
Runtime Generics in the CVM:

Design & Implementation

Maurizio Cimadamore

DEIS – Università di Bologna

mcimadamore@deis.unibo.it

Runtime Generics in the CVM: Design & Implementation 2

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Outline

> EGO inside the JVM

> The goal

> Main architecture & reference implementation

> Runtime generics in the CVM

> Bytecode generic extension

> Runtime type system extension

> Interpreter loop generic extension

> Conclusion

> first impressions

> future works

Runtime Generics in the CVM: Design & Implementation 3

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

EGO inside JVM (1/2)

> Sun Microsystems expressed interest in having

EGO's type passing approach implemented inside

the JVM

> This approach ensures the benefits of having full

support for generic types at runtime...

> ...without the runtime overhead (yet low)

introduced by EGO's translational technique!

> We'll have a look at how the architecture of a

JVM can be generified following the EGO's

translation scheme.

Runtime Generics in the CVM: Design & Implementation 4

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

EGO inside JVM (2/2)

> Case study: J2ME platform reference

implementation (CVM)

> This is a true JVM implementation without all bells &

whistles of a full fledged JVM!

> Features vs. Complexity:

> CVM has all the core features of a standard JVM...

> ...some features missing (es. JIT compiler, etc.)

> CVM is a system written in the “old” C language

> About 50000 lines of code

> low level of abstraction

Runtime Generics in the CVM: Design & Implementation 5

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

EGO inside JVM - Architecture (1/3)

> The process of extending the CVM is structured

in two independent steps; Let C be a class:

> Bytecode reification: we have to store into C's

classfile all generic types information exploited by

all C's type-dependent operations (e.g. casts);

> CVM reification: we have to extend the CVM's

runtime type system to support runtime generics

> We also need to satisfy the following constraints:

> 100% full backward compatibility of the new

bytecode with legacy JVMs

> low impact on performances

Runtime Generics in the CVM: Design & Implementation 6

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

EGO inside JVM - Architecture (2/3)

JDK5.0 javac
Legacy JVM

0101010101010101010101010
1011110010101010001

Plain Java Classfile

public class List<X> {
......................
}

Plain Java Sourcefile

Runtime Generics in the CVM: Design & Implementation 7

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

EGO inside JVM - Architecture (3/3)

Generic javac
Generic JVM

0101010101010101010101010
1011110010101010001

Plain Java Classfile

public class List<X> {
......................
}

Plain Java Sourcefile

0101010101010101010101010
1011110010101010001

Generic Classfile Attributes

Runtime Generics in the CVM: Design & Implementation 8

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic Bytecode (1/3)

> Basic Idea: generic types’ erased signatures are

encoded into special data structures called type

descriptors

> The DescriptorTable (DT) generic attribute

defines all the type descriptors exploited in the

type dependent operations of a given class C;

> For a given method m in C, its DescriptorMap

(DM) generic attribute defines the mapping

beetween type dependent operations in m and

type descriptors in the DT.

Runtime Generics in the CVM: Design & Implementation 9

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

public class Main {

public static void main(String[] args){
List<String> ls = new

List<String>();

}

}

public class Main {

public static void main(String[] args){
List ls = new List();

}

}

public static void main(String[] args)

Code:
Stack=2, Locals=2, Args_size=1

0:new #2 //class List
3:dup

4:invokespecial #3

//List.<init>

7:astore_1
8:return

#1: class = List

 params = {#0}

#0: class = String

 params = NULL

DESCRIPTOR TABLE

#0: PC = 0

 descIndex = #1

DESCRIPTOR MAP

Generic Bytecode (2/3)

Runtime Generics in the CVM: Design & Implementation 10

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic Bytecode (3/3)

> We implemented an extended version of the

JDK5.0 javac compiler which produces as output

the additional generic attributes DescriptorTable

and DescriptorMap:

> Some results...

> The impact on classfile size is not significant (though

it increases with the number of type dependent

operations in a class' methods)

> 100% fully backward compatible since non-standard

classfile attributes are discarded by legacy JVMs!

Runtime Generics in the CVM: Design & Implementation 11

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM (1/2)

> Compile-time generated descriptors have to be

translated into proper runtime data structures

which can be exploited by type-dependent ops

> When executing a method m of a given class C,

the interpreter has to build proper runtime type

descriptors by looking into:

> The m's DescriptorMap attribute (if i is the PC of a

type-dependent instruction then m's DM has an entry

{i, d} where d points to a valid DT slot.

> The C's DescriptorTable; its d-th slot stores the type

descriptor to be exploited when executing i;

Runtime Generics in the CVM: Design & Implementation 12

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM (2/2)

> Descriptors are stored directly into the runtime

representation of a Java object (whose layout is

sligthly changed)

> This happens each time a generic “new” is executed

(remember, each generic opcode refers a type

descriptor in the current DT)

> This way the interpreter can access exact runtime

type information on a given instance obj when

executing type-dependent opcodes such as:

> cast (checkcast opcode)

> instanceof (instanceof opcode)

Runtime Generics in the CVM: Design & Implementation 13

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM – Object layout (1/4)

> A Java Object is basically a bunch of fields

(which can be 16, 32 or 64-bit values) along with

a 64-bit header:

> The object’s header determines its runtime type (it

stores a reference to the object’s CVMClassBlock

structure)

> Our aim is to link generic instances with exact

runtime type information of type descriptors

> We should replace the CVMClassBlock reference

in the object’s header with something else…

Runtime Generics in the CVM: Design & Implementation 14

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM – Object layout (2/4)

> Given an instance obj, we decided to change the

layout of its header as described below:

> If obj is a generic instance, then obj’s header will

point to a class descriptor carrying exact obj’s

runtime type information;

> If obj is a legacy instance (non generic) then o’s

header will still be pointing to its CVMClassBlock

> This way we minimize the impact of the generic

extension on the existing code!

Runtime Generics in the CVM: Design & Implementation 15

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM – Object layout (3/4)

0101010101000
1001010010001

header

Java Object

List

CVMClassBlock

String

CVMClassBlock

Type parameters

Class

Type Descriptor

Type parameters

Class

Type Descriptor

Runtime Generics in the CVM: Design & Implementation 16

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM – Object layout (4/4)

0101010101000
1001010010001

header

Java Object

List

CVMClassBlock

String

CVMClassBlock

Type parameters

Class

Type Descriptor

Type parameters

Class

Type Descriptor

Runtime Generics in the CVM: Design & Implementation 17

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM – Interpreter loop (1/4)

> The Java interpreter is basically a loop which

executes each opcode of a given method m;

> When an opcode has to be executed:

> first we have a quickening process that consist in

symbolic name resolution (this phase could trigger the

loading of other classes)

> Once an opcode is quickened, it's ready to be

executed by the interpreter (since we are sure that

every symbolic reference has already been resolved)

Runtime Generics in the CVM: Design & Implementation 18

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM – Interpreter loop (2/4)

> Assume we are quickening a new opcode

> The new opcode specifies a Constant Pool (CP) entry

as its unique operand (new CP_IDX)

> If CP_IDX refers to a not-yet resolved CP entry

> The entry CP_IDX of the current CP is resolved (and

the corresponding class loaded if necessary)

> The opcode is changed to new_quick CP_IDX

> This ensures that the resolution process happens

only once for each opcode of a given method m.

> What if CP_IDX refers to a generic type?

Runtime Generics in the CVM: Design & Implementation 19

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM – Interpreter loop (3/4)

> The interpreter loop of the generic CVM has to

deal with generic instance creation as well...

> Let's look at our opcode new CP_IDX

> If the current method’s DescriptorMap attribute

contains an entry for the above opcode (let

desc_idx be the value of that entry):

> The desc_idx-th descriptor in the current

DescriptorTable is resolved;

> The above opcode now is changed as follows:

new_generic desc_idx

Runtime Generics in the CVM: Design & Implementation 20

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Generic CVM – Interpreter loop (4/4)
public static void main(String[] args)

Code:
Stack=2, Locals=2, Args_size=1

0:new #2 //class List
3:dup

4:invokespecial #3

//List.<init>

7:astore_1
8:return

public static void main(String[] args)

Code:
Stack=2, Locals=2, Args_size=1

0:new_generic #1 //class List
3:dup

4:invokespecial #3

//List.<init>

7:astore_1
8:return

#1: class = List

 params = {#0}

#0: class = String

 params = NULL

DESCRIPTOR TABLE

#0: PC = 0

 descIndex = #1

DESCRIPTOR MAP

Runtime Generics in the CVM: Design & Implementation 21

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Conclusions (1/2)

> Currently, the following features have been

implemented:

> Generic classes/arrays creation

> Generic methods calls

> Execution of type dependent operation envolving

generic types (such as cast, instanceof)

> Some micro-benchmarks have shown that generic

CVM is almost as fast as its non-generic version

> We are planning system-wide benchmarks in

order to evaluate the cost of generic types support

in real world case studies

Runtime Generics in the CVM: Design & Implementation 22

Runtime generics in the CVM : Design & Implementation

Alma Mater Studiorum – Università di Bologna

Conclusions (2/2)

> A 100% full generic JVM should take into

account aspects like:

> Generic bytecode verification

> Generic types integration into the Java Reflection API

> Serialization of generic objects

> JIT

> ...

> As you can see, there is still a lot of work to be

done...

> This could be the starting point of your thesis!

Maurizio Cimadamore

DEIS – Università di Bologna

mcimadamore@deis.unibo.it

