or
double quotes

If you need to nest different kind of quotes,
you have to alternate them

e.g. document.write(‘’)
e.g. document.write(“”)

Use + to concatenate strings

e.g. document.write(‘donald’ + ‘duck’)

Strings are JavaScript objects with properties,
e.g. length, and methods, e.g. substring(first,
last)

Constants and comments

Numeric constants are sequences of numeric
characters not enclosed between quotes - their
type is number

Boolean constants are true and false - their
type is boolean

Other constants are null, NaN, undefined

Comments can be
// on a single line

/* multi line */

Expressions

These are legal expressions in JavaScript
numeric expressions, with operators like + - * / % ...

conditional expressions, using the ?: ternary operator

string expressions, concatenating with the + operator

assignment expressions, using =

Some examples
document.write(18/4)

document.write(3>5 ? ‘yes’ : “no”)

document.write(“donald” + ‘duck’)

Variables

Variables in JavaScript are dynamically typed:
you can assign values of different types to the
same variable at different times

a=19; b=’bye’; a=’world’; // different types!

Legal operators include increment (++),
decrement (--), extended assignment (e.g. +=)

Variables and scope

Variable scope in JavaScript is

global for variables defined outside functions

local for variables explicitly defined inside
functions (received parameters included)

Warning: a block does not define a scope

x = ‘3’ + 2 // the string ‘32’
{

{ x = 5 } // internal block
y = x + 3 // here x is 5, not ‘32’

}

Dynamic types

The typeof operator is used to retrieve the
(dynamic) type of an expression or a variable

typeof(18/4) returns number
typeof “aaa” returns string
typeof false returns boolean
typeof document returns object
typeof document.write returns function

When used with variables, the value returned
by typeof is the current type of the variable

a = 18; typeof a // returns number
a = ‘hi’; typeof a // returns string

Instructions

Instructions must be separated by an end-of-
line character or by a semicolon
alpha = 19 // end-of-line
bravo = ‘donald duck’; charlie = true
document.write(bravo + alpha)

Concatenation between strings and numbers
leads to an automatic conversion of the number
value into a string value (be careful...)
document.write(bravo + alpha + 2)
document.write(bravo + (alpha + 2))

Control structures

JavaScript features the usual control
structures: if, switch, for, while, do/while

Boolean conditions in an if can be expressed
using the usual comparison operators (==, !=, >,
<, >=, <=) and logic operators (&&, ||, !)

Besides there are special structures used to
work on objects: for/in and with

Functions definition

Functions are introduced by the keyword
function and their body is enclosed in a block

They can be either procedures or proper
functions (there’s no keyword void)

Formal parameters are written without their
type declaration

Functions can be defined inside other functions

function sum(a,b) { return a+b }

function printSum(a,b) {
document.write(a+b)

}

Function parameters

Functions are called in the usual way, giving
the list of actual parameters

The number of actual parameters can be
different from the number of formal ones

If actual parameters are more than necessary,
extra parameters are ignored

If actual parameters are less than necessary,
missing parameters are initialized to undefined

Parameters are always passed by value
(working with objects, references are copied)

Variable declarations

Variable declarations can be explicit or implicit
for global variables, but must necessarily be
explicit for local variables

A variable is explicitly declared using var
var goofy = 19 // explicit declaration

pluto = 18 // implicit declaration

Implicit declaration always introduces global
variables, while explicit declaration has a
different effect depending on the context
where it is located

Explicit variable
declarations

Outside functions, the var keyword is not
important: the variable is defined as global

Inside functions, using var means to introduce a
new local variable having the function as its scope

Inside functions, declaring a variable without
using var means to introduce a global variable

x = 6 // global
function test() {
 x = 18 // global
}
test()
// the value of x is 18

var x = 6 // global
function test() {
 var x = 18 // local
}
test()
// the value of x is 6

Referencing environment

Using an already declared variable, its name
resolution starts from the environment local to its
use

If the variable is not defined in the environment
local to its use, the global environment is checked
for name resolution

f = 3
function test() {
 var f = 4
 g = f * 3
}
test(); g // 12

f = 3
function test() {
 var g = 4
 g = f * 3
}
test(); g // nd

f = 3
function test() {
 var h = 4
 g = f * 3
}
test(); g // 9

Functions and closures
(1/3)

Since JavaScript is an interpreted language and
given the existence of a global environment...

When a function uses a symbol not defined
inside its body, which definition holds for that?

Does the symbol use the value it holds in
the environment where the function is
defined, or...

does the symbol use the value it holds in the
environment where the function is called?

Functions and closures
(2/3)

var x = 20
function testEnv(z) { return z + x }
alert(testEnv(18)) // definitely displays 38
function newTestEnv() {

var x = -1
return testEnv(18) // what does it return?

}

The newTestEnv function redefines x, then
invokes testEnv, which uses x... but, which x?

In the environment where testEnv is defined,
the symbol x has a different value from the
environment where testEnv is called

Functions and closures
(3/3)

var x = 20
function testEnv(z) { return z + x }
function newTestEnv() {

var x = -1
return testEnv(18) // what does it return?

}

If the calling environment is used to resolve
symbols, a dynamic closure is applied

If the defining environment is used to resolve
symbols, a lexical closure is applied

JavaScript uses lexical closures, so newTestEnv
returns 38, not 17

Functions as data

Variables can reference functions
var square = function(x) { return x*x }

Function literals have not a name: they are
usually invoked by the name of the variable
referencing them
var result = square(4)

Assignments like g = f produce aliasing

This enables programmers to pass functions as
parameters to other functions
function exe(f, x) { return f(x) }

Functions as data -
Examples

Given function exe(f, x) { return f(x) }

exe(Math.sin, .8) returns 0.7173560908995228

exe(Math.log, .8) returns -0.2231435513142097

exe(x*x, .8) throws an error because x*x is not
a function object in the program

exe(fun, .8) works only if the fun variable
references a function object in the program

exe(“Math.sin”, .8) throws an error because a
string is passed, not a function: don’t mistake a
function for its name

Functions as data -
Consequences

You need to have a function object (not just its
name) to use a function

You cannot use functions as data to execute a
function knowing only its name or its code
exe(“Math.sin”, .8) // error

exe(x*x, .8) // error

How to solve this problem?

Access to the function using the properties
of the global object

Build an appropriate function object

Objects

An object is a data collection with a name:
each datum is called property

Use the dot notation to access any property,
e.g. object.property

A special function called constructor builds an
object, creating its structure and setting up its
properties

Constructors are invoked using the new operator

There are no classes in JavaScript: the name of
the constructor can be choosed by the user

Defining objects
The structure of an object is defined by the
constructor used to create it

Initial properties of the object are specified
inside the constructor, using the dot notation
and the this keyword

The this keyword is necessary, otherwise
properties would be referenced by the
environment local to the constructor function

Point = function(i, j) {
 this.x = i
 this.y = j
}

function Point(i, j) {
 this.x = i
 this.y = j
}

Building objects

To build an object, apply the new operator to a
constructor function

p1 = new Point(3, 4)

p2 = new Point(0, 1)

The argument of new is just a function name,
not the name of a class

Starting with JavaScript 1.2 just listing couples
of properties and values between braces

p3 = {x:10, y:7}

Accessing object
properties

All properties of an object are public
p1.x = 10 // p1 passes from (3,4) to (10,4)

There are indeed some invisible system
properties you can not enumerate using the
usual appropriate constructs

The with construct let you access several
properties of an object without repeating its
name every time
with (p1) x = 22, y = 2

with (p1) {x = 3; y = 4}

Adding and removing
properties

Constructors only specify initial properties for
an object: you can dynamically add new
properties by naming them and using them

p1.z = -3 // from {x:10, y:4} to {x:10, y:4,
z:-3}

It is possible to dynamically remove properties
using the delete operator

delete p1.x // from {x:10, y:4, z:-3} to {y:4,
z:-3}

Methods for (single)
objects

Methods definition is a special case of property
addition where the property is a function object

p1.getX = function() { return this.x }

In this case, a method is defined for a single
object, not for every instance created using the
Point constructor function

Methods for multiple
objects

You can define the same method for multiple
objects by assigning it to other objects

p2.getX = p1.getX

To use the new method on the p2 object, just
call it using the () invoke operator

document.write(p2.getX() + “
”)

If a nonexistent method is invoked, JavaScript
throws a runtime error and halts execution

Methods for objects of
a kind

Since the concept of class is missing, ensuring
that objects “of the same kind” have the same
behaviour requires an adequate methodology

A first approach is to define common methods
in the constructor function
Point = function(i, j) {

this.x = i; this.y = j
this.getX = function() { return x }
this.getY = function() { return y }

}

Another approach is based on the concept of
prototype (see later)

Simulating private
properties

Even if an object’s properties are public, it is
possible to simulate private properties using
variables local to the constructor function
Rectangle = function() {

var sideX, sideY
this.setX = function(a) { sideX = a }
this.setY = function(a) { sideY = a }
this.getX = function() { return sideX }
this.getY = function() { return sideY }

}

While the four methods are publicly visible, the
two variables are visible in the constructor’s local
environment only, being matter-of-factly private

Class variables and
methods

Class variables and methods can be modeled as
properties of the constructor function object

p1 = new Point(3, 4); Point.color = “black”

Point.commonMethod = function(...) { ... }

The complete Point.property notation is
necessary even if the property is defined inside
the constructor function, because property
alone would define a local variable to the
function, not a property of the constructor

Function objects (1/2)
Every function is an object built on the basis of
the Function constructor

implicitly, building functions inside the
program by using the function construct

its arguments are the formal parameters
of the function

the body (the code) of the function in
enclosed in a block

e.g. square = function(x) { return x*x }

the construct is evaluated only once, it’s
efficient but not flexible

Function objects (2/2)
Every function is an object built on the basis
of the Function constructor

explicitly, building functions from strings by
using the Function constructor

its arguments are all strings

first N-1 arguments are the names of the
parameters of the function

the last argument is the body (the code)

e.g. square = new Function(‘x’, ‘return x*x’)

the construct is evaluated every time it’s
read, it’s not efficient but very flexible

Functions as data -
Revision (1/4)

The exe function executes a function
function exe(f, x) { return f(x) }

It works only if the f argument represents a
function object, not a body code or a string name
exe(x*x, .8) // error

exe(“Math.sin”, .8) // error

These cases become manageable by using the
Function constructor to dynamically build a
function object

Functions as data -
Revision (2/4)

Dynamic building using the Function constructor

when only the body is known
exe(x*x, .8) // error

exe(new Function(‘x’, ‘return x*x’), .8) //
returns .64

when only the name is known
exe(‘Math.sin’, .8) // error

exe(new Function(‘z’, ‘return Math.sin(z)’), .8) //
returns 0.7173560908995228

Functions as data -
Revision (3/4)

Generalizing the approach:
var fun = prompt(‘Write f(x): ‘)

var x = prompt(‘Calculate for x = ?’)

var f = new Function(‘x’, ‘return ‘ + fun)

The user can now type the code of the desired
function and the value where to calculate it,
then invoke it using a reflexive mechanism

Show the result using
confirm(‘Result: ‘ + f(x))

Functions as data -
Revision (4/4)

Functions as data -
A problem

Values returned by prompt are strings: so the
+ operation is interpreted as a concatenation of
strings rather than a sum between numbers

If the user gives x+1 as a function, when x=4
the function returns 41 as a result

Possible solutions:

let the user write in input an explicit type
conversion, e.g. parseInt(x) + 1

impose the type conversion from within the
program, e.g. var x = parseInt(prompt(...))

Function objects -
Properties

Static properties (available while not executing):

length - the number of formal expected parameters

Dynamic properties (available during execution only):

arguments - array containing actual parameters

arguments.length - number of actual parameters

arguments.callee - the executing function itself

caller - the caller (null if invoked from top level)

constructor - reference to the constructor object

prototype - reference to the prototype object

Function objects -
Methods

Callable methods on a function object:
toString - returns a string representation of
the function
valueOf - returns the function itself
call and apply - call the function on the
object passed as a parameter giving the
function the specified parameters

e.g. f.apply(obj, arrayOfParameters) is
equivalent to obj.f(arrayOfParameters)
e.g. f.call(obj, arg1, arg2, ...) is
equivalent to obj.f(arg1, arg2, ...)

call and apply - Example 1

Definition of a function object
test = function(x, y, z) { return x + y + z }

Invocation in the current context
test.apply(obj, [3, 4, 5])
test.call(obj, 8, 1, -2)

Parameters to the callee are optional

In this example the receiving object obj is
irrelevant because the invoked test function
does not use this references in its body

call and apply - Example 2

A function object using this references

test = function(v) { return v + this.x }

In this example the receiving object is relevant
because it determines the evaluation
environment for the variable x

x = 88
test.call(this, 3)

// Result: 3 + 88 = 91

x = 88
function Obj(u) {
 this.x = u
}
obj = new Obj(-4)
test.call(obj, 3)

// Result: 3 + -4 = -1

